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Entropy numbers of tensor 
products of operators 

David E. Edmunds and Hans-Olav Tylli 

This paper estimates the entropy numbers of tensor products of operators, 
err(e)  I E F ~ TeL!e)(E2, F2) be operators between mainlyin a globalsense. Let o=~s,w~ 1, 1/, 

the Banach spaces E~, Fi ( i=1,  2). Here L (e)s,w denotes the quasi-normed operator 
ideal consisting of the bounded linear operators with an ls,w-summable sequence of 
entropy numbers for 0 < s < c %  0 < w < ~ .  The size of the sequence 

(0.1) (en(S@o~T)) 

is studied in the scale of the Lorentz sequence spaces for tensor norms c~. Upper 
and lower estimates for the parameters of this scale are obtained for the sequence 
(0.1) for operators between special Banach spaces. We determine in Section 1 the 
precise behaviour in the Lorentz scale under tensoring with respect to the Hilbert 
Schmidt tensor product of Hilbert spaces. Kbnig [K1, Lemma 1] exhibited relative 
to this problem the first examples of the instability of the entropy number ideals 
under the projective tensor norm. In Section 3 some stability results are shown 
assuming cotype 2 conditions on the spaces involved. We also compute bounds in 
some cases for the instability in the Lorentz scale with the help of volume arguments. 
The corresponding "local" problem of evaluating the individual entropy numbers 
of SQ~T in terms of the entropy numbers of S and T is subtler. We establish in 
Section 2 asymptotic bounds for the entropy numbers of tensored operators on the 
Schatten trace classes Cp(12). 

We are indebted to A. Pelczynski for a helpful discussion concerning the ma- 
trix projections of Lemma 2.3, to Th. Kiihn for a suggestion used in the proof of 
Proposition 1.2 and to E. Saksman for discussing the proof of Lemma 2.5. The 
second-named author acknowledges the financial support of the Science and Engi- 
neering Research Council (UK). 
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1. P r e r e q u i s i t e s  a n d  t h e  H i l b e r t  s p a c e  c a s e  

The  n - th  (dyadic) en t ropy  number  of a bounded  linear opera to r  SEL(E, F) 
between the  Banach  spaces E and F is 

en(S)----inf{~>O:SBEC{Xl,...,xk}+CBF, k<2n-1}, n E N ,  

where BE is the closed unit  ball of E.  T h e  n- th  approx ima t ion  number  of S is 

an(S) = inf{ ] IS-RI I  : R E L(E, F), r ank (R)  < n }. 

The  basic proper t ies  of these non-increasing sequences are contained in [P1]. It  is 
s t andard  to measure  the  degree of compactness  of S by requir ing tha t  they  belong to 

a Lorentz  sequence space 18,~={x--(xn)Eco:]ixiis,~<c<> } for 0 < s < c ~ ,  0<w_<c~.  
H e r e  []x[ls,w--(E~n_l nW/S-l(x*)w)l/w if w < o o  while [[x[[~,~---supn>l nl/~x *. The  

sequence (x*) s tands  for the non-increasing posi t ive r ea r rangement  of (Xn). The  
cus tomary  nota t ion  l ~ is also used ins tead of l . . . .  [[. [[~,~ is in general a quas i -norm 
on l . . . .  T h e  en t ropy  number  ideals are thus  

L~) (E, F) = { S E L(E, F) " a (e) (S~ = H (e~(S))[[~,~ < cc }, 

while the  approx ima t ion  number  ideals are 

L (a) (E F~ = { ~ E L(E, F ) :  o -(a) ( ,~  = II(an(S))ils,w < oc }. 8(UJ\  ' / 8~21) \~2  

The  sequence spaces Is ~, (as well as also L!,  ~) ~n ~ L (a) ~ , ~ u , ,~ j  are lexicographically ordered 
by inclusion (see [K2, p. 52]): 

0 < s < t < oc, 0 < u, v < c~ imply  t h a t  ls,~ C lt,v strictly, 

0 < s < co, 0 < w < u < cr imply  t ha t  ls,~ C l,,~ strictly�9 

A tensor  no rm a is a norm defined on the algebraic tensor  p roduc t  E| for 
all pairs (E,  F )  of Banach  spaces tha t  satisfies the  addi t ional  proper t ies  

(1.1) a(x| = IixlI I]yiI for all x E E ,  y E F, 

(1�9 [IS|  (El| c~) ---+ ( F I Q F 2 ,  ~)11 -< IlSl[ IITII 

for all opera tors  SEL(E~, F1), TCL(E2, F2). Here S| is defined by linear exten- 
sion of (S|174 for xEE1, yEE2 and (1�9 s ta tes  tha t  S| induces a 
bounded  linear opera to r  S@~T: E1 @~E2---+FI@~F2 between the  completions�9 
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The survey [DF] is a convenient reference for properties and examples of ten- 
sor norms. There is a large supply of tensor norms on account of the connection 
between finitely generated tensor norms and maximal normed operator ideals, cf. 
[DF, Chapter 4]. For instance, there is a family (~p,q of tensor norms associated 
with the ideals consisting of the (r, p, q)-integral operators. Let E and F be Banach 
spaces. The projective tensor norm ~r (which coincides with cq,1) is 

= in f  I[x [I Ily ll e E |  
i=1 i=1  

and the injective tensor norm is 

x' x , (xl,yl) EBE, XBF '  (z)=sup : 
i=1 

Z n for =~i=lx i |174 We also use ]]'H~ and ]].[]~ instead of 7r and ~. It is 
known that  c < a < 7r for any tensor norm a. 

If H and K are Hilbert spaces equipped with the respective inner-products 
(', "}H and (., '>g, then a2,1 is the completion of H| with respect to the inner- 
product obtained by the extension of 

(x|174 for x |174174  

The completion H~hsK is called the Hilbert-Schmidt tensor product of H and K.  
This paper mainly studies the behaviour of the entropy number ideals L (e) s,w un- 

der tensor norms a. More precisely, given 0 < s < c c  and 0 < w ~ c ~ ,  find the minimal 
parameters (t, u) such that  

S ~ T  6 L~e)u(EI~aE2,FI~aF2 ) 
CrL(e)  r~ F1), TcL~,)(E2,F2) and for the Banach spaces E~, Fi ( i : 1 , 2 ) ,  for all o ~  s ,w~ l ,  

usually in some restricted class of spaces. This is not always possible for all param- 
eters of the Lorentz scale. For instance, the condition 

S ~ , T  E r(e)[11~ 11 /2~7r/2 ) 

for all S,~rn(e)(ll~.- 8,~ ,l:) is impossible unless 1 / t~ l / s - � 88  [K1, Lemma 1]. In any 
case, one always has t>s by e~(S~T)>_max{]]TI]e~(S), ][SHe~(T)}. 

The tensor product notation is convenient in connection with the double- 
indexed product of the scalar-valued sequences x=(x~) and Y=(Ym), thus x| 
(XnYm) where i n, m) c N  2. The simplest possible case of our problem, the Hilbert-  
Schmidt tensor product of operators on l 2, reduces to an analytic problem of the 
Lorentz sequence spaces. Here a complete solution is available. We first state the 
results in terms of entropy ideals and outline the (essentially known) reduction. The 
resulting analytic problem is solved in Proposition 1.2. 
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T h e o r e m  1.1. Let 0 < s < c ~ ,  0<w<c~_ and ~,r T r L  s,w (/2). 

(a)  S ~'~yhsTrL s,w[/12~hs e'2') for all S, T as above if and only if O<w<s.  
(b) I f O < s < w < 2 s ,  then 

(~) 2 ̂  2 S ~ h s T  E Ls,~(l | ), 

where u satisfies 1 / u = 2 / w - 1 / s  if w<2s  and u--c~ if w=2s .  This inclusion is the 
best possible. 

L(r r(e) /,2~.-~T(e) ~,2R ,2~ L(e) (12)~hs (c) I f  2s<w<_c% then ~,~ )kY:PhsL's,wl, ~ )t/--l-~s,oa(.t kh)hs~ }, but ~,~ 
L(e) i ~ : ~  L(e) 1~2~ ~2~ for all v > s, u>O. s,wk~ 3~- v,uk~ ~hs~ ) 

Proof. If SEL!~,)~(I 2) then there are partially isometric operators X0, Y0:12 --+l 2 
according to the Schmidt representation theorem (see [P1, D.3.3]) with the prop- 
erties that  S=YoD~X~ and D~=Y~SXo ,  where D~ is the diagonal operator on l 2 

T r  L (~) (12~ induced by the singular number sequence s=( sn (S ) )  of S. Factorize . . . .  ~ j 
similarly through Dt using partial isometrics X1 and Y1 o n  12. After tensoring 

en(S@hsT) = en((YO@hsY1)o(Ds@hsDt)o * ̂  * ( X  0 @hsX1 )) ~< en (Ds@hsDt ) ,  

and conversely also e~(D, Qh~Dt)<en(S~hsT).  Hence it suffices to consider the 
diagonal operator Ds~hsDt=Ds|  on 12(N 2) since 12Qhfl2=12(N 2) isometrically. 

Recall the asymptotic formula due to Gordon, K6nig and Schiitt for the entropy 
numbers of diagonal operators on spaces with an unconditional basis. Let (e~) be 
an orthonormal basis of l 2 and let D~ be the diagonal operator e ~ - - ~ e ~ ,  nEN,  
whenever a = ( a n )  is a positive non-increasing sequence. Then 

/, ,~x/n 
, 

n>_l \j<_n / 

for all kEN [GKS, 1.7]. In particular, D~_rL(~)~,~(l 2~j if and only if a =  (a~)El~,~ with 
equivalence of the corresponding quasi-norms. This is [GKS, 1.8] when s = w  and 
the general case follows in a similar fashion from a Hardy-type inequality for l~,~: 

If 0 < w < c ~  and if 0 < r < s  then there is dr,w>O such that  

n 

for all non-increasing positive ( ~ )  El~,~ [P3, 2.1.7]. 
In particular, since also en(S)=e~(D~) and e~(T)=en(Dt)  for all nEN,  one 

L (e) 112~ concludes that  S, TE ~,~v J if and only if s=(s,~(S)) and t = ( s n ( T ) )  belong to l~,~ 
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~ T r  L(C) q2~ 12~ while O~hs ~ v,xl, ~hs ) if and only if s| The proof of Theorem 1.1 
is completed by applying the following result concerning the size of the positive 
non-increasing rearrangement of tensor products of sequences. 

We require some facts from bilinear interpolation. The standard reference 
for real and complex interpolation is [BE]. Let (X0, X1), (Y0, Y1) and (Zo, Z1) be 
compatible couples of quasi-Banach spaces such that Zi is ri-normed (0 <ri_< 1) for 
i=0 ,  1. Suppose that  T defines a bounded bilinear operator Xi xYi--+Zi for i=0 ,  1. 
Let 0 < 0 < 1, 0 < ql, q2 _< oc and 1/r  = (1 - O)/ro + O/rl. The real bilinear interpolation 
theorem due to Karadzov (cf. [K1, p. 89]) states that  

T: (Xo, Xl)o,ql x (Vo, Y1)o,q2 --* (Zo, Z1)o,q 

is bounded, where 1 / q = l / q l + l / q z - 1 / r  if min{ql,q2}>_r and q=max{ql,q2} if 
min{ql, q2} < r. If the compatible couples consist of Banach spaces, then the complex 
bilinear interpolation property says that  T is bounded from (X0, X1)o • (Yo, Y1)o to 
(Zo, Z1)o for any 0C (0, 1) [BL, 4.4.1]. Recall finally that the Lorentz sequence spaces 
form a real as well as a complex interpolation scale of quasi-normed spaces: 

Suppose that  0<s0<s l<oO,  0<w0, Wl<OO and that  at least one of w0, wl is 
finite. Then for any 0E(0, 1) and 0<w_<oo there is up to equivalent (quasi-)norms 

(1.3) (180,181)0,q33 = l  . . . .  

(1.4) (180 ,WO,181(wl)Om18,U, 

where 1/s=(1-0)/So+0/81 and 1/u=(1-O)/wo+O/wl.  In the quasi-normed cases 
of (1.4) we consider the extension of complex interpolation explained in [CMS]. 

We next evaluate the size of the doubly-indexed products on the Lorentz se- 
quence spaces 18,~ in the unstable cases 0<s<w_<oo. The cases 0<w_<s<oc were 
considered by Pietsch [P2]. The principle of uniform boundedness implies here that  
18,w | ls,~ C It,~ (N 2) if and only if (x, y) --+ x | y is a bounded bilinear operator from 
18,~ x ls,~ to lt,~(N2). 

P r o p o s i t i o n  1.2. Let 0 < s < o o  and 0<w_<oo. 
(a) l~,~| 2) if and only i fO<w<s. 
(b) If whe.e  hile 

ls,2s | Is,2s C ls,~ (N 2 ). 
These inclusions are optimal in the scale of Lorentz sequence spaces. 
(c) / f  2s<w<<_c~, then l~,~o| but l~,~| 2) for all 

v>s and u>0.  

Proof. (a) is in [P2, pp. 34-35]. The proof of (b) is based on a careful applica- 
tion of real and complex bilinear interpolation. 
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The cases 0 < s < l ,  s<w<2s. Suppose that 0 < s < l  and choose O<so<s<Sl<l 
as well as 0e(0,  1) satisfying 1/s=(1-O)/So+O/sl (the case s = l  requires minor 
changes). Karadzov's real bilinear interpolation theorem implies that  @ is bounded 
from (l~o,l~)o,~x(l~o,l~)o,~ to (l~o,l~,)o,q(N2), where 1/q=2/w-1/s .  This is 
admissible provided 0 < w _ 2 s .  Thus (1.3) yields that Is,~Qls,~cl~,~(N2), where 
1 /u - -2 /w-1 / s  when s<w<2s, and that l~,2~| 2) when 0 < s < l .  

The cases l<s<w<2s.  Observe to begin with that 

(1.5) l~,~@l~cls,~(N2), 0 < s <  co. 

If s =  1 then it suffices to verify that 

c a r d { ( k , m ) : ~ k l m > l - n } _ < n  f o r a l l n E N ,  

whenever (~k) e l 1 is a positive non-increasing sequence with II (5k)111 < 1. Indeed, fix 
n c N  and let Nm={kcN:~k>_m/n} for rnC{1, ...,n}. Then 

l _> E (k _> E card ~ k : - - > ~ k _ > - -  -- 
k r=l n n n 

n - - 1  

1 E ( N r _ N r + l ) r =  ENd"  - c a r d  ( k , m ) : ~ k - - > -  . 
- n r = l  n r = l  n m - -  n 

The claim (1.5) for 0 < s < c c  is obtained by considering (~) .  
We next claim that 

(1.6) /~,2~@/~,2~ C/~,o~ (N 2) 

whenever l < s < c c .  In order to see this, take P0, Pl and 0<{?<1 satisfying l < p 0 <  
s<pl<cc and 1/2s=(1-O)/po=O/pl. Apply the complex bilinear interpolation 
result to the bounded map 

|215 2) and |215 2) 

obtained above in (1.5) and deduce from (1.4) and the choices of p0, Pl and ~ that 

| 18,2~ x l~,2~ -~ (Ipo,o~, Ipl ,~)0(N 2) 

is bounded. Finally, the fact that (Ipo,~ , lpl,o~)o cl~,~ (see the proof of [BL, 4.7.2]) 
establishes (1.6). 
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Suppose next that  l<s<w<2s and let O=(2s-w)/s, whence 1/s=O/w+ 
(2(1-O))/w. Then | is bounded from I~/2,~ xl~/2,~ to l~/2,o~(N 2) and from l~ xlw 
to l~o(N 2) in view of (1.6). Complex bilinear interpolation implies the boundedness 
of 

| l~,w x 18,~ -~ (I~/2,~, l~)0(N ~) = l~,~(N:), 

where 1/u=O/w----2/w-1/s. Note that  lw/2,~ and 1~/2,oo are quasi-normed spaces 
if w<2.  In these cases the complex bilinear interpolation property remains valid 
for the extension of complex interpolation considered in [CMS]. 

Optimality. Let x(m)=(x~m)), mEN, be the finite sequences 

x(m) = f 2 -k/~, if 2J _< k < 2 j+l  for some natural number j < m; 
k 0, otherwise. 

Pietsch [P2, p. 35] estimated that  

iixr ~ml /w,  IIx<'noxr > r 

with c0>0 independent of m. The assumption l~,~| CI~,~(N 2) for some u with 
w<_u<oo implies that  there is a constant c>0  such that  

I1~ (~) |  (m) I1~,~ ~ cllx(~)I1~,~, for m C N .  

Hence 1/s+l/u<2/w. 
(c) The sequences x ('~) show as above that  if ls,~| then there 

would be positive constants c and d such that  

cm 1 /s<l l=( 'n |  <din 2/w for m e N .  

This is impossible if 2s < w < co. The general inclusions Is,~o | ls,~, C It,~, (N 2) for t > s 
and u > 0  are seen for instance from the proof of [K1, Proposition 1] for w < o c  and 
from Proposition 3.1.a below for w=oc .  

2.  T e n s o r  n o r m s  o n  H i l b e r t  s p a c e s  

The operator theoretic version of Sudakov's inequality for gaussian processes 
yields estimates for the entropy numbers of tensor products of operators between 
special tensor products, one of which is the Hilbert-Schmidt tensor product  12 @he/2. 

Let "/~ be the canonical gaussian probability measure on R n with density 
function d%~=exp(-1/2(~i~=l x2))dXl ... dxn for h E N  and let E be a Banach 
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space. The / -no r m of the operator u: l~--~E is Z(u)=(Elluxl[ 2 d~n(x))l/2, while one 
defines l (u)=sup{ l(uv):vEL(l~, 12), Ilvll _< 1, n e N  } for uEL(l ~, E). The rotation- 
invariance of 7n implies that  

(2.1) l(u)=sup(E ~-~gjuej 2 -~1/2 
n C N \  I1~=_-1 d~/n) 

for u E L(l 2, E), whenever (gj) is a sequence of independent normal gaussian random 
variables on l~ and (ej) is any orthonormal basis of 12 (see [Pi2, p. 35]). The operator 
version of Sudakov's inequality (see [Kii, p. 54] or [Pi2, 5.5]) states that there is a 
constant c such that  for all Banach spaces E and all uEL(12, E) 
(2.2) II(e~(u'))ll2,~ = sup nl/2 en(U ') < cl(u). 

n c N  

Let (r j) be the sequence of Rademacher functions on [0, 1]; r j  ( t )=sgn sin(2J~rt) 
for tE[0, 1]. Recall that the Banach space E is of type p for some p with l_<p_<2 

E ~ - -  if there is constant c>0  such that ( [1 ~ j = l  rJ(t)xyll 2 d t ) l /2<e(E~ 1 IlxjllP) ~/~ for 
all n E N  and all Xl, ...,xn in E.  I f p > l  then there is also in this event d>0  with 

(2.3) (E ~.~_lgjXj 2dp)l/2 d(ff.~ -~l/p _< Ilxjll p)  , 

for all n c N  and all Xl, ...,x~ in E,  whenever (gj) is an independent sequence of 
normal gaussian random variables defined on a probability space (f~, E ,P ) ,  see 
[TJ3, 25.1]. 

If Ei and Fi are Banach spaces and if S{EL(Ei, Fi) ( i=1,  2), then the notation 
SI~ZSe is used for the extension of $1| whenever it extends to a bounded 
operator from El@dE2 to FI@~F2 for given tensor norms a and 3- The Schatten 
trace-class spaces are 

c;(l 2) = { S E L(12): IISllp = [[(sn(S))[lp < oe } 
for l_<p< oo. The products 12@~l 2 are actually induced by the tensor norm associ- 
ated with the maximal ideal consisting of the (p, 2, 2)-absolutely summing operators 
for l_<p<ec [P1, 17.5.2]. This space equals 12@,l: for p = l  and the Hilbert-Schmidt 
tensor product for p=2.  Suppose that  p satisfies 2 < p < e c  and that  S, T are com- 
pact operators on l 2. One obtains after a tensoring of the Schmidt decompositions 
of S and T that SNT extends to a bounded linear operator from ep(12) into c2(l 2) 
precisely when D~| extends similarly, where s=(s,~(S)) and t=(sn(T)). The 
general H61der inequality for the trace-class spaces [P3, 2.11.23] provides a suffi- 
cient condition for this; 

[](O~| = [[Dt~176 <_ [ID~ll~[IDtll~lla[Ip 
for all aEcp(12) whenever u, v satisfy 1/u+l/v+l/p= 1. 
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P r o p o s i t i o n  2.1. Let 2 < p < o c  and assume that S, TeL(~,)(I 2) with 0<r ,  
w~p'. Then 

^ (~) 2^ 2 S% | E Lt,y(l | ,/2Qhs/2), 

1 and where l /y= whenever SQT admits a bounded extension, with l / t= l / r - 1 / p - ~  
l / w - l i P '  ifO<w~r and 1/y--2/w- 2/p ' -  l /r  if r <w~2(1/r+ l/p') -1. The same 
statement applies to 

Shs@%, T: 12Qhsl 2 --* 12Q%, l 2. 

Proof. Schmidt decomposition of S and T as in the proof of Theorem 1.1 implies 
that  it is enough to consider the diagonal operators D~, Dt on 12 induced by the 
singular value sequences s---(sn(S)) and t--(sn(T)). In order to apply Sudakov's 
inequality (2.2) we have to evaluate (according to (2.1)) 

l(DshsQ%,Dt) sup{ E E = ( (i,j)~AgijsieiQtyejp,) :AcN2 f in i t e ) .  12 1/2 

Here (gij), (i, j )~N 2, is an independent sequence of normal gaussian random vari- 
ables. One obtains from (2.3) that there is a constant c>0 with 

-- ~i ej ) 
(i,j)cA (i,y)ch 

for all finite A c N  2, since %, (/2) is of type p' by [T J1, 3.1]. Thus (2.2) implies that  

D~p~hsD~ belongs to r(~) whenever s , tE l  p'. 
The result extends to some other values of r and w with the help of a simple 

factorization trick based on the HSlder inequality. Let 0<r ,  w_<2. For any positive 
non-increasing sequence s =-(Sn) E l~,~ there are positive sequences s '=  (S'n) C I p' and 
s"--(s"~el satisfying s~=S'nS" for all n e N ,  1/r=l /p l+l /x  and 1/w=l/p '+l /y .  - - \  n] x~y 

Let t--t't" be a similar factorization of t =  (t~)E l~,~. In order to apply Theorem 1.1 
and the preceding/P'-case to the factorization 

(2.4) D~c~ ~h~D~ = ( D~,,~hsDt,, )o( D~, ~, ~h~D~, ) 

one distinguishes between the possibilities O<w~r or r<w~2(1/r+l/p')  -1. If 0< 
w _~ r then 0 < y ~ x and Theorem 1.1.a yields, after reordering with unitary operators 
if necessary, that  

[(~) or(~) r(~) Ds% ~ h s D t  E "-'x,y ~ 2 , ~  C ~ t , y ,  

where l i t = l / r -  l / p -  �89 and l /y= l / w -  �89 The above inclusion follows from the 
multiplicativity property of the entropy numbers and [P1, 2.1.13]. On the other 



256 David E. Edmunds and Hans-Olav Tylli 

hand, in the case r<w<_2(1/r+l/p') -1 one clearly has O<x<y<_2x and hence, in 
view of (2.4) and Theorem 1.1.b, that 

r.(~) or.(~) r(~) D~%~hsDt E ~ , ~  ~2,~ C ~t,~, 

where t is as above and with 1/u=2/y -1 / r=2/w-2 /p ' -1 / r .  This completes the 
argument for Scp~hsT. 

The statement concerning the matrix operators Shs~%,T is seen from the 
duality properties of the entropy numbers of operators with values in a Hilbert 
space [T J2]. 

We mention an example in the direction of [C1]. 

Example 2.2. Let s-=(sk), t=( tk)  be positive non-increasing sequences. If 
s,tEl r, 0 < r < o o ,  then 

Ds ,6hsDt  e L(~?~ (110,l 1, 126hs12), 

where 1/u=l/r+�89 Moreover, there are sequences SECo such that D~@hsDs~ 
L(C) ( /1~l l , /2~hs/2) .  2,1 

Proof. There is an isometric identification l lQfll=ll(N 2) and Ds~hsDt is 
identified with the diagonal operator D~| ll(N2)-~12(N 2) taken with respect to 
the natural symmetric basis (e~ | Let 0 < w < cr and 1/u-- 1/r+ �89 Then Ds| E 
L (~) (llrN 2~ 12rN2~ if and only if sQtE l~  according to [C1, 3.1 and 3.2]. In u , w k  \ ], \ ) )  

particular, D ~ h ~ D t  r L(~) whenever s, tElL "-- %t~r 

For the second assertion consider s=(si)E c0, si = 1/ log(k+2)  for 2 k <_i<2 k+l, 
k e N .  According to (2.1) and the estimate from below in Chevet's inequality 
[Ch, 3.1] it follows that  

l ( D s h s ~ c D s : 1 2 ~ h s l 2 - - - + C o ~ r  sup E ~ g i j s i s j e i |  j e 
hEN i=1 j : l  

~ ( / ~ 1  )1/2 / n 
> supsup ]x'(siei)[ 2 :x'EBz~ S Z g j s j e j  
-- hEN I. .= ~" Hi= 1 t~co 

= s l  sup E max si]gi], 
n G N  l< i<n  

where (g~j) and (g~) are independent normal gaussian random variables defined on 
some probability space (~, E, P). It follows (for instance) from Sudakov's inequality 
for gaussian processes (see [Pi2, 5.6]) that  there is a constant c>0 such that  

nl/2 
E max si[gi] >Clog h E N ,  1<i<2n+ 1 -- (n+2) '  
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since { sig~:l<i<2n+l-1 } forms an orthogonal set in L2(~ ,P)  by independence 
and since Ilsigi 2 2 1/2 --sjgjilL2(a)=(s i +sj) whenever ir  Hence l(Dshs@~Ds) fails 
to be finite and thus Dudley's inequality [Pi2, 5.5], 

< cl Z  -l/2en(  ') 
n 

D ^ I ^ (~) (u: 12"--~E, E any Banach space) implies that  (shs |  =D~| ~L2,1. 

If (ei) is the standard unit basis of/2,  then { (e~Qej):(i,j)EN 2 } constitutes 
a Schauder basis for 12~pl 2 in the usual box order. Let Ds,Dt:12--~l 2 be the 
diagonal operators corresponding to the positive non-increasing sequences s=(Sn) 
and t--(tn). In this case Ds@~Dt is the diagonal operator ei|174 
(i, j ) E N  2, on 12~l  2. However, %(/2) fails to have an unconditional basis whenever 
p~2,  (cf. [Pil, 8.20]) and thus the formula due to Gordon, Khnig and Schiitt [GKS, 
1.7] for the entropy numbers does not apply as such to this concrete situation. 

We next establish asymptotic bounds for the single entropy numbers of 
D~Q~Dt. It is cruciM that there are uniformly bounded sequences of finite-dimen- 
sional projections on cp(l 2) associated with the level sets of the non-increasing re- 
arrangement of s| For this purpose ideas of Kwapien and Pelczynski [KP] are 
required. Suppose that  s = (s~) and t-- (tn) are positive non-increasing 0-sequences. 
Set 

A ~ ( s , t ) = { ( i , j ) E N 2 : s i t j > l / r )  and M~(s,t)--[ei| 

and let Q~(s, t) be the natural finite-dimensional projection 

E E ai,je~| E ai,jei| 
i j (i,j)eA~(s,t) 

from Cp(12) onto M~(s,t) for any rEN.  The matrix notation a=~-~ i ~ j  aidei| is 
used for aECp(12), with the summation in the box order, i.e. as ~-]n~__~ ~-]~vj=~ a~,jei| 
ej where iVj=max{i, j). We will often suppress (s, t) in the interest of brevity and 
thus write At, Mr and Q~. 

A result due to Macaev states that  the main triangle projections T~, 

ei |  if i + j < _ n + l ,  

T~(ei| = 0, otherwise, 

n EN, are uniformly bounded on cp(l 2) when l < p < c ~ ,  

(2.5) dp = sup ]ITs: cp(l 2) --* Cp(12)]l < c~, 
nEN 

cf. [GK, III.6.2]. 
The following lemma of a technical nature concerning the norms of irregular 

triangular projections on Cp(12) has independent interest. 
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L e m m a  2.3. Suppose that p satisfies l < p < o c .  Then 

(2.6) 
ap -- sup{ ][Q~(s, t): cp(l 2) --* Cp(12)[[ : s and t non-increasing, 

positive O-sequences, r E N } < oc. 

Proof. If p =  2 then evidently a2 = 1, since c2 (l 2) is isometric to 12 (N2). Suppose 
that  r E N  and take n c N  with max{sl tn,  snt l}<l/r .  Let Pk,,, stand for the con- 
tractive box-projections on cp(l 2) sending ~ i  ~-~j ai,jei| to ~i<_k ~-~j<m ai,jei| 
ej when k, mCN. It suffices to find uniform bounds on the k• since 
Pk,ka--~a in cp(l 2) for all a as k--~cc. There is also no loss of generality in assuming 
that n is large enough in order that  

Ar(s,t) C Dn= { (i,j) e N2 :i+j <_n+ l }. 

We indicate how the uniform boundedness of the projections Qr (s, t) is reduced 
with the help of uniformly bounded operations on cp(l 2) to the unconditionality of 
the Schauder decomposition (Pk+l,k+l--Pk,k)kcN of cp(l 2) for l < p <  oc, which was 
established in [KP, p. 67]. It is instructive to visualize the different steps on finite 
matrices. 

The sets A~----A~(s, t) obviously enjoy the following "convexity" property: if 
(i,N)~A~, then (k, / )~A~ whenever k>_i and l>_j. Let Us be the isometry 
U.(E~<n a~e~)=E~<n a~e.(~) on l~ whenever a is a permutation of {1, ..., n}. Set 
7c(k)--n+l-k on {1, ..., n}, whence 7r -1--~.  The tensor property implies that 

jE)CA ai,jeiQej = (id| Z ai,jei| 
(i, . ( i , j )eA~ 

~-- (i,~A~jj~ ai,jeiQe~(j) (2.7) 

~_ ~ ai,jei| + E ai,jei| 
(i,j)~ (+) (i,j)cA~(--) 

Here (as well as in the proof of 2.4 below) we delete for simplicity the subscript in the 

norm ]i-lip of ep(12). Above A~(+)={(i , j )cA~(s , t ) : ( i ,~( j ))ED~ } and A n ( - ) =  
( ( i , j )CA~(s , t ) : i§  We proceed to estimate the first term of (2.7). 
Put  A~(+) = (id x ~)A~ (+). The "convexity" property of A r (s, t) C n n implies that 
there are finite sequences (rk) and (sk) of integers satisfying: 

s (+) = { (i, j )  C { 1, ..., n} 2 :rk _ j ~ rk+l - 1, 

sk <i < n + l - j  for k= l , . . . ,m }, 
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where l<rl<...<rm<_[n/2]+l, l<sl<...<sm<n for some m=rn(s,t)<[n/2]+l, 
rk--sk~O, rk+l- -1- -sk~O for all k and with 

(2.8) 
n +  1 -  (rk--  sk) > n +  1-- (rk+l -- 1-- sk) 

> n +  1--(rk+l--Sk+l) for k = 1 , . . . ,m-1 .  

There exists a pair (a, p) of permutations of {1, ..., n} with the following prop- 
erties: 
(2.9) # maps the disjoint subsets {rk, r k + l ,  ..., r k + l - 1 }  increasingly onto the dis 

joint sets (by (2.8)) {rk--sk, rk+l--sk, ..., rk+l - - l - - sk}  for k = l ,  ..., m - 1  and 

(2.10) a maps the disjoint subsets { n + l - ( r k + l -  1), ..., n +  1 - r k }  increasingly onto 
the disjoint sets (by(2.8)) {n+l--(rk+l--l--sk),...,n+l--(rk--sk)} for 
k-- l ,  . . . ,m-1 .  

The conditions (2.9) and (2.10) state intuitively that the pair (a, p) permutes any 
"block" of the form 

{ (i,j):rk <j_<rk+l-1, sk < i ~ n + l - j }  

of s  in D,~ onto the corresponding block of equal size containing {(1, rk--Sk), 
�9 .., (1,rk+l-- 1--sk)}. 

This entails that 

E ai'j~i@~oT(J) : (UO" 1 @g.--1) E ai,je'~(i)| 
( i,j)eA~( + ) ( i,j)eA~( + ) 

(i,j)~(+)~--~ ai,jea(i) @e~(~(j)) 

: Tn(Rrk+l_l_sk,rk+l_l_s~--Rr~_sk,r~_sk)i~<_nj~<_nai,jea(i)| 

<_dpKp E E ai,je~(i)| ~_dpKp E E ai,jei| , 
i~_n j~n "i~n j~n 

where Rr,~=(id| The above inequalities follow from (2.5), the 
tensor property and the unconditionality of the Schander decomposition (Pk+l,k+l -- 
Pk,k)keN for cp(l u) [KP, p. 67]. Kp is the associated unconditional constant. 

The second term H ~(i,j)eA~(-)ai,jei |  of (2.7) admits a similar bound. 
This completes the proof of the lemma. 

Let s=(sn) and t=( tn )  be positive non-increasing 0-squences. We denote 

mx= mx(S, t) = min{ r e N :  max{srt l ,  sltr} < x } 
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for x > 0 and put 

b(n)=b(s't)(n)=sup( 2-n n 8itj) 1/#A~(s't) 
tEN (i,j)e&r(s,t) 

for nEN. The function x--~m~(s,t) is clearly decreasing. Recall that the n-th 
non-dyadic entropy number of SEL(E, F) is 

e,~(S) = inf{ s > 0: SBE C {Xl, ..., x~}+eBF, xl,..., x~ E F }. 

Evidently en(S)=e2~-1 (S). 

T h e o r e m  2.4. Suppose that p satisfies l < p < o c ,  p~2.  Then 

(2.11) ~b(n) < e~(Ds~cpDt) <_ [3+2ap+21og(2mb(~-l)(1+21og(2mb(~_l))))] 

x b(n- 1)(1 +2 log(2mb(n-1))) 

for all n>_2 and for all positive non-increasing sequences s and t (the logarithm is 
to the base 2). In particular, 

e,~+ l ( D s~cpDt ) <<_ bpb( n ) (log( mb(n) ) ) 2 

for some uniform constants bp < c~. 

Proof. A standard volume argument, which is indicated for completeness, yields 
the lower bound. Indeed, fix r E N  and consider the restriction (Ds| (r)= 
Qr(D~8r Mr-+ Mr, for which 

en((Ds| (r)) <_ NQr(s, t)l[e~(D~@r <_ apen(Ds@% Dt) 

according to (2.6). Suppose that A > en((Ds | and that 

(D~QDt)(r)BM,. C {al, ..., a2n}+ABM~ 

for some al, ..., a2-CMr. The evaluation of the #A~(s, t)-dimensional volume with 
respect to Lebesgue product-measure entails that 

vol( (DsQDt)(r) B.~) = I det((DsQDt)(~))l vol(BM.) 

= (  n sitj) v~176 
(i,j)cA~ 
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Thus 

) ~ (  2-n I I  8it J) 1/~Ar" 
(i,j)e~, 

The supremum over r gives the left-hand inequality of (2.11). 
We proceed to establish the right-hand inequality. It is assumed that  si > 0 and 

ti>O for all i E N  since the argument simplifies if s or t are finite sequences. Let 
0 < x < l .  We want to determine the optimal choice of x by a volume argument as 
in [GKS], but considerable complications arise due to the lack of uneonditionality 
in cp(12). There is r E N  such that  1 / ( r + l ) < x <  1/r. Let {al, ..., aN} be a maximal 
set of elements of (Ds | with the property that  

Consequently 

Ilai-ajl 1> 2x f o r i C j .  

(Ds| C {al, ..., aN}+2xBM~. 
One has 

(2.12) ey(Ds@cpDt) <_ eN(Qr(D,@c, Dt))+]](id-Qr)D~6c, Dtll. 

The right-hand terms of (2.12) are dealt with as follows. Observe first that  

Qr( D~@cpDt )Bcp(12) = Qr( D~c, Dt )Q~ B~,(I~) c ap( D~| Dt )(~) BM~ 

because of (2.6). Hence CN(Q~(D~Oc, Dt))<_2apX. 
The second term of (2.12) splits into 4 parts. Let a = ~  ~ j  a~,je~| 2) 

be an operator with finite matrix. Note that  Ar=A~(s,t)C{1,...,mx} 2 by the 
choice of mx=rn~(s,t) and the mononicity of s and t. Let A~={1,...,mx}2-Ar. 
Write 

(id-Q~)(D~@r E sitjai,jei| 
(i,j)r 

(2.13) = E E sitja~,jei|174 
i~m~+l j~_mx+l I 
+ E sitjai,jei| E sitjai,jei| 

H (i,j)Ez~, 

The sum in I extends over ( i , j ) E N  2 satisfying l<_i<_mx and j>_m~+l ,  while the 
summation in II is over (i,j) with i>m~+l and l<_j<__m~. The tensor property 
and the monotonicity of s and t imply that  

~+ E sitjai,jei| <_max{sitj:i,j>_mx+l}l]all<xllall, 
i> 1 j>_mx+l 
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while also 

~i sitjai,jei| <_ Sltm~+lllall <_ xllall 

by the definition of rex. Similarly II ~ H  sitjai,jei| �9 The preceding in- 
equalities hold for all aEcp(l 2) in view of the density of the finite operators. 

We require the combinatorial result formulated below in Lemma 2.5 in order 
to estimate the remaining term of (2.13). Recall that  a (finite) chain C in N 2 has 
the form 

C :  U Aj• 
j<r(~) 

for some r(C)E N, where A i n Aj = 0 and Bi n B d = O whenever i ~ j .  The disjointness 
of the supports of the corresponding operators leads to 

E sitjai,jeiQej --< r<r(c)max , . ~  _ 8itjai,jei| 
(2.14) (i,j)cc - II~i,j)Cd~X,, 

_< max{ sitj : (i,j) r C }llall 

for a = ~ i  Y~j ai,jei| The first inequality is seen from [K1, p. 87-88], while the 
second one follows from 

sitkai,kei| <_max{ sitk :(i,k) EAjxB j  }llall, 
(i,k) .xBj 

which is an immediate consequence of the tensor property. 
According to the combinatorial result of Lemma 2.5 below one may partition 

A' r as Um_<k(r) C,~ into chains (Cm) with k(r)<log(2rn~). Consequently 

(i,j~)cA'~ sitjai'jei| <-,~<~_k(r)(i,j~)cc~ sitdai,jei| 
(2.15) 

< log(2m~) max{ sitj: ( i , j )  �9 A '  }llall 

<_ log( 2rnx )2X]]al] 

by (2.14). A combination of (2.13) and (2.15) leads to 

(2.16) eN(D~Q~Dt) <_ (3+2ap+2 log(2m~))x. 

Next we estimate N. The sets {ai+xBM,,}, i=l,. . . ,N, are disjoint in Mr 
according to the choice of {al, ..., aN} in (D~ | Moreover, 

{al, ..., aN}+XBM,, C (l+xll(D~-~ | ~ ) ( r ) I I ) ( D ~ |  , 

(2.17) C (1+2 log(2m:~)) (Ds | 
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Here (D~ , | )(r)= ((D~ | -1 stands for the diagonal operator on Mr that  
maps ei |  to (sitj)-lei| We have used in (2.17) the estimate 

(2.18) I I ( D ~ - I  |  _< 2 log(2m~) 1 
X 

This inequality is verified as follows. We have A~ C Dm~, where Dm~ partitions into 
a union of at most log(2m~) chains (Gin) according to [KP, p. 46]. This enables 
us to argue as in the proof of Lemma 2.3. Let a=~~.(i,j)CA~ ai,jei| One 

obtains as in (2.7) that 

II(D~-,ODt-,)(r)all < ~ (s~tj)-lai'jei| 
(~,J) ~(+) 

-]- C~A~ (sitj)-lai'jei@e~(J) ' 
(~,j) (-) 

where the notations 7~, A~(+) and A~( - )  are those of the proof of Lemma 2.3. An 
application of the pair (a, p) of permutations satisfying (2.9) and (2.10) entails that  

<- (~(i),j)c(a~x(~or))A~(+)(sitj)-lai,jea(i)| 

log(2m~) 

-~, m~. 1 E (sitj)-lai,jea(i)| 
- cmn (~ , x (~o ,~ ) )A~ (+ )  

_< log(2.~.) max{ (~#~)-~: (i,j) c,5~ } y~ a~,je~o~j 

1 
< -log(2m~Dllall. 

X 

In the above inequalities we have used (2.14) together with the fact that  the inter- 
sections CmN(a x (poTr))Ar(+) are also chains. The second term 

( i,j ) ~ ( _ )  ( sitj )- l ai'jei | 

admits an analogous bound and thus (2.18) holds. 
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The application of #A~(s,t)-dimensional product measure to (2.17) implies 
then that 

Nx#A~ <--(I+21og(2mx))#A~( H sit j)  
( i , j ) c A r  

and thus 
N_< ( l + 2 1 ~  #A~ 

X H 8itj. 

Then N_<2 ~ at least if x satisfies 

x 
2-n H sitj)l/#A~<-b(n)<-l+21og(2m~)" 

(~,j)~A~ 

The latter inequality is equivalent to the condition 

x-b(n)2 log(2mx)-b(n)  >_ O, 

which is satisfied Cat least) if x----b(n)(l+21og(2mb(~))). In fact, then the condition 
reduces to 

log(2mb(n)) --log(2mb(n)O+2 log(2mb(n)))) --> 0, 

and this holds since x--~mx is non-increasing. 
The insertion of x=b(n)(l+21og(2m(b(~))) into (2.16) produces the upper 

bound of (2.11) for e~+l(Ds~cpDt)--s2~ (D~c~Dt) <_~g(Ds~Dt) .  The argument 
is thus completed by the combinatorial Lemma 2.5 below. 

Finally, the simpler bound 

e~ + l ( D s @cp Dr) <_ bpb( n ) (log( mb(~ ) ) )2 

results from the monotonicity of x-~log(mx). 

L e m m a  2.5. Suppose that s and t are non-increasing positive O-sequences, 
m E N  and let r c N  be such that At(s,  t) C {1, ..., m} 2. Then it is possible to partition 
{1, ..., rn} 2 - A t ( s ,  t) into at most log(2m) chains. 

Proof. We verify a general statement which only relies on the "convexity" of 
the sets Ar (s, t). Suppose that m c N  and that A C {1,..., m} 2 satisfies the property 

(2.19) if (i, j )C {1, ..., rn} 2 -  A, then (k, n ) r  A whenever (k, n)E {1, ..., m} 2, k>_i and 
n>_j. 

Claim. {1, . . . , rn}2-A partitions into at most log(2m) chains. 
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Let f(m) be the smallest natural number so that  {1, ..., m} 2 -  A partitions into 
at most f(m) chains for any AC{1, . . . ,m} 2 for which (2.19) holds. It suffices to 
verify that f admits the growth 

for natural numbers m_>2, where [x] denotes the entire part of x. Indeed, since 
f (1)=1=log(2)  (logarithm to the base 2), one gets from (2.20) that  f(k)<log(2k) 
for all k E N. 

We indicate an argument for (2.20), that  also provides a procedure for ob- 
taining a partition (not necessarily the most efficient one for a given set A). Sup- 
pose that  Ac{1 , . . . ,m}  2 satisfies (2.19) for some m>2 .  Pick the largest possible 
square contained in {1, ...,m} 2 - A  with opposite corners (m, m) and (r,r). Let 
C={r,...,m}• be the first chain. Thus {1,...,m}2-{AUC}=AIOA2, 
where 

A1 = ((1, ..., m} 2 -A)N{r ,  ..., m} x {1, ..., r -  1}, 

A2 = ({1, ..., m} 2-A)N{1,  ..., r -  1} x {r, ..., m}. 

To continue, it suffices to partition A1 and A2 separately into chains, since these 
sets have disjoint projections in {1, ..., m} and thus their respective chains can be 
joined. We discuss the case of A1. Observe that  the length of the smaller side 
of the rectangle {r, ..., m} x {1,..., r -  1} satisfies m i n { m - r  + 1, r -  1} < [m/2], since 
otherwise m =  ( m -  r + 1) § ( r -  1) > 2[m/2] +2 > m +  1. Moreover, note that  A1 ----AN 
({r, ..., m} x {1, ..., r - l } )  satisfies (2.19)in this rectangle. Hence A1 partitions into 
at most f([m/2]) chains. In fact, by "shrinking" the sets involved if necessary, one 
observes that  partitioning A1 is at worst as difficult as that  of partitioning inside 
corresponding squares having sidelength the smaller of the sides of the rectangle, 
that  is at most [m/2]. Finally, repeat this for A2 to get (2.20). 

Remarks 2.6. We do not know if the upper bound of (2.11) is sharp. We 
stress that  the sequence (b(s,t)(n))ncN has according to Theorem 1.1 the same 
behaviour in the Lorentz scale lr,w as the sequence s| which was determined in 
Proposition 1.2 (see also Proposition 3.1.a below for the rate of decrease in the case 
w=c~). In fact, the sequence (b(s, t)(n)) is clearly obtained from the asymptotic 
entropy formula [GKS, 1.7] for the diagonal operator Ds@hsDt on 12@hs12=12(N2), 
if the orthonormal basis (enQem) is reordered to correspond to the rearrangement 
of the sequence s| 

The argument of 2.4 breaks down for p=l (or p=c~),  since already 

lIT.: c1(  2) c1(?)11 _> clog n 

by [KP, 1.2]. 
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3 .  G e n e r a l  e s t i m a t e s  

The results of Sections 1 and 2 are based on particular geometric properties 
of Banach spaces not available in arbitrary tensor products. In this section we 
first state some general consequences of the stability under tensoring of the re- 
lated approximation number ideals. Moreover, volume comparisons yield instabil- 
ity estimates. Better results are available for Banach spaces endowed with special 
structure. 

The behaviour of the approximation number ideals r(a) under tensor products 
was studied in [P2], [K1]. These ideals are almost tensor-stable in the sense that  for 

al l  tensor norms a and all Banach spaces one has S@~TcL~ ) for all t>r and all 

u > 0  whenever (a) S, T E L  . . . .  We formulate below a more precise statement of tensor 
stability up to logarithmic weights. 

Let f,  g: (0, ~ )  x (0, oc)--*R+ be the functions 

~-, i f O < w _ < l ,  

= w 

~ - - w -  1, if w_> 1, 

{ 2 ( w - 1 )  i f 0 < r < w < o c ,  
g(r, w) = 

0, otherwise. 

Put M~(S)=~{ieN:2-(n+I)/~[]S[[ <si(S)_<2-n/~HS[] } when h e N  and SeL(~,)(12), 
S, TCL~,~(I ). Thus andsetfn=fn(S,T)=Ek+,~<_nMk(S)Mm(T ) (wi thf0=0)  for (~) 2 

fn also depends on r. 

P r o p o s i t i o n  3.1. (a) Let 0 < r < ~  and 0<w_<ec. There are c~,~>0 such 
that for all Banach spaces Ei, Fi, (i=1, 2), all tensor norms a and all operators 

(a) 
SeL~,~(EI, F1), TeL(~,)(E2, F2) one has 

(~-1 nw/r-lan(S~aT)W)l/w 
(3.1) _ ~ -  <c~,~a(~,)(S)cr(~%(T) 

for O<w<c~ and 

n l / r  
sup A < c r oca (a) (S~o  -(a) (T). ncN (log(n+l)) l+'/r:an(S(~aT) . . . . . . . . . .  oo 

(b) If O<r, w<oo then there are d~,~>O such that for all tensor norms a on 
S T ~ L  (a) gl 2~ lZQl 2 and all . . . .  w~ j, 

oo fn+l 

(3.2) Q ~ I  1 jw/r- la.  ) ~_dr,wo'(~a,)~(S)a(~,)~(T). 
- j = f . + l  
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Proof. The statements in (a) and (b) are straight-forward computational exten- 
sions to arbitrary values O<r, w<cr of [K1, Propositions 1 and 3], which is referred 
to for the arguments. We indicate the proof in the case w =c r  not considered by 
K6nig. 

The numerical constants co,cl,c2,.., depend only on r in the following esti- 

C,-L(a) / E F ~ mates. Suppose that  o =  r ,~ t  1, ]j. There is according to [P3, 2.3.8] a norm 
cr S convergent expansion S=~-~k= 0 k in L(E1 F1) satisfying rk(Sk)<2 k and 

sup 2k/~lISktl < coa(~) (S). 
k c N  

Decompose TeL(~,)~(E2, F2) similarly in L(E2, F2) as T = ~ = o  Tk. Thus 

n=0  k + l = n  

with convergence in the operator norm. Set h(n)=n2 n for n EN .  Observe that  

m--1 m--1 

- -  k §  / n : 0  

for m E N .  The properties of the decompositions lead to 

ah(m)(S@aT) < E E Sk~aTl < E E HSkH HTIN 
" n = m  k + l = n  H n = m  k + l = n  

n : m  

An elementary calculation shows for x=2 -1/~ that  

x m - - 1  

( n + l )  xn - ( l _ x ) 2  (re(i-x-( i-x)2)+1) �9 
n = m  

Consequently monotonicity together with the previous estimates entail that 

n l / r  
sup 
n C N  (1og(n+l)) 1+1/r an(S| 

kl/r 
= sup sup meN h(m)<_k<_h(m+l)--i ( log(k+l ) )  1+1/r ak(S~T)  

< sup (h(m+l))l/~ ah(m)(SQ~T) 
- ( l o g ( h ( , n ) +  

( h ( m + l ) )  1 / "  . l " r  m 1   .sup ) - 
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This establishes claim (a) for w=c~.  

Remarks 3.2. (a) ~ ,w  r(e) is stable on 1 2 ~ l  2 for all tensor norms a whenever 
0 < w < r < c o  in view of (3.2). It is also evident that  one cannot achieve bet ter  
than the result for 12~hsl 2 in the cases 0 < r < w .  In fact, ]A~(S)I<2e~+I(S ) for 
all S � 9  E a (complex) Banach space, and for all n e N  by the Carl-Triebel 
inequality [CS, 4.2.1]. Here (A,~(S)) is the sequence of eigenvalues of S ordered in 
decreasing magnitude and counting multiplicities. Thus one obtains at least the 
behaviour of s|  since it is contained in the sequence of eigenvalues of D ~ D t .  
Clearly a similar statement also holds for tensor norms on spaces with unconditional 
bases. 

(b) The weighted inequalities (3.1) and (3.2) contain no general information on 
the change under tensoring of the logarithmic parameter w in the Lorentz scale l~,~ 
when 0 < w < c c .  Indeed, let 0< r ,  t < c o  and consider the quasi-normed weighted 
Lorentz sequence spaces 

w nt/~-l(x * ~i/t 
i v , t ( 0 3 )  = X = ( X n )  �9 lC~ : Ilxll = n \ n ] /  < CO . 

Our weights w=(wn(r,t))  are wn=l / ( log(n+l ) )  n with V>0. Then the identity 
mapping from l~,t(w) to l , ,~ fails to be bounded (compare the quasi-norms of the 

sequence (z(J)), j c N, where z~ j)-- 1 if 1< k < 2 j+l  and 0 elsewhere). 
The almost stability of the approximation number ideals is relevant under spe- 

cial geometric assumptions. Recall that  the n-th Gelfand number of S E L ( E , F )  
is 

cn(S) =inf{  NSJMII :M c E ,  c o d i m M  < n  }, h e N ,  

and that  the corresponding ideal components L(~,)(E, F) consist of the operators 
S with (cn(S))Elr,w. The Banach space E is said to be of cotype q for 2_<q<oc if 
there is c>0  with ( ~ = 1  IlxJHq)l/q~c(E]l ~-~jn=l rj(t)x5]l 2 dr) 1/2 for all n e N  and all 
Xl, ...,x~ in E.  Here (rj) is the sequence of Rademacher functions. 

T h e o r e m  3.3. Assume that Ei and Fi ( i=1,  2) are Banach spaces such that 
Ei is of type 2, Fi is of cotype 2 and that Fi does not contain l~ 's uniformly. Let 

_ r  ( e ) / E  F~) r and w satisfy 0 < r < c o ,  0 < w < c ~  as well as 1/w>_1/r+1. I f  ~ ,_ ~,~ ~, 
( i : 1 ,  2) then 

SI~aS2 ~ L(%(EI~E2, FI~aF2) 
for any tensor norm a. Moreover, there are constants c~,~ > 0 with 

, __ r , w  r ,wk~-~l )  r , w  I, 2 )  
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for all SiEL(e,) (Ei, Fi). 

Proof. It is a consequence of [C2, Theorem 5] that  

\ l / n  
j~<cj(S)) <c(Ei,Fi)e~(S), n E N ,  

for some constants c(Ei, Fi )>0  and for all SEL(Ei, Fi) (i=1, 2), since Ei and F[ are 
of type 2. The fact that  F[ is of type 2 for i=1,  2 follows from duality results, because 

r(~) (~ Fi)aL(C)(Ei,Fi) Fi does not contain lT's uniformly (see [TJ3, 12.8]). Thus ~ r , w ~ ,  

for all r and w in view of [P3, 2.1.8]. On the other hand, L (~)r,~(E, F~'-L (~)j,_ ~,~tE, F) 
(~) (~) 

for arbitrary Banach spaces E and F by [CS, 3.1]. Thus L~,~(E~, F~)--L~,~(E~, F~) 
(i--1, 2) with comparable quasi-norms. 

Recall next that  the Gelfand and the approximation numbers of S E L(Ei, Fi) 
are comparable under these assumptions on Ei and Fi. In fact, 

Cn(S) ~an(S)~_CCn(S) 

for some constant c and for all h E N  by Maurey's extension theorem, see 
[GKS, 1.4]. This entails in particular that  here r(~) ~ .  _ (a) ~,~ ,~ ,  Fi)-L~,~,(Ei, Fi) (i=1, 2) 
with comparable quasi-norms for all r and w. 

The duality of type and cotype yields further that  E~ (i--1, 2) is of cotype 2 

L (~) [TJ3, 12.8]. Suppose that  &E ~,~(E~,F~) (i=1, 2). In this case 

S1QaS2 E L!.a) (EI@aE2, FI@aF2) 

for all tensor norms a whenever r and w satisfy 1/w>_1/r+1 on the strength of 
[K1, Theorem 1]. Moreover, there is dr,~ >0 with 

O'r(?w) ( S l Q a S 2 )  ~ dr,w~(r?)w(S1)Er(r?)w(S2) 

for all S1 and $2. This entails the claim since r(a) r-r(c) in general, and (c) ~,~(s)<_ 
b a(a) t ~  . . . . .  ~ , j  for some b r ~ > 0  and for all ~= r(a) [CS, 3.1]. 

A standard procedure associated with essentially finite-dimensional properties 
is to bound parameters by comparing suitable quantities. Volume estimates are 
related to entropy numbers and they are used to find instability in the Lorentz 
scale in some cases (cf. [K1, Lemma 1]). A systematic application of this idea 
requires precise bounds on the volumes of the unit balls of finite-dimensional tensor 
products. We commence by phrasing a principle of this kind. 

4--935212 Arkiv f'6r matematik 
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Recall that  the Schauder basis (en) of the Banach space E is 1-symmetric if 

oo oo 

E ~naTr(n)en = ~_lanen 
I In~ l  

for all signs r = • all permutations 7r of N and all ~n~__~ a~en C E. Volumes vol(B) 
will always be taken with respect to n-dimensional Lebesgue product measure when 
B is a bounded subset of an n-dimensional (real) normed space. The notation an ~bn 
for positive sequences means that (an) and (b~) are uniformly comparable, that  is, 
cobn<an<clb~ for all n E N  with constants co, cl >0. 

P r o p o s i t i o n  3.4. Let a be any tensor norm. Suppose that (e~) and (f~) are 1- 
symmetric bases of some Banach spaces and put En = [el,..., en] and Fn = [fl,..., fn]. 
Assume moreover that there is ~E [-1,  1] satisfying 

( V o I ( B E n ) ) l / n  ~_~ n~ (vol(gF~))l/n 

and that both En embed into E and F~ embed into F uniformly complementedly. 
Then the condition 

S ~ T  E L ~ , ) ~ ( E ~ E , F ~ F )  

for all S, TcL(~,)(E,F),  where 1 / r > m a x { 0 , - ~ } ,  implies that there is a constant 
c> 0 satisfying 

(3.3) 

for all n C N.  

Proof. Let Pn: E--*En be quotient maps and let J~: En--*E be embeddings such 

that  P~Jn=idE~, sup n IIPniI < ~  and supn IiJnlI <c~. Let Qn: F--~Fn and K~: Fn--~ 
F be operators similarly related to the uniformly complemented copies of F~ in F.  
Consider S~=K,~InP,~EL(E, F), nCN,  where In: E~--~F~ is the natural identity 

Einl aiei-~ Einl aifi. 
Note first that the condition 

S@~T E L ~ . ) ( E ~ E ,  FQ~F) for all S, T E L (e) (E F~ 

implies the existence of c>0  such that  

(3.4) (e) A ca(e ) (S)a(~,)(T) ~ ,~(S |  <_ ~,~ 
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for all S, T. In fact, by passing to equivalent p-norms and by employing a similar 
completeness argument to that  of [P1, 6.1.6] it is verified that  the bilinear operator 

. e r(r to r(*) This in turn entails (S, T ) ~ S ~ T  is separately continuous from L(,)~ x . . . . .  t,u. 
the boundedness of the operator by a general version of the Banach-Steinhaus 

principle, see JR, 2.17]. 
The inequality (3.4) is tested by the sequence (S~). Observe that  I~=QnSnJ,~ 

for n E N .  The uniform bounds on the norms of Pn, J~, Q~ and K~ yield, after 
tensoring the factorizations of Sn and In, that there are constants d,  c ' > 0  with 

(3.5) (~) ^ ' (~) ^ s _cc'( . (~?)~(s~)7 " (~  (Tt ,u( in~ain)  ~ C O't,u(Sn~ a n) < 5 C (Crr,w(*n)) 

for all n E N. 
Suppose that 

(In@aI~)BE~@.E~ C {al, ..., a2* }§ )~BF~@~F~ 

for r E N. Comparing n2-dimensional volumes we get 

voI(BE~E~) <_ 2r/~ n2 vol(BF~8~F~ ) 

and thus 

- \ v o l ( B F o ~ ~  ] " 

This lower bound for e r ( ~ I n )  leads to 

( j ~  ,1/~ 

~VoI(BE~5~E~) 1 / \ l /u  
_ e o \ ~  .~_<~3 . �9 

(r 
It is easily checked that  (Gj<_,~2 JU/t-1) 1/~w'n2/t. On the other hand, ar,w(/n)G 

cln 1/r+fl whenever r satisfies 1 / r > m a x { 0 , - f l }  in view of [82, Theorem 7]. The 
desired inequality (3.3) thus follows by combining (3.5) with the preceding estimates. 

We apply (3.3) with En=l~ and ~ = I ~ ,  l~p<q<oo. It is known that  

(vol(Bl~))l/'~n -1/p for all l < _ p < ~ ,  cf. [S1, p. 395], and thus f l=l/q-1/p sat- 
isfies the volume condition of Proposition 3.4. Let 

- - + - ,  if l__<p__< 2, 
P 

h(p) = 1 if 2 _< p _< oc. 
P 
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C o r o l l a r y  3.5. Assume that E, F are Banach spaces containing uniformly 
complemented copies of lp, respectively of lq, with l <_p< q<_oc. Suppose that 

S@,T E L~,) ( E@~E, F@,F) 

for all S, TeL(~,)(E,F) where O<r<(1/p+l/q)-*. Then t>r in the following 
eases: 

(i) /f a=~r, then 1/t<l/r+�89 for l<_p<q_<2, while 1 / t<l /r+ 1 _  ~(51 _ 
1/p) for l <_p<2<_q<_oc; 

(ii) /f a--e ,  then 1/t<_l/r+l(1/q-�89 for l<p<_2<q<_cc, while 1/t<_l/r+ 
�89 for 2<_p<q<_co. 

Proof. Schfitt [$1, 3.2] showed that  (vol(Bl~sj~))U~2~nh(P')-i and that 

(vol(Bz~@~)) 1/n2 ~n -h(p') for all p satisfying l_<p_ oc. For instance, if 1 ___p< q_< 2 

and if a=Tr, then by (3.3) there is c>0 with 
n21t+l/q-l/P ~_ cn2/r+2(1/q-1/P) 

for all h e N .  Thus 1/t<l/r+�89 where 1/q-1/p<O. The other cases are 
similar. 

We finally use the argument of Proposition 3.4 in order to derive some bounds 
related to Propostion 2.1. 

Example 3.6. Suppose that  2<p<ec ,  0 < t < o c ,  O<r<4p/(p-2) and that  0< 
u__ec. If 

(~) 2^ S% ~hsT E Lt,u(l | 12~hsl 2) 

for all S, TeL(~)(12), then 1/ t<l / r+! (  ! -  - 2 2 1/p) and thus t>r. 

Proof. Observe first that if O<r<4p/(p-2), then S| extends to a bounded 

linear operator from cp(l 2) into c2(l 2) for all S, TeL(~)(l 2) in view of the remark 
prior to Proposition 2.1 and [CS, 1.3.2]. Thus an argument similar to the one in 
the proof of Proposition 3.4 provides a constant c>0 with 

at,u(S%| ) ~_ 

whenever S, TEL(r Let In=idl~ be the identity map. One obtains that  there 
is co > 0 with 

n2/t (vo l (B~, ( l~) )  1/~2 
\ vol(Bl~:) -< con2~ ~ 

for all n e N  since a(~,)(In)~n 1/~ The desired inequality follows from the estimate 
(vol(B~,(z~)))*/n2~n-1/2-UP for 2<p<c~,  see [S1, p. 399]. 

In particular, one obtains O<r<4p/(3p-2) if t=2.  Unfortunately we do not 
know whether the bounds exhibited in Proposition 2.1 are precise. 
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