# Entropy numbers of tensor products of operators

David E. Edmunds and Hans-Olav Tylli

This paper estimates the entropy numbers of tensor products of operators, mainly in a global sense. Let  $S \in L_{s,w}^{(e)}(E_1, F_1), T \in L_{s,w}^{(e)}(E_2, F_2)$  be operators between the Banach spaces  $E_i$ ,  $F_i$  (i=1,2). Here  $L_{s,w}^{(e)}$  denotes the quasi-normed operator ideal consisting of the bounded linear operators with an  $l_{s,w}$ -summable sequence of entropy numbers for  $0 < s < \infty, 0 < w \le \infty$ . The size of the sequence

$$(0.1) (e_n(S\widehat{\otimes}_{\alpha}T))$$

is studied in the scale of the Lorentz sequence spaces for tensor norms  $\alpha$ . Upper and lower estimates for the parameters of this scale are obtained for the sequence (0.1) for operators between special Banach spaces. We determine in Section 1 the precise behaviour in the Lorentz scale under tensoring with respect to the Hilbert– Schmidt tensor product of Hilbert spaces. König [K1, Lemma 1] exhibited relative to this problem the first examples of the instability of the entropy number ideals under the projective tensor norm. In Section 3 some stability results are shown assuming cotype 2 conditions on the spaces involved. We also compute bounds in some cases for the instability in the Lorentz scale with the help of volume arguments. The corresponding "local" problem of evaluating the individual entropy numbers of  $S \widehat{\otimes}_{\alpha} T$  in terms of the entropy numbers of S and T is subtler. We establish in Section 2 asymptotic bounds for the entropy numbers of tensored operators on the Schatten trace classes  $c_p(l^2)$ .

We are indebted to A. Pelczynski for a helpful discussion concerning the matrix projections of Lemma 2.3, to Th. Kühn for a suggestion used in the proof of Proposition 1.2 and to E. Saksman for discussing the proof of Lemma 2.5. The second-named author acknowledges the financial support of the Science and Engineering Research Council (UK).

#### 1. Prerequisites and the Hilbert space case

The *n*-th (dyadic) entropy number of a bounded linear operator  $S \in L(E, F)$ between the Banach spaces E and F is

$$e_n(S) = \inf\{\varepsilon > 0 : SB_E \subset \{x_1, \dots, x_k\} + \varepsilon B_F, k \le 2^{n-1}\}, \quad n \in \mathbb{N},$$

where  $B_E$  is the closed unit ball of E. The *n*-th approximation number of S is

$$a_n(S) = \inf\{ \|S - R\| : R \in L(E, F), \operatorname{rank}(R) < n \}.$$

The basic properties of these non-increasing sequences are contained in [P1]. It is standard to measure the degree of compactness of S by requiring that they belong to a Lorentz sequence space  $l_{s,w} = \{x = (x_n) \in c_0 : \|x\|_{s,w} < \infty\}$  for  $0 < s < \infty$ ,  $0 < w \le \infty$ . Here  $\|x\|_{s,w} = (\sum_{n=1}^{\infty} n^{w/s-1}(x_n^*)^w)^{1/w}$  if  $w < \infty$  while  $\|x\|_{s,\infty} = \sup_{n \ge 1} n^{1/s} x_n^*$ . The sequence  $(x_n^*)$  stands for the non-increasing positive rearrangement of  $(x_n)$ . The customary notation  $l^s$  is also used instead of  $l_{s,s}$ .  $\|\cdot\|_{s,w}$  is in general a quasi-norm on  $l_{s,w}$ . The entropy number ideals are thus

$$L_{s,w}^{(e)}(E,F) = \{ S \in L(E,F) : \sigma_{s,w}^{(e)}(S) = \|(e_n(S))\|_{s,w} < \infty \},\$$

while the approximation number ideals are

$$L_{s,w}^{(a)}(E,F) = \{ S \in L(E,F) : \sigma_{s,w}^{(a)}(S) = \|(a_n(S))\|_{s,w} < \infty \}.$$

The sequence spaces  $l_{s,w}$  (as well as also  $L_{s,w}^{(e)}$  and  $L_{s,w}^{(a)}$ ) are lexicographically ordered by inclusion (see [K2, p. 52]):

$$0 < s < t < \infty, 0 < u, v \le \infty$$
 imply that  $l_{s,w} \subset l_{t,v}$  strictly,  
 $0 < s < \infty, 0 < w < u \le \infty$  imply that  $l_{s,w} \subset l_{s,u}$  strictly.

A tensor norm  $\alpha$  is a norm defined on the algebraic tensor product  $E \otimes F$  for all pairs (E, F) of Banach spaces that satisfies the additional properties

(1.1) 
$$\alpha(x \otimes y) = \|x\| \|y\| \quad \text{for all } x \in E, y \in F,$$

(1.2) 
$$\|S \otimes T : (E_1 \otimes E_2, \alpha) \to (F_1 \otimes F_2, \alpha) \| \le \|S\| \|T\|$$

for all operators  $S \in L(E_1, F_1)$ ,  $T \in L(E_2, F_2)$ . Here  $S \otimes T$  is defined by linear extension of  $(S \otimes T)x \otimes y = Sx \otimes Ty$  for  $x \in E_1$ ,  $y \in E_2$  and (1.2) states that  $S \otimes T$  induces a bounded linear operator  $S \otimes_{\alpha} T : E_1 \otimes_{\alpha} E_2 \to F_1 \otimes_{\alpha} F_2$  between the completions.

The survey [DF] is a convenient reference for properties and examples of tensor norms. There is a large supply of tensor norms on account of the connection between finitely generated tensor norms and maximal normed operator ideals, cf. [DF, Chapter 4]. For instance, there is a family  $\alpha_{p,q}$  of tensor norms associated with the ideals consisting of the (r, p, q)-integral operators. Let E and F be Banach spaces. The projective tensor norm  $\pi$  (which coincides with  $\alpha_{1,1}$ ) is

$$\pi(z) = \inf \left\{ \sum_{i=1}^{n} \|x_i\| \|y_i\| : z = \sum_{i=1}^{n} x_i \otimes y_i \in E \otimes F \right\}$$

and the injective tensor norm is

$$\varepsilon(z) = \sup\left\{ \left| \sum_{i=1}^{n} x'(x_i) y'(y_i) \right| : (x', y') \in B_{E'} \times B_{F'} \right\}$$

for  $z = \sum_{i=1}^{n} x_i \otimes y_i \in E \otimes F$ . We also use  $\|\cdot\|_{\pi}$  and  $\|\cdot\|_{\varepsilon}$  instead of  $\pi$  and  $\varepsilon$ . It is known that  $\varepsilon \leq \alpha \leq \pi$  for any tensor norm  $\alpha$ .

If H and K are Hilbert spaces equipped with the respective inner-products  $\langle \cdot, \cdot \rangle_H$  and  $\langle \cdot, \cdot \rangle_K$ , then  $\alpha_{2,1}$  is the completion of  $H \otimes K$  with respect to the innerproduct obtained by the extension of

$$\langle x \otimes y, z \otimes w \rangle = \langle x, z \rangle_H \langle y, w \rangle_K \quad \text{ for } x \otimes y, z \otimes w \in H \otimes K.$$

The completion  $H \widehat{\otimes}_{hs} K$  is called the Hilbert-Schmidt tensor product of H and K.

This paper mainly studies the behaviour of the entropy number ideals  $L_{s,w}^{(e)}$  under tensor norms  $\alpha$ . More precisely, given  $0 < s < \infty$  and  $0 < w \le \infty$ , find the minimal parameters (t, u) such that

$$S\widehat{\otimes}_{\alpha}T \in L_{t,u}^{(e)}(E_1\widehat{\otimes}_{\alpha}E_2, F_1\widehat{\otimes}_{\alpha}F_2)$$

for all  $S \in L_{s,w}^{(e)}(E_1, F_1)$ ,  $T \in L_{s,w}^{(e)}(E_2, F_2)$  and for the Banach spaces  $E_i$ ,  $F_i$  (i=1,2), usually in some restricted class of spaces. This is not always possible for all parameters of the Lorentz scale. For instance, the condition

$$S\widehat{\otimes}_{\pi}T \in L_{t,t}^{(e)}(l^1\widehat{\otimes}_{\pi}l^1, l^2\widehat{\otimes}_{\pi}l^2)$$

for all  $S, T \in L_{s,s}^{(e)}(l^1, l^2)$  is impossible unless  $1/t \le 1/s - \frac{1}{4}$  [K1, Lemma 1]. In any case, one always has  $t \ge s$  by  $e_n(S \widehat{\otimes}_{\alpha} T) \ge \max\{\|T\|e_n(S), \|S\|e_n(T)\}$ .

The tensor product notation is convenient in connection with the doubleindexed product of the scalar-valued sequences  $x=(x_n)$  and  $y=(y_m)$ , thus  $x \otimes y = (x_n y_m)$  where  $(n,m) \in \mathbb{N}^2$ . The simplest possible case of our problem, the Hilbert-Schmidt tensor product of operators on  $l^2$ , reduces to an analytic problem of the Lorentz sequence spaces. Here a complete solution is available. We first state the results in terms of entropy ideals and outline the (essentially known) reduction. The resulting analytic problem is solved in Proposition 1.2. **Theorem 1.1.** Let  $0 < s < \infty$ ,  $0 < w \le \infty$  and  $S, T \in L_{s,w}^{(e)}(l^2)$ .

- (a)  $S\widehat{\otimes}_{hs}T \in L_{s,w}^{(e)}(l^2\widehat{\otimes}_{hs}l^2)$  for all S, T as above if and only if  $0 < w \le s$ .
- (b) If  $0 < s < w \le 2s$ , then

$$S\widehat{\otimes}_{\rm hs}T \in L^{(e)}_{s,u}(l^2\widehat{\otimes}_{\rm hs}l^2)$$

where u satisfies 1/u=2/w-1/s if w<2s and  $u=\infty$  if w=2s. This inclusion is the best possible.

(c) If  $2s < w \le \infty$ , then  $L_{s,w}^{(e)}(l^2) \widehat{\otimes}_{hs} L_{s,w}^{(e)}(l^2) \not\subset L_{s,\infty}^{(e)}(l^2 \widehat{\otimes}_{hs} l^2)$ , but  $L_{s,w}^{(e)}(l^2) \widehat{\otimes}_{hs} L_{s,w}^{(e)}(l^2) \stackrel{(e)}{\cong} L_{v,w}^{(e)}(l^2 \widehat{\otimes}_{hs} l^2)$  for all v > s, u > 0.

*Proof.* If  $S \in L_{s,w}^{(e)}(l^2)$  then there are partially isometric operators  $X_0, Y_0: l^2 \to l^2$ according to the Schmidt representation theorem (see [P1, D.3.3]) with the properties that  $S=Y_0D_sX_0^*$  and  $D_s=Y_0^*SX_0$ , where  $D_s$  is the diagonal operator on  $l^2$ induced by the singular number sequence  $s=(s_n(S))$  of S. Factorize  $T \in L_{s,w}^{(e)}(l^2)$ similarly through  $D_t$  using partial isometries  $X_1$  and  $Y_1$  on  $l^2$ . After tensoring

$$e_n(S\widehat{\otimes}_{\mathrm{hs}}T) = e_n((Y_0\widehat{\otimes}_{\mathrm{hs}}Y_1) \circ (D_s\widehat{\otimes}_{\mathrm{hs}}D_t) \circ (X_0^*\widehat{\otimes}_{\mathrm{hs}}X_1^*)) \le e_n(D_s\widehat{\otimes}_{\mathrm{hs}}D_t),$$

and conversely also  $e_n(D_s \widehat{\otimes}_{hs} D_t) \leq e_n(S \widehat{\otimes}_{hs} T)$ . Hence it suffices to consider the diagonal operator  $D_s \widehat{\otimes}_{hs} D_t = D_{s \otimes t}$  on  $l^2(\mathbf{N}^2)$  since  $l^2 \widehat{\otimes}_{hs} l^2 = l^2(\mathbf{N}^2)$  isometrically.

Recall the asymptotic formula due to Gordon, König and Schütt for the entropy numbers of diagonal operators on spaces with an unconditional basis. Let  $(e_n)$  be an orthonormal basis of  $l^2$  and let  $D_{\sigma}$  be the diagonal operator  $e_n \rightarrow \sigma_n e_n$ ,  $n \in \mathbf{N}$ , whenever  $\sigma = (\sigma_n)$  is a positive non-increasing sequence. Then

$$e_{k+1}(D_{\sigma}) \approx \sup_{n \ge 1} 2^{-k/n} \left(\prod_{j \le n} \sigma_j\right)^{1/n},$$

for all  $k \in \mathbb{N}$  [GKS, 1.7]. In particular,  $D_{\sigma} \in L_{s,w}^{(e)}(l^2)$  if and only if  $\sigma = (\sigma_n) \in l_{s,w}$  with equivalence of the corresponding quasi-norms. This is [GKS, 1.8] when s = w and the general case follows in a similar fashion from a Hardy-type inequality for  $l_{s,w}$ :

If  $0 < w \le \infty$  and if 0 < r < s then there is  $d_{r,w} > 0$  such that

$$\left\| \left( \frac{1}{n} \sum_{k=1}^n \sigma_k^r \right)_{n \in \mathbf{N}} \right\|_{s,w} \le d_{r,w} \|\sigma\|_{s,w}$$

for all non-increasing positive  $(\sigma_n) \in l_{s,w}$  [P3, 2.1.7].

In particular, since also  $e_n(S) = e_n(D_s)$  and  $e_n(T) = e_n(D_t)$  for all  $n \in \mathbb{N}$ , one concludes that  $S, T \in L_{u,w}^{(e)}(l^2)$  if and only if  $s = (s_n(S))$  and  $t = (s_n(T))$  belong to  $l_{u,w}$ 

while  $S \widehat{\otimes}_{hs} T \in L_{v,x}^{(e)}(l^2 \widehat{\otimes}_{hs} l^2)$  if and only if  $s \otimes t \in l_{v,x}(\mathbf{N}^2)$ . The proof of Theorem 1.1 is completed by applying the following result concerning the size of the positive non-increasing rearrangement of tensor products of sequences.

We require some facts from bilinear interpolation. The standard reference for real and complex interpolation is [BL]. Let  $(X_0, X_1)$ ,  $(Y_0, Y_1)$  and  $(Z_0, Z_1)$  be compatible couples of quasi-Banach spaces such that  $Z_i$  is  $r_i$ -normed  $(0 < r_i \le 1)$  for i=0,1. Suppose that T defines a bounded bilinear operator  $X_i \times Y_i \rightarrow Z_i$  for i=0,1. Let  $0 < \theta < 1$ ,  $0 < q_1, q_2 \le \infty$  and  $1/r = (1-\theta)/r_0 + \theta/r_1$ . The real bilinear interpolation theorem due to Karadzov (cf. [K1, p. 89]) states that

$$T: (X_0, X_1)_{\theta, q_1} \times (Y_0, Y_1)_{\theta, q_2} \to (Z_0, Z_1)_{\theta, q_2}$$

is bounded, where  $1/q=1/q_1+1/q_2-1/r$  if  $\min\{q_1,q_2\} \ge r$  and  $q=\max\{q_1,q_2\}$  if  $\min\{q_1,q_2\} < r$ . If the compatible couples consist of Banach spaces, then the complex bilinear interpolation property says that T is bounded from  $(X_0, X_1)_{\theta} \times (Y_0, Y_1)_{\theta}$  to  $(Z_0, Z_1)_{\theta}$  for any  $\theta \in (0, 1)$  [BL, 4.4.1]. Recall finally that the Lorentz sequence spaces form a real as well as a complex interpolation scale of quasi-normed spaces:

Suppose that  $0 < s_0 < s_1 < \infty$ ,  $0 < w_0$ ,  $w_1 \le \infty$  and that at least one of  $w_0$ ,  $w_1$  is finite. Then for any  $\theta \in (0, 1)$  and  $0 < w \le \infty$  there is up to equivalent (quasi-)norms

(1.3) 
$$(l_{s_0}, l_{s_1})_{\theta, w} = l_{s, w},$$

(1.4) 
$$(l_{s_0,w_0}, l_{s_1,w_1})_{\theta} = l_{s,u}$$

where  $1/s = (1-\theta)/s_0 + \theta/s_1$  and  $1/u = (1-\theta)/w_0 + \theta/w_1$ . In the quasi-normed cases of (1.4) we consider the extension of complex interpolation explained in [CMS].

We next evaluate the size of the doubly-indexed products on the Lorentz sequence spaces  $l_{s,w}$  in the unstable cases  $0 < s < w \le \infty$ . The cases  $0 < w \le s < \infty$  were considered by Pietsch [P2]. The principle of uniform boundedness implies here that  $l_{s,w} \otimes l_{s,w} \subset l_{t,u}(\mathbf{N}^2)$  if and only if  $(x, y) \to x \otimes y$  is a bounded bilinear operator from  $l_{s,w} \times l_{s,w}$  to  $l_{t,u}(\mathbf{N}^2)$ .

**Proposition 1.2.** Let  $0 < s < \infty$  and  $0 < w \le \infty$ .

(a)  $l_{s,w} \otimes l_{s,w} \subset l_{s,w}(\mathbf{N}^2)$  if and only if  $0 < w \le s$ .

(b) If 0 < s < w < 2s, then  $l_{s,w} \otimes l_{s,w} \subset l_{s,u}(\mathbf{N}^2)$ , where 1/u = 2/w - 1/s, while  $l_{s,2s} \otimes l_{s,2s} \subset l_{s,\infty}(\mathbf{N}^2)$ .

These inclusions are optimal in the scale of Lorentz sequence spaces.

(c) If  $2s < w \le \infty$ , then  $l_{s,w} \otimes l_{s,w} \not\subset l_{s,\infty}(\mathbf{N}^2)$ , but  $l_{s,w} \otimes l_{s,w} \subset l_{v,u}(\mathbf{N}^2)$  for all v > s and u > 0.

*Proof.* (a) is in [P2, pp. 34-35]. The proof of (b) is based on a careful application of real and complex bilinear interpolation.

The cases  $0 < s \le 1$ ,  $s < w \le 2s$ . Suppose that 0 < s < 1 and choose  $0 < s_0 < s < s_1 < 1$ as well as  $\theta \in (0,1)$  satisfying  $1/s = (1-\theta)/s_0 + \theta/s_1$  (the case s=1 requires minor changes). Karadzov's real bilinear interpolation theorem implies that  $\otimes$  is bounded from  $(l_{s_0}, l_{s_1})_{\theta,w} \times (l_{s_0}, l_{s_1})_{\theta,w}$  to  $(l_{s_0}, l_{s_1})_{\theta,q}(\mathbf{N}^2)$ , where 1/q=2/w-1/s. This is admissible provided  $0 < w \le 2s$ . Thus (1.3) yields that  $l_{s,w} \otimes l_{s,w} \subset l_{s,u}(\mathbf{N}^2)$ , where 1/u=2/w-1/s when s < w < 2s, and that  $l_{s,2s} \otimes l_{s,2s} \subset l_{s,\infty}(\mathbf{N}^2)$  when  $0 < s \le 1$ .

The cases  $1 < s < w \le 2s$ . Observe to begin with that

$$(1.5) l_{s,\infty} \otimes l_s \subset l_{s,\infty}(\mathbf{N}^2), \quad 0 < s < \infty.$$

If s=1 then it suffices to verify that

$$\operatorname{card}\left\{\left.(k,m)\!:\!\xi_k\,rac{1}{m}\!\geq\!rac{1}{n}\,
ight\}\!\leq\!n\quad ext{for all }n\!\in\!\mathbf{N},$$

whenever  $(\xi_k) \in l^1$  is a positive non-increasing sequence with  $\|(\xi_k)\|_1 \leq 1$ . Indeed, fix  $n \in \mathbb{N}$  and let  $N_m = \{k \in \mathbb{N} : \xi_k \geq m/n\}$  for  $m \in \{1, ..., n\}$ . Then

$$1 \ge \sum_{k} \xi_{k} \ge \sum_{r=1}^{n} \operatorname{card} \left\{ \xi_{k} : \frac{r+1}{n} > \xi_{k} \ge \frac{r}{n} \right\} \frac{r}{n}$$
$$= \frac{1}{n} \sum_{r=1}^{n-1} (N_{r} - N_{r+1})r = \frac{1}{n} \sum_{r=1}^{n-1} N_{r} = \frac{1}{n} \operatorname{card} \left\{ (k, m) : \xi_{k} \frac{1}{m} \ge \frac{1}{n} \right\}.$$

The claim (1.5) for  $0 < s < \infty$  is obtained by considering  $(\xi_k^s)$ .

We next claim that

$$(1.6) l_{s,2s} \otimes l_{s,2s} \subset l_{s,\infty}(\mathbf{N}^2)$$

whenever  $1 < s < \infty$ . In order to see this, take  $p_0$ ,  $p_1$  and  $0 < \theta < 1$  satisfying  $1 < p_0 < s < p_1 < \infty$  and  $1/2s = (1-\theta)/p_0 = \theta/p_1$ . Apply the complex bilinear interpolation result to the bounded map

$$\otimes: l_{p_0} \times l_{p_0,\infty} \to l_{p_0,\infty}(\mathbf{N}^2) \quad \text{and} \quad \otimes: l_{p_1,\infty} \times l_{p_1} \to l_{p_1,\infty}(\mathbf{N}^2)$$

obtained above in (1.5) and deduce from (1.4) and the choices of  $p_0$ ,  $p_1$  and  $\theta$  that

$$\otimes: l_{s,2s} \times l_{s,2s} \to (l_{p_0,\infty}, l_{p_1,\infty})_{\theta}(\mathbf{N}^2)$$

is bounded. Finally, the fact that  $(l_{p_0,\infty}, l_{p_1,\infty})_{\theta} \subset l_{s,\infty}$  (see the proof of [BL, 4.7.2]) establishes (1.6).

Suppose next that 1 < s < w < 2s and let  $\theta = (2s - w)/s$ , whence  $1/s = \theta/w + (2(1-\theta))/w$ . Then  $\otimes$  is bounded from  $l_{w/2,w} \times l_{w/2,w}$  to  $l_{w/2,\infty}(\mathbf{N}^2)$  and from  $l_w \times l_w$  to  $l_w(\mathbf{N}^2)$  in view of (1.6). Complex bilinear interpolation implies the boundedness of

$$\otimes: l_{s,w} \times l_{s,w} \to (l_{w/2,\infty}, l_w)_{\theta}(\mathbf{N}^2) = l_{s,u}(\mathbf{N}^2),$$

where  $1/u=\theta/w=2/w-1/s$ . Note that  $l_{w/2,w}$  and  $l_{w/2,\infty}$  are quasi-normed spaces if  $w \leq 2$ . In these cases the complex bilinear interpolation property remains valid for the extension of complex interpolation considered in [CMS].

Optimality. Let  $x^{(m)} = (x_k^{(m)}), m \in \mathbb{N}$ , be the finite sequences

$$x_k^{(m)} = \begin{cases} 2^{-k/s}, & \text{if } 2^j \le k < 2^{j+1} \text{ for some natural number } j \le m; \\ 0, & \text{otherwise.} \end{cases}$$

Pietsch [P2, p. 35] estimated that

$$\|x^{(m)}\|_{s,w} \approx m^{1/w}, \quad \|x^{(m)} \otimes x^{(m)}\|_{s,u} \ge c_0 m^{1/s+1/u}$$

with  $c_0 > 0$  independent of m. The assumption  $l_{s,w} \otimes l_{s,w} \subset l_{s,u}(\mathbf{N}^2)$  for some u with  $w \leq u < \infty$  implies that there is a constant c > 0 such that

$$||x^{(m)} \otimes x^{(m)}||_{s,u} \le c ||x^{(m)}||_{s,w}^2 \text{ for } m \in \mathbf{N}.$$

Hence  $1/s + 1/u \le 2/w$ .

(c) The sequences  $x^{(m)}$  show as above that if  $l_{s,w} \otimes l_{s,w} \subset l_{s,\infty}(\mathbf{N}^2)$ , then there would be positive constants c and d such that

$$cm^{1/s} \leq \|x^{(m)} \otimes x^{(m)}\|_{s,\infty} \leq dm^{2/w} \quad \text{for } m \in \mathbb{N}.$$

This is impossible if  $2s < w \le \infty$ . The general inclusions  $l_{s,w} \otimes l_{s,w} \subset l_{t,u}(\mathbf{N}^2)$  for t > sand u > 0 are seen for instance from the proof of [K1, Proposition 1] for  $w < \infty$  and from Proposition 3.1.a below for  $w = \infty$ .

#### 2. Tensor norms on Hilbert spaces

The operator theoretic version of Sudakov's inequality for gaussian processes yields estimates for the entropy numbers of tensor products of operators between special tensor products, one of which is the Hilbert–Schmidt tensor product  $l^2 \widehat{\otimes}_{hs} l^2$ .

Let  $\gamma_n$  be the canonical gaussian probability measure on  $\mathbf{R}^n$  with density function  $d\gamma_n = \exp(-1/2(\sum_{i=1}^n x_i^2)) dx_1 \dots dx_n$  for  $n \in \mathbf{N}$  and let E be a Banach

space. The *l*-norm of the operator  $u: l_2^n \to E$  is  $l(u) = (\mathbf{E} ||ux||^2 d\gamma_n(x))^{1/2}$ , while one defines  $l(u) = \sup\{l(uv): v \in L(l_2^n, l^2), ||v|| \le 1, n \in \mathbb{N}\}$  for  $u \in L(l^2, E)$ . The rotation-invariance of  $\gamma_n$  implies that

(2.1) 
$$l(u) = \sup_{n \in \mathbf{N}} \left( \mathbf{E} \left\| \sum_{j=1}^{n} g_j u e_j \right\|^2 d\gamma_n \right)^{1/2}$$

for  $u \in L(l^2, E)$ , whenever  $(g_j)$  is a sequence of independent normal gaussian random variables on  $l_2^n$  and  $(e_j)$  is any orthonormal basis of  $l^2$  (see [Pi2, p. 35]). The operator version of Sudakov's inequality (see [Kü, p. 54] or [Pi2, 5.5]) states that there is a constant c such that for all Banach spaces E and all  $u \in L(l^2, E)$ 

(2.2) 
$$\|(e_n(u'))\|_{2,\infty} = \sup_{n \in \mathbf{N}} n^{1/2} e_n(u') \le c \, l(u).$$

Let  $(r_j)$  be the sequence of Rademacher functions on [0,1];  $r_j(t) = \operatorname{sgn} \sin(2^j \pi t)$ for  $t \in [0,1]$ . Recall that the Banach space E is of type p for some p with  $1 \le p \le 2$ if there is constant c > 0 such that  $(\mathbf{E} \| \sum_{j=1}^n r_j(t) x_j \|^2 dt)^{1/2} \le c (\sum_{j=1}^n \|x_j\|^p)^{1/p}$  for all  $n \in \mathbf{N}$  and all  $x_1, ..., x_n$  in E. If p > 1 then there is also in this event d > 0 with

(2.3) 
$$\left(\mathbf{E} \left\| \sum_{j=1}^{n} g_{j} x_{j} \right\|^{2} dP \right)^{1/2} \leq d \left( \sum_{j=1}^{n} \|x_{j}\|^{p} \right)^{1/p}$$

for all  $n \in \mathbb{N}$  and all  $x_1, ..., x_n$  in E, whenever  $(g_j)$  is an independent sequence of normal gaussian random variables defined on a probability space  $(\Omega, \Sigma, P)$ , see [TJ3, 25.1].

If  $E_i$  and  $F_i$  are Banach spaces and if  $S_i \in L(E_i, F_i)$  (i=1, 2), then the notation  $S_{1\alpha}\widehat{\otimes}_{\beta}S_2$  is used for the extension of  $S_1 \otimes S_2$  whenever it extends to a bounded operator from  $E_1\widehat{\otimes}_{\alpha}E_2$  to  $F_1\widehat{\otimes}_{\beta}F_2$  for given tensor norms  $\alpha$  and  $\beta$ . The Schatten trace-class spaces are

$$c_p(l^2) = \{ S \in L(l^2) : \|S\|_p = \|(s_n(S))\|_p < \infty \}$$

for  $1 \le p < \infty$ . The products  $l^2 \bigotimes_{c_p} l^2$  are actually induced by the tensor norm associated with the maximal ideal consisting of the (p, 2, 2)-absolutely summing operators for  $1 \le p < \infty$  [P1, 17.5.2]. This space equals  $l^2 \bigotimes_{\pi} l^2$  for p=1 and the Hilbert–Schmidt tensor product for p=2. Suppose that p satisfies 2 and that <math>S, T are compact operators on  $l^2$ . One obtains after a tensoring of the Schmidt decompositions of S and T that  $S \otimes T$  extends to a bounded linear operator from  $c_p(l^2)$  into  $c_2(l^2)$  precisely when  $D_s \otimes D_t$  extends similarly, where  $s=(s_n(S))$  and  $t=(s_n(T))$ . The general Hölder inequality for the trace-class spaces [P3, 2.11.23] provides a sufficient condition for this;

$$||(D_s \otimes D_t)a||_2 = ||D_t \circ a \circ D_s||_2 \le ||D_s||_u ||D_t||_v ||a||_p$$

for all  $a \in c_p(l^2)$  whenever u, v satisfy  $1/u+1/v+1/p=\frac{1}{2}$ .

**Proposition 2.1.** Let  $2 and assume that <math>S, T \in L_{r,w}^{(e)}(l^2)$  with 0 < r,  $w \le p'$ . Then

$$S_{c_p}\widehat{\otimes}_{\mathrm{hs}}T \in L_{t,y}^{(e)}(l^2\widehat{\otimes}_{c_p}l^2, l^2\widehat{\otimes}_{\mathrm{hs}}l^2),$$

whenever  $S \otimes T$  admits a bounded extension, with  $1/t = 1/r - 1/p - \frac{1}{2}$  and where 1/y = 1/w - 1/p' if  $0 < w \le r$  and 1/y = 2/w - 2/p' - 1/r if  $r < w \le 2(1/r + 1/p')^{-1}$ . The same statement applies to

$$S_{\mathrm{hs}}\widehat{\otimes}_{c_{p'}}T: l^2\widehat{\otimes}_{\mathrm{hs}}l^2 \to l^2\widehat{\otimes}_{c_{p'}}l^2.$$

*Proof.* Schmidt decomposition of S and T as in the proof of Theorem 1.1 implies that it is enough to consider the diagonal operators  $D_s$ ,  $D_t$  on  $l^2$  induced by the singular value sequences  $s=(s_n(S))$  and  $t=(s_n(T))$ . In order to apply Sudakov's inequality (2.2) we have to evaluate (according to (2.1))

$$l(D_{shs}\widehat{\otimes}_{c_{p'}}D_t) = \sup\left\{ \left( E \left\| \sum_{(i,j)\in\Delta} g_{ij}s_i e_i \otimes t_j e_j \right\|_{p'}^2 \right)^{1/2} : \Delta \subset \mathbf{N}^2 \text{ finite } \right\}$$

Here  $(g_{ij})$ ,  $(i, j) \in \mathbb{N}^2$ , is an independent sequence of normal gaussian random variables. One obtains from (2.3) that there is a constant c > 0 with

$$\left(E \left\| \sum_{(i,j)\in\Delta} g_{ij} s_i e_i \otimes t_j e_j \right\|_{p'}^2 \right)^{1/2} \le c \left( \sum_{(i,j)\in\Delta} s_i^{p'} t_j^{p'} \right)^{1/p'}$$

for all finite  $\Delta \subset \mathbf{N}^2$ , since  $c_{p'}(l^2)$  is of type p' by [TJ1, 3.1]. Thus (2.2) implies that  $D_{sc_p}\widehat{\otimes}_{hs}D_t$  belongs to  $L_{2,\infty}^{(e)}$  whenever  $s, t \in l^{p'}$ .

The result extends to some other values of r and w with the help of a simple factorization trick based on the Hölder inequality. Let 0 < r,  $w \le 2$ . For any positive non-increasing sequence  $s = (s_n) \in l_{r,w}$  there are positive sequences  $s' = (s'_n) \in l^{p'}$  and  $s'' = (s''_n) \in l_{x,y}$  satisfying  $s_n = s'_n s''_n$  for all  $n \in \mathbb{N}$ , 1/r = 1/p' + 1/x and 1/w = 1/p' + 1/y. Let t = t't'' be a similar factorization of  $t = (t_n) \in l_{r,w}$ . In order to apply Theorem 1.1 and the preceding  $l^{p'}$ -case to the factorization

$$(2.4) D_{sc_p}\widehat{\otimes}_{hs}D_t = (D_{s''}\widehat{\otimes}_{hs}D_{t''}) \circ (D_{s'c_p}\widehat{\otimes}_{hs}D_{t'})$$

one distinguishes between the possibilities  $0 < w \le r$  or  $r < w \le 2(1/r+1/p')^{-1}$ . If  $0 < w \le r$  then  $0 < y \le x$  and Theorem 1.1.a yields, after reordering with unitary operators if necessary, that

$$D_{sc_p}\widehat{\otimes}_{hs}D_t \in L_{x,y}^{(e)} \circ L_{2,\infty}^{(e)} \subset L_{t,y}^{(e)},$$

where  $1/t=1/r-1/p-\frac{1}{2}$  and  $1/y=1/w-\frac{1}{2}$ . The above inclusion follows from the multiplicativity property of the entropy numbers and [P1, 2.1.13]. On the other

hand, in the case  $r < w \le 2(1/r+1/p')^{-1}$  one clearly has  $0 < x < y \le 2x$  and hence, in view of (2.4) and Theorem 1.1.b, that

$$D_{sc_p}\widehat{\otimes}_{\operatorname{hs}} D_t \in L^{(e)}_{x,u} \circ L^{(e)}_{2,\infty} \subset L^{(e)}_{t,u}$$

where t is as above and with 1/u=2/y-1/r=2/w-2/p'-1/r. This completes the argument for  $S_{c_p} \widehat{\otimes}_{hs} T$ .

The statement concerning the matrix operators  $S_{hs}\widehat{\otimes}_{c_p}T$  is seen from the duality properties of the entropy numbers of operators with values in a Hilbert space [TJ2].

We mention an example in the direction of [C1].

Example 2.2. Let  $s=(s_k)$ ,  $t=(t_k)$  be positive non-increasing sequences. If  $s, t \in l^r, 0 < r < \infty$ , then

$$D_{s\pi}\widehat{\otimes}_{\rm hs}D_t \in L^{(e)}_{u,r}(l^1\widehat{\otimes}_{\pi}l^1, l^2\widehat{\otimes}_{\rm hs}l^2),$$

where  $1/u=1/r+\frac{1}{2}$ . Moreover, there are sequences  $s \in c_0$  such that  $D_{s\pi} \widehat{\otimes}_{hs} D_s \notin L_{2,1}^{(e)}(l^1 \widehat{\otimes}_{\pi} l^1, l^2 \widehat{\otimes}_{hs} l^2)$ .

Proof. There is an isometric identification  $l^1 \widehat{\otimes}_{\pi} l^1 = l^1(\mathbf{N}^2)$  and  $D_{s\pi} \widehat{\otimes}_{hs} D_t$  is identified with the diagonal operator  $D_{s\otimes t}: l^1(\mathbf{N}^2) \to l^2(\mathbf{N}^2)$  taken with respect to the natural symmetric basis  $(e_i \otimes e_j)$ . Let  $0 < w < \infty$  and  $1/u = 1/r + \frac{1}{2}$ . Then  $D_{s\otimes t} \in L^{(e)}_{u,w}(l^1(\mathbf{N}^2), l^2(\mathbf{N}^2))$  if and only if  $s \otimes t \in l_{r,w}$  according to [C1, 3.1 and 3.2]. In particular,  $D_{s\pi} \widehat{\otimes}_{hs} D_t \in L^{(e)}_{u,r}$  whenever  $s, t \in l^r$ .

For the second assertion consider  $s=(s_i)\in c_0$ ,  $s_i=1/\log(k+2)$  for  $2^k \leq i < 2^{k+1}$ ,  $k \in \mathbb{N}$ . According to (2.1) and the estimate from below in Chevet's inequality [Ch, 3.1] it follows that

$$\begin{split} l(D_{shs}\widehat{\otimes}_{\varepsilon}D_{s}:l^{2}\widehat{\otimes}_{hs}l^{2} \to c_{0}\widehat{\otimes}_{\varepsilon}c_{0}) &\geq \sup_{n \in \mathbf{N}} \mathbf{E} \left\| \sum_{i=1}^{n} \sum_{j=1}^{n} g_{ij}s_{i}s_{j}e_{i} \otimes e_{j} \right\|_{\varepsilon} \\ &\geq \sup_{n \in \mathbf{N}} \sup \left\{ \left( \sum_{i=1}^{n} |x'(s_{i}e_{i})|^{2} \right)^{1/2} : x' \in B_{l^{1}} \right\} \mathbf{E} \left\| \sum_{j=1}^{n} g_{j}s_{j}e_{j} \right\|_{c_{0}} \\ &= s_{1} \sup_{n \in \mathbf{N}} \mathbf{E} \max_{1 \leq i \leq n} s_{i} |g_{i}|, \end{split}$$

where  $(g_{ij})$  and  $(g_i)$  are independent normal gaussian random variables defined on some probability space  $(\Omega, \Sigma, P)$ . It follows (for instance) from Sudakov's inequality for gaussian processes (see [Pi2, 5.6]) that there is a constant c>0 such that

$$\mathbf{E}\max_{1 \le i \le 2^{n+1}} s_i |g_i| \ge c \frac{n^{1/2}}{\log(n+2)}, \quad n \in \mathbf{N}$$

256

since  $\{s_i g_i: 1 \le i \le 2^{n+1}-1\}$  forms an orthogonal set in  $L^2(\Omega, P)$  by independence and since  $\|s_i g_i - s_j g_j\|_{L^2(\Omega)} = (s_i^2 + s_j^2)^{1/2}$  whenever  $i \ne j$ . Hence  $l(D_{shs} \widehat{\otimes}_{\varepsilon} D_s)$  fails to be finite and thus Dudley's inequality [Pi2, 5.5],

$$l(u) \leq c_1 \sum_n n^{-1/2} e_n(u')$$

 $(u: l^2 \to E, E \text{ any Banach space}) \text{ implies that } (D_{shs} \widehat{\otimes}_{\epsilon} D_s)' = D_s \pi \widehat{\otimes}_{hs} D_s \notin L_{2,1}^{(e)}.$ 

If  $(e_i)$  is the standard unit basis of  $l^2$ , then  $\{(e_i \otimes e_j): (i, j) \in \mathbb{N}^2\}$  constitutes a Schauder basis for  $l^2 \widehat{\otimes}_{c_p} l^2$  in the usual box order. Let  $D_s, D_t: l^2 \to l^2$  be the diagonal operators corresponding to the positive non-increasing sequences  $s=(s_n)$ and  $t=(t_n)$ . In this case  $D_s \widehat{\otimes}_{c_p} D_t$  is the diagonal operator  $e_i \otimes e_j \to s_i t_j e_i \otimes e_j$ ,  $(i, j) \in \mathbb{N}^2$ , on  $l^2 \widehat{\otimes}_{c_p} l^2$ . However,  $c_p(l^2)$  fails to have an unconditional basis whenever  $p \neq 2$ , (cf. [Pi1, 8.20]) and thus the formula due to Gordon, König and Schütt [GKS, 1.7] for the entropy numbers does not apply as such to this concrete situation.

We next establish asymptotic bounds for the single entropy numbers of  $D_s \widehat{\otimes}_{c_p} D_t$ . It is crucial that there are uniformly bounded sequences of finite-dimensional projections on  $c_p(l^2)$  associated with the level sets of the non-increasing rearrangement of  $s \otimes t$ . For this purpose ideas of Kwapien and Pelczynski [KP] are required. Suppose that  $s=(s_n)$  and  $t=(t_n)$  are positive non-increasing 0-sequences. Set

$$\Delta_r(s,t) = \{ (i,j) \in \mathbf{N}^2 : s_i t_j \ge 1/r \} \text{ and } M_r(s,t) = [e_i \otimes e_j : (i,j) \in \Delta_r(s,t)]$$

and let  $Q_r(s,t)$  be the natural finite-dimensional projection

$$\sum_{i} \sum_{j} a_{i,j} e_i \otimes e_j \to \sum_{(i,j) \in \Delta_r(s,t)} a_{i,j} e_i \otimes e_j$$

from  $c_p(l^2)$  onto  $M_r(s,t)$  for any  $r \in \mathbb{N}$ . The matrix notation  $a = \sum_i \sum_j a_{i,j} e_i \otimes e_j$  is used for  $a \in c_p(l^2)$ , with the summation in the box order, i.e. as  $\sum_{n=1}^{\infty} \sum_{i \lor j=n} a_{i,j} e_i \otimes e_j$  where  $i \lor j = \max\{i, j\}$ . We will often suppress (s, t) in the interest of brevity and thus write  $\Delta_r$ ,  $M_r$  and  $Q_r$ .

A result due to Macaev states that the main triangle projections  $T_n$ ,

$$T_n(e_i \otimes e_j) = \left\{ egin{array}{cc} e_i \otimes e_j, & ext{if } i+j \leq n\!+\!1, \ 0, & ext{otherwise}, \end{array} 
ight.$$

 $n \in \mathbb{N}$ , are uniformly bounded on  $c_p(l^2)$  when 1 ,

(2.5) 
$$d_p = \sup_{n \in \mathbf{N}} ||T_n: c_p(l^2) \to c_p(l^2)|| < \infty,$$

cf. [GK, III.6.2].

The following lemma of a technical nature concerning the norms of irregular triangular projections on  $c_p(l^2)$  has independent interest.

**Lemma 2.3.** Suppose that p satisfies 1 . Then

(2.6) 
$$a_p = \sup\{ \|Q_r(s,t): c_p(l^2) \to c_p(l^2)\| : s \text{ and } t \text{ non-increasing}, \\ positive 0 - sequences, \ r \in \mathbf{N} \} < \infty.$$

Proof. If p=2 then evidently  $a_2=1$ , since  $c_2(l^2)$  is isometric to  $l^2(\mathbf{N}^2)$ . Suppose that  $r \in \mathbf{N}$  and take  $n \in \mathbf{N}$  with  $\max\{s_1t_n, s_nt_1\} < 1/r$ . Let  $P_{k,m}$  stand for the contractive box-projections on  $c_p(l^2)$  sending  $\sum_i \sum_j a_{i,j}e_i \otimes e_j$  to  $\sum_{i \leq k} \sum_{j \leq m} a_{i,j}e_i \otimes e_j$  $e_j$  when  $k, m \in \mathbf{N}$ . It suffices to find uniform bounds on the  $k \times k$ -matrices since  $P_{k,k}a \to a$  in  $c_p(l^2)$  for all a as  $k \to \infty$ . There is also no loss of generality in assuming that n is large enough in order that

$$\Delta_r(s,t) \subset D_n = \{ (i,j) \in \mathbf{N}^2 : i+j \le n+1 \}.$$

We indicate how the uniform boundedness of the projections  $Q_r(s,t)$  is reduced with the help of uniformly bounded operations on  $c_p(l^2)$  to the unconditionality of the Schauder decomposition  $(P_{k+1,k+1}-P_{k,k})_{k\in\mathbb{N}}$  of  $c_p(l^2)$  for 1 , which wasestablished in [KP, p. 67]. It is instructive to visualize the different steps on finitematrices.

The sets  $\Delta_r = \Delta_r(s,t)$  obviously enjoy the following "convexity" property: if  $(i,j) \notin \Delta_r$ , then  $(k,l) \notin \Delta_r$  whenever  $k \ge i$  and  $l \ge j$ . Let  $U_\alpha$  be the isometry  $U_\alpha(\sum_{i\le n} a_i e_i) = \sum_{i\le n} a_i e_{\alpha(i)}$  on  $l_2^n$  whenever  $\alpha$  is a permutation of  $\{1, ..., n\}$ . Set  $\pi(k) = n+1-k$  on  $\{1, ..., n\}$ , whence  $\pi^{-1} = \pi$ . The tensor property implies that

(2.7)  

$$\begin{aligned} \left\| \sum_{(i,j)\in\Delta_{r}} a_{i,j}e_{i}\otimes e_{j} \right\| &= \left\| (\mathrm{id}\otimes U_{\pi})\sum_{(i,j)\in\Delta_{r}} a_{i,j}e_{i}\otimes e_{\pi(j)} \right\| \\ &\leq \left\| \sum_{(i,j)\in\Delta_{r}} a_{i,j}e_{i}\otimes e_{\pi(j)} \right\| \\ &\leq \left\| \sum_{(i,j)\in\Delta_{r}(+)} a_{i,j}e_{i}\otimes e_{\pi(j)} \right\| + \left\| \sum_{(i,j)\in\Delta_{r}(-)} a_{i,j}e_{i}\otimes e_{\pi(j)} \right\|. \end{aligned}$$

Here (as well as in the proof of 2.4 below) we delete for simplicity the subscript in the norm  $\|\cdot\|_p$  of  $c_p(l^2)$ . Above  $\Delta_r(+) = \{(i, j) \in \Delta_r(s, t) : (i, \pi(j)) \in D_n\}$  and  $\Delta_r(-) = \{(i, j) \in \Delta_r(s, t) : i + \pi(j) > n+1\}$ . We proceed to estimate the first term of (2.7). Put  $\widehat{\Delta}_r(+) = (\operatorname{id} \times \pi) \Delta_r(+)$ . The "convexity" property of  $\Delta_r(s, t) \subset D_n$  implies that there are finite sequences  $(r_k)$  and  $(s_k)$  of integers satisfying:

$$\begin{split} \widehat{\Delta}_r(+) &= \{ \, (i,j) \in \{1,...,n\}^2 : & r_k \leq j \leq r_{k+1} - 1, \\ & s_k \leq i \leq n + 1 - j \text{ for } k = 1,...,m \, \}, \end{split}$$

where  $1 < r_1 < ... < r_m \le [n/2] + 1$ ,  $1 \le s_1 < ... < s_m \le n$  for some  $m = m(s, t) \le [n/2] + 1$ ,  $r_k - s_k \ge 0$ ,  $r_{k+1} - 1 - s_k \ge 0$  for all k and with

(2.8) 
$$n+1-(r_k-s_k) > n+1-(r_{k+1}-1-s_k) > n+1-(r_{k+1}-s_{k+1}) \text{ for } k=1,...,m-1.$$

There exists a pair  $(\sigma, \mu)$  of permutations of  $\{1, ..., n\}$  with the following properties:

- (2.9)  $\mu$  maps the disjoint subsets  $\{r_k, r_k+1, ..., r_{k+1}-1\}$  increasingly onto the disjoint sets (by (2.8))  $\{r_k-s_k, r_k+1-s_k, ..., r_{k+1}-1-s_k\}$  for k=1, ..., m-1 and
- (2.10)  $\sigma$  maps the disjoint subsets  $\{n+1-(r_{k+1}-1), ..., n+1-r_k\}$  increasingly onto the disjoint sets (by(2.8))  $\{n+1-(r_{k+1}-1-s_k), ..., n+1-(r_k-s_k)\}$  for k=1, ..., m-1.

The conditions (2.9) and (2.10) state intuitively that the pair  $(\sigma, \mu)$  permutes any "block" of the form

$$\{\,(i,j): r_k \le j \le r_{k+1} - 1, \ s_k \le i \le n + 1 - j\,\}$$

of  $\widehat{\Delta}_r(+)$  in  $D_n$  onto the corresponding block of equal size containing  $\{(1, r_k - s_k), ..., (1, r_{k+1} - 1 - s_k)\}$ .

This entails that

$$\begin{split} \left\| \sum_{(i,j)\in\Delta_r(+)} a_{i,j}e_i \otimes e_{\pi(j)} \right\| &= \left\| (U_{\sigma^{-1}} \otimes U_{\mu^{-1}}) \sum_{(i,j)\in\Delta_r(+)} a_{i,j}e_{\sigma(i)} \otimes e_{\mu(\pi(j))} \right\| \\ &\leq \left\| \sum_{(i,j)\in\Delta_r(+)} a_{i,j}e_{\sigma(i)} \otimes e_{\mu(\pi(j))} \right\| \\ &= \left\| T_n(R_{r_{k+1}-1-s_k,r_{k+1}-1-s_k} - R_{r_k-s_k,r_k-s_k}) \sum_{i\leq n} \sum_{j\leq n} a_{i,j}e_{\sigma(i)} \otimes e_{\mu(\pi(j))} \right\| \\ &\leq d_p K_p \left\| \sum_{i\leq n} \sum_{j\leq n} a_{i,j}e_{\sigma(i)} \otimes e_{\mu(\pi(j))} \right\| \leq d_p K_p \left\| \sum_{i\leq n} \sum_{j\leq n} a_{i,j}e_i \otimes e_j \right\|, \end{split}$$

where  $R_{r,r} = (\mathrm{id} \otimes U_{\pi}) P_{n+1-r,n+1-r}$ . The above inequalities follow from (2.5), the tensor property and the unconditionality of the Schauder decomposition  $(P_{k+1,k+1} - P_{k,k})_{k \in \mathbb{N}}$  for  $c_p(l^2)$  [KP, p. 67].  $K_p$  is the associated unconditional constant.

The second term  $\|\sum_{(i,j)\in\Delta_r(-)}a_{i,j}e_i\otimes e_{\pi(j)}\|$  of (2.7) admits a similar bound. This completes the proof of the lemma.

Let  $s=(s_n)$  and  $t=(t_n)$  be positive non-increasing 0-squences. We denote

$$m_x = m_x(s, t) = \min\{r \in \mathbf{N} : \max\{s_r t_1, s_1 t_r\} < x\}$$

for x > 0 and put

$$b(n) = b(s,t)(n) = \sup_{r \in \mathbf{N}} \left( 2^{-n} \prod_{(i,j) \in \Delta_r(s,t)} s_i t_j \right)^{1/\#\Delta_r(s,t)}$$

for  $n \in \mathbb{N}$ . The function  $x \to m_x(s,t)$  is clearly decreasing. Recall that the *n*-th non-dyadic entropy number of  $S \in L(E, F)$  is

$$\varepsilon_n(S) = \inf\{\varepsilon > 0 : SB_E \subset \{x_1, ..., x_n\} + \varepsilon B_F, x_1, ..., x_n \in F\}.$$

Evidently  $e_n(S) = \varepsilon_{2^{n-1}}(S)$ .

**Theorem 2.4.** Suppose that p satisfies  $1 , <math>p \neq 2$ . Then

$$(2.11) \quad \frac{1}{a_p} b(n) \le e_n (D_s \widehat{\otimes}_{c_p} D_t) \le [3 + 2a_p + 2\log(2m_{b(n-1)(1+2\log(2m_{b(n-1)}))})] \\ \times b(n-1)(1 + 2\log(2m_{b(n-1)}))$$

for all  $n \ge 2$  and for all positive non-increasing sequences s and t (the logarithm is to the base 2). In particular,

$$e_{n+1}(D_s\widehat{\otimes}_{c_p}D_t) \le b_p b(n) \left(\log(m_{b(n)})\right)^2$$

for some uniform constants  $b_p < \infty$ .

*Proof.* A standard volume argument, which is indicated for completeness, yields the lower bound. Indeed, fix  $r \in \mathbf{N}$  and consider the restriction  $(D_s \otimes D_t)^{(r)} = Q_r (D_s \widehat{\otimes}_{c_p} D_t)_{|M_r} : M_r \to M_r$ , for which

$$e_n((D_s \otimes D_t)^{(r)}) \leq \|Q_r(s,t)\|e_n(D_s \widehat{\otimes}_{c_p} D_t) \leq a_p e_n(D_s \widehat{\otimes}_{c_p} D_t)$$

according to (2.6). Suppose that  $\lambda > e_n((D_s \otimes D_t)^{(r)})$  and that

$$(D_s \otimes D_t)^{(r)} B_{M_r} \subset \{a_1, ..., a_{2^n}\} + \lambda B_{M_r}$$

for some  $a_1, ..., a_{2^n} \in M_r$ . The evaluation of the  $\#\Delta_r(s, t)$ -dimensional volume with respect to Lebesgue product-measure entails that

$$\operatorname{vol}((D_s \otimes D_t)^{(r)} B_{M_r}) = |\det((D_s \otimes D_t)^{(r)})| \operatorname{vol}(B_{M_r})$$
$$= \left(\prod_{(i,j) \in \Delta_r} s_i t_j\right) \operatorname{vol}(B_{M_r}) \le 2^n \lambda^{\#\Delta_r} \operatorname{vol}(B_{M_r}).$$

260

Thus

$$\lambda \ge \left(2^{-n} \prod_{(i,j)\in\Delta_r} s_i t_j\right)^{1/\#\Delta_r}.$$

The supremum over r gives the left-hand inequality of (2.11).

We proceed to establish the right-hand inequality. It is assumed that  $s_i > 0$  and  $t_i > 0$  for all  $i \in \mathbb{N}$  since the argument simplifies if s or t are finite sequences. Let 0 < x < 1. We want to determine the optimal choice of x by a volume argument as in [GKS], but considerable complications arise due to the lack of unconditionality in  $c_p(l^2)$ . There is  $r \in \mathbb{N}$  such that  $1/(r+1) \le x < 1/r$ . Let  $\{a_1, ..., a_N\}$  be a maximal set of elements of  $(D_s \otimes D_t)^{(r)} B_{M_r}$  with the property that

$$||a_i - a_j|| > 2x \quad \text{for } i \neq j.$$

Consequently

$$(D_s \otimes D_t)^{(r)} B_{M_r} \subset \{a_1, ..., a_N\} + 2x B_{M_r}$$

One has

(2.12) 
$$\varepsilon_N(D_s\widehat{\otimes}_{c_p}D_t) \leq \varepsilon_N(Q_r(D_s\widehat{\otimes}_{c_p}D_t)) + \|(\mathrm{id} - Q_r)D_s\widehat{\otimes}_{c_p}D_t\|.$$

The right-hand terms of (2.12) are dealt with as follows. Observe first that

$$Q_r(D_s\widehat{\otimes}_{c_p}D_t)B_{c_p(l^2)} = Q_r(D_s\widehat{\otimes}_{c_p}D_t)Q_rB_{c_p(l^2)} \subset a_p(D_s\otimes D_t)^{(r)}B_{M_r}$$

because of (2.6). Hence  $\varepsilon_N(Q_r(D_s \widehat{\otimes}_{c_p} D_t)) \leq 2a_p x$ .

The second term of (2.12) splits into 4 parts. Let  $a = \sum_i \sum_j a_{i,j} e_i \otimes e_j \in c_p(l^2)$ be an operator with finite matrix. Note that  $\Delta_r = \Delta_r(s,t) \subset \{1,...,m_x\}^2$  by the choice of  $m_x = m_x(s,t)$  and the mononicity of s and t. Let  $\Delta'_r = \{1,...,m_x\}^2 - \Delta_r$ . Write

$$(id - Q_r)(D_s \widehat{\otimes}_{c_p} D_t) a = \sum_{(i,j) \notin \Delta_r} s_i t_j a_{i,j} e_i \otimes e_j$$

$$= \sum_{i \ge m_x + 1} \sum_{j \ge m_x + 1} s_i t_j a_{i,j} e_i \otimes e_j + \sum_I s_i t_j a_{i,j} e_i \otimes e_j$$

$$+ \sum_{II} s_i t_j a_{i,j} e_i \otimes e_j + \sum_{(i,j) \in \Delta'_r} s_i t_j a_{i,j} e_i \otimes e_j.$$

The sum in I extends over  $(i, j) \in \mathbb{N}^2$  satisfying  $1 \le i \le m_x$  and  $j \ge m_x + 1$ , while the summation in II is over (i, j) with  $i \ge m_x + 1$  and  $1 \le j \le m_x$ . The tensor property and the monotonicity of s and t imply that

$$\left\|\sum_{i \ge m_x + 1} \sum_{j \ge m_x + 1} s_i t_j a_{i,j} e_i \otimes e_j\right\| \le \max\{s_i t_j : i, j \ge m_x + 1\} \|a\| \le x \|a\|,$$

while also

$$\left\|\sum_{I}s_{i}t_{j}a_{i,j}e_{i}\otimes e_{j}\right\|\leq s_{1}t_{m_{x}+1}\|a\|\leq x\|a\|$$

by the definition of  $m_x$ . Similarly  $\|\sum_{II} s_i t_j a_{i,j} e_i \otimes e_j\| \leq x \|a\|$ . The preceding inequalities hold for all  $a \in c_p(l^2)$  in view of the density of the finite operators.

We require the combinatorial result formulated below in Lemma 2.5 in order to estimate the remaining term of (2.13). Recall that a (finite) chain C in  $\mathbb{N}^2$  has the form

$$C = \bigcup_{j \le r(c)} A_j \times B_j,$$

for some  $r(C) \in \mathbb{N}$ , where  $A_i \cap A_j = \emptyset$  and  $B_i \cap B_j = \emptyset$  whenever  $i \neq j$ . The disjointness of the supports of the corresponding operators leads to

(2.14) 
$$\left\| \sum_{(i,j)\in C} s_i t_j a_{i,j} e_i \otimes e_j \right\| \le \max_{r \le r(C)} \left\| \sum_{(i,j)\in A_r \times B_r} s_i t_j a_{i,j} e_i \otimes e_j \right\| \le \max\{s_i t_j : (i,j)\in C\} \|a\|$$

for  $a = \sum_i \sum_j a_{i,j} e_i \otimes e_j$ . The first inequality is seen from [K1, p. 87–88], while the second one follows from

$$\left\|\sum_{(i,k)\in A_j\times B_j}s_it_ka_{i,k}e_i\otimes e_k\right\|\leq \max\{s_it_k:(i,k)\in A_j\times B_j\}\|a\|,$$

which is an immediate consequence of the tensor property.

According to the combinatorial result of Lemma 2.5 below one may partition  $\Delta'_r$  as  $\bigcup_{m \leq k(r)} C_m$  into chains  $(C_m)$  with  $k(r) \leq \log(2m_x)$ . Consequently

(2.15) 
$$\begin{aligned} \left\| \sum_{(i,j)\in\Delta'_r} s_i t_j a_{i,j} e_i \otimes e_j \right\| &\leq \sum_{m\leq k(r)} \left\| \sum_{(i,j)\in C_m} s_i t_j a_{i,j} e_i \otimes e_j \right\| \\ &\leq \log(2m_x) \max\{s_i t_j : (i,j)\in\Delta'_r\} \|a\| \\ &\leq \log(2m_x) 2x \|a\| \end{aligned}$$

by (2.14). A combination of (2.13) and (2.15) leads to

(2.16) 
$$\varepsilon_N(D_s \widehat{\otimes}_{c_p} D_t) \le (3 + 2a_p + 2\log(2m_x))x$$

Next we estimate N. The sets  $\{a_i+xB_{M_r}\}, i=1,...,N$ , are disjoint in  $M_r$  according to the choice of  $\{a_1,...,a_N\}$  in  $(D_s \otimes D_t)^{(r)}B_{M_r}$ . Moreover,

(2.17) 
$$\{a_1, ..., a_N\} + xB_{M_r} \subset (1+x \| (D_{s^{-1}} \otimes D_{t^{-1}})^{(r)} \| ) (D_s \otimes D_t)^{(r)} B_{M_r} \\ \subset (1+2\log(2m_x)) (D_s \otimes D_t)^{(r)} B_{M_r}.$$

262

Here  $(D_{s^{-1}} \otimes D_{t^{-1}})^{(r)} = ((D_s \otimes D_t)^{(r)})^{-1}$  stands for the diagonal operator on  $M_r$  that maps  $e_i \otimes e_j$  to  $(s_i t_j)^{-1} e_i \otimes e_j$ . We have used in (2.17) the estimate

(2.18) 
$$\| (D_{s^{-1}} \otimes D_{t^{-1}})^{(r)} \| \le 2 \log(2m_x) \frac{1}{x}.$$

This inequality is verified as follows. We have  $\Delta_r \subset D_{m_x}$ , where  $D_{m_x}$  partitions into a union of at most  $\log(2m_x)$  chains  $(C_m)$  according to [KP, p. 46]. This enables us to argue as in the proof of Lemma 2.3. Let  $a = \sum_{(i,j)\in\Delta_r} a_{i,j}e_i \otimes e_j \in M_r$ . One obtains as in (2.7) that

$$\|(D_{s^{-1}} \otimes D_{t^{-1}})^{(r)} a\| \le \left\| \sum_{(i,j) \in \Delta_r(+)} (s_i t_j)^{-1} a_{i,j} e_i \otimes e_{\pi(j)} \right\| \\ + \left\| \sum_{(i,j) \in \Delta_r(-)} (s_i t_j)^{-1} a_{i,j} e_i \otimes e_{\pi(j)} \right\|,$$

where the notations  $\pi$ ,  $\Delta_r(+)$  and  $\Delta_r(-)$  are those of the proof of Lemma 2.3. An application of the pair  $(\sigma, \mu)$  of permutations satisfying (2.9) and (2.10) entails that

$$\begin{split} \left\| \sum_{(i,j)\in\Delta_{r}(+)} (s_{i}t_{j})^{-1}a_{i,j}e_{i}\otimes e_{\pi(j)} \right\| &\leq \left\| \sum_{(i,j)\in\Delta_{r}(+)} (s_{i}t_{j})^{-1}a_{i,j}e_{\sigma(i)}\otimes e_{\mu(\pi(j))} \right\| \\ &\leq \left\| \sum_{(\pi(i),j)\in(\sigma\times(\mu\circ\pi))\Delta_{r}(+)} (s_{i}t_{j})^{-1}a_{i,j}e_{\sigma(i)}\otimes e_{\mu(\pi(j))} \right\| \\ &= \left\| \sum_{m=1}^{\log(2m_{x})} \sum_{C_{m}\cap(\sigma\times(\mu\circ\pi))\Delta_{r}(+)} (s_{i}t_{j})^{-1}a_{i,j}e_{\sigma(i)}\otimes e_{\mu(\pi(j))} \right\| \\ &\leq \log(2m_{x})\max\{(s_{i}t_{j})^{-1}:(i,j)\in\Delta_{r}\} \left\| \sum_{(i,j)\in\Delta_{r}} a_{i,j}e_{i}\otimes e_{j} \right\| \\ &\leq \frac{1}{x}\log(2m_{x})\|a\|. \end{split}$$

In the above inequalities we have used (2.14) together with the fact that the intersections  $C_m \cap (\sigma \times (\mu \circ \pi)) \Delta_r(+)$  are also chains. The second term

$$\left\|\sum_{(i,j)\in\Delta_r(-)}(s_it_j)^{-1}a_{i,j}e_i\otimes e_{\pi(j)}\right\|$$

admits an analogous bound and thus (2.18) holds.

The application of  $#\Delta_r(s,t)$ -dimensional product measure to (2.17) implies then that

$$Nx^{\#\Delta_r} \le (1 + 2\log(2m_x))^{\#\Delta_r} \left(\prod_{(i,j)\in\Delta_r} s_i t_j\right)$$

and thus

$$N \leq \left(\frac{1+2\log(2m_x)}{x}\right)^{\#\Delta_r} \prod_{(i,j)\in\Delta_r} s_i t_j.$$

Then  $N \leq 2^n$  at least if x satisfies

$$\left(2^{-n}\prod_{(i,j)\in\Delta_r}s_it_j\right)^{1/\#\Delta_r}\leq b(n)\leq \frac{x}{1+2\log(2m_x)}.$$

The latter inequality is equivalent to the condition

$$x-b(n)2\log(2m_x)-b(n)\geq 0,$$

which is satisfied (at least) if  $x=b(n)(1+2\log(2m_{b(n)}))$ . In fact, then the condition reduces to

$$\log(2m_{b(n)}) - \log(2m_{b(n)(1+2\log(2m_{b(n)}))}) \ge 0,$$

and this holds since  $x \rightarrow m_x$  is non-increasing.

The insertion of  $x=b(n)(1+2\log(2m_{(b(n))}))$  into (2.16) produces the upper bound of (2.11) for  $e_{n+1}(D_s \widehat{\otimes}_{c_p} D_t) = \varepsilon_{2^n}(D_s \widehat{\otimes}_{c_p} D_t) \le \varepsilon_N(D_s \widehat{\otimes}_{c_p} D_t)$ . The argument is thus completed by the combinatorial Lemma 2.5 below.

Finally, the simpler bound

$$e_{n+1}(D_s\widehat{\otimes}_{c_p}D_t) \le b_p b(n) \left(\log(m_{b(n)})\right)^2$$

results from the monotonicity of  $x \rightarrow \log(m_x)$ .

**Lemma 2.5.** Suppose that s and t are non-increasing positive 0-sequences,  $m \in \mathbb{N}$  and let  $r \in \mathbb{N}$  be such that  $\Delta_r(s,t) \subset \{1,...,m\}^2$ . Then it is possible to partition  $\{1,...,m\}^2 - \Delta_r(s,t)$  into at most  $\log(2m)$  chains.

Proof. We verify a general statement which only relies on the "convexity" of the sets Δ<sub>r</sub>(s,t). Suppose that m∈N and that Δ⊂{1,...,m}<sup>2</sup> satisfies the property (2.19) if (i, j)∈{1,...,m}<sup>2</sup>-Δ, then (k,n)∉Δ whenever (k,n)∈{1,...,m}<sup>2</sup>, k≥i and n≥j.

Claim.  $\{1, ..., m\}^2 - \Delta$  partitions into at most  $\log(2m)$  chains.

264

Let f(m) be the smallest natural number so that  $\{1, ..., m\}^2 - \Delta$  partitions into at most f(m) chains for any  $\Delta \subset \{1, ..., m\}^2$  for which (2.19) holds. It suffices to verify that f admits the growth

(2.20) 
$$f(m) \le 1 + f\left(\left[\frac{m}{2}\right]\right)$$

for natural numbers  $m \ge 2$ , where [x] denotes the entire part of x. Indeed, since  $f(1)=1=\log(2)$  (logarithm to the base 2), one gets from (2.20) that  $f(k)\le \log(2k)$  for all  $k \in \mathbb{N}$ .

We indicate an argument for (2.20), that also provides a procedure for obtaining a partition (not necessarily the most efficient one for a given set  $\Delta$ ). Suppose that  $\Delta \subset \{1, ..., m\}^2$  satisfies (2.19) for some  $m \ge 2$ . Pick the largest possible square contained in  $\{1, ..., m\}^2 - \Delta$  with opposite corners (m, m) and (r, r). Let  $C = \{r, ..., m\} \times \{r, ..., m\}$  be the first chain. Thus  $\{1, ..., m\}^2 - \{\Delta \cup C\} = A_1 \cup A_2$ , where

$$\begin{split} &A_1 = (\{1,...,m\}^2 - \Delta) \cap \{r,...,m\} \times \{1,...,r-1\}, \\ &A_2 = (\{1,...,m\}^2 - \Delta) \cap \{1,...,r-1\} \times \{r,...,m\}. \end{split}$$

To continue, it suffices to partition  $A_1$  and  $A_2$  separately into chains, since these sets have disjoint projections in  $\{1, ..., m\}$  and thus their respective chains can be joined. We discuss the case of  $A_1$ . Observe that the length of the smaller side of the rectangle  $\{r, ..., m\} \times \{1, ..., r-1\}$  satisfies  $\min\{m-r+1, r-1\} \leq [m/2]$ , since otherwise  $m=(m-r+1)+(r-1)\geq 2[m/2]+2\geq m+1$ . Moreover, note that  $\Delta_1=\Delta \cap$  $(\{r, ..., m\} \times \{1, ..., r-1\})$  satisfies (2.19) in this rectangle. Hence  $A_1$  partitions into at most f([m/2]) chains. In fact, by "shrinking" the sets involved if necessary, one observes that partitioning  $A_1$  is at worst as difficult as that of partitioning inside corresponding squares having sidelength the smaller of the sides of the rectangle, that is at most [m/2]. Finally, repeat this for  $A_2$  to get (2.20).

Remarks 2.6. We do not know if the upper bound of (2.11) is sharp. We stress that the sequence  $(b(s,t)(n))_{n\in\mathbb{N}}$  has according to Theorem 1.1 the same behaviour in the Lorentz scale  $l_{r,w}$  as the sequence  $s \otimes t$ , which was determined in Proposition 1.2 (see also Proposition 3.1.a below for the rate of decrease in the case  $w=\infty$ ). In fact, the sequence (b(s,t)(n)) is clearly obtained from the asymptotic entropy formula [GKS, 1.7] for the diagonal operator  $D_s \widehat{\otimes}_{hs} D_t$  on  $l^2 \widehat{\otimes}_{hs} l^2 = l^2(\mathbb{N}^2)$ , if the orthonormal basis  $(e_n \otimes e_m)$  is reordered to correspond to the rearrangement of the sequence  $s \otimes t$ .

The argument of 2.4 breaks down for p=1 (or  $p=\infty$ ), since already

$$||T_n: c_1(l^2) \to c_1(l^2)|| \ge c \log n$$

by [KP, 1.2].

## 3. General estimates

The results of Sections 1 and 2 are based on particular geometric properties of Banach spaces not available in arbitrary tensor products. In this section we first state some general consequences of the stability under tensoring of the related approximation number ideals. Moreover, volume comparisons yield instability estimates. Better results are available for Banach spaces endowed with special structure.

The behaviour of the approximation number ideals  $L_{r,w}^{(a)}$  under tensor products was studied in [P2], [K1]. These ideals are almost tensor-stable in the sense that for all tensor norms  $\alpha$  and all Banach spaces one has  $S \widehat{\otimes}_{\alpha} T \in L_{t,u}^{(a)}$  for all t > r and all u > 0 whenever  $S, T \in L_{r,w}^{(a)}$ . We formulate below a more precise statement of tensor stability up to logarithmic weights.

Let  $f, g: (0, \infty) \times (0, \infty) \rightarrow \mathbf{R}_+$  be the functions

$$f(r,w) = \begin{cases} \frac{w}{r}, & \text{if } 0 < w \le 1, \\ \frac{w}{r} - w - 1, & \text{if } w \ge 1, \end{cases}$$
$$g(r,w) = \begin{cases} 2\left(\frac{w}{r} - 1\right), & \text{if } 0 < r < w < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

Put  $M_n(S) = \#\{i \in \mathbb{N}: 2^{-(n+1)/r} ||S|| < s_i(S) \le 2^{-n/r} ||S||\}$  when  $n \in \mathbb{N}$  and  $S \in L_{r,w}^{(e)}(l^2)$ , and set  $f_n = f_n(S,T) = \sum_{k+m \le n} M_k(S) M_m(T)$  (with  $f_0 = 0$ ) for  $S, T \in L_{r,w}^{(e)}(l^2)$ . Thus  $f_n$  also depends on r.

**Proposition 3.1.** (a) Let  $0 < r < \infty$  and  $0 < w \le \infty$ . There are  $c_{r,w} > 0$  such that for all Banach spaces  $E_i$ ,  $F_i$ , (i=1,2), all tensor norms  $\alpha$  and all operators  $S \in L_{r,w}^{(a)}(E_1,F_1)$ ,  $T \in L_{r,w}^{(a)}(E_2,F_2)$  one has

(3.1) 
$$\left(\sum_{n=1}^{\infty} \frac{n^{w/r-1} a_n(S\widehat{\otimes}_{\alpha}T)^w}{(\log(n+1))^{f(r,w)}}\right)^{1/w} \le c_{r,w} \sigma_{r,w}^{(a)}(S) \sigma_{r,w}^{(a)}(T)$$

for  $0 < w < \infty$  and

$$\sup_{n \in \mathbb{N}} \frac{n^{1/r}}{(\log(n+1))^{1+1/r}} a_n(S\widehat{\otimes}_{\alpha}T) \le c_{r,\infty}\sigma_{r,\infty}^{(a)}(S)\sigma_{r,\infty}^{(a)}(T)$$

(b) If 0 < r,  $w < \infty$  then there are  $d_{r,w} > 0$  such that for all tensor norms  $\alpha$  on  $l^2 \otimes l^2$  and all  $S, T \in L_{r,w}^{(a)}(l^2)$ ,

(3.2) 
$$\left(\sum_{n=1}^{\infty} \frac{1}{n^{g(r,w)}} \sum_{j=f_n+1}^{f_{n+1}} j^{w/r-1} a_j (S\widehat{\otimes}_{\alpha} T)^w\right)^{1/w} \le d_{r,w} \sigma_{r,w}^{(a)}(S) \sigma_{r,w}^{(a)}(T).$$

*Proof.* The statements in (a) and (b) are straight-forward computational extensions to arbitrary values  $0 < r, w < \infty$  of [K1, Propositions 1 and 3], which is referred to for the arguments. We indicate the proof in the case  $w = \infty$  not considered by König.

The numerical constants  $c_0, c_1, c_2, ...$  depend only on r in the following estimates. Suppose that  $S \in L_{r,\infty}^{(a)}(E_1, F_1)$ . There is according to [P3, 2.3.8] a norm convergent expansion  $S = \sum_{k=0}^{\infty} S_k$  in  $L(E_1, F_1)$  satisfying  $rk(S_k) \leq 2^k$  and

$$\sup_{k\in\mathbf{N}} 2^{k/r} \|S_k\| \leq c_0 \sigma_{r,\infty}^{(a)}(S).$$

Decompose  $T \in L_{r,\infty}^{(a)}(E_2, F_2)$  similarly in  $L(E_2, F_2)$  as  $T = \sum_{k=0}^{\infty} T_k$ . Thus

$$S\widehat{\otimes}_{\alpha}T = \sum_{n=0}^{\infty} \sum_{k+l=n} S_k\widehat{\otimes}_{\alpha}T_l$$

with convergence in the operator norm. Set  $h(n)=n2^n$  for  $n \in \mathbb{N}$ . Observe that

$$rk\left(\sum_{n=0}^{m-1}\sum_{k+l=n}S_k\widehat{\otimes}_{\alpha}T_l\right) \le \sum_{n=0}^{m-1}(n+1)2^n < m2^m = h(m)$$

for  $m \in \mathbb{N}$ . The properties of the decompositions lead to

$$\begin{aligned} a_{h(m)}(S\widehat{\otimes}_{\alpha}T) &\leq \left\|\sum_{n=m}^{\infty}\sum_{k+l=n}S_{k}\widehat{\otimes}_{\alpha}T_{l}\right\| \leq \sum_{n=m}^{\infty}\sum_{k+l=n}\|S_{k}\| \|T_{l}\| \\ &\leq c_{0}^{2}\sigma_{r,\infty}^{(a)}(S)\sigma_{r,\infty}^{(a)}(T)\sum_{n=m}^{\infty}(n+1)(2^{-1/r})^{n}. \end{aligned}$$

An elementary calculation shows for  $x=2^{-1/r}$  that

$$\sum_{n=m}^{\infty} (n+1)x^n = \frac{x^{m-1}}{(1-x)^2} (m(1-x-(1-x)^2)+1).$$

Consequently monotonicity together with the previous estimates entail that

$$\begin{split} \sup_{n \in \mathbf{N}} \frac{n^{1/r}}{(\log(n+1))^{1+1/r}} a_n(S\widehat{\otimes}_{\alpha} T) \\ &= \sup_{m \in \mathbf{N}} \sup_{h(m) \le k \le h(m+1)-1} \frac{k^{1/r}}{(\log(k+1))^{1+1/r}} a_k(S\widehat{\otimes}_{\alpha} T) \\ &\le \sup_{m \in \mathbf{N}} \frac{(h(m+1))^{1/r}}{(\log(h(m)+1))^{1+1/r}} a_{h(m)}(S\widehat{\otimes}_{\alpha} T) \\ &\le c_1 \sigma_{r,\infty}^{(a)}(S) \sigma_{r,\infty}^{(a)}(T) \sup_{m \in \mathbf{N}} \frac{(h(m+1))^{1/r}}{(\log(h(m)+1))^{1+1/r}} m(2^{-1/r})^{m-1} \\ &\le c_2 \sigma_{r,\infty}^{(a)}(S) \sigma_{r,\infty}^{(a)}(T). \end{split}$$

This establishes claim (a) for  $w = \infty$ .

Remarks 3.2. (a)  $L_{r,w}^{(e)}$  is stable on  $l^2 \widehat{\otimes}_{\alpha} l^2$  for all tensor norms  $\alpha$  whenever  $0 < w \le r \le \infty$  in view of (3.2). It is also evident that one cannot achieve better than the result for  $l^2 \widehat{\otimes}_{hs} l^2$  in the cases 0 < r < w. In fact,  $|\lambda_n(S)| \le 2e_{n+1}(S)$  for all  $S \in L(E)$ , E a (complex) Banach space, and for all  $n \in \mathbb{N}$  by the Carl-Triebel inequality [CS, 4.2.1]. Here  $(\lambda_n(S))$  is the sequence of eigenvalues of S ordered in decreasing magnitude and counting multiplicities. Thus one obtains at least the behaviour of  $s \otimes t$  since it is contained in the sequence of eigenvalues of  $D_s \widehat{\otimes}_{\alpha} D_t$ . Clearly a similar statement also holds for tensor norms on spaces with unconditional bases.

(b) The weighted inequalities (3.1) and (3.2) contain no general information on the change under tensoring of the logarithmic parameter w in the Lorentz scale  $l_{r,w}$ when  $0 < w < \infty$ . Indeed, let 0 < r,  $t < \infty$  and consider the quasi-normed weighted Lorentz sequence spaces

$$l_{r,t}(\omega) = \left\{ x = (x_n) \in l^{\infty} : \|x\| = \left( \sum_{n=1}^{\infty} \omega_n n^{t/r-1} (x_n^*)^t \right)^{1/t} < \infty \right\}.$$

Our weights  $\omega = (\omega_n(r,t))$  are  $\omega_n = 1/(\log(n+1))^{\gamma}$  with  $\gamma > 0$ . Then the identity mapping from  $l_{r,t}(\omega)$  to  $l_{r,\infty}$  fails to be bounded (compare the quasi-norms of the sequence  $(z^{(j)}), j \in \mathbf{N}$ , where  $z_k^{(j)} = 1$  if  $1 \le k \le 2^{j+1}$  and 0 elsewhere).

The almost stability of the approximation number ideals is relevant under special geometric assumptions. Recall that the *n*-th Gelfand number of  $S \in L(E, F)$  is

$$c_n(S) = \inf\{ \|SJ_M\| : M \subset E, \operatorname{codim} M < n \}, \quad n \in \mathbb{N},$$

and that the corresponding ideal components  $L_{r,w}^{(c)}(E,F)$  consist of the operators S with  $(c_n(S)) \in l_{r,w}$ . The Banach space E is said to be of cotype q for  $2 \le q < \infty$  if there is c > 0 with  $(\sum_{j=1}^n ||x_j||^q)^{1/q} \le c(\mathbf{E} ||\sum_{j=1}^n r_j(t)x_j||^2 dt)^{1/2}$  for all  $n \in \mathbf{N}$  and all  $x_1, ..., x_n$  in E. Here  $(r_j)$  is the sequence of Rademacher functions.

**Theorem 3.3.** Assume that  $E_i$  and  $F_i$  (i=1,2) are Banach spaces such that  $E_i$  is of type 2,  $F_i$  is of cotype 2 and that  $F_i$  does not contain  $l_1^n$ 's uniformly. Let r and w satisfy  $0 < r < \infty$ ,  $0 < w \le \infty$  as well as  $1/w \ge 1/r+1$ . If  $S_i \in L_{r,w}^{(e)}(E_i, F_i)$  (i=1,2) then

$$S_1\widehat{\otimes}_{\alpha}S_2 \in L_{r,w}^{(e)}(E_1\widehat{\otimes}_{\alpha}E_2, F_1\widehat{\otimes}_{\alpha}F_2)$$

for any tensor norm  $\alpha$ . Moreover, there are constants  $c_{r,w} > 0$  with

$$\sigma_{r,w}^{(e)}(S_1\widehat{\otimes}_{\alpha}S_2) \leq c_{r,w}\sigma_{r,w}^{(e)}(S_1)\sigma_{r,w}^{(e)}(S_2)$$

for all  $S_i \in L_{r,w}^{(e)}(E_i, F_i)$ .

*Proof.* It is a consequence of [C2, Theorem 5] that

$$\left(\prod_{j\leq n}c_j(S)\right)^{1/n}\leq c(E_i,F_i)e_n(S),\quad n\in {\bf N},$$

for some constants  $c(E_i, F_i) > 0$  and for all  $S \in L(E_i, F_i)$  (i=1, 2), since  $E_i$  and  $F'_i$  are of type 2. The fact that  $F'_i$  is of type 2 for i=1, 2 follows from duality results, because  $F_i$  does not contain  $l_1^n$ 's uniformly (see [TJ3, 12.8]). Thus  $L_{r,w}^{(e)}(E_i, F_i) \subset L_{r,w}^{(c)}(E_i, F_i)$ for all r and w in view of [P3, 2.1.8]. On the other hand,  $L_{r,w}^{(c)}(E, F) \subset L_{r,w}^{(e)}(E, F)$ for arbitrary Banach spaces E and F by [CS, 3.1]. Thus  $L_{r,w}^{(e)}(E_i, F_i) = L_{r,w}^{(c)}(E_i, F_i)$ (i=1,2) with comparable quasi-norms.

Recall next that the Gelfand and the approximation numbers of  $S \in L(E_i, F_i)$ are comparable under these assumptions on  $E_i$  and  $F_i$ . In fact,

$$c_n(S) \le a_n(S) \le c c_n(S)$$

for some constant c and for all  $n \in \mathbb{N}$  by Maurey's extension theorem, see [GKS, 1.4]. This entails in particular that here  $L_{r,w}^{(e)}(E_i, F_i) = L_{r,w}^{(a)}(E_i, F_i)$  (i=1,2) with comparable quasi-norms for all r and w.

The duality of type and cotype yields further that  $E'_i$  (i=1,2) is of cotype 2 [TJ3, 12.8]. Suppose that  $S_i \in L^{(e)}_{r,w}(E_i, F_i)$  (i=1,2). In this case

$$S_1 \widehat{\otimes}_{\alpha} S_2 \in L_{r,w}^{(a)}(E_1 \widehat{\otimes}_{\alpha} E_2, F_1 \widehat{\otimes}_{\alpha} F_2)$$

for all tensor norms  $\alpha$  whenever r and w satisfy  $1/w \ge 1/r+1$  on the strength of [K1, Theorem 1]. Moreover, there is  $d_{r,w} > 0$  with

$$\sigma_{r,w}^{(a)}(S_1\widehat{\otimes}_{\alpha}S_2) \leq d_{r,w}\sigma_{r,w}^{(a)}(S_1)\sigma_{r,w}^{(a)}(S_2)$$

for all  $S_1$  and  $S_2$ . This entails the claim since  $L_{r,w}^{(a)} \subset L_{r,w}^{(e)}$  in general, and  $\sigma_{r,w}^{(e)}(S) \leq b_{r,w}\sigma_{r,w}^{(a)}(S)$  for some  $b_{r,w}>0$  and for all  $S \in L_{r,w}^{(a)}$  [CS, 3.1].

A standard procedure associated with essentially finite-dimensional properties is to bound parameters by comparing suitable quantities. Volume estimates are related to entropy numbers and they are used to find instability in the Lorentz scale in some cases (cf. [K1, Lemma 1]). A systematic application of this idea requires precise bounds on the volumes of the unit balls of finite-dimensional tensor products. We commence by phrasing a principle of this kind.

4-935212 Arkiv för matematik

Recall that the Schauder basis  $(e_n)$  of the Banach space E is 1-symmetric if

$$\left\|\sum_{n=1}^{\infty}\varepsilon_n a_{\pi(n)}e_n\right\| = \left\|\sum_{n=1}^{\infty}a_n e_n\right\|$$

for all signs  $\varepsilon_n = \pm 1$ , all permutations  $\pi$  of **N** and all  $\sum_{n=1}^{\infty} a_n e_n \in E$ . Volumes vol(*B*) will always be taken with respect to *n*-dimensional Lebesgue product measure when *B* is a bounded subset of an *n*-dimensional (real) normed space. The notation  $a_n \approx b_n$  for positive sequences means that  $(a_n)$  and  $(b_n)$  are uniformly comparable, that is,  $c_0 b_n \leq a_n \leq c_1 b_n$  for all  $n \in \mathbf{N}$  with constants  $c_0, c_1 > 0$ .

**Proposition 3.4.** Let  $\alpha$  be any tensor norm. Suppose that  $(e_n)$  and  $(f_n)$  are 1-symmetric bases of some Banach spaces and put  $E_n = [e_1, ..., e_n]$  and  $F_n = [f_1, ..., f_n]$ . Assume moreover that there is  $\beta \in [-1, 1]$  satisfying

$$(\operatorname{vol}(B_{E_n}))^{1/n} \approx n^{\beta} (\operatorname{vol}(B_{F_n}))^{1/n}$$

and that both  $E_n$  embed into E and  $F_n$  embed into F uniformly complementedly. Then the condition

$$S\widehat{\otimes}_{\alpha}T \in L_{t,u}^{(e)}(E\widehat{\otimes}_{\alpha}E, F\widehat{\otimes}_{\alpha}F)$$

for all  $S, T \in L_{r,w}^{(e)}(E, F)$ , where  $1/r > \max\{0, -\beta\}$ , implies that there is a constant c > 0 satisfying

(3.3) 
$$n^{2/t} \left( \frac{\operatorname{vol}(B_{E_n \widehat{\otimes}_{\alpha} E_n})}{\operatorname{vol}(B_{F_n \widehat{\otimes}_{\alpha} F_n})} \right)^{1/n^2} \le c n^{2/r + 2\beta}$$

for all  $n \in \mathbf{N}$ .

Proof. Let  $P_n: E \to E_n$  be quotient maps and let  $J_n: E_n \to E$  be embeddings such that  $P_n J_n = \operatorname{id}_{E_n}$ ,  $\sup_n ||P_n|| < \infty$  and  $\sup_n ||J_n|| < \infty$ . Let  $Q_n: F \to F_n$  and  $K_n: F_n \to F$  be operators similarly related to the uniformly complemented copies of  $F_n$  in F. Consider  $S_n = K_n I_n P_n \in L(E, F)$ ,  $n \in \mathbb{N}$ , where  $I_n: E_n \to F_n$  is the natural identity  $\sum_{i=1}^n a_i e_i \to \sum_{i=1}^n a_i f_i$ .

Note first that the condition

$$S\widehat{\otimes}_{\alpha}T \in L^{(e)}_{t,u}(E\widehat{\otimes}_{\alpha}E,F\widehat{\otimes}_{\alpha}F) \quad \text{ for all } S,T \in L^{(e)}_{r,w}(E,F)$$

implies the existence of c > 0 such that

(3.4) 
$$\sigma_{t,u}^{(e)}(S\widehat{\otimes}_{\alpha}T) \leq c\sigma_{r,w}^{(e)}(S)\sigma_{r,w}^{(e)}(T)$$

for all S, T. In fact, by passing to equivalent *p*-norms and by employing a similar completeness argument to that of [P1, 6.1.6] it is verified that the bilinear operator  $(S,T) \rightarrow S \widehat{\otimes}_{\alpha} T$  is separately continuous from  $L_{r,w}^{(e)} \times L_{r,w}^{(e)}$  to  $L_{t,u}^{(e)}$ . This in turn entails the boundedness of the operator by a general version of the Banach–Steinhaus principle, see [R, 2.17].

The inequality (3.4) is tested by the sequence  $(S_n)$ . Observe that  $I_n = Q_n S_n J_n$  for  $n \in \mathbb{N}$ . The uniform bounds on the norms of  $P_n$ ,  $J_n$ ,  $Q_n$  and  $K_n$  yield, after tensoring the factorizations of  $S_n$  and  $I_n$ , that there are constants c', c'' > 0 with

$$(3.5) \qquad \sigma_{t,u}^{(e)}(I_n\widehat{\otimes}_{\alpha}I_n) \le c'\sigma_{t,u}^{(e)}(S_n\widehat{\otimes}_{\alpha}S_n) \le cc'(\sigma_{r,w}^{(e)}(S_n))^2 \le c''(\sigma_{r,w}^{(e)}(I_n))^2$$

for all  $n \in \mathbb{N}$ .

Suppose that

$$(I_n\widehat{\otimes}_{\alpha}I_n)B_{E_n\widehat{\otimes}_{\alpha}E_n} \subset \{a_1,...,a_{2^r}\} + \lambda B_{F_n\widehat{\otimes}_{\alpha}F_r}$$

for  $r \in \mathbf{N}$ . Comparing  $n^2$ -dimensional volumes we get

$$\operatorname{vol}(B_{E_n\widehat{\otimes}_{\alpha}E_n}) \leq 2^r \lambda^{n^2} \operatorname{vol}(B_{F_n\widehat{\otimes}_{\alpha}F_n})$$

and thus

$$\lambda \ge 2^{-r/n^2} \left( \frac{\operatorname{vol}(B_{E_n \widehat{\otimes}_{\alpha} E_n})}{\operatorname{vol}(B_{F_n \widehat{\otimes}_{\alpha} F_n})} \right)^{1/n^2}.$$

This lower bound for  $e_r(I_n \widehat{\otimes}_{\alpha} I_n)$  leads to

$$\sigma_{t,u}^{(e)}(I_n\widehat{\otimes}_{\alpha}I_n) \ge \left(\sum_{j\le n^2} j^{u/t-1}e_j(I_n\widehat{\otimes}_{\alpha}I_n)^u\right)^{1/u}$$
$$\ge c_0 \left(\frac{\operatorname{vol}(B_{E_n\widehat{\otimes}_{\alpha}E_n})}{\operatorname{vol}(B_{F_n\widehat{\otimes}_{\alpha}F_n})}\right)^{1/n^2} \left(\sum_{j\le n^2} j^{u/t-1}\right)^{1/u}$$

It is easily checked that  $(\sum_{j \leq n^2} j^{u/t-1})^{1/u} \approx n^{2/t}$ . On the other hand,  $\sigma_{r,w}^{(e)}(I_n) \leq c_1 n^{1/r+\beta}$  whenever r satisfies  $1/r > \max\{0, -\beta\}$  in view of [S2, Theorem 7]. The desired inequality (3.3) thus follows by combining (3.5) with the preceding estimates.

We apply (3.3) with  $E_n = l_p^n$  and  $F_n = l_q^n$ ,  $1 \le p < q \le \infty$ . It is known that  $(\operatorname{vol}(B_{l_p^n}))^{1/n} \approx n^{-1/p}$  for all  $1 \le p \le \infty$ , cf. [S1, p. 395], and thus  $\beta = 1/q - 1/p$  satisfies the volume condition of Proposition 3.4. Let

$$h(p) = \begin{cases} -\frac{1}{2} + \frac{2}{p}, & \text{if } 1 \le p \le 2, \\ \frac{1}{p}, & \text{if } 2 \le p \le \infty. \end{cases}$$

**Corollary 3.5.** Assume that E, F are Banach spaces containing uniformly complemented copies of  $l_p^n$ , respectively of  $l_q^n$ , with  $1 \le p < q \le \infty$ . Suppose that

 $S\widehat{\otimes}_{\alpha}T \in L_{t,u}^{(e)}(E\widehat{\otimes}_{\alpha}E, F\widehat{\otimes}_{\alpha}F)$ 

for all  $S, T \in L_{r,w}^{(e)}(E, F)$  where  $0 < r < (1/p+1/q)^{-1}$ . Then t > r in the following cases:

(i) if  $\alpha = \pi$ , then  $1/t \le 1/r + \frac{1}{2}(1/q - 1/p)$  for  $1 \le p < q \le 2$ , while  $1/t \le 1/r + \frac{1}{2}(\frac{1}{2} - 1/p)$  for  $1 \le p < 2 \le q \le \infty$ ;

(ii) if  $\alpha = \varepsilon$ , then  $1/t \le 1/r + \frac{1}{2}(1/q - \frac{1}{2})$  for  $1 \le p \le 2 < q \le \infty$ , while  $1/t \le 1/r + \frac{1}{2}(1/q - 1/p)$  for  $2 \le p < q \le \infty$ .

*Proof.* Schütt [S1, 3.2] showed that  $(\operatorname{vol}(B_{l_p^n \widehat{\otimes}_{\pi} l_p^n}))^{1/n^2} \approx n^{h(p')-1}$  and that  $(\operatorname{vol}(B_{l_p^n \widehat{\otimes}_{\varepsilon} l_p^n}))^{1/n^2} \approx n^{-h(p')}$  for all p satisfying  $1 \leq p \leq \infty$ . For instance, if  $1 \leq p < q \leq 2$  and if  $\alpha = \pi$ , then by (3.3) there is c > 0 with

$$n^{2/t+1/q-1/p} < cn^{2/r+2(1/q-1/p)}$$

for all  $n \in \mathbb{N}$ . Thus  $1/t \le 1/r + \frac{1}{2}(1/q - 1/p)$  where 1/q - 1/p < 0. The other cases are similar.

We finally use the argument of Proposition 3.4 in order to derive some bounds related to Proposition 2.1.

Example 3.6. Suppose that  $2 , <math>0 < t < \infty$ , 0 < r < 4p/(p-2) and that  $0 < u \le \infty$ . If

$$S_{c_p}\widehat{\otimes}_{\rm hs}T \in L_{t,u}^{(e)}(l^2\widehat{\otimes}_{c_p}l^2, l^2\widehat{\otimes}_{\rm hs}l^2)$$

for all  $S, T \in L_r^{(e)}(l^2)$ , then  $1/t \le 1/r + \frac{1}{2}(\frac{1}{2} - 1/p)$  and thus t > r.

*Proof.* Observe first that if 0 < r < 4p/(p-2), then  $S \otimes T$  extends to a bounded linear operator from  $c_p(l^2)$  into  $c_2(l^2)$  for all  $S, T \in L_r^{(e)}(l^2)$  in view of the remark prior to Proposition 2.1 and [CS, 1.3.2]. Thus an argument similar to the one in the proof of Proposition 3.4 provides a constant c > 0 with

$$\sigma_{t,u}^{(e)}(S_{c_p}\widehat{\otimes}_{hs}T) \le c\sigma_r^{(e)}(S)\sigma_r^{(e)}(T)$$

whenever  $S, T \in L_r^{(e)}(l^2)$ . Let  $I_n = \operatorname{id}_{l_2^n}$  be the identity map. One obtains that there is  $c_0 > 0$  with

$$n^{2/t} \left( \frac{\operatorname{vol}(B_{c_p(l_2^n)})}{\operatorname{vol}(B_{l_2^{n^2}})} \right)^{1/n^2} \le c_0 n^{2/r}$$

for all  $n \in \mathbf{N}$  since  $\sigma_{r,w}^{(e)}(I_n) \approx n^{1/r}$ . The desired inequality follows from the estimate  $(\operatorname{vol}(B_{c_p(l_2^n)}))^{1/n^2} \approx n^{-1/2-1/p}$  for  $2 \leq p \leq \infty$ , see [S1, p. 399].

In particular, one obtains  $0 < r \le 4p/(3p-2)$  if t=2. Unfortunately we do not know whether the bounds exhibited in Proposition 2.1 are precise.

## References

- [BL] BERGH, J. and LÖFSTRÖM, J., Interpolation Theory, Springer-Verlag, Berlin-Heidelberg, 1976.
- [C1] CARL, B., Entropy numbers of diagonal operators with an application to eigenvalue problems, J. Approx. Theory 32 (1981), 135–150.
- [C2] CARL, B., Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces, Ann. Inst. Fourier (Grenoble) 35 (1985), 79–118.
- [CS] CARL, B. and STEPHANI, I., Entropy, Compactness and the Approximation of Operators, Cambridge Tracts in Math. 98, Cambridge Univ. Press, Cambridge, 1990.
- [Ch] CHEVET, S., Séries de variables aléatoires gaussiennes à valeurs dans  $E \widehat{\otimes}_{\varepsilon} F$ . Applications aux produits d'espaces de Wiener abstraits, in Séminaire Maurey-Schwartz, exp. 19, Ecole Polytechnique, Paris, 1977–78.
- [CMS] CWIKEL, M., MILMAN, M. and SAGHER, Y., Complex interpolation of some quasinormed Banach spaces, J. Funct. Anal. 65 (1986), 339-347.
- [DF] DEFANT, A. and FLORET, K., Aspects of the metric theory of tensor products and operator ideals, *Note Mat.* 8 (1988), 182–281.
- [GK] GOHBERG, I. C. and KREIN, M. G., Theory of Volterra Operators in Hilbert Spaces and its Applications, Monographs in Math. 24, Amer. Math. Soc., Providence, R.I., 1970.
- [GKS] GORDON, Y., KÖNIG, H. and SCHÜTT, C., Geometric and probabilistic estimates for entropy and approximation numbers of operators, J. Approx. Theory 49 (1987), 219-239.
- [K1] KÖNIG, H., On the tensor stability of s-number ideals, Math. Ann. 269 (1984), 77-93.
- [K2] KÖNIG, H., Eigenvalue Distribution of Compact Operators, Operator Theory: Advances and Applications 16, Birkhäuser, Basel, 1986.
- [Kü] KÜHN, TH.,  $\gamma$ -radonifying operators and entropy ideals, Math. Nachr. 107 (1982), 53–58.
- [KP] KWAPIEN, S. and PELCZYNSKI, A., The main triangle projection in matrix spaces and its applications, *Studia Math.* **34** (1970), 43–68.
- [P1] PIETSCH, A., Operator Ideals, North-Holland, Amsterdam, 1980.
- [P2] PIETSCH, A., Tensor products of sequences, functions and operators, Arch. Math. (Basel) 38 (1982), 335-344.
- [P3] PIETSCH, A., Eigenvalues and s-numbers, Cambridge Univ. Press, Cambridge, 1987.
- [Pi1] PISIER, G., Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conference Series in Math. 60, Amer. Math. Soc., Providence, R.I., 1986.
- [Pi2] PISIER, G., The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Math. 94, Cambridge Univ. Press, Cambridge, 1989.
- [R] RUDIN, W., Functional Analysis, McGraw-Hill, New York, 1974.
- [S1] SCHÜTT, C., On the volume of unit balls in Banach spaces, Compositio Math. 47 (1982), 393-407.

| 274 | David E. Edmunds and Hans-Olav Tylli:           |
|-----|-------------------------------------------------|
|     | Entropy numbers of tensor products of operators |

- [S2] SCHÜTT, C., Entropy numbers of diagonal operators between symmetric Banach spaces, J. Approx. Theory 40 (1984), 121–128.
- [TJ1] TOMCZAK-JAEGERMANN, N., The moduli of smoothness and convexity and the Rademacher averages of trace classes  $S_p$  ( $1 \le p < \infty$ ), Studia Math. 50 (1974), 163–182.
- [TJ2] TOMCZAK-JAEGERMANN, N., Dualité des nombres d'entropie pour des operateurs à valeurs dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 299–301.
- [TJ3] TOMCZAK-JAEGERMANN, N., Banach-Mazur Distances and Finite-dimensional Operator Ideals, Pitman Monographs in Math. 38, Longman, 1989.

Received January 8, 1992

David E. Edmunds Mathematics Division University of Sussex Falmer, Brighton BN1 9QH United Kingdom

Hans-Olav Tylli Department of Mathematics University of Helsinki P. O. Box 4 (Hallituskatu 15) FIN-00014 University of Helsinki Finland