Pekka Koskela and Olli Martio

1. Introduction

Removable singularities for Hölder continuous harmonic functions are completely known, see $[C_1]$, $[C_2, p. 91]$ and [KW].

Theorem A. Let Ω be an open set in \mathbb{R}^n and let E be a relatively closed subset of Ω . Then E is removable for harmonic functions of $\Omega \setminus E$ which are locally Hölder continuous in Ω with exponent $0 < \alpha < 1$ if and only if the $(n-2+\alpha)$ -dimensional Hausdorff measure of E is zero.

We recall that a function $u: \Omega \to \mathbf{R}$ is said to be locally Hölder continuous in Ω with exponent $0 < \alpha \le 1$ if for each compact subset K of Ω there is $M < \infty$ such that

$$(1.1) \qquad \qquad |u(x)-u(y)| \le M|x-y|^{\alpha}$$

for all x and y in K.

In this paper we consider an analogous question for solutions of second order degenerate elliptic partial differential equations. For linear equations we refer the reader to [HP]. We call a function $u \ A$ -harmonic if u is a continuous weak solution of the equation

(1.2)
$$\operatorname{div} \mathcal{A}(x, \nabla u(x)) = 0$$

with $|\mathcal{A}(x,\xi)| \approx |\xi|^{p-1}$, p>1. For the exact requirements on the mapping \mathcal{A} we refer the reader to Section 3. Here we point out that the prototype of equation (1.2) is the *p*-harmonic equation

(1.3)
$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) = 0.$$

Since quasiconformal mappings do not preserve any Hausdorff dimension s in the range 0 < s < n and since for p=n equations (1.2) have a quasiconformal invariance property, see [R, p. 146], [HKM, Ch. 14], removability theorems for \mathcal{A} -harmonic functions seem to be problematic in terms of the Hausdorff measure. However, using a concept somewhat more restrictive than the Hausdorff dimension and closely related to the Minkowski dimension we establish a result similar to Theorem A for \mathcal{A} -harmonic functions. For the use of the Minkowski content in the study of removable singularities for solutions of linear equations with restricted growth see [B] and [L]. It is remarkable that the removability depends only on α and p and not on the structure of a particular mapping \mathcal{A} .

By an exhaustion (K_i) of $E \subset \mathbb{R}^n$ we mean an increasing sequence of compact sets K_i such that $\bigcup K_i = E$.

Theorem B. Let $\Omega \subset \mathbf{R}^n$ be open and let E be a relatively closed subset of Ω . If for some exhaustion (K_i) of E

(1.4)
$$\begin{cases} (1.4.1) & \int_{\{0 < d(x, K_i) < 1\}} d(x, K_i)^{p(\alpha - 1)} dm(x) < \infty, \\ (1.4.2) & \liminf_{r \to 0} \frac{m(\{0 < d(x, K_i) < r\})}{r^b} = 0, \end{cases}$$

 $b=p-\alpha(p-1)$, then E is removable for A-harmonic functions of $\Omega \setminus E$ which are locally Hölder continuous in Ω with exponent $0 < \alpha \le 1$.

For certain regular sets K_i , for example for self-similar sets, condition (1.4) for p=2 is equivalent to $H^{n-2+\alpha}(K_i)=0$, and hence for these sets the sufficiency part of Theorem A follows from Theorem B. In particular, (1.4) holds if

(1.5)
$$\int_{\{0 < d(x,K_i) < 1\}} d(x,K_i)^{-b} dm(x) < \infty, \quad b = p - \alpha(p-1),$$

which is true, for example, if the Minkowski dimension $\dim_M(K_i)$ of K_i is strictly less than $n-p+\alpha(p-1)$, see Section 2. Theorem B is a consequence of a stronger result, where the Hölder continuity is studied in the set $\Omega \setminus E$ only. We say that a function $u: \Omega \to \mathbf{R}$ belongs to $\operatorname{locLip}_{\alpha}(\Omega), 0 < \alpha \leq 1$, if there exists $M < \infty$ such that for each $x \in \Omega$ and each y with $|x-y| \leq d(x, \partial \Omega)/2$ we have

$$(1.6) \qquad \qquad |u(x)-u(y)| \le M|x-y|^{\alpha}.$$

For the properties of the class $\operatorname{locLip}_{\alpha}(\Omega)$ see [GM]. We remark that a function u, locally Hölder continuous with exponent α in Ω , is always in $\operatorname{locLip}_{\alpha}(G)$ for any open set $G \subset \subset \Omega$. Since the \mathcal{A} -harmonicity is a local property, Theorem B is a consequence of the following result, which for $\alpha=1$ can also be deduced from [HK, Corollary 4.5].

Theorem C. Suppose that E satisfies (1.4) for $b=p-\alpha(p-1)$. Then E is removable for A-harmonic functions of $\Omega \setminus E$ in the class locLip_{α}($\Omega \setminus E$).

In fact, Theorem C holds for \mathcal{A} -superharmonic functions. This is Theorem E in Section 3. Note that there is no condition for the smoothness of an \mathcal{A} -superharmonic function $u: \Omega \setminus E \to \mathbf{R}$ on the set E in Theorem E. For removability results of ordinary superharmonic functions we refer the reader to [KW]. Theorem C leads to interesting non-smoothness results for \mathcal{A} -superharmonic functions for certain values of p, see Theorems F and G in Section 4.

We show by an example in Section 4 that Theorem C is essentially sharp. The relations between the Minkowski and the Hausdorff dimension of the set E and condition (1.4) are explained in Section 2.

The limiting case $\alpha=0$ in Theorem B, or in Theorem C, deserves a special attention. This case corresponds to locally bounded \mathcal{A} -harmonic functions and it is well known that for locally bounded functions $u: \Omega \to \mathbf{R}$, which are \mathcal{A} -harmonic in $\Omega \setminus E$, E is removable if and only if E is of p-capacity zero ([HKM, Theorem 7.36]). The next theorem extends this result.

Theorem D. Suppose that u is \mathcal{A} -harmonic in $\Omega \setminus E$ and that u belongs to $BMO(\Omega \setminus E)$. If E satisfies (1.4) with $\alpha = 0$, then u extends to a function \mathcal{A} -harmonic in Ω .

Take notice that for $\alpha = 0$, (1.4.2) follows from (1.4.1). The proof of Theorem D is given in Section 5.

2. Condition (1.4)

In this short section we study condition (1.4).

Let K be a closed set in \mathbb{R}^n . In the well known Whitney decomposition, see [St], $\mathbb{R}^n \setminus K$ is represented as a union of non-overlapping closed cubes Q with edge length l(Q) equal to 2^{-k} , $k \in \mathbb{Z}$, and $d(Q, K) / \operatorname{dia}(Q) \in [1, 4]$. We let N_k be the number of those cubes Q with $l(Q)=2^{-k}$; we write Q_i^k , $i=1, ..., N_k$, for the collection of these cubes.

If $A \subset \mathbb{R}^n$ and r > 0, then we let A(r) denote the open set A + B(r), i.e.

$$A(r) = A + B(r) = \bigcup_{x \in A} B(x, r)$$

is the r-inflation of A.

The next lemma relates (1.4.1) to the Whitney decomposition of $\mathbf{R}^n \setminus K$.

2.1. Lemma. Let $\gamma \leq 0$ and $j \in \mathbb{Z}$. Then

(2.2)
$$\int_{K(c2^{-j})\backslash K} d(x,K)^{\gamma} dm(x) \ge c^{\gamma} \sum_{k=j}^{\infty} N_k 2^{-k(\gamma+n)}$$

where $c = 5\sqrt{n}$ and

(2.3)
$$\int_{K(2^{-j})\setminus K} d(x,K)^{\gamma} dm(x) \leq \sum_{k=j}^{\infty} N_k 2^{-k(\gamma+n)}.$$

Proof. First note that

$$d(Q_i^k, K) \le 4 \operatorname{dia}(Q_i^k) = 4\sqrt{n}2^{-k},$$

and hence the interior of each Q_i^k , $k \ge j$, $i=1,...,N_k$, lies in $K(c2^{-j}) \setminus K$. For each $x \in Q_i^k$ we have

$$d(x,K) \le \operatorname{dia}(Q_i^k) + d(Q_i^k,K) \le c2^{-k},$$

and thus we obtain

$$\int_{K(c2^{-j})\backslash K} d(x,K)^{\gamma} dm(x) \ge \sum_{k=j}^{\infty} \sum_{i=1}^{N_k} \int_{Q_i^k} d(x,K)^{\gamma} dm(x)$$
$$\ge c^{\gamma} \sum_{k=j}^{\infty} N_k 2^{-k(\gamma+n)}.$$

This is inequality (2.2). The proof of (2.3) is completely analogous and left to the reader.

For $A \subset \mathbf{R}^n$ we let $H^s(A)$ denote the *s*-dimensional Hausdorff measure of A; $\dim_H(A)$ denotes the Hausdorff dimension of A. For r > 0 we set

$$M_s(A,r) = \frac{m(A(r))}{r^{n-s}}$$

and call this quantity the s-dimensional Minkowski precontent of A. Next, the Minkowski dimension of A is

$$\dim_M(A) = \inf\{s: \limsup_{r \to 0} M_s(A, r) < \infty\},\$$

and we set

$$\underline{M}_{s}(A) = \liminf_{r \to 0} \frac{m(A(r) \setminus \overline{A})}{r^{n-s}}$$

Note that $\underline{M}_{s}(K_{i})=0$ is the same as (1.4.2) for b=n-s.

Clearly, $\dim_H(A) \leq \dim_M(A)$; the converse holds for certain regular sets, cf [MV, Section 4].

342

2.4. Lemma. Suppose that K is a compact subset of \mathbb{R}^n and that

$$(2.5) \qquad \underline{M}_s(K) = 0.$$

If $s \leq n-1$, then

(2.6)
$$\liminf_{r \to 0} M_s(K, r) = H^s(K) = 0.$$

In particular, for $s \le n-1$, (2.5) implies $H^{n-1}(K) = 0$.

Proof. We first show that for $s \le n-1$, (2.5) implies m(K)=0. For this we may assume that s=n-1. By the Brunn-Minkowski inequality [F, Corollary 3.2.42, p. 278]

 $m(K) \le c(n) [m(K(r) \setminus K)/r]^{n/(n-1)}$

and hence (2.5) implies that m(K)=0.

Thus we obtain for $s \le n-1$ and 0 < r

$$\frac{m(K(r))}{r^{n-s}} = \frac{m(K(r) \setminus K)}{r^{n-s}}$$

Then [MV, Lemma 3.1] implies $\liminf_{r\to 0} H_s(K,r)=0$, where

$$H_s(K,r) = \inf\left\{kr^s: K \subset \bigcup_{i=1}^k B(x_i,r)
ight\}.$$

This clearly yields $H^{s}(K)=0$. The lemma follows.

2.7. Remarks.

(a) For compact sets K, $H^s(K)=0$ does not, in general, imply that $\underline{M}_s(K)=0$. However, if K is sufficiently regular, then $H^s(K)=0$ implies the stronger condition $\limsup_{r\to 0} M_s(K,r)=0$, see [MV, Section 4].

(b) Let $\gamma < 0$ and suppose that

$$\int_{K(1)\setminus K} d(x,K)^{\gamma} dm(x) < \infty.$$

Then $\underline{M}_s(K)=0$, where $s=n+\gamma$. Hence (1.5) yields (1.4). Moreover, (1.4.1) implies that $\underline{M}_s(K_i)=0$, where $s=n-p(1-\alpha)$. This is weaker than (1.4.2). Conversely, one can construct Cantor sets for which (1.4.2) is satisfied but (1.4.1) fails.

(c) If $\dim_M(K) = \lambda \le n-1$, then

$$\int_{K(1)\backslash K} d(x,K)^{\gamma} dm(x) < \infty$$

for $\gamma > \lambda - n$; this follows from [MV, Theorem 3.12] and Lemma 2.1. In particular, if K is a self-similar fractal set with $\dim_H(K) < n-p+p(1-\alpha)$, then condition (1.4) holds. For this result see [MV, Section 4].

3. A-supersolutions and proofs for Theorems B and C

We consider mappings $\mathcal{A}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ which satisfy the following assumptions for some p>1 and $0 < \beta_1 \leq \beta_2$:

(a) the mapping $x \mapsto \mathcal{A}(x,\xi)$ is measurable for all $\xi \in \mathbb{R}^n$ and the mapping $\xi \mapsto \mathcal{A}(x,\xi)$ is continuous for a.e. $x \in \mathbb{R}^n$;

for all $\xi \in \mathbf{R}^n$ and a.e. $x \in \mathbf{R}^n$

- (b) $\mathcal{A}(x,\xi)\cdot\xi\geq\beta_1|\xi|^p;$
- (c) $|\mathcal{A}(x,\xi)| \leq \beta_2 |\xi|^{p-1};$
- (d) $(\mathcal{A}(x,\xi_1) \mathcal{A}(x,\xi_2)) \cdot (\xi_1 \xi_2) > 0$ whenever $\xi_1 \neq \xi_2$; and
- (e) $\mathcal{A}(x,\lambda\xi) = |\lambda|^{p-2} \lambda \mathcal{A}(x,\xi)$ for $\lambda \in \mathbf{R}, \lambda \neq 0$.

The constant p is always associated with the mapping \mathcal{A} as in (b) and (c), and we write $e_{\mathcal{A}} = \beta_2 / \beta_1$.

Let Ω be an open set in \mathbb{R}^n . A function $u \in C(\Omega) \cap W^{1,p}_{loc}(\Omega)$ is called *A*-harmonic if u is a weak solution of (1.2), i.e. if for all $\psi \in C_0^{\infty}(\Omega)$

(3.1)
$$\int_{\Omega} A(x, \nabla u(x)) \cdot \nabla \psi(x) \, dm(x) = 0.$$

It is important to notice that continuity is superfluous in the definition of an \mathcal{A} -harmonic function. More precisely, if a function $u \in W^{1,p}_{\text{loc}}(\Omega)$ satisfies (3.1), then after a change in a set of measure zero u is \mathcal{A} -harmonic in Ω ; see [S] or [HKM].

A lower semicontinuous function $v: \Omega \to \mathbf{R} \cup \{\infty\}$ is \mathcal{A} -superharmonic in Ω if for all domains $D \subset \subset \Omega$ and for all functions $u \in C(\overline{D})$, \mathcal{A} -harmonic in D, the condition $v \geq u$ in ∂D yields $v \geq u$ in D and if $v \neq \infty$ in every component of Ω . If $\mathcal{A}(x,\xi) =$ ξ , i.e. if we consider the ordinary Laplace equation $\Delta u = 0$, then \mathcal{A} -harmonicity and \mathcal{A} -superharmonicity reduces to ordinary harmonicity and superharmonicity, respectively.

For our removability results a solution class between \mathcal{A} -harmonic and \mathcal{A} -superharmonic functions is of importance. A function $v \in W^{1,p}_{loc}(\Omega)$ is an \mathcal{A} -supersolution of (1.2) if

(3.2)
$$\int_{\Omega} A(x, \nabla u(x)) \cdot \nabla \psi(x) \, dm(x) \ge 0$$

for all non-negative $\psi \in C_0^{\infty}(\Omega)$. Then every \mathcal{A} -supersolution is \mathcal{A} -superharmonic, after a change in a set of measure zero if necessary. Conversely, every locally bounded \mathcal{A} -superharmonic function is an \mathcal{A} -supersolution. For these results see [HKM]. In the classical case smooth \mathcal{A} -supersolutions are functions $v \in C^2(\Omega)$ with $\Delta v \leq 0$ in Ω .

The following is a key lemma.

3.3. Lemma. Let Ω be an open set in \mathbb{R}^n and let E be a relatively closed subset of Ω . Suppose that u is an \mathcal{A} -supersolution in $\Omega \setminus E$, and that for some $a \leq n$

(3.4)
$$\int_{Q} |\nabla u|^{p} dm \leq c_{1} \operatorname{dia}(Q)^{a}$$

for each cube Q in a Whitney decomposition of $\Omega \setminus E$. If for some exhaustion (K_i) of E

(3.5)
$$\begin{cases} \int_{K_i(1)\setminus K_i} d(x,K_i)^{a-n} dm(x) < \infty, \\ \underline{M}_s(K_i) = 0, \ s = (a(p-1)+n)/p-1. \end{cases}$$

then u extends to an A-supersolution in Ω .

Proof. Since $a \leq n$, $s \leq n-1$, and it follows from Lemma 2.4 and (3.5) that $H^{n-1}(E)=0$. To prove that u extends to an \mathcal{A} -supersolution in Ω it suffices to show that $u \in W^{1,p}_{\text{loc}}(\Omega)$ and that u satisfies (3.2). Since $H^{n-1}(E)=0$, u is ACL in Ω and in order to show that $u \in W^{1,p}_{\text{loc}}(\Omega)$ it thus suffices to show that for each point $x_0 \in E$ there is r > 0 such that

(3.6)
$$\int_{B(x_0,r)} |\nabla u|^p \, dm < \infty.$$

To this end, fix $x_0 \in E$, and let $r = (1/5\sqrt{n}) \min\{1, d(x_0, \partial\Omega)\}$. Now we use the fact that $K = E \cap \overline{B}(x_0, 4r)$ is a compact subset of E and choose K_i such that $K \subset K_i$. Let W_0 be the collection of those cubes in the Whitney decomposition of $\Omega \setminus E$ which meet $B = B(x_0, r)$. Then each $Q \in W_0$ lies in $K_i(1) \setminus K_i$. Since m(E) = 0, we obtain from (3.4)

$$\begin{split} \int_{B(x_0,r)} |\nabla u|^p \, dm &\leq c_1 \sum_{Q \in W_0} \operatorname{dia}(Q)^a \leq c_2 \sum_{Q \in W_0} d(Q,E)^a \\ &\leq c_3 \sum_{Q \in W_0} \int_Q d(x,E)^{a-n} \, dm(x) \\ &\leq c_3 \int_{K_i(1) \setminus K_i} d(x,K_i)^{a-n} \, dm(x), \end{split}$$

which is finite by assumption (3.5); here $c_3 = c_3(c_1, a, n) < \infty$. This shows that $u \in W^{1,p}_{\text{loc}}(\Omega)$.

Next we consider inequality (3.2); rather sharp estimates are needed for this. The problem is again local and thus it suffices to show that (3.2) holds whenever $\psi \in C_0^{\infty}(B(x_0, r))$ is non-negative, $x_0 \in E$ and r > 0 is sufficiently small. Let r, K_i , and W_0 be as in the previous consideration and write $B = B(x_0, r)$. We let W_j , j=1,2,..., be the set of those cubes $Q \in W_0$ with $2^{-j-1}(5\sqrt{n})^{-1} \leq l(Q) \leq 2^{-j}$, and we denote their union by $\bigcup W_j$.

Fix a non-negative function $\psi \in C_0^{\infty}(B)$. For $j \ge 1$ consider the Lipschitz functions

$$\phi_j = \min\{1, \max\{(2^{-j} - d(x, K_i))/2^{-j-1}, 0\}\}$$

Since $\phi_j(x)=1$ for $x \in K_i$, the non-negative function $\psi(1-\phi_j)$ is in the Sobolev space $W_0^{1,p}(B \setminus E)$, cf. [HKM, Ch. 1], and thus it can be used in (3.2) as a non-negative $C_0^{\infty}(B \setminus E)$ -function. Now

$$\begin{split} \int_{B} A(x, \nabla u(x)) \cdot \nabla \psi(x) \, dm(x) &= \int_{B \setminus E} A(x, \nabla u(x)) \cdot \nabla (\psi(1 - \phi_j)) \, dm \\ &+ \int_{B} A(x, \nabla u(x)) \cdot \nabla (\psi \phi_j) \, dm \\ &= I' + I'', \end{split}$$

and since u is an \mathcal{A} -supersolution in $B \setminus E$, the integral I' is non-negative. It remains to show that $I'' \to 0$ as $l \to \infty$ for some sequence (j_l) of positive integers.

To this end, write

$$I'' = \int_{B} \psi A(x, \nabla u(x)) \cdot \nabla \phi_j \, dm + \int_{B} \phi_j A(x, \nabla u(x)) \cdot \nabla \psi \, dm$$

= $I_1 + I_2$.

We estimate the integrals I_1 and I_2 separately. First, $|\psi| \leq c_2$ for some constant c_2 , and hence by the Hölder inequality and (3.4)

$$\begin{aligned} |I_1| &\leq c_2 \sum_{Q \in W_j} \int_Q |A(x, \nabla u(x))| |\nabla \phi_j| \, dm \\ &\leq c_2 \beta_2 \sum_{Q \in W_j} \left(\int_Q |\nabla u|^p \, dm \right)^{(p-1)/p} \left(\int_Q |\nabla \phi_j|^p \, dm \right)^{1/p} \\ &\leq c_3 \sum_{Q \in W_j} \operatorname{dia}(Q)^{a(p-1)/p} 2^j \operatorname{dia}(Q)^{n/p} \\ &\leq c_3 2^j \sum_{Q \in W_j} \operatorname{dia}(Q)^{[a(p-1)+n]/p}; \end{aligned}$$

here $c_3 = c_3(c_1, c_2, \beta, p)$ and we have also used the fact that $|\nabla \phi_j| \leq 2^j$. Since for $x \in Q \in W_j$, d(x, E) is bounded from above and from below by a multiple of dia(Q)

and since $2^{-j-1}/5 \leq \operatorname{dia}(Q) \leq \sqrt{n}2^{-j}$ for each $Q \in W_j$, we obtain

$$\begin{split} |I_1| &\leq c_3 \sqrt{n} \sum_{Q \in W_j} \operatorname{dia}(Q)^{-1 + [a(p-1)+n]/p} \\ &\leq c_4 m \Big(\bigcup W_j \Big) 2^{-j([a(p-1)+n]/p - 1 - n)} \leq c_5 M_s(K_i, 5\sqrt{n}2^{-j}), \end{split}$$

with s=(a(p-1)+n)/p-1 and $c_4=c_4(c_1,c_2,\beta_2,p,a,n)$. By Lemma 2.4 and (3.5) there is a sequence (r_l) with

$$\lim_{l\to\infty} r_l = \liminf_{l\to\infty} M_s(K_i, r_l) = 0.$$

Select for each l a positive integer j_l with $5\sqrt{n}2^{-j_l} < r_l \le 5\sqrt{n}2^{-j_l+1}$. Then we have $M_s(K_i, 5\sqrt{n}2^{-j_l}) \le c_6 M_s(K_i, r_l)$, and it follows that $I_1 \to 0$ as $l \to \infty$.

For the second integral I_2 we again use the Hölder inequality to obtain

$$|I_2| \le c \left(\int_{\bigcup W_j} |\nabla u|^p \, dm \right)^{(p-1)/p} m \left(\bigcup W_j \right)^{1/p}$$
$$\le c \left(\int_B |\nabla u|^p \, dm \right)^{(p-1)/p} m \left(\bigcup W_j \right)^{1/p},$$

where $c=c(p,\beta,\sup|\psi|)$. Since $u \in W_{loc}^{1,p}(\Omega)$ and since $m(\bigcup W_j) \to 0$ as $j \to \infty$, $I_2 \to 0$ as $j \to \infty$. Thus $I'' \to 0$, and the proof is complete.

Theorem E. Let E be a relatively closed subset of an open set $\Omega \subset \mathbb{R}^n$. Suppose that $u \in \operatorname{locLip}_{\alpha}(\Omega \setminus E)$, $0 < \alpha \leq 1$, is A-superharmonic in $\Omega \setminus E$. If for some exhaustion (K_i) of E

(3.7)
$$\begin{cases} \int_{K_i(1)\setminus K_i} d(x,K_i)^{p(\alpha-1)} dm(x) < \infty, \\ \underline{M}_s(K_i) = 0, \ s = n - p + \alpha(p-1), \end{cases}$$

then u extends to an A-superharmonic function of Ω .

3.8. Remarks.

(1) It follows from the proof that E is removable for \mathcal{A} -supersolutions $u \in \operatorname{locLip}_{\alpha}(\Omega \setminus E)$ under condition (3.7). In fact, the extended function will be an \mathcal{A} -supersolution in Ω .

(2) The proof of Lemma 3.3 and the proof below show that the condition (3.7) can be replaced by a weaker set of conditions: $H^{n-1}(E)=0$ and E has an exhaustion K_i such that (1.4.1) holds and

$$\liminf_{r \to 0} \frac{m(\{r/2 < d(x, K_i) < r\})}{r^b} = 0$$

for $b=p-\alpha(p-1)$. Theorems B and C also remain valid under these assumptions.

Proof of Theorem E. Let $u \in \operatorname{locLip}_{\alpha}(\Omega \setminus E)$ be \mathcal{A} -superharmonic in $\Omega \setminus E$. Since u is continuous in $\Omega \setminus E$ and hence locally bounded in $\Omega \setminus E$, u is an \mathcal{A} -supersolution in $\Omega \setminus E$ [HKM, Corollary 7.19]. Let Q be a cube in a Whitney decomposition of $\Omega \setminus E$. Then $\frac{3}{2}Q \subset \subset \Omega \setminus E$ and we pick a point $y \in \frac{3}{2}Q$ such that

$$u(y) = \min_{\frac{3}{2}Q} u.$$

The Caccioppoli type estimate [HKM, Lemma 3.53] for positive A-supersolutions v in the interior of $\frac{3}{2}Q$ reads

(3.9)
$$\int_{\frac{3}{2}Q} |\nabla v|^p v^{-1-\varepsilon} |\eta|^p \, dm \le c_2 \int_{\frac{3}{2}Q} v^{p-1-\varepsilon} |\nabla \eta|^p \, dm,$$

where $\varepsilon > 0$, $c_2 = (pe_{\mathcal{A}}/\varepsilon)^p$ and $\eta \in C_0^{\infty}(\frac{3}{2}Q)$. Choosing $\varepsilon = (p-1)/2$, $\eta = 1$ on Q and $|\nabla \eta| \le 4/l(Q)$ and letting $v = u - u(y) + \delta$, $\delta > 0$, we obtain from (3.9)

(3.10)
$$\int_{Q} |\nabla u|^p \, dm \leq c \max_{\frac{3}{2}Q} (u - u(y) + \delta)^p \operatorname{dia}(Q)^{n-p},$$

where $c = c(p, n, e_{\mathcal{A}})$; note that

$$v^{-1-\varepsilon} \ge \max_{rac{3}{2}Q} (u-u(y)+\delta)^{-1-\varepsilon}.$$

Since $u \in \text{locLip}_{\alpha}(\Omega \setminus E)$, it follows from [GM, Theorem 2.13] that

(3.11)
$$\max_{\frac{3}{2}Q}(u-u(y)) \le M_1 \operatorname{dia}(Q)^{\alpha},$$

where $M_1 = M_1(M, \alpha)$ and M is the constant in (1.6). Now $\delta \to 0$ in (3.10) together with (3.11) yields

$$\int_{Q} |\nabla u|^{p} \, dm \le c \operatorname{dia}(Q)^{\alpha p + n - p},$$

where $c=c(p, n, e_{\mathcal{A}}, M, \alpha)$. Since no non-empty compact set satisfies (3.7) for $\alpha < (p-n)/(p-1)$, we may assume that $\alpha \ge (p-n)/(p-1)$, and in particular that $0 < \alpha p+n-p \le n$. Hence, letting $a=\alpha p+n-p$, we obtain from Lemma 3.3 that u extends to an \mathcal{A} -supersolution of Ω ; note that

$$s = \frac{a(p-1)+n}{p} - 1 = n - p + \alpha(p-1)$$

as required. Finally, every A-supersolution can be made A-superharmonic after a redefinition on a set of measure zero [HKM, Corollary 7.17]. The proof is complete.

Proof of Theorem C. Since both u and -u are \mathcal{A} -superharmonic in $\Omega \setminus E$, it follows from Theorem E that they extend to \mathcal{A} -superharmonic functions u^* and $(-u)^*$, respectively, of Ω . Since m(E)=0, [HKM, Theorem 3.66] yields for each $x \in E$

$$u^*(x) = \lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} u^* \, dm = \lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} u \, dm$$

The same applies to $(-u)^*$ and hence $u^* = -(-u)^*$ which means that u^* is both \mathcal{A} -superharmonic and \mathcal{A} -subharmonic in Ω . Consequently u^* is \mathcal{A} -harmonic and the theorem follows.

Proof of Theorem B. This is a direct consequence of Theorem C; note that if u is locally Hölder continuous in Ω with exponent $0 < \alpha \le 1$, then for each open $D \subset \subset \Omega$, u belongs to locLip_{α} $(D \setminus E)$.

4. Examples and non-smoothness results

Our non-smoothness results imply, for example, that if $u: \Omega \to \mathbf{R}$ is \mathcal{A} -superharmonic in Ω and \mathcal{A} -harmonic in $\Omega \setminus E$ and if E is thin, then u cannot be smooth unless u is \mathcal{A} -harmonic in Ω . The first theorem is a consequence of Theorem C.

Theorem F. Suppose that u is locally Hölder continuous with exponent α , $0 < \alpha \le 1$, in Ω and let $E \subset \Omega$ satisfy (1.5) for some $\gamma \le -1$. If u is A-harmonic in $\Omega \setminus E$, then either u is A-harmonic in Ω or $\alpha < (p+\gamma)/(p-1)$.

Proof. Since u belongs to $\operatorname{locLip}_{\alpha}(D \setminus E)$ for each open $D \subset \subset \Omega$, Theorem C yields that u is A-harmonic in Ω provided that $\alpha \geq (p+\gamma)/(p-1)$.

If p > n, then even the set $E = \{x_0\}$ is of interest.

Theorem G. Suppose that u is locally Hölder continuous with exponent α , $0 < \alpha \leq 1$ in Ω and let \mathcal{A} satisfy (a)-(e) for p > n. If u is \mathcal{A} -harmonic in $\Omega \setminus \{x_0\}$, then either u is \mathcal{A} -harmonic in Ω or $\alpha \leq (p-n)/(p-1)$.

Proof. Suppose that u is not \mathcal{A} -harmonic in Ω . Fix γ , $-1 \ge \gamma > -n$. Now $E = \{x_0\}$ satisfies (1.5) and hence it follows from Theorem F that $\alpha < (p+\gamma)/(p-1)$. Letting $\gamma \rightarrow -n$ we obtain $\alpha \le (p-n)/(p-1)$ as desired.

The function $u(x) = -|x|^{(p-n)/(p-1)}$, p > n, is A-harmonic (p-harmonic),

$$\mathcal{A}(x,\xi) = |\xi|^{p-2}\xi,$$

in $\mathbf{R}^n \setminus \{0\}$, but u is not \mathcal{A} -harmonic in \mathbf{R}^n (u is \mathcal{A} -superharmonic). Since u is Hölder continuous with exponent $\alpha = (p-n)/(p-1)$ in \mathbf{R}^n , Theorem G is sharp. Note that the upper bound (p-n)/(p-1) in Theorem G is independent of a particular mapping \mathcal{A} , i.e. it does not depend on $e_{\mathcal{A}}$. A careful study of isolated singularities of a p-harmonic function in the plane is made in [M].

Next we present an example which shows that Theorem C is essentially sharp.

4.1. Example. For each p>1 and $0<\alpha<1$ there is a compact set K of the unit ball B of \mathbf{R}^n with $\dim_H(K)=0$ and with

(4.2)
$$\int_{K(1)\setminus K}^{r} d(x,K)^{\gamma} dm(x) < \infty$$

for some $\gamma < 0$ and an \mathcal{A} -harmonic function (*p*-harmonic), $\mathcal{A}(x,\xi) = |\xi|^{p-2}\xi$, which does not extend to an \mathcal{A} -harmonic function of B.

In fact, our construction shows that for $1 one may take any number <math>\gamma$, $\gamma > -(1-\alpha)(p-1)/(n-1)$. Fix $1 and <math>0 < \alpha < 1$. Then the function $v(x) = |x|^{(p-n)/(p-1)}$ is \mathcal{A} -harmonic in $B \setminus \{0\}$. Set

(4.3)
$$R_j = B(2^{-j}) \setminus \overline{B}(2^{-j-1}), \quad j = 1, 2, \dots$$

Select for each j a set K_j consisting of N_j points in R_j with

(4.4)
$$d(x, K_j) \le |x|^a, \quad a = \frac{(n-1)}{(p-1)(1-\alpha)},$$

for each $x \in R_j$ and

(4.5)
$$N_j \le c(n)2^{bj}, \quad b = \frac{n(n-1)}{(p-1)(1-\alpha)} - n;$$

this follows, for example, from a packing argument via the Besicovitch covering theorem. Define

and let u be the restriction of v to $B \setminus K$. Then K is a compact, countable subset of B and, in particular, $\dim_H(K)=0$. Moreover, u is \mathcal{A} -harmonic in $B \setminus K$ with

(4.7)
$$|\nabla u(x)| \le c_1 |x|^{(1-n)/(p-1)},$$

where $c_1 = (p-n)/(p-1)$, and since

$$d(x,K) \leq |x|^a, \quad a = \frac{(n-1)}{(p-1)(1-\alpha)},$$

see (4.3), (4.5) and (4.6), the mean value theorem shows that $u \in \operatorname{locLip}_{\alpha}(B \setminus K)$.

Since u does not extend to an \mathcal{A} -harmonic function of B, it suffices to verify that (4.2) holds for some $\gamma < 0$. Clearly, it is enough to show that there is $\lambda > 0$ such that

$$m(K(r)) \le c_2 r^{\lambda};$$

then (4.2) holds for any $\gamma > -\lambda$. Fix 0 < r < 1. We may assume that $r = 2^{-m}$ for some positive integer m. Now

$$K(r) \subset B(2^{-ma+1}) \cup \bigcup_{j \leq ma} K_j(2^{-m}),$$

where $a = (1-\alpha)(p-1)/(n-1)$. Thus (4.5) gives

$$m(K(r)) \le c_2 2^{-mna} = c_2 r^{\lambda},$$

here $c_2 = c_2(n)$ and $\lambda = n(1-\alpha)(p-1)/(n-1)$. The claim follows.

The construction for $p \ge n$ is similar and left to the reader (for p=n begin with $v(x) = \log(1/|x|)$); see also the comments following Theorem G.

5. Removability in the BMO class

A function $u \in L^1_{loc}(\Omega)$ is of bounded mean oscillation in Ω if

$$\|u\|_* = \sup_{Q \subset \Omega} \frac{1}{m(Q)} \int_Q |u - u_Q| \, dm < \infty;$$

here Q is any cube and u_Q is the average of u over Q, i.e.

$$u_Q = \frac{1}{m(Q)} \int_Q u \, dm.$$

If $||u||_* < \infty$, then we say that $u \in BMO(\Omega)$. It is a well known consequence of the John-Nirenberg lemma that

$$\sup_{Q \subset \Omega} \left(\frac{1}{m(Q)} \int_{Q} |u - u_Q| \, dm \right)^{1/p} \le c_1 \|u\|_*$$

holds for any $u \in BMO(\Omega)$ for all p > 1.

Proof of Theorem D. Let $u \in BMO(\Omega \setminus E)$ be A-harmonic in $\Omega \setminus E$. If Q is a cube in a Whitney decomposition of $\Omega \setminus E$, then the standard Caccioppoli estimate yields

(5.1)
$$\int_{2Q} |\nabla u|^p |\psi|^p \, dm \le c \int_{2Q} |u - u_Q|^p |\nabla \psi|^p \, dm$$

for any $\psi \in C_0^{\infty}(2Q)$, where *c* depends only on *p*, e_A , and *n* (see [S, pp. 255–261], [BI, p. 290], [GLM], [HKM]). Choosing ψ such that $\psi = 1$ on *Q* and $|\nabla \psi| \leq 2/l(Q)$ we obtain from (5.1)

$$\int_{Q} |\nabla u|^{p} \, dm \le c_{1} l(Q)^{-p} \int_{2Q} |u - u_{2Q}|^{p} \, dm \le C_{1} m(Q)^{(n-p)/n} ||u||_{*}.$$

By Lemma 3.3, u extends to an \mathcal{A} -supersolution of Ω and the same reasoning applied to -u yields that -u extends to an \mathcal{A} -supersolution in Ω . This means that u extends to an \mathcal{A} -harmonic function of Ω , as required.

Theorem E is sharp at least for the borderline case p=n. Then only $E=\emptyset$ satisfies (1.4) for $\alpha=0$. On the other hand, the function $u(x)=\log(1/|x|)$ is \mathcal{A} -harmonic (*n*-harmonic), $\mathcal{A}(x,\xi)=|\xi|^{n-2}\xi$, in $\mathbf{R}^n\setminus\{0\}$ and $u\in BMO(\mathbf{R}^n)$ ([RR, p. 5]), but u is not \mathcal{A} -harmonic in \mathbf{R}^n .

Added in proof. T. Kilpeläinen (Hölder continuity of solutions to quasilinear elliptic equations involving measures) has constructed examples showing that the exponent b in (1.5) is sharp.

References

- [B] BOCHNER, S., Weak solutions of linear partial differential equations, J. Math. Pures Appl. 35 (1956), 193-202.
- [BI] BOJARSKI, B. and IWANIEC, T., Analytical foundations of quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257-324.
- [C₁] CARLESON, L., Removable singularities of continuous harmonic functions in \mathbb{R}^n , Math. Scand. 12 (1963), 15–18.
- [C₂] CARLESON, L., Selected Problems on Exceptional Sets, Van Nostrand, Princeton, N.J., 1967.
- [F] FEDERER, H., Geometric Measure Theory, Springer-Verlag, Heidelberg-New York, 1969.
- [GM] GEHRING, F. W. and MARTIO, O., Lipschitz classes and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 203-219.

352

- [GLM] GRANLUND, S., LINDQVIST, P. and MARTIO, O., Conformally invariant variational integrals, Trans. Amer. Math. Soc. 277 (1983), 43-73.
- [HK] HEINONEN, J. and KILPELÄINEN, T., A-superharmonic functions and supersolutions of degenerate elliptic equations, Ark. Mat. 26 (1988), 87–105.
- [HKM] HEINONEN, J., KILPELÄINEN, T. and MARTIO, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, Oxford, 1993.
- [HP] HARVEY, R. and POLKING, J. C., Removable singularities of solutions of linear partial differential equations, Acta Math. 125 (1970), 39–56.
- [KW] KAUFMAN, R. and WU, J.-M., Removable singularities for analytic or subharmonic functions, Ark. Mat. 18 (1980), 107-116.
- [K] KRÁL, J., Removability of singularities in potential theory, Československá Akad. Věd Matematický Ústav 69 (1991), 1–16.
- [L] LITTMAN, W., Polar sets and removable singularities of partial differential equations, Ark. Mat. 7 (1967), 1–9.
- [M] MANFREDI, J., Isolated singularities of p-harmonic functions in the plane, SIAM J. Math. Anal. 22 (1991), 424-439.
- [MV] MARTIO, O. and VUORINEN, M., Whitney cubes, p-capacity and Minkowski content, Exposition. Math. 5 (1987), 17-40.
- [RR] REIMANN, H. M. and RYCHENER, T., Funktionen mit beschränkter mittlere Oszillation, Lecture Notes in Math. 487, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
- [R] RESHETNYAK, YU. G., Space Mappings with Bounded Distortion, Translations of Mathematical Monographs 73, Amer. Math. Soc., Providence, R.I., 1989.
- [S] SERRIN, J., Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964), 247–302.
- [St] STEIN, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.

Received November 19, 1991

Pekka Koskela Department of Mathematics University of Jyväskylä P. O. Box 35 FIN-40351 Jyväskylä Finland

Olli Martio Department of Mathematics University of Helsinki P.O. Box 4 (Hallituskatu 15) FIN-00014 University of Helsinki Finland