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Respectful quasiconformal extension 
from dimension n - 1  to n 

Jouni Luukkainen 

1. In troduct ion  

Tukia and Vgis/il/i proved in [20] that  every quasiconformal self-homeomor- 
phism f of R n-1 with n > 2  can be extended to a quasiconformal self-homeomor- 
phism F of R n = R n - l x  [0, co) which, in addition, in the hyperbolic metric of + 
H n = R n - ~ x  (0, c~) is bi-Lipschitz and uniformly approximates arbitrarily closely 
a natural homeomorphic extension FI  of f .  The main result of this paper, Theo- 
rem 3.1, is that  if X0 is the subset R p (0<_p<n) or R~_ ( l < p < n )  of t{ n-1 and if f 
respects X0, i.e., maps it onto itself, then F can be chosen to respect X = X o  x [ O, ~c). 
Following Siebenmann, we call this extension theorem respectful (to X). An easy 
consequence, Theorem 4.1, is that if we forgo the properties of F involving the hyper- 
bolic metric, F can be prescribed on X. The respectful quasiconformal Schoenflies 
extension theorem allows us to use Theorem 3.1 in Section 5 to show that  every 
locally quasiconformal (LQC) self-homeomorphism of R n-1 respecting X0 can be 
extended to an LQC self-homeomorphism of R '~ respecting X. Moreover, the ex- + 
tension can be prescribed on X. This result, which generalizes the non-respectful 
version of it proved by the author in [10], is needed in [13] when proving that  a 
self-homeomorphism of an LQC manifold M which respects a closed locally LQC 
flat LQC submanifold Q of M can be respectfully approximated by LQC homeo- 
morphisms, i.e., by ones respecting Q, also in the case where Q meets the boundary 
of M (in this approximation theorem dimension four must necessarily be excluded). 

In the proof of our main result we follow the simplified version of the proof of 
[20] as indicated in [19; 7.1]. For their part, Tukia and V/iis/il/i were inspired by Car- 
leson's [4] quasiconformal extension method in the case n<4.  We first decompose 
H ~ into similar pieces (parallelotopes) and give each piece an index in {1, ..., 2 n} 
such that  pieces of the same index are disjoint. From the quasiconformality of f 
it follows that  the restrictions of the homeomorphism F/  to slightly larger paral- 
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lelotopes, when suitably normalized, belong to a compact family of embeddings. 
This makes it possible to construct the approximation F of Ff  on a neighbourhood 
of the union of the pieces of index < i  inductively with respect to i. In the i th 
stage local bi-Lipschitz approximations of Ff  are provided by a result on respectful 
Lipschitz approximation of homeomorphisms which follows from known results in 
piecewise-linear topology and differential topology. This result is known to be false 
if dimension four is present in it, but fortunately the formula of FS, recalled in 2.1, 
allows us to apply the result in such a way that no dimensional restrictions follow. 
We glue the local approximations to the approximation produced by the ( i - 1 ) t h  
stage by using a respectful deformation theorem for Lipschitz embeddings due to 
Siebenmann and Sullivan or rather the version of it, proved by the author in [11], 
where bi-Lipschitz constants are under control. This deformation theorem is the 
substitute for Sullivan's Lipschitz deformation theorem used in [20]. 

2. Prel iminaries  

2.1. N o t a t i o n  and t ermino logy  

For integers O~_p~_n, we identify R p with R P •  n, and writing x =  
(xl, ..., Xn) for a point x E R  ~, we let R~_----{XERnIxn>_O} and sn={xERnixn> 0} 
if n_>l, Rn'p={xER'~ixi=Oifi<n-p}, R~_'P={xCR'~'PIx~>_O } if p > l ,  and 
R~_~={xeR~'Pixn_l>O} if p>2.  Then R~--Rn-IUH n. 

For l < p < n > 2  we let n,p n,p 
_ X(n,p)={R+ ,R++} if p>2  and 2d(n, 1)={R~_ '1} if 

p = l .  For XEX(n,p) we set X o = X M R  ~-1. Then Xo=R n-l,p-1 or Xo=R~ -1'p-1, 
and (R~_, X ) = ( R  n- l ,  Xo) • n # .  

For a homeomorphism f:  R n-  1_+ R n-  i with n_> 2 we define, as in [20], a homeo- 

morphism FS: R~--~R~_ extending f by Ff(x, t)= (f(x), ~-S(x, t)) where x E R  n- l ,  
t>0,  and rf(x,t)=max{[f(x)-f(y)[[yeR '~-1, [x-yl=t}. If  Z is as above, then 

fXo=-Xo implies FsX=X. 
We say that  a function f:S---*T respects a set Y if f-I[yMT]=YMS. If f 

is bijective, this is equivalent to f[YMS]=Y•T; then we also write f :  (S, YMS)---* 
(T, YMT). By id we denote various inclusion maps. 

The boundary of a manifold Y is denoted by OY. We set In(r)=[-r,r] n, 
Jn(r)--(-r,r)n, Bn(r)={xERniixl<r}, ~n(r)={xeRnilxl<r }, B~_(r)= 
Bn(r)MR~_, and C"(r)={(x,t)eR llxl+t<r} for r>0 ,  and Bn=Bn(1) ,  ~ n =  
Bn(1), and Sn-I=OB~. The standard basis of R ~ is written as (el, ..., en). We 
let R~=RnU{c~}  be the one-point compactification of R ~, and for ACR ~ we set 
A=Au{c~}cR ,~. 
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We let d denote the Euclidean metric. On the domains H n, R ~ + k \ R  n-1 
with k > l ,  and B n we also use the hyperbolic metric a, defined by the element of 
length Idxl/d(x, R n- l )  in the first two cases and 21dxl/(1-Ixl 2) in the third case. 
Then every Mhbius homeomorphism (H n, o)----~(B n, o) is isometric. If f :  S---~T and 
f': S'---~T are maps to a metric space (T, Q) and AcSnS ' ,  we write Q(f, f ' ;  A)-- 
sup{Q(f(x), f ' (x))IxEA }, with Q(f, f ' )=L)(f,  f ' ;  A) whenever A=S--S'.  

Let (S, 6) and (T, 6') be metric spaces and f :  S---*T an embedding. If there 
is L > I  such that  ~(x,y)/L<Q'(f(x),f(y))<LQ(x,y) for all x, yES, we say that  
f is bi-Lipschitz (abbreviated BL) or also L-BL. If f is only a map satisfy- 
ing the right-hand inequality for some L>0,  we say that  f is (L-)Lipschitz. If 
there is a homeomorphism ~: R~--*R~_ such that  t' <~(t) whenever a, b, x E S, b#x, 
t=Q(a, x)/~(b, x), and t'--Q' (f(a), f ( x ) ) / d  (f(b), f (x) ) ,  we say that  f is quasisym- 
metric (abbreviated QS) or also ~-QS. The basic theory of quasisymmetric em- 
beddings is given in [18] and [24]. We say that  f is LIP, locally L-BL, or LQS 
if each point of S has a neighbourhood on which f is, respectively, BL, L-BL, or 
QS. Locally Lipschitz maps are defined similarly. If f is QS, if s>0,  and if t<l / s  
implies t '<t+s whenever t and t' are as above, we say as in [26] that  f is s-QS. We 
let 0-QS mean id-QS. 

Let n > l ,  let A c R  n be a set with Accl  intA, and let f : A ~ R  n be an embed- 
ding. If there is K >  1 such that  for each component D of int A the homeomorphism 
D ~ f D  defined by f is K-quasiconformal in the sense of [23] whenever n > 2  or 
K-quasisymmetric in the sense of [9] (though possibly decreasing) whenever n =  1, 
we say that f is quasiconformal (abbreviated QC) or also K-QC. We say that  f 
is LQC if each point of A has an open neighbourhood in A on which f is QC. For 
the proofs of the following two facts, see [24; Section 2] and [23; 35.2] if n > 2  and 
[18; 2.16] if n = l .  A self-homeomorphism f of R n or of R~_ is K-QC if and only 
if f is ~-QS, with K and ~? depending only on each other and n. If A is open in 
R ~ or in R~_ and if in the latter case f respects R~_ and R n - l ,  then f is LQC if 
and only if f is LQS. By [21; 2.6] (which is valid also if n = l ) ,  a homeomorphism 
f:  R'~--*R ~ is K-QC if and only if f is s-QS, with K and s depending only on each 
other and n and such that  K ~ I  if and only if s ~ 0 .  

Suppose that  D c R  m is a domain for which we have defined the hyperbolic 
metric o, that A c D  is open, and that  f :  A ~ D  is an embedding. If f is BL, L-BL, 
or locally L-BL with respect to a, we say that  f is BLH, L-BLH, or locally L-BLH, 
respectively. From now on assume D # B  "~. We let L~(x, f) and l~(x, f)  denote the 
upper and lower limit, respectively, of the quotient a(f(x), f (y))/a(x,  y) as y ~ x  
in A. Note that  L~ (f(x), f - l )=l~(x,  f ) - l .  For the expression of these quantities in 
terms of the corresponding quantities Ld(X, f) and ld(X, f) in the Euclidean metric, 
see [28; 4.5]. If f :  D--+D is a homeomorphism and if each point xED has an open 
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neighbourhood U such that  f[UAD is BLH, we say that  f is LIPH. If g: D--~D is 
a homeomorphism which defines a LIPH homeomorphism D-~D and if m > 2, then 
g is LQS by [23; 34.2 and 35.1]. The following fact is needed in 5.5. Suppose that  
A--Bm(r)nD. Then, since every two points x, yEA can be joined by an arc in A 
of hyperbolic length a(x, y), we have by [28; 4.4] that f is L-Lipschitz with respect 
to a if and only if L~(x, f)<_L for each xcA.  From this it also easily follows that  
if a homeomorphism f :  D--~D extends to a LIP homeomorphism D--*D, then f is 
LIPH. 

2.2. Sol id i ty  

The rest of Section 2 is needed only for the proof of Theorem 3.1. First we 
recall two terms introduced and observed to be related in [19]. 

For an open set U c R  n we let E(U, R n) denote the set of all embeddings of U 
into a n, equipped with the compact-open topology, and H(U) denote the group 
of self-homeomorphisms of U. If Y c R  n is closed, Ey(U,R ~) denotes the closed 
subset of E(U,R n) consisting of the embeddings respecting Y. As in [19; 3.8], a 
set J:cE(U, R n) is said to be solid if its closure in E(U, Rn), denoted by clE .T', is 
compact. 

Let f :  H n---~H ~ be a homeomorphism. If there is a homeomorphism p: R 1 
R~ such that  ~-1 (cr(x,y))<~(f(x), ICy))<_~(~(x,y)) for all x, y e l l  n, we say as 
in [19; 6.10] that  f is ~-solid. By [8; Theorem 3], this is the case if f is K-QC and 
n >  2, with p depending only on n and K.  The following lemma gives the important 
fact that although F/IH n with f QC is possibly not QC itself, it is solid, however. 
The converse is also known to hold; see [29; 7.1 and 7.9]. 

2.3. L e m m a .  Let n>_2 and K ~  I. Then there is a homeomorphism ~: RI+---+ 
RI+ such that F/]H n is p-solid for every K-QC homeomorphism f: R~-I--~Rn-1.  

This fact was claimed in [19; 7.1] without proof. We give in 2.4-2.6 a proof, 
based on solid sets of homeomorphisms, whose idea is mentioned in [27; p. 162]. 
Especially, Lemma 2.5 is an analogue of [20; 2.13]. In [29; 7.26] Lemma 2.3 is given 
an elementary but lengthy direct proof. 

2.4. Notation. Fix n > 2  and K _ I .  If z--(2, zn)EH ~, let az: R~_--~R~_ be the 
similarity homeomorphism X~-~5+ZnX; then az(en)----z. If f :Rn-1 - -~R n-1 is a 

f -1 homeomorphism,  zEH n, and z'=F/(z), let t3 z =az ' '  Define homeomorphisms 
fz=/3fzfaz: R n-1--*R n-1 and Fz f =/3fzFfaz: R~_--~R~. Then Ff=Ff~ [20; (2.5)]. 
Let G={feH(Rn-1)[ f  is K-QC}, ~ = { F / [ H ~ l f e 6 } ,  6 0 = { f z [ f e 6 ,  zeHn}=6,  
and -To= {Ff[H~[fe~,  z e H  ~ } C.T. 
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2.5. L e m m a .  The set iTo is solid. 

Proof. Let f E 6  and z E H  ~. Then f zE6  and fz(O)--O. Since f is rT-QS with 
r ] = ~ ,  we have 

1 I f ( 5 + z n e l ) - f ( 5 ) l  < 1. 
7(1) _< {fz(el)] = Tf(Z, Zn) - 

Hence, ClE 60 is a compact set in 6 by [23; 19.4(1), 20.5, 21.7, and 37.3] if n > 3  
and by, e.g., [18; 3.4, 3.6, and 3.7] if n=2 .  Since the map H(R~-I)--~H(H~), 
f~-~FfiH n, is continuous [20; (2.6)] and since it maps 60 onto iT0 and 6 onto iT, it 
follows that clE iT0 is a compact set in iT. [] 

2.6. Completion of the proof of 2.3. Let e>0 be given. Then find by 2.5 a 
number ~=~=5~(n, K ) > 0  such that  if FoC~0 and zCH ~, then a(en, z)<5 implies 
cr(Fo(en), Fo(Z)) <_r and cr(Fo(e,~), Fo(z)) <_6 implies o-(en, z)~6". Given F e i T  and 
x, yEH n, choose f E 6  with F = F f I H  ~ and let z=a; l (y) ;  then a(x,y)=cr(e~, z) 
and (r(F(x), F(y)) =a(F~(e~) ,  F f  (z)). Thus, or(x, y)_<5 implies a(F(x),  F(y)) <_~, 
and a(F(x), F(y)) <_5 implies cr(x, y)_<r 

Let w(t)=sup{a(F(x) ,F(y) ) lFciT ,  x, yEHn, a(x,y)<_t} for t>0.  Since 
w(5~)_<r for each c>0,  there is a homeomorphism r such that  r 
w(t) if t_<51 and r if t>_5~. Consider FEIT, x, yEH ~, t=a(x,y) ,  and 
t '=a(F(x) ,F(y)) .  We show that t'<_r This is obvious if t<51. Suppose 
t>51. Choose successive points x=zo, Zl, ..., zk=y in the hyperbolic geodesic join- 
ing x and y such that a(Zj_l,Zj)=51 if j < k  and a(zk-~,zk)<5~. Then t '<k= 
(a(zo, zk-1)+51)/51<_r Find in a similar way a homeomorphism r 
depending only on (n, K) such that  t_<r Then ~ = ma x ( r  r  satisfies 2.3. [] 

In the next two lemmas the cases Y=O and Y = R  ~ are in fact the same. The 
first of these results deals with extension of locally L-BL approximations. It is a 
respectful version of a part of [19; 3.9]. 

2.7. L e m m a .  Let n> l ,  let U, U', V, W be open sets in R n such that W c V c 
U, WMUCV,  U'cU,  and U' is compact, let either Y=~  or Y = R  p with O<p<n 
or Y=RP+ with l <_p<n, let iT be a solid subset of E y ( U , R  n) whose members are 
approximable by LIP embeddings in Ey(U, Rn), and let E>0. Then there is 5>0 
such that for every L> I there is L'> I with the following property: If gCiT and 
if h C E y ( V , R  ~) is locally L-BL such that d(h,g;V)<5, then there is an L'-BL 
embedding h' CEy(U', R n) such that d(h', g; U') <r and h'= h on WNU'.  

Proof. The proof is otherwise the same as that of [19; 3.9] but in place of 
[19; 3.6], the quantitative version of a result due to Sullivan, we refer to [11; 5.7]. [] 
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To be able to apply 2.7 we need the following respectful LIP approximation re- 
sult, Lemma 2.9 on extension of homeomorphic approximations, and the elementary 
LIP approximation result 2.10. 

2.8. L a mi na .  Let n> l, let either Y=O or Y = R  p with O<p<n or Y=R~_ 
with l <p<n, let f : R n - + R  n be a homeomorphism respecting Y,  and let ~: Rn-+ 
(0, co) be continuous. Suppose that n~4  and that at least one of the following 
conditions holds: (a) f l Y  is LIP, (b) p r  and flOY is LIP, (c) p~4,  5. Then there 
is a LIP homeomorphism g: an--->a n respecting Y such that Ig(x)- f (x) l  <c(x) for 
each x E R  n and such that g lZ- - f lZ  whenever ZE{Y, OY} and f i g  is LIP. 

Lemma 2.8 reduces to the special case where we have in (a) that f lY=id  and 
in (b) that p ~ 4  and flOY=id. In fact, if ZE{Y,  OY} and f l Z  is LIP, extending 
f lZ  to a LIP homeomorphism fl :  (R n, Y)--+(R ~, Y) and replacing f by f 1 1 f  we 
may assume that  f lZ=id.  This special case of the lemma then follows from various 
known piecewise-linear and smooth approximation results. For details we refer 
to [13]. 

By [5; Corollary on p. 183], the dimensional restrictions in 2.8 cannot be omit- 
ted. The proof of 2.8 makes use of the deep stable homeomorphism theorem due 
to Kirby unless we know that the homeomorphisms f and either f l y  if OY--O or 
f lOY if OYr whenever arranged to be sense-preserving, are stable. 

2.9. L e m m a .  Let l<p<n,  let Y - - R  p or Y=R~_, let f:Rn--+R ~ be a ho- 
meomorphism respecting Y,  and let ~:Rn--+(0, co) be continuous. Then there is 
a continuous 5: Y--+(O, co) with the following property: If g: Y--~Y is a homeo- 
morphism with Ig(x)- f(x)l<5(x ) for each x e Y ,  then there is a homeomorphism 
g*:Rn--+R n extending g such that Ig*(x)-f(x)l<~(x) for each x e R  n and such 
that, if, moreover, Y = R  p, p<n, and f respects R~_ +1, then g* respects R~_ +1. 

Proof. Since f is continuous, by a well-known fact (cf. [17]) there is a continuous 
rl:Rn--+(0,(:xD) such that  I f ( x ) - f ( y ) l < c ( x ) i f  x, yeRn and Ix-y]<~(x). Writing 
a ~ = a p  • a ~ - p  define a continuous w: RP-+(0, oo) by w(x)=min{zl(x, Y) IlYl <- 1 }. 
By [15; Theorem 5.6.4] there is a continuous g: RB--* (0, co) such that if h: RP--*R p is 
a homeomorphism with Ih(x) -x  I < ~(x) for each z e a l ,  then there is a homeomor- 
phism h+: R p • [ 0, 1 ] --+ R p • [ 0, 1 ] of the form h + (x, t)-- (ht (x), t) such that h0 = h, 
hl=id, and Iht(x)-xl<w(x) for all x e R  p, re[0,  1]. We may assume that ~ is in- 
variant with respect to the orthogonal reflection of R p in R p-1. Choose a continuous 
50: Y--+(0, ~ )  such that  If-l(x)--f-l(y)l < ~( f - l (x ) )  if x, y e Y  and [ x - y  I <60(x). 
We show that 5: Y-+(0, co), xHho(f(x)) ,  is the desired continuous function. 

Thus, let g: Y--+Y be a homeomorphism with Ig(x)- f(x) l  <5(x) for each x e Y .  
Define a homeomorphism h: RP--+R p by letting h = f - l g  if Y = R  p or by letting h 
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be the extension of f - l g  by reflection if Y=R~_. Then ]h(x)-xl<Q(x) for each 
x E R  p. Now let h + be as above. Writing again R ~ = R P x R  ~-p define a homeo- 
morphism H: R ~ - - . R  '~ by H(x, y )=  (ht(x), y) where t=min(Iy], 1). Then HIRP----h , 
IH(z)-zI<~(z)  for each z C R  ~, and H respects R p+I if p<n. It follows that 
g*=fH satisfies the lemma. [] 

2.10. L e m m a .  Let X be a metric space, Y = X •  f:  Y--~Y a homeomor- 
phism of the form f(x,  t )=  (x, fx(t)), and ~: Y---*(O, co) continuous. Metrize Y by a 
metric Q defined in a standard way. Then there is a LIP homeomorphism g: Y---*Y 
of the form g(x, t)=(x, gx(t)) such that O(g(Y), f(Y)) <e(y)  for each y e Y .  

Proof. Define a continuous ~?: Y--~(0, co) by 

~(x, t) = min{~(x, s) /2 1 0 < s < t + l } .  

Choose a continuous 6: Y--*(0, 1) such that o(f(y), f(y')) <~(y) if y , y ' E Y  and 
O(y,y')<_6(y). By [14; 5.4] we may choose 6 to be locally Lipschitz. Define induc- 
tively a sequence ai: X--*R~_, i_>0, of locally Lipschitz functions by a0 (x )=0  and 
OLi+I(X):O~i(X)-~-~(X , OLi(X)) ; then ai+l(x)>ai(x), and ai(x)--+co as i-+co. Define 
a sequence fii: X-+R~_, i_>0, of continuous functions by the condition f (x ,  ~i(x)) -- 
(x,~i(x)). Then 0=/~0(x)</~l(x)<.. . ,  ~i(x)-~co as i-+co, and ~i+l(x)-~i(x)< 
~i(x)=~(x, ai(x)). Define ~0--/~0. For i>_l, by [14; 5.4] choose a locally Lipschitz 
function ~i: X -+ R~_ such that max{/~i_l (/),/3i (x) - vii (x) } < ~i (x) < ~i (x). Then 0-- 
"/0(x)<~/l(X)<..., and 7i(x)--+co as i--+co. Now let g: Y - + Y  be the bijection of the 
form g(x, t)-- (x, gx(t)) where gx maps [ai(x), ~i+l(x)] affinely onto [~//(/), ~//+l(X)] 
for each i_>0. Then g is a LIP homeomorphism by [14; 2.40]. Finally, if a~(x)<_ 
t~_ai+l(x), then t~_ai(x)+l and, hence, o(g(x, t), f (x,  t)) = Igx(t) - fx ( t ) l  < 2~i(x) _~ 
dx,  t). [] 

3. T h e  m a i n  r e s u l t  

In this section we establish the following basic theorem on respectful quasicon- 
formal extension with properties involving the hyperbolic metric. 

3.1. T h e o r e m .  Let l <_p<_n>_2, let X E2((n,p), let K>_I, and let ~>0. Then 
there is L=L(n,  K, ~) >_ 1 with the following property: Let f: R ~- I -+R n-1 be a K- 
QC homeomorphism respecting Xo. Then there is a homeomorphism F: R~-+R~_ 
respecting X such that 

(1) 
(2) FIR -I=f, 
(3) F[H n i s / -BLH,  
(4) F is L2~-2-QC. 
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n , n  n 3.2. Remark. The absolute case, X=O or equivalently X = R +  = R + ,  of 3.1 
is due to Tukia and Vgis/il/i [20; 3.11]. In the proof of their result [19; 7.4] on 
quasiconformal approximation of solid homeomorphisms they used a variation of 
their method, and the proof of Theorem 3.1, to be completed in 3.21, is a modifica- 
tion of this proof. The absolute case of 3.1, with (1) omitted, was proved for n = 2  
by Seurling and Ahlfors [3], for n = 3  by Ahlfors [1], for n > 3  with small K,  using 
Ahlfors's method, by Sedo and Sy~ev [16], and for n < 4  by Carleson [4] (see also 
[6; 3.12]; the condition (3) is claimed in [20; Introduction]). 

From now on, we assume that  n, p, X,  K,  e, and f are given as in Theorem 3.1. 

3.3. Case  J 
n , p  Consider the case of 3.1 where X = R + +  with 2<p<n. We call it Case J. We 

choose a homeomorphism r/: R~_ --~R~_ depending only on (n, K)  such that f - 1  is r/- 
QS and rl(1) > 1. Then we define numbers X= (7/(1) 2 - 1)1/2 and x=min{1 ,  1/3Xv~} 
and let C j c R  n-1 be the set of the points (x,y,z)ERn-pxRp-2xRI+ with Ixl_< 
z / x .  

3.4. L e m m a .  In Case J, flCj respects R n-l'p 1. 

Proof. Let X I = R  n-l 'p-1.  Since XIVICj=Xo and since f respects X0, it 
suffices to show that fCjN(XI\Xo)=O. Thus, suppose, on the contrary, that  
there is UeXl \Xo  with f-l(u)=(x,y,z)ECj. Then XT~0. Let Zl=Z+lxl/x, 
v=(O,y, zl)Exo, and w=f(v)EXo. Choose woEOXo with Iw-wol=d(w, OXo); 
then I w - Wo I < I w - u I and Vo = f -  1 (w0) �9 OXo. Hence, 

r/(1)>q<lw-w~ > Iv- ol 
Iw- l ] - Iv-f- l (u) l  

X+I/x : n ( 1 )  ' 
>- 14T /x 2 

Zl > 
- v / i x p + ( Z l _ Z ) 2  

which is a contradiction. [] 

3.5. C o n s t r u c t i o n s  

We define a decomposition K:=/(:+ or ](:=K:++ of H n into closed n-dimensional 
n , p  rectangular parallelotopes whenever X=R~_ 'p or X = R + + ,  respectively, as follows. 

In Case J, let x be as in 3.3; otherwise, let x = l .  Let s be the natural decomposition 
of R n-1 x [ 1, 2 ] into the closed rectangular parallelotopes which are the translates of 
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the parallelotope [0, x]  n-p • [0, 1 ]P with vertices in (xZ) n-p • Z p - 1  • {1, 2). Then 
let 

~+  = {2 j ( Q - � 8 9  I Q E s  j E Z }, 

1(:++ = {2 j (Q-�89 +...+en_p)-�89 i Q E s j E Z }. 

Thus, except possibly in Case J, the members of ]C are cubes. We express ](: as a 
finite disjoint union ~=)U1U...U)UN where each family )~i is disjoint. In fact, this 
can be done with N=2 ~. We set )U*=)~IU...UK:i for 0 < i < N .  

We define an open parallelotope P(t)=Jn-P(>~t)• JP(t) and a closed parallelo- 
tope P(t)=clP(t) in R ~ for t>0 .  Suppose that  QE~ .  We let ZQ denote the centre 
and 2AQ the greatest side length of Q. We let aQ: Rn--*R '~ denote the similar- 
ity map O~Q(X):ZQ--}-)~QX. For t > 0  we let Q(t)=aQP(t) and Q(t)=aQP(t); then 
Q--~)(1). We define a set XQCR "~ by XQ=O if QNX=O, by XQ-~R~ -1'p-1 •  1 
if QNOXr and by XQ=R n'p otherwise. 

In Case J we let ICj={QEICIQNX~O, QNOX--O}. 
The following two lemmas are obvious. 

3.6. L e m m a .  (1) IS Q, RE~, QNR~O, and Q~R, then i n tQnin tR- -O and 
AQ/ARE{�89 1,2}. 

(2) If QEIC and 0<t_<3, then 2gt;~px/-~<<_d( Q,(t))<_2tAQvf~ and 
d( O.(t),R~-l )=(3-t))~Q. 

(3) If Q, REIC and QNR=0,  then 4 4 _ _  

[] 

3.7. L e m m a .  (1) ForQEK~, if QNX~O, then zQEX, and iS QNX--0,  then 
Q(2)NX--O. For QEI~++, if QNOX~O, then ZQEOX, and if QNOX=O, then 
Q(2)NOX----O. 

(2) If QEIE, then Q(2)NX=Q(2)NXQ----aQ[P(2)NXQ]. [] 

3.8. L e m m a .  In Case J, Q(3)cCj •  1 for each QEIEj. 

Proof. Let QEK~j. Consider a point a=(x,y,z,u)ERn-p•215215 of 
Q(3). Since Ixi~_3X/~QnV/-n-~_/~Q/2X~z/x, we have a E C j •  1. [] 

3.9. L e m m a .  If QE]C, then F$[Q(3) respects XQ and 

FsQ(~)NX-- FfQ(~)NXQ. 

Proof. For Q E ~ j  in Case J, the first claim follows from 3.4 and 3.8; otherwise 
the claim is implied by the fact that  F$ respects X. Since Q(3)NX=Q(3)NXQ by 
3.7(2), the second claim follows. [] 
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3.10. Lemma.  There is c=c(n)>_l such that ~QIP(]): (P(4),d)-+ (H~,a) 
is c-BL for each Q E)~. 

Proof. As for [19; 6.151 by the aid of 3.6(2). [] 

3.11.  C o n s t r u c t i o n s  

For Q E K: and z E R ~ we set 

dfQ=d(FfQ, Rn-1), /~[2(z)__ z-Ff(zQ) F~2=~g2Ffo~ Q. ' 

Thus,/3~ is a similarity map R'~--*R n, and FQ f is an embedding of C~QIR~_DP(3) 

into R". Obviously, ~ respects XQ. By 3.7(2) and 3.9 it then follows that FQ f IP(3), 
too, respects XQ. 

For YE{XQIQEK. } we let GyCEy(p(3) ,R  ~) be the set of all embeddings 
g 3 F~IP(~ ) where QE/C, XQ=Y, and g: (Rn-I ,X0)--*(Rn-I ,x0)  is a K-QC homeo- 

morphism. 

3.12. Lemma.  The sets ~ y  are solid. 

Proof. This can be proved as the implication (1)o(3)  of [19; 6.17] is proved 
(cf. also [19; 6.20]) by the aid of 2.3, 3.6(2), and 3.10. [] 

3.13. Lemma.  Let QEIC and let s'>0. Then there exists a LIP embedding 
•: P(4)--~Rn respecting XQ such that d(r FQ:; p(4))  <s,. 

3 Proof. Choose 5>0 such that 5<e'd:Q and 5<_d(FsQ(4),Hn\FfQ(~)). We 
show that there is a LIP homeomorphism p:Hn-~H n respecting X such that 
d(#, F:; H n) <5. Then the LIP embedding r satisfies the lemma. 

In fact, d(r FQ:; p(4))<5/d~<_s'  and, since p respects X and pQ(4)c F:Q(3), it 
follows by 3.7(2) and 3.9 that ~ respects XQ. 

Suppose first that n~4,  that p~4  if X--R~_ 'p, and that pr  5 if X--R~'~. 
Then the existence of p follows from 2.8. 

Suppose now that nr  that p~5 if X=R+ 'p, and that p~5, 6 if Y-Rn'P ~ - - ~ + + .  

Then by 2.8 there is a LIP homeomorphism g: (R n-l ,  X0)-+(R n-l ,  X0) such that 
d(g, f)<5/3. From [20; 2.16] (in whose proof the value of r0>0 plays no role) it 
follows that the homeomorphism Fg: (R~, X)-+(R~_, X) is LIP. Since d(Fg, F:)<_ 
3d(g, f),  we can take #=FgiU ~. 

n,5 Only the cases (a) (n,p)=(5,4) and (b) X = R + +  remain. In these cases, 
by 2.8 and 2.9 there is a homeomorphism g:(Rn-I,Xo)---~(Rn-I,Xo) such that 
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d(g,f)<6/9 and such that (a) glXo or (b) glOXo, respectively, is LIP. Now 
d(Fg, F f ) < 5 / 3 .  Since the homeomorphism ~=Fg(g -1 • id): R~_--+R~_ has the form 
~(x, t )=  (x, Tg(g-l(x), t)),  by 2.10 there is a LIP homeomorphism ~': (R~,  X) -+  
(R~,  X)  such that d(~', ~) <6/3.  Then h=~'(g • id): R~--+R~ is a homeomorphism 
respecting X such that d(h, Fg)<6/3 and such that (a) hiX or (b) hlOXo x R~_, 
respectively, is LIP. Hence, by 2.8 there is a LIP homeomorphism #: Hn-+H n 
respecting X such that d(#, h; H a ) < 6 / 3  implying d(#, Ff;  Hn)<6. [] 

3.14. Remark. The application of 2.8 in the proof of 3.13 does not lead to a 
dependence on the stable homeomorphism theorem. For consider, e.g., the case 
OXo#O. We may assume that the LQS homeomorphisms f and flOXo are sense- 
preserving. Then by the proof of [19; 3.12] there are isotopies f ~ i d  and fiOXo~-id, 
and these can be extended to isotopies Ff-~id and FfIcl(OXNHn)~-id. Thus, 
the homeomorphisms f,  f[OXo, FfIH n, and Ff[OXNH n are stable as needed if 
(n ,p )~(5 ,4)  and p#5 .  On the other hand, if (n,p)--(5,4)  or p--5, it is easy to see 
that h is stable as needed. 

3.15. L e m m a .  There is M--M(n,K)>_I such that 

1/M <_d~/dfR <_M, d~ <_Md(FfO,(4),R ~-1) 

whenever Q, R�9 with QnR #O. 

Proof. The former assertion can be proved as that  in [19; 7.5] by the aid of 
3.6(2) and 2.3. The latter assertion then follows from the fact that  

by 3.6(3). [] 

3.16. L e m m a .  

0 ( 4 )  c U{R  �9 I QnR -~ O} 

There is c'=c'(n, K ) > I  such that 

(F/Q(~), or) --* ( n  n, d) 

is c'-BL for each Q �9 1C. 

Proof. As for [19; 7.6] by the aid of 3.6(2), 2.3, and 3.15. [] 

3.17. Cons truct ions  

For 0 < i < N  we set 

V~ = [ . J{Q(l+2-~- l )  I Q e E*}, W~ = U{Q(I + 2-i-2) [ Q c/(:* }; 

7-935212 Arkiv fhr matematik 
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then Vo=Wo=O. If QE/Ci and l<t_< 4, we set 

VQ(t)---- P(t)AaQIV/_I ,  WQ(t) = P(t)AaQ1Wi_l; 

then, by 3.6(3) if i_>2 or trivially if i=1 ,  aQVQ(~) is the union of the sets 
QR=Q(4)AR(I+2 -i) where RE~*_ 1 and QAR~O. Clearly, the set 

S = {VQ(4)[Q e ]C}U{WQ(4)[Q e ~} 

is finite. 
We apply 2.7 for Qe/C with U = p ( 4 ) ,  U ' = p ( 5 ) ,  V--VQ(4), W= 

W. 4 Q(5)' Y=XQ, and 5r=YxQ = { g l P ( 4 )  [ge~xQ }; this is possible by 3.12 and 3.13. 
Since S and {XQ ]QEtg} are finite, we obtain: 

3.18. L e m m a .  Let ~ > 0  and L>I. Then there are positive numbers 6-- 
5(e', n, K) <_~' and L'=L'(e', n, K, L) > L with the following property: 

Let QE~, let gEJZzQ, and let h:VQ(4)---~R n be a locally L-BL embedding 
respecting XQ such that d(h,g; VQ(4))<_5. Then there is an L'-BL embedding 
h ' : P ( } ) - - , R  ~ respecting XQ such that d(h',g;p(5))<e ' and h'--h on WQ(5). [] 

3.19. Cons truc t ions  

5 4 17 3 is an arithmetic progression with difference 1 By First note that 4 '  3 '  12'  2 

3.12, there is a number q=q(n,K)>O such that ]g(x)-g(y)i>q whenever QeIC, 
geGxQ, and x, yeP(~) with ]x-Yi>x/12. Let c, c', and M be as in 3.10, 3.16, 
and 3.15, respectively. Define numbers 5N~bN_l~...__~50>0 by 5N=min(q/(M+ 
2), c/c') and 5j_1=5(bj, n, K)/M, where 6( ) i s  as in 3.18. We also define numbers 
Lo<...<LN by L 0 = l  and Lj=cc'L'(bj,n,K, Aj), where L'( ) is as in 3.18, where 
j > l ,  and where )U=cc'MLj_I (this M is erroneously missing in [19; 7.9]). Observe 
that the sequences (50, ..., 5g) and (L0, ..., LN) depend only on (n, K, ~). We show 
by induction that the following lemma is true for every integer j El0, N]: 

3.20j .  L e m m a .  There is an embedding Fj:Vj--+H ~ respecting X with the 
following properties: 

(1) d(Fj, Ff; Q ( I + 2 - J - 1 ) )  <_SjdfQ for every QcK~;. 
(2) FjQ(I+2-J- i )cFfQ(~)  for every QE]C~. 
(3) Fj is locally Lj-BLH. 

Proof. Since V0=0, 3.200 is true. Suppose that 3 . 2 0 j - 1  is true. Thus we have 
an embedding F j - I :  Vj-1--*H n. We define Fj(x)=Fj_l(x) for xeWj-1.  Let Qe~j.  
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Then F~IP(~)CGx Q. Define an embedding hQ:fl[~Fj_laQIVQ(4). Consider RE 
/C;_ 1 with QNR~O. By 3.20j_1(1) and 3.15 we obtain 

d(hQ, F~; aQ1QR) = d(Fj_l,  5 ;  QR)/dfQ (__ M~j_ 1 = ~(~j, n, K).  

Hence, d(hQ,F~; VQ(4))<6(hy,n,K). For R as above we have 

hQ [O~QIQR = (fl[~ (flfR) -1) (flfRFj_l [QR)(aQ [% 1 QR). 

Here Fj_IQRCFfR(4) by 3.20j_1(2). Hence, flfRIFj_IQR is c'-BL between a and d 
by 3.16. Moreover, flfQ(fllR) -1 is M-BL in d by 3.15. Thus, hQla~lQa is locally 
Aj-BL in d by 3.20j_1(3) and 3.10. Hence, hQ is locally Aj-BL. We show hQ to 
respect XQ. Suppose that R is still as above. Let xEQR and - 17 yEOQ(~). Since 
laQl(x)-o~Ql(y)l>x/12 , the choice of q implies IF~(aQl(x))-F~(a~l(y))l> q 
yielding [Ff(x)-Fy(y)] >qd~. Since 

IFj_l(X)-Ff(x)l ~_ M6j_ldfQ < M6Nd~ < qd~, 

we conclude that 17 Fj-IQRCFfQ(-~). Since Fj-1 respects X, it follows by 3.7(2) 
and 3.9 that hQIOZQ1QR respects XQ. Thus, indeed, hQ respects XQ. Hence, 

. - -Ff Ip r4~  we can apply 3.18 with e'=hj,  . -  Q, ~3J, h=hQ. We obtain an (Lj/cd)-BL 
embedding h~: P(5)--~Rn respecting XQ such that d(hIQ,F~; p(5))<hj and h~-- 

hQ on WQ(5). Setting Fj=(flf)-lh~QaQ 1 on Q ( l + 2  - j - l )  we obtain a well-defined 
map Fj: Vj--~R n. We show that Fj satisfies the conditions (1), (2), and (3), that 
Fj is injective, and that Fj respects X. 

To prove (1), let QeK:;. If Qc1C;_I, (1) follows from 3.20j-1. If Qe~j, we 
obtain 

d(Fj,Ff;Q(1T2-J-1))=d~d(h~Q,F~;P(l+2-J-1)) ~_6jdfQ. 

To prove (2), let again QE/C~. If QE/C~_I, (2) follows from 3.20j_1. Sup- 

pose QEK;j. Thend(h'Q,F~;P(~))<hj<_6N<qimplyingh~QP(l+2-J-1)cF~p(4). 
Hence (2)is true. Observe that (2)implies FjVjCH n. 

If Q E ~ _ I ,  then Fj is locally L/-BLH on Q ( l + 2  - j - l )  by 3.20j_1. If QE1Cj, 
then 3.10, 3.16, and (2) imply that F j lQ(I+2 - j - l )  is Lj-BLH. Hence, Fj is a 
locally Lj-BLH immersion. 

We now show that Fj is injective. First, FjlWj_I and FjlQ(I+2 -j-l) for each 
QEK.j are injective. Moreover, if Q, RE)U~ and QAR=O, then (2) and 3.6(3) imply 
that FjQ(I+2-J-1)NFjR(I+2-J-1)=O. Hence, it suffices to show that F j (x )~  
Fj(y) whenever j > 2 ,  x#y, xEQ(I+2-J-1), and yER(I+2 -j-l) where QEEj, 
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RE/C~_:, and QNRT~O. The equality Fj~-(/3f)-lhIQO~Q1 is valid on Q(5)NVj. 

Hence we may assume that  y~Q(5). Since d(F~(a~l(x)), F~Off(5))>_q, we then 

have [F/(x)-F/(y)[>qd~. By (1) and 3.15 we obtain 

IFj(x)-Fj(y)I > WS(x)-Fs(y)I-IFj(x)-F (x)I-IFj(y)-Fs(y)I 

> qdp-hjdQ-hjd R > (q-(M+ > O. 

It follows that  Fj: Vj--~H n is an embedding. 
We finally show Fj to respect X. First, FjIWj_: respects X. Consider QE~j .  

Then F j IQ( I+2  - j - l )  respects X O. Hence, it follows from (2), 3.7(2), and 3.9 that  
FjIQ(I+2 -j- l )  respects X. Thus, Fj respects X. [] 

3.21. Completion of the proof of 3.1. We show that  3.1 is true with L=LN 
defined in 3.19. Let Fg:Hn-*H ~ be the map of 3.20N. We show that  the map 
F=FNUf:R~_--+R~_ satisfies 3.1. First, FN is an embedding, and Fly is locally 
LN-BLH. Clearly F respects X. To prove the condition (1) of 3.1, let xEH n. 
Choose QE/C containing x. Then 3.20N(1) yields ]FN(X)--F/(x)i<~Nd~<:d~/c'. 
By 3.20N(2) and 3.16 this implies a(FN(x),F$(x))<~. Hence (1) is true. Since 
FsHn=H n, it follows from (1) that  FNHn=H n. From (1) it also follows that  
FN(X)---~S(xo) as x--~x0eR ~-1. Thus, F is a homeomorphism. Hence, (3) obtains 
by [19; 6.21]. Finally, (4) follows from (3) and from the analytic definition of 
quasiconformality [23; 34.2]. [] 

The following lemma will be needed in the last section. 

3.22. L e m m a .  Suppose that fiBn-l(r)=id for some r > 0  in Theorem 3.1. 
Then there is WnE(0, 1) depending only on n such that F can be chosen so as to 
satisfy FiVn(wnr)=id. 

Proof. We check that  the above construction for F works if just one choice is 
made more carefully. First note that F$ ]C'~(r)=id. Thus, if Q e/C and Q(2)c  C~(r), 
then d~=2AQ by 3.6(2), and therefore FQ$IP(2)is a restriction of the map 0: R~--~ 

R ~, x~-*x/2. Let w = ( l + 2 v / ~ )  -1. Then QC/E and QNC~(wr)~ imply Q(2)c  
Ca(r); this follows by 3.6(2) from the facts d(Q,R~-l)<~r and d(C~(wr),R~_\ 
Cn(r))=(1-w)r/v~. Let Wn=W N. 

We show that  we can add to 3.20j the following condition: 
(4) FjiQ(l+2-J-1)=id for every QE1C; with QnCn(wJr)~. 

Let QeK:~ with QnV~(wJr)~O. If QEK:;_I, then (4) follows from 3.20j_1(4). Let 
QCIEj. Consider RC/C;_ 1 with QNR•O. Since Q(2)cC'~(wJ-lr), we conclude 
that Fj-1]QR=id. Hence, hQ=O on aQ1QR. Thus, hp=OIVQ(4). Now note that 0 
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is 2-BL with 2<M<Aj<Lj /cc  t and that 0 respects XQ. 
I 5 hQ=O]P(~). It follows that FjlQ(l+2-J-1)=id. 

We now have F]C~(wnr)=id. [] 

Therefore we can define 

4. Complementary  results 

In this section we first apply Theorem 3.1 to show in 4.1 that FIX in 3.1 can be 
prescribed if F is claimed to be quasiconformal only. In 4.3 we consider Euclidean 
Lipschitz properties that F inherits from f in 3.1. Theorem 4.4 uses another ex- 
tension method at the limit K--*I. Higher codimensional extension is the topic of 
4.5. Theorems 4.6 and 4.8 are corollaries for quasisymmetric homeomorphisms of 
sphere pairs. 

4.1. Theorem.  Let l <_p<_n>_2, let XEX(n,p) ,  and let 

f: (R n-l, X0) -"* (R n-l, X0) and g: (X, Xo) --* (X, Xo) 

be homeomorphisms with fIXo=glXo. Let f and g be K-QC and 7--(n,K) when- 
ever p>2; let f U g : R n - I u x - - + R n - I u X  be ~-QS and T----(n,~7) whenever p=l.  
Then there is a K*-QC homeomorphism F: R~_--*R~_ with FIR n - l = f  and FIX--g 
where K* depends only on ~-. 

Proof. By 3.1 there is a K0-QC homeomorphism Fo: (R~_,X)--*(R~_,X) ex- 
tending f where Ko--Ko(T). By replacing (f, g) by (Foi l ,  Folg) we may assume 
f=id .  Then glX0=id. If X=R~_~, let X1--R~_'P; then we can extend g by reflection 
to a K-QC homeomorphism gl:X1--.X1 with gllOXl=id. Thus, we may assume 
X=R~_ 'p. Then, proceeding by induction on n - p ,  we may assume p=n-1 .  Let 
Y={xCR~_IXl>_O } and Z={xeR~_Ixl<O}; then R~_=YUZ and X = Y N Z .  Let 
~y=(fUg)]OY and ~z--(fUg)]OZ. There are L-BL homeomorphisms a: Y~R~_ 
and/3: Z--~R~_ with L an absolute constant such that a l y n R n - l = i d  and/~IZN 
R ~-1 --id and such that c~]X and/3]X are isometric. Then the self-homeomorphisms 
g y=a~y a  -1 and gz=/3~z/3 -1 of a n - 1  a r e  K-QC if p>2 by [23; 35.1] and ~?I-QS 
with ~l (t)=L2~(L2t) if p= 1. By 3.1 there are K1-QC self-homeomorphisms Gy and 
Gz of R~_ extending gy and gz, respectively, with K1--KI(T). Let K* =L4n-4K1. 
Then Fy=ce-lGy~: Y - - .Y  and Fz=/3-1Gz/3: Z--~Z are K*-QC homeomorphisms 
extending ~y and ~z, respectively. Thus, F=FyUFz:R~_--~R~_ is the desired 
K*-QC homeomorphism. [] 

4.2. Remark. The assumptions in 4.1 are necessary. For consider first a K-QC 
homeomorphism F: R~_--*R~_, n>2. Then F is ~-QS with y depending only on K 
by [2; 5.23]. Suppose n>3. Then FIR n-1 is K-QC by [7; Corollary] as is also 
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FIX by [7; Theorem 2] if 2<_p<n, XEX(n,p),  and F respects X. Moreover, the 
case p = l  of 4.1 really differs from the case p>2.  For example, the homeomorphism 
f : R ~ - I - ~ R  n- l ,  x~-~lxlx , is QS (by [23; 16.2] if n~3)  as is also g=idlR~_ '1, but 
l ug  is not LQS at 0. 

4.3. P r e s e r v a t i o n  of  Lipschitz properties in 3.1 

Consider the behaviour in the Euclidean metric of the homeomorphism F 
as given in Theorem 3.1. We show that F inherits various Lipschitz properties 
from f .  Of course, FI Hn is LIP. For z =  (x, t ) e H  n write 5(z)--d(z, R n- l )  : t .  Then 
Ld(z, F)=L~(z, F)5(F(z)) /5(2) and Ld (F(z), F -1) =L~ (F(z), F-1)5(z)/5(F(z)). 
Here L~(z, F)<_L and L~ (F(z), F -1) <_L by 3.1(3), e -~ <_5(F(z) ) /5(Ff(z) ) <_e ~ by 
3.1(1), and 5(F/(z))=7/(x,t). Suppose that  f lB~-l(r)  is A-Lipschitz. If 
zCC~(r), then T/(x,t)<_At and thus Ld(z,F)<_),*--e~LA. Hence, FICn(r)is A*- 
Lipschitz. If f - l l fB '~- l (r  ) is ),-Lipschitz and zEC~(r), then 7/(x,t)>_t/;~ and 
thus Ld(F(z),F-1)<_A *. It follows, e.g., that  if f is ),-BL, then F is /~*-BL, 
and that  if f is LIP, then F is LIP. Assume now p_>2. Choose a homeomor- 
phism 7: RI--+R~- depending only on (n, K) such that  f is ~-QS. If zEX, define 
T~(z)=max{If(x)-f(y)l ]yCXo, ]x-yl--t }. T h e n  7-~(Z)~T/(Z)~(1)T~(Z). It fol- 
lows that if flXo is A-BL, then FIX is ~(1)e~L),-BL, and that  if flXo is LIP, then 
FIX is LIP. In the case p-- l ,  note that if f is as in 4.2, then IF(O,t)l<_e~-/(O,t) -- 
e~t 2 for t>0,  and therefore FIX is not LIP. 

For K-QC homeomorphisms with K sufficiently close to 1 there is an ele- 
mentary and explicit extension method due to Tukia and Vs163 [21; 5.4], who 
considered more generally s-QS embeddings f :  R k ~ R  ~, k<n, with small s. In the 
next theorem we check that  in our special case this method is respectful. The BLH 
condition of the theorem was known to Tukia and Vs163 [26; 4.5]. 

4.4. T h e o r e m .  Let l < p < n > 2  and X EX(n,p). Then there is Ko=Ko(n)> l 
with the following property: Let f: (R ~-1, X0)--~(R n- l ,  X0) be a K-QC homeomor- 
phism with K<Ko. Then there is a homeomorphism F: (R~_, X)--*(R~_, X) which 
satisfies the conditions (2)-(4) of 3.1 with L--L(n, K)--*I as K--~I and for which 
FIH ~ is piecewise-aflfine. 

Proof. Replace p by m and let XI~-R~ 'm. It suffices to modify the proof of 
[21; 5.4] in the special case f R P = R  p with p=n-1  as follows. First, make sure that  
the vertices of the cubes in J ( n - 1 )  of side length 1 are in Z ~-1 and that each 
of X~NH ~ and cOXAH n is the underlying space of a subcomplex of the triangula- 

n--1 tion W of R~ ' - .R ~-1. Let each (n-1)-frame WQ be ordered as (w~ -'~+1, ...,WQ , 
w~, ..., w~ -'~) when forming the orthonormal (n-1)-frame vQ=G(wQ). Observe 
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that  in [21] no use has been made of the stated sense-preserving nature of various 
embeddings. Thus, it is not necessary to assume the n-frames uQ to be posi- 
tively oriented, and we can define u~=en for each Q E J ( n - 1 ) .  It follows that  
hQR~=R~ for each Q, that hQX=X if aQCOXo, and that  hQX'=X' if aQCXo. 

n Then g R + - - R + .  For each vertex b of W in X we choose the cube Q=Q(b) in 
such a way that  aQEXo, with aQEaXo whenever bEOX. If X--X', it follows 
that  gXo--Xo and gXcX, which imply that  gX=X. In the case X~X'  we have 
that  g[OX]cOX, yielding g[OX]=OX, and gXcX', from which we conclude that  
gX=X. 

Finally, from [21; (5.7), (5.8), and 3.5] it easily follows that  L~(x,g)<L1 and 
l~(x,g)>_l/L1 for each xcH ~, where 

L1 = L1 (n, q) = (1+ 18n 2 (n+  1)M(n)q)/(1 - 9n2q) --+ 1 

as q-+0, which implies that  glH ~ is L1-BLH. Thus, F=glR ~_ satisfies the theo- 
rem. [] 

4.5.  E x t e n s i o n  f r o m  d i m e n s i o n  n - - 1  t o  nWk 

Let l < p < n > 2  and k > l .  For simplicity we consider only the case Xo= 
Rn-I 'P-1;  cf. 5.5 for the case X0- -R+ -1'p-1. Suppose that  f is a K-QC self- 
homeomorphism of (Rn-I,Rn-I'P-1). Let F be the K~-QC self-homeomorphism 
of  n n,p ( R + , R + )  extending f with K~=K~(n,K) whose existence is guaranteed by 
3.1. Then we can extend F by reflection to a K~-QC self-homeomorphism F0 of 
(R  n, Rn'p). Repeating this process, we can extend f to a K~-QC self-homeomor- 
phism Fk of  (Rn+k,R n+k,p+k) with K;=K;(n+k,K). By 4.4 we may assume 

that  K~--~I as K--+I. By 3.1 and 4.4 we can choose FIH n to be L-BLH with 
L=L(n,K)-+I as K - + I .  Then Fk can also be obtained by rotating F around 
R n-1. More precisely, let z c R  n+k and write z=(x, re) where x E R  n-l ,  eES k, and 
t>0 .  Then define Fk(x, te)=(x', t'e) where (x', t')=F(x, t). Now it is easy to show 
that  F k I R ~ + k \ R  ~-1 is L-BLH; cf. [20; 3.13]. Then Fk is L2(~+k-1)-QC. Still 
further, the same method of [21; 5.4] we used for 4.4 gives directly a number Kk = 
Kk(n+k)>l and in the case K<_Kk an extension Fk such that  F k l R n + k \ R  n-1 is 
piecewise-affine and Lk-BLH with Lk--Lk(n+k, K)--+I as K--+I. 

The previous theorems imply analogous results, Theorems 4.6 and 4.8, on ex- 
tending QS self-homeomorphisms to ball pairs from the bounding sphere pairs. The 
absolute case p=n of the first theorem and a generalization of the absolute case of 
the second theorem to embeddings f :  Sk--+R n, k<n, are due to Tukia and V~iis~ls 
([20; 3.15.4], [22; 2.18] and, respectively, [21; 5.23], [26; 4.6]). 
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4.6. Theorem.  Let l_<p<n>2 and let f: (S ~-1, SP-1)---~(S n-l,  S p-l) be an 
7-QS homeomorphism. Then f can be extended to an 7*-QS homeomorphism 
F: ( B'~,BP)--+( B n , B  p) where 7" depends only on n and 7. Moreover, one of the 
following two conditions can be added: 

(1) We can choose FIB '~ to be L-BLH with L=L(n,  7). 
(2) If g: BP--+BP is an rl-QS homeomorphism with f lSP-I=glS p-1 and if l u g  

is 7-QS whenever p= l, then we can choose FIBB=g. 

Proof. We may assume that f ( e l )=e l .  Let X = R ~  'p. Choose a Mhbius homeo- 
morphism ~: R ~ - + R  '~ such that ~H~=B ~, that ~(ec)=el ,  and that ~R~,p= R p. 
Then ~ X = B P \ { e l } .  By [25; 3.2, (1.8), and 3.10], the homeomorphism fl: 
(R n- l ,  Z0)- -+(a  n- l ,  X0) defined by ~ - l f ~  is 0-QS with 0 depending only on 7 as 
also in (2) are the homeomorphism gl:X--+ X defined by ~-1 g p and fl  U g l whenever 
p = l .  By 3.1 we can extend fl to a K-QC homeomorphism FI: (R~_, X)--+(R~_, X) 
with K = K ( n ,  7). Moreover, we may assume in (1) by 3.1 that FIlH ~ is L- 
BLH with L=L(n,  7 ) and in (2) by 4.1 that FIlX--gl.  Extend F1 to a homeo- 
morphism Fl:Rn--+~t n Then F = ~ F I ~ - I : ( B n , B p ) - + ( B n , B  p) is a K-QC ho- + +" 
meomorphism extending f such that FIB ~ is L-BLH in (1) and that FIBP=g 
in (2). Now IF(O)l<_a(n,7)<l by [22; 2.17]. Hence, there is a K0-QC homeomor- 
phism h:Rn--~R n such that h(F(0))=0,  hll=tn\Bn=id, and Ko=Ko(n, 7). Let 
F2:Rn--~R '~ be the KoK-QC homeomorphism obtained from hF by reflection; 
then F3=h-IF2:Rn--+R ~ is K2K-QC and F=F31B n. Hence, F is 7*-QS with 
rF depending only on (n, 7). [] 

4.7. Lemma.  Let n>_2, and let f: Bn--+ B~ be a K-QC homeomorphism such 
1 Then I f(O)l<a=a(n,K,s)<l with a-+O as K--+I that f lS  n-1 is s-QS with s<_~. 

and s--*O. 

Proof. By [26; 2.3], f [S  n-1 is 7-QS with a universal homeomorphism 7. Hence, 
[f(0)[_< b(n, K) < 1 by [22; 2.17]. Suppose that the second assertion of the lemma 
is not true. Then for some ~>0 there are Kj-QC homeomorphisms fj: ~ n _ _ ~ ,  

1>8j--->0, and [fj(0)[>e. Applying with fj[S "-1 being sj-QS such that K i l l ,  ~_  
[18; 3.5-3.7] and passing to a subsequence, we may assume that (fj[S n-l)  con- 
verges uniformly to a homeomorphism h: sn-1---~ S n- 1, which must be an isometry. 
Extending each fj  by reflection to a Kj-QC homeomorphism gj:Rn-~ R n, applying 
[23; 19.4(2), 20.5, 21.5, and 37.3], and passing again to a subsequence, we may 
assume that (fj) converges uniformly to a Mhbius homeomorphism g:B'~--~B~. 
Since g]Sn-l=h, it follows that g is an isometry, which contradicts the inequality 
Ig(o)l>~. [] 
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4.8. Theorem.  Let l ~ p < n > 2 .  Then there is so=so(n)>O with the foUowing 
property: Let f:(Sn-~,SP-~)--~(Sn-~,S p-~) be an s-QS homeomorphism with 
s<so. Then f can be extended to an s*-QS homeomorphism F: ( B n, BP)--*( B ~, B p) 
such that FIB ~ is L-BLH where s* =s*(n, s)---~0 and L=L(n,  s)--~l as s-*O. 

Proof. We may assume that f(el)=ez.  Define X, ~o, fl  as in the proof of 4.6. 
From [25; 3.8 and 3.10] we see that there is an absolute constant s l > 0  such that if 
s<s~, then f~ is K-QC with K=K(n,s) - -~l  as s--*0. Thus, choosing so=so(n)>O 
with s0<min(sl, �88 small enough and assuming s<so, by 4.4 we can extend f l  
to a homeomorphism FI: (R~, X)--*(R~_, X) such that F11H n is L-BLH with L-- 
L(n,s)-~l  as s-*0. Define F and choose h as in the proof of 4.6 but now by 4.7 
with Ko--Ko(n, s)--*l as s--*0. Then F satisfies the theorem. [] 

5. Extension of locally quasisymmetric homeomorphisms 

In this section we use mainly the term LQS rather than the term LQC. We 
prove LQS versions of Theorems 3.1 and 4.1 and of the higher codimensional ex- 
tension 4.5. 

In the following lemma wn is the number of 3.22. 

5.1. Lemma.  Let l<p<n>_2, let XEX(n ,p ) ,  let f: (Rn- I ,X0) -~(Rn- I ,X0)  
be an LQS homeomorphism, and let AcRe_ be compact. Then there is ro>0 with 
the following property: For every r >_ro there is a QS homeomorphism ~o: (R~_, X)--* 
(R~_,X) such that ~o=f on Bn-l(r) ,  that ~olH ~ is BLH, and that ~oB~(ro)~A. 
Moreover, if f lBn- l ( s )=id  for some s>0  and if r>>s, then ~o can be chosen so as 
to satisfy ~olCn(wns)=id. 

Proof. We may replace f by f - f ( O )  and A by A - f ( O )  arriving thus always 
at the situation f(0)=0.  Choose r0>0 with FIB~(ro)DA. Consider r>ro. If it is 
assumed f lBn- l (s)=id,  assume r>s. Let C=Cn(2r). Then B~_(ro)CC. 

We wish first to extend f l= f lB~- l (2r )  to a QC self-homeomorphism g of 
(R~-I,X0).  By [23; 34.7] or [9; Theorem 4], f l  is QC. If n=2,  the existence 
of g follows from [9; Theorem 5]. Suppose that n>3. Let a :R~- I - -*R  n-1 be the 
inversion in S'~-2(2r); then aX0=Xo. The LQC embedding h o = a f ~ : B ~ - l ( 2 r ) \  
{0}-~R n-~ respects X0. Thus, by the relative (or respectful) Schoenflies theorem 
[6; 2.4] (for a slightly corrected and completed proof of which see [12]), there is a 
QC embedding h: B~- I (2 r ) -*R  n-1 extending holS'~-2(2r) and, if p r  respecting 
X0. By composing h with a suitable QC homeomorphism R ~ - I ~ R  ~-1 which 
respects X0 if p• 1 we may assume that h(0)=0 always. Then g= fl  U (c~hc~lRn-1 \ 
Bn-l(2r)) is the desired homeomorphism. 
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We have that  Fg--Ff on C. Consider ~>0. By 3.1 and 3.22 there is a 
QS homeomorphism ~: (R~_, X)--*(R~_, X) extending g such that  cr(~, Fg; g n) <~, 
such that  ~IH n is BLH, and that ~lcn(wnS)--id if flB'~-l(s)=id. Then 
a(~,Ff;CnHn)<c. By choosing ~ small enough we have that  d(~,Ff;B~_(ro)) 
is so small that  ~B~_(ro)DA. Then ~ satisfies the lemma. [] 

5.2. T h e o r e m .  Let l<_p<n>2, let XEX(n,p) ,  and let f:(Rn-l,Xo)--~ 
(R n- l ,X0)  be an LQS homeomorphism. Then f can be extended to an LQS ho- 
meomorphism F: (R~_, X)--~(R~_, X) which is LIPH on H ~. 

Proof. We construct inductively numbers rj >_j and QS self-homeomorphisms 
~j of (R~_,X) for j _ l  such that, setting sj=2rj/Wn (>r j ) ,  we have that  ~ j = f  
on Bn-l(s~ 3J, ~ that ~ j l H  n is BLH, that ~jB~_(rj)DB~_(j), that  rj+l>rj, and that 
~j+l=~j  o n  Cj--cn(oJnSj)~B~_(rj). We obtain rl and ~1 from 5.1. 

Suppose that  we have constructed rj and ~j. Define an LQS homeomorphism 
g=~;l f :  ( R , - 1  Z0)__.(R,~-l, X0). Then glBn-l(sj)=id. Thus, by 5.1 there are a 
number rj+l >_ max(j + 1, sj ) and a QS homeomorphism ~: (R~_, X)--+ (R~_, X) such 
that  ~ = g  o n  Bn-l(sj+l) , that  ~IH n is BaH, that ~ B ~ _ ( r j + l )  - 1  n �9 D ~j B+ (3 + 1), and 
that  ~ICj =id. Then ~j+l  = ~ j ~ :  (R~_, X)---~ (R~_, X) is the desired homeomorphism. 

By setting F = ~ y  on B~_(rj) for each j we obtain the desired LQS homeomor- 
phism F: (R?_, X)-~(R~_, X) extending f and LIPH on H ~. [] 

5.3. Remarks. 1. The absolute case X--R~_ of 5.2 without the LIPH property 
was proved in [10; 9.2]. The above proof for it is a simplification of that in [10]. 

2. In 5.2, if p_>2 and flXo is LIP, then F can be chosen such that FIX is 
LIP. This follows from the construction of F,  where in the proof of 5.1 note that 
[12; Theorem 3] produces h with hlh-lXo LIP whenever holholXo is LIP and that 
~IX is LIP by 4.3 whenever glXo is LIP. 

5.4. T h e o r e m .  Let l<_p<n>2, let XEX(n,p) ,  and let f ; ( Rn - l , x 0 ) - - ~  
(Rn- l ,X0)  and g:(X, Xo)--~(X, Xo) be LQS homeomorphisms with flXo=glXo 
and such that fog  is LQS at 0 if p=l. Then there is an LQS homeomorphism 
F: R~_--~R~_ extending f and g. 

Proof. The proof is similar to that  of 4.1; only resort to 5.2. [] 

5.5. E x t e n s i o n  f rom d i m e n s i o n  n - - 1  to  n + k  

We consider only the case Xo=R+-I'P-1; cf. 4.5 for the case X 0 = R  ~-I,p-1. 
However, for notational reasons we change X0. Thus, define 

fi ," = {x  c R "'; I > o} 
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for 1 _~p~ n as then (R n+k, fi++k,p+k)_--(R n, ~.~_,p) • R k for k ~ 1. Now suppose that  

f is an LQS self-homeomorphism of (R n - l ,  f i+- l ,p-1)  with 2 ~ p ~ n .  Let F be the 

LQS self-homeomorphism of (R  n - l ,  f i+ - l , p -1 )x  R~_ extending f which is given by 
5.2. Then we can extend F by reflection to an LQS self-homeomorphism F0 of 

A 

(R n, R~_'P). Repeating this process, we can extend f to an LQS self-homeomor- 

phism Fk of (R  n+k, fi~-k,p+k) for each k>0.  Alternatively, as F I H  n can be chosen 

LIPH, we can also obtain Fk for each k > l  by rotating F around R ~-1 as in 4.5; 
now F k l R ~ + k \ R  ~-1 is LIPH and Fk thus LQS. 

Acknowledgement.  I wish to thank Juha Partanen for pointing out an error in 
the original proof of 3.1, now corrected by the special attention to Case J. 

R e f e r e n c e s  

1. AHLFORS, L. V., Extension of quasiconformal mappings from two to three dimensions, 
Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 768-771. 

2. ANDERSON, G. D., VAMANAMURTHY, M. K., and VUORINEN, M., Dimension-free 
quasiconformal distortion in n-space, Trans. Amer. Math. Soc. 297 (1986), 
687-706. 

3. BEURLING, A., and AHLFORS, L., The boundary correspondence under quasiconfor- 
mal mappings, Acta Math. 96 (1956), 125-142. 

4. CARLESON, L., The extension problem for quasiconformal mappings, in Contributions 
to Analysis (L. V. Ahlfors, I. Kra, B. Maskit and L. Nirenberg, eds.), pp. 39- 
47, Academic Press, New York, 1974. 

5. DONALDSON, S. K., and SULLIVAN, D. P., Quasiconformal 4-manifolds, Acta Math. 
163 (1989), 181-252. 

6. GAULD, D. B., and V~IS~.L~, J., Lipschitz and quasiconformal flattening of spheres 
and cells, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1978/1979), 371-382. 

7. GEHRING, F. W., Dilatations of quasiconformal boundary correspondences, Duke 
Math. J. 39 (1972), 89-95. 

8. GEHRING, F. W., and OSGOOD, B. G., Uniform domains and the quasi-hyperbolic 
metric, J. Analyse Math. 36 (1979), 50-74. 

9. KELINGOS, J. A., Boundary correspondence under quasiconformal mappings, Michi- 
gan Math. J. 13 (1966), 235-249. 

10. LUUKKAINEN, J., Topologically, quasiconformally or Lipschitz locally fiat embeddings 
in codimension one, Ann. Aead. Sci. Fenn. Ser. A I Math. 8 (1983), 107-138. 

11. LUUKKAINEN, J., Respectful deformation of bi-Lipschitz and quasisymmetric embed- 
dings, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), 137-177. 

12. LUUKKAINEN, J., On the relative Schoenflies theorem, Ann. Aead. Sci. Fenn. Ser. A I 
Math. 18 (1993), 31-44. 

13. LUUKKAINEN, J., Lipschitz and quasiconformal approximation of homeomorphism 
pairs, in preparation. 



376 Jouni Luukkainen: Respectful quasiconformal extension 

14. LUUKKAINEN, J., and V~.ISALA, J., Elements of Lipschitz topology, Ann. Acad. Sci. 
Fenn. Ser. A I Math. 3 (1977), 85-122. 

15. RUSHING, T. B., Topological Embeddings, Academic Press, New York, 1973. 
16. SEDO, R. I., and SYCEV, A. V., On extension of quasi-conformal mappings to multi- 

dimensional spaces of greater dimension, Dokl. Akad. Nauk SSSR 198 (1971), 
1278-1279 (Russian); English transl, in Soviet Math. Dokl. 12 (1971), 984- 
985. 

17. SEIDMAN, S. B., and CHILDRESS, J. A., A continuous modulus of continuity, Amer. 
Math. Monthly 82 (1975), 253-254. 

18. TUKIA, P., and VAIS~.L~., J., Quasisymmetric embeddings of metric spaces, Ann. 
Acad. Sci. Fenn. Set. A I Math. 5 (1980), 97-114. 

19. TUKIA, P., and V~.IS.~L.~, J., Lipschitz and quasiconformal approximation and ex- 
tension, Ann. Acad. Sci. Fenn. Set. A I Math. 6 (1981), 303-342. 

20. TUKIA, P., and V.~IS.~.LA, J., Quasiconformal extension from dimension n to n §  
Ann. of Math. (2) 115 (1982), 331-348. 

21. TUKIA, P., and V~.IS~.L.~, J., Extension of embeddings close to isometries or similar- 
ities, Ann. Acad. Sci. Fenn. Set. A I Math. 9 (1984), 153-175. 

22. TUKIA, P., and V~.ISs J., Bilipschitz extensions of maps having quasiconformal 
extensions, Math. Ann. 269 (1984), 561-572. 

23. VJ(ISs163 J., Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in 
Math. 229, Springer-Verlag, Berlin-Heidelberg-New York, 1971. 

24. Vs163 J., Quasi-symmetric embeddings in Euclidean spaces, Trans. Amer. Math. 
Soc. 264 (1981), 191-204. 

25. VAISAL~., J., QuasimSbius maps, J. Analyse Math. 44 (1984/85), 218-23i 4. 
26. VAISALA, J., Bilipschitz and quasisymmetric extension properties, Ann. Acad. Sci. 

Fenn. Set. A I Math. 11 (1986), 239-274. 
27. V~.IS~LX, J., Quasiconformal concordance, Monatsh. Math. 107 (1989), 155-168. 
28. Vs J., Free quasiconformality in Banach spaces I, Ann. Acad. Sci. Fenn. 

Set. A I Math. 15 (1990), 355-379. 
29. V)i.ISs J., Free quasiconformality in Banach spaces II, Ann. Acad. Sci. Fenn. 

Set. A I Math. 16 (1991), 255-310. 

Received August 7, 1991, 
in revised form April 4, 1992 

Jouni Luukkainen 
University of Helsinki 
Department of Mathematics 
P.O. Box 4 (Hallituskatu 15) 
FIN-00014 University of Helsinki 
Finland 
email: luukkainen@cc.helsinki.fi 


