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Respectful quasiconformal extension
from dimension n—1 to n

Jouni Luukkainen

1. Introduction

Tukia and Vaisdld proved in [20] that every quasiconformal self-homeomor-
phism f of R ! with n>2 can be extended to a quasiconformal self-homeomor-
phism F of R?=R"1x[0,00) which, in addition, in the hyperbolic metric of
H"=R""!x(0,00) is bi-Lipschitz and uniformly approximates arbitrarily closely
a natural homeomorphic extension Fy of f. The main result of this paper, Theo-
rem 3.1, is that if X, is the subset R? (0<p<n) or R% (1<p<n) of R""! and if f
respects Xo, i.e., maps it onto itself, then F' can be chosen to respect X =Xy x [0, 00).
Following Siebenmann, we call this extension theorem respectful (to X). An easy
consequence, Theorem 4.1, is that if we forgo the properties of F involving the hyper-
bolic metric, F' can be prescribed on X. The respectful quasiconformal Schoenflies
extension theorem allows us to use Theorem 3.1 in Section 5 to show that every
locally quasiconformal (LQC) self-homeomorphism of R™~! respecting Xy can be
extended to an LQC self-homeomorphism of R} respecting X. Moreover, the ex-
tension can be prescribed on X. This result, which generalizes the non-respectful
version of it proved by the author in [10], is needed in [13] when proving that a
self-homeomorphism of an LQC manifold M which respects a closed locally LQC
flat LQC submanifold @) of M can be respectfully approximated by LQC homeo-
morphisms, i.e., by ones respecting (), also in the case where @ meets the boundary
of M (in this approximation theorem dimension four must necessarily be excluded).

In the proof of our main result we follow the simplified version of the proof of
[20] as indicated in [19; 7.1]. For their part, Tukia and Vaiséla were inspired by Car-
leson’s [4] quasiconformal extension method in the case n<4. We first decompose
H™ into similar pieces (parallelotopes) and give each piece an index in {1,...,2"}
such that pieces of the same index are disjoint. From the quasiconformality of f
it follows that the restrictions of the homeomorphism Fy to slightly larger paral-
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lelotopes, when suitably normalized, belong to a compact family of embeddings.
This makes it possible to construct the approximation F' of Ff on a neighbourhood
of the union of the pieces of index <i inductively with respect to 7. In the ith
stage local bi-Lipschitz approximations of Fy are provided by a result on respectful
Lipschitz approximation of homeomorphisms which follows from known results in
piecewise-linear topology and differential topology. This result is known to be false
if dimension four is present in it, but fortunately the formula of F¥, recalled in 2.1,
allows us to apply the result in such a way that no dimensional restrictions follow.
We glue the local approximations to the approximation produced by the (i—1)th
stage by using a respectful deformation theorem for Lipschitz embeddings due to
Siebenmann and Sullivan or rather the version of it, proved by the author in [11],
where bi-Lipschitz constants are under control. This deformation theorem is the
substitute for Sullivan’s Lipschitz deformation theorem used in [20].

2. Preliminaries
2.1. Notation and terminology

For integers 0<p<n, we identify R? with RPx0CR", and writing z=
(%1, ..., T5) for a point z€R™, we let R} ={r€R"|z,>0} and H"={z€R"|z,> 0}
if n>1, R"?={zeR"|z;=0if i<n—p}, R}P’={zeR"P|z,>0} if p>1, and
RI?={zeR}?|z,-1>0} if p>2. Then RT=R"'UH".

For 1<p<n>2 we let X(n,p)={RT",RTP} if p>2 and X(n,1)={R}"'} if
p=1. For X€X(n,p) we set Xo=XNR"". Then Xo=R" 1P~ or X0=R1—1’p_1,
and (R?, X)=(R"1, Xo)x R1.

For a homeomorphism f: R"~1 —»R"~! with n>>2 we define, as in [20], a homeo-
morphism Fy:R7 —R% extending f by Fy(z,t)=(f(z),7¢(z,t)) where zeR"!,
>0, and 7¢(x,t)=max{|f(z)— f(y)||[yeR™", |z~y|=t }. If X is as above, then
fX():X() 1mphes FfX=X

We say that a function f:S—7T respects a set Y if f~[YNT]=YNS. If f
is bijective, this is equivalent to f[Y NS]|=YNT; then we also write f:(5,YNS)—
(T, YNT). By id we denote various inclusion maps.

The boundary of a manifold YV is denoted by Y. We set I™(r)=[-r,7]",
J(r)=(-r,r)", B*(r)={zeR"|[z|<r}, B"(r)={zcR"||z|<r}, Bi(r)=
B™(r)NR7%, and C(r)={(=z,t)eR?||z|+t<r} for r>0, and B"=B"(1), B"=
B"(1), and S"~1=0B". The standard basis of R" is written as (ej,...,e,). We
let R"=R"U{o0} be the one-point compactification of R", and for ACR™ we set
A=AU{o0}CR".
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We let d denote the Euclidean metric. On the domains H", R"*F\R"!
with k>1, and B™ we also use the hyperbolic metric ¢, defined by the element of
length |dz|/d(z, R"™1) in the first two cases and 2|dz|/(1—|z|?) in the third case.
Then every Mébius homeomorphism (H", o) —(B", o) is isometric. If f: §—T and
f':8'—T are maps to a metric space (T, 0) and ACSNS’, we write o(f, f'; A)=
sup{o(f(z), f'(z))|x€ A}, with o(f, f')=0(f, f'; A) whenever A=S=5".

Let (S, 0) and (T, ¢') be metric spaces and f:S—T an embedding. If there
is L>1 such that g(x,y)/LSg’(f(:v),f(y))SLg(a:,y) for all z,y€S, we say that
f is bi-Lipschitz (abbreviated BL) or also L-BL. If f is only a map satisfy-
ing the right-hand inequality for some L>0, we say that f is (L-)Lipschitz. If
there is a homeomorphism 7: RL —R! such that ¢ <7(t) whenever a,b,2€ 8, b#z,
t=0(a,z)/0(b,z), and t'=¢'(f(a), f(z)) /&' (f(b), f(x)), we say that f is quasisym-
metric (abbreviated QS) or also 7-QS. The basic theory of quasisymmetric em-
beddings is given in [18] and [24]. We say that f is LIP, locally L-BL, or LQS
if each point of S has a neighbourhood on which f is, respectively, BL, L-BL, or
QS. Locally Lipschitz maps are defined similarly. If f is QS, if >0, and if t<1/s
implies ' <t+s whenever t and ¢’ are as above, we say as in [26] that f is s-QS. We
let 0-QS mean id-QS.

Let n>1, let ACR™ be a set with ACcl int A, and let f: A—R" be an embed-
ding. If there is K >1 such that for each component D of int A the homeomorphism
D— fD defined by f is K-quasiconformal in the sense of [23] whenever n>2 or
K-quasisymmetric in the sense of [9] (though possibly decreasing) whenever n=1,
we say that f is quasiconformal (abbreviated QC) or also K-QC. We say that f
is LQC if each point of A has an open neighbourhood in A on which f is QC. For
the proofs of the following two facts, see [24; Section 2] and [23; 35.2] if n>2 and
[18; 2.16) if n=1. A self-homeomorphism f of R™ or of R} is K-QC if and only
if f is n-QS, with K and 7 depending only on each other and n. If A is open in
R" or in R"} and if in the latter case f respects R and R"~L, then f is LQC if
and only if f is LQS. By [21; 2.6] (which is valid also if n=1), a homeomorphism
f:R"—R" is K-QC if and only if f is s-QS, with K and s depending only on each
other and n and such that K —1 if and only if s—0.

Suppose that DCR™ is a domain for which we have defined the hyperbolic
metric o, that ACD is open, and that f: A— D is an embedding. If f is BL, L-BL,
or locally L-BL with respect to o, we say that f is BLH, L-BLH, or locally L-BLH,
respectively. From now on assume D#B™. We let L, (z, f) and l,(z, f) denote the
upper and lower limit, respectively, of the quotient o(f(z), f(y)) /o(z,y) as y—z
in A. Note that L, (f(z), f ™) =lo(z, f)~!. For the expression of these quantities in
terms of the corresponding quantities Ly(z, f) and lg(z, f) in the Euclidean metric,
see [28; 4.5]. If f: D—D is a homeomorphism and if each point z€D has an open
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neighbourhood U such that f|[UND is BLH, we say that f is LIPH. If g: DD is
a homeomorphism which defines a LIPH homeomorphism D— D and if m>2, then
g is LQS by [23; 34.2 and 35.1]. The following fact is needed in 5.5. Suppose that
A=B"(r)ND. Then, since every two points x,y€ A can be joined by an arc in A
of hyperbolic length o(z,y), we have by [28; 4.4] that f is L-Lipschitz with respect
to ¢ if and only if L,(z, f)<L for each z€A. From this it also easily follows that
if a homeomorphism f: D— D extends to a LIP homeomorphism D— D, then f is
LIPH.

2.2. Solidity

The rest of Section 2 is needed only for the proof of Theorem 3.1. First we
recall two terms introduced and observed to be related in [19].

For an open set UCR" we let E(U,R") denote the set of all embeddings of U
into R™, equipped with the compact-open topology, and H(U) denote the group
of self-homeomorphisms of U. If YCR"” is closed, Ey (U, R") denotes the closed
subset of E(U,R") consisting of the embeddings respecting ¥. As in [19; 3.8], a
set FCE(U,R™) is said to be solid if its closure in E(U, R"), denoted by clg F, is
compact.

Let f: H*— H™ be a homeomorphism. If there is a homeomorphism ¢: R}r—+
R} such that ¢~ (o(z,)) <o (f(z), f(¥)) <¢(o(z,y)) for all z,yc H", we say as
in [19; 6.10] that f is y-solid. By [8; Theorem 3], this is the case if f is K-QC and
n>2, with ¢ depending only on n and K. The following lemma gives the important
fact that although F¢|H™ with f QC is possibly not QC itself, it is solid, however.
The converse is also known to hold; see [29; 7.1 and 7.9].

2.3. Lemma. Let n>2 and K>1. Then there is a homeomorphism o: R},P—>
RL such that Fg|H™ is p-solid for every K-QC homeomorphism f:R"* 1 -R"1,

This fact was claimed in [19; 7.1] without proof. We give in 2.4-2.6 a proof,
based on solid sets of homeomorphisms, whose idea is mentioned in [27; p. 162].
Especially, Lemma 2.5 is an analogue of [20; 2.13]. In [29; 7.26] Lemma 2.3 is given
an elementary but lengthy direct proof.

2.4. Notation. Fix n>2 and K>1. If 2=(Z,2,)€H", let a,: RT? —»R" be the
similarity homeomorphism z~— Z+z,z; then a,(e,)=z. If fR* 1 -R" ! is a
homeomorphism, z€ H", and 2'=Fj(z), let 3f :az_,l. Define homeomorphisms
fo=B8{fa,:R"1>R" ! and Ff=p{F;a,:R?—R". Then Ff=F; [20; (2.5)].
Let G={f€ H(R")|f is K-QC}, F={Fy|H"|f€G}, Go={.|f€G, z€ H"}CG,
and Fo={F{|H"|feG, 2e H" } CF.
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2.5. Lemma. The set Fy is solid.

Proof. Let f€G and z€ H*. Then f,€G and f,(0)=0. Since f is 7-QS with
1=1g, we have

|f(Z+2zne1)— £(2)|

Tf(Z, Zn)

<1.

1
—_ < =
77(1) = lfz(el)|
Hence, clg Go is a compact set in G by [23; 19.4(1), 20.5, 21.7, and 37.3] if n>3
and by, e.g., [18; 3.4, 3.6, and 3.7] if n=2. Since the map H(R"!)—H(H"),
f—F¢|H™, is continuous [20; (2.6)] and since it maps Gp onto Fo and G onto F, it
follows that clg Fo is a compact set in F. O

2.6. Completion of the proof of 2.3. Let £>0 be given. Then find by 2.5 a
number §=6,=46.(n, K)>0 such that if Fy€Fy and 2€ H", then o(e,, 2) <6 implies
o(Fo(en), Fo(2)) <e, and o (Fy(en), Fo(z)) <6 implies o(en, 2)<e. Given F€F and
x,y€ H™, choose f€G with F=F;|H" and let z=0a;'(y); then o(z,y)=0c(en, 2)
and o(F(z), F(y))=0(F{(es), F{(2)). Thus, o(z,y)<é implies o (F(z), F(y)) <,
and o (F(z), F(y)) <6 implies o(z,y)<e.

Let w(t)=sup{o(F(z),F(y))|FeF,z,yeH", o(z,y)<t} for t>0. Since
w(6:)<e for each £>0, there is a homeomorphism 1/J:R}r—+R3r such that ¢(t)>
w(t) if t<8; and ¥(t)=2t/6; if t>6;. Consider FeF, z,ycH", t=0(z,y), and
t'=0(F(z),F(y)). We show that ¢'<u(t). This is obvious if ¢<&. Suppose
t>61. Choose successive points £=zg, 21, ..., 2=y in the hyperbolic geodesic join-
ing z and y such that o(zj_1,2;)=61 if j<k and o(2x_1,2k)<61. Then t'<k=
(0(20, 2k—1)+61) /61<%(t). Find in a similar way a homeomorphism ¢’: R} -R}
depending only on (n, K) such that t<v’(¢'). Then p=max(v,1)’) satisfies 2.3. [0

In the next two lemmas the cases Y =0 and Y=R" are in fact the same. The
first of these results deals with extension of locally L-BL approximations. It is a
respectful version of a part of [19; 3.9].

2.7. Lemma. Letn>1,letU, U, V, W be open sets in R™ such that W CV C
U, WnUCV, U'cU, and U’ is compact, let either Y =0 or Y =RP with 0<p<n
or Y=RE with 1<p<n, let F be a solid subset of Ey(U,R") whose members are
approzimable by LIP embeddings in Ey(U,R™), and let €>0. Then there is 6>0
such that for every L>1 there is L' >1 with the following property: If geF and
if he Ey(V,R") s locally L-BL such that d(h,g;V)<é, then there is an L'-BL
embedding b’ € By (U',R™) such that d(h',g;U’)<e and h'=h on WNU".

Proof. The proof is otherwise the same as that of [19; 3.9] but in place of
[19; 3.6], the quantitative version of a result due to Sullivan, we refer to [11; 5.7]. O
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To be able to apply 2.7 we need the following respectful LIP approximation re-
sult, Lemma 2.9 on extension of homeomorphic approximations, and the elementary
LIP approximation result 2.10.

2.8. Lemma. Let n>1, let either Y=0 or Y=R? with 0<p<n or Y=RE
with 1<p<n, let f:R"—R" be a homeomorphism respecting Y, and let e: R™—
(0,00) be continuous. Suppose that n#4 and that at least one of the following
conditions holds: (a) f|Y is LIP, (b) p#4 and f|0Y is LIP, (c) p#4,5. Then there
is a LIP homeomorphism g: R® —R"™ respecting Y such that |g(z)— f(z)|<e(z) for
each €R"™ and such that g|Z=f|Z whenever Z€{Y,0Y} and f|Z is LIP.

Lemma 2.8 reduces to the special case where we have in (a) that f|Y =id and
in (b) that p#4 and f|0Y =id. In fact, if Z€{Y,0Y} and f|Z is LIP, extending
f|Z to a LIP homeomorphism fi: (R™,Y)—(R"™,Y) and replacing f by f;'f we
may assume that f|Z=id. This special case of the lemma then follows from various
known piecewise-linear and smooth approximation results. For details we refer
to [13].

By [5; Corollary on p. 183], the dimensional restrictions in 2.8 cannot be omit-
ted. The proof of 2.8 makes use of the deep stable homeomorphism theorem due
to Kirby unless we know that the homeomorphisms f and either f|Y if 8Y =0 or
Fl1OY if 9Y #0, whenever arranged to be sense-preserving, are stable.

2.9. Lemma. Let 1<p<n, let Y=RP or Y=RE, let f:R"—R" be a ho-
meomorphism respecting Y, and let e:R™—(0,00) be continuous. Then there is
a continuous 6:Y —(0,00) with the following property: If ¢:Y —Y 4is a homeo-
morphism with |g(x)— f(x)|<6(z) for each z€Y, then there is a homeomorphism
g :R"—R" extending g such that |g*(z)— f(z)|<e(z) for each zeR™ and such
that, if, moreover, Y =RP, p<n, and f respects RTI, then g* respects Ri“.

Proof. Since f is continuous, by a well-known fact (cf. [17]) there is a continuous
7:R"—(0, 00) such that |f(z)— f(y)|<e(z) if z,yeR™ and |z—y|<n(z). Writing
R"=RP xR""? define a continuous w: R? — (0, c0) by w(z)=min{n(z,y)||ly|<1}.
By [15; Theorem 5.6.4] there is a continuous g: R? — (0, o) such that if h: RP—RP is
a homeomorphism with |h(z) —z| < g(z) for each z€RP, then there is a homeomor-
phism AT:RPx[0,1]—=RPx[0,1] of the form h*(x,t)=(h¢(z),t) such that hg=h,
hi=id, and |hs(z)—z|<w(z) for all ze RP, t€[0,1]. We may assume that g is in-
variant with respect to the orthogonal reflection of R? in R?~!. Choose a continuous
80: Y —(0, 00) such that |f~!(z)— f~Xy)|<e(f'(z)) if z,y€Y and |[z—y|<o(z).
We show that §:Y — (0, 00), 6 (f(z)), is the desired continuous function.

Thus, let g: Y —Y be a homeomorphism with |g(z)— f(z)|<8(z) for each z€Y.
Define a homeomorphism h: RP—RP by letting h=f"1g if Y =RP or by letting h
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be the extension of f~'g by reflection if Y=R%. Then |h(z)—z|<g(z) for each
z€RP. Now let T be as above. Writing again R*"=R? xR"? define a homeo-
morphism H: R"—R" by H(z,y)=(h:(z),y) where t=min(|y|,1). Then H|RP=h,
|H(2)—z|<n(z) for each 2€R", and H respects RE™ if p<n. It follows that
¢*=fH satisfies the lemma. O

2.10. Lemma. Let X be a metric space, Y:XXREF, f:Y—=Y a homeomor-
phism of the form f(x,t)=(z, f+(t)), and &: Y —(0, 00) continuous. Metrize Y by a
metric ¢ defined in a standard way. Then there is a LIP homeomorphism ¢:Y —Y
of the form g(z,t)=(z, 9(t)) such that o(g(y), f(y)) <e(y) for each ye€Y.

Proof. Define a continuous 7: Y — (0, 00) by
n(z,t) =min{e(z,s)/2|0< s <t+1}.

Choose a continuous 6:Y —(0,1) such that o(f(y), f(¥'))<n(y) if y,¥'€Y and
o(y,y")<é(y). By [14; 5.4] we may choose § to be locally Lipschitz. Define induc-
tively a sequence o;: X —»RY, ¢>0, of locally Lipschitz functions by ag(z)=0 and
aip1(x)=0;(z)+6(z, i(z)); then a;p1(z)>04(z), and a;(z)— o0 as i—oo. Define
a sequence fF;: X —>R1+, 1>0, of continuous functions by the condition f (x, ai(m)) =
(z,8:i(x)). Then 0=Fy(z)<pBi(z)<..., Bi(x)—00 as i—o0, and Bit1(z)—Bi(z)<
ni(x)=n(x, a;(z)). Define vo=Fp. For i>1, by [14; 5.4] choose a locally Lipschitz
function v;: X >R such that max{8;_1(z), 8i(z) —ni(x)} <7i(z) < Bi(x). Then 0=
Yo(z)<m1(z)<..., and v;(x) >0 as i—o0o. Now let g: Y —Y be the bijection of the
form g(z,t)=(x, g,(t)) where g, maps [a;(z), ;1(z)] affinely onto [v;(z), yi1(z)]
for each ¢>0. Then g is a LIP homeomorphism by [14; 2.40]. Finally, if a;(z)<
tSai+1(x)7 then tSal(x)+1 andy hence’ g(g(w,t), f(.’I?,t)) :lgz(t)—'fz(t)|<2nz(x)s
e(z,t). O

3. The main result

In this section we establish the following basic theorem on respectful quasicon-
formal extension with properties involving the hyperbolic metric.

3.1. Theorem. Let 1<p<n>2, let X€X(n,p), let K>1, and let €>0. Then
there is L=L(n, K,£)>1 with the following property: Let f:R" 1 —-R"! be g K-
QC homeomorphism respecting Xo. Then there is a homeomorphism F: R% —R%
respecting X such that

(1) o(F, Fy; H")<e,

(2) FIR""'=f,

(3) F|H"™ is L-BLH,

(4) F is L?"2.QC.
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3.2. Remark. The absolute case, X =0 or equivalently X=R}" =R, of 3.1
is due to Tukia and Viisild [20; 3.11]. In the proof of their result [19; 7.4] on
quasiconformal approximation of solid homeomorphisms they used a variation of
their method, and the proof of Theorem 3.1, to be completed in 3.21, is a modifica-
tion of this proof. The absolute case of 3.1, with (1) omitted, was proved for n=2
by Beurling and Ahlfors [3], for n=3 by Ahlfors [1], for n>3 with small K, using
Ahlfors’s method, by Sedo and Syéev [16], and for n<4 by Carleson [4] (see also
[6; 3.12]; the condition (3) is claimed in [20; Introduction]).

From now on, we assume that n, p, X, K, ¢, and f are given as in Theorem 3.1.

3.3. Case J

Consider the case of 3.1 where X=R} with 2<p<n. We call it Case J. We
choose a homeomorphism 7: R} —R! depending only on (n, K) such that f~* is 7-
QS and 7(1)>1. Then we define numbers x=(n(1)? - 1)'/2 and s»=min{1,1/3x/n}
and let CyCR™ ! be the set of the points (z,y,2z)ER"PxRP~?xRL with |z|<
z/x.

3.4. Lemma. In Case J, f|Cy respects R*~ 1P~ 1.

Proof. Let X;=R" 1P~1  Since X;NC;=Xp and since f respects Xo, it
suffices to show that fC;N(X;~Xo)=0. Thus, suppose, on the contrary, that
there is u€X;~\Xo with f~'(u)=(z,y,2)€C;. Then z#0. Let z=z+|z|/x,
v=(0,y,21)€Xo, and w=f(v)€Xo. Choose wy€dX, with |w—wo|=d(w,dXy);
then |w—wo|<|w—u| and vo=f~1(wo)€8X,. Hence,

|w —wg| |[v—1o “1
>0 (52 e e
x+1/x _ (1)

>4 T =
RS

which is a contradiction. O

3.5. Constructions

We define a decomposition K=/ or K=K of H" into closed n-dimensional
rectangular parallelotopes whenever X=R"? or X =R7?Y, respectively, as follows.
In Case J, let s be as in 3.3; otherwise, let »r=1. Let L be the natural decomposition
of R"~!x[1,2] into the closed rectangular parallelotopes which are the translates of
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the parallelotope [0, 3] P x[0,1]P with vertices in (%Z)" P x ZP~1 x {1,2}. Then
let

Ky= {2j(Q-—%J{(61+...+6n_p)) JQE[,, jeZ },
Kir={29(Q—1s(er+...4en_p)—2en_1) |QEL, jEL}.

Thus, except possibly in Case J, the members of K are cubes. We express K as a
finite disjoint union KX=K;U...UKy where each family X; is disjoint. In fact, this
can be done with N=2". We set K} =K,U...UK; for 0<i<N.

We define an open parallelotope P(t)=J""P(s¢t) x JP(t) and a closed parallelo-
tope P(t)=cl P(¢) in R™ for ¢>0. Suppose that Q€X. We let 2¢ denote the centre
and 2)\g the greatest side length of Q. We let ag: R™"—R" denote the similar-
ity map ag(x)=29+Agz. For t>0 we let Q(t)=agP(t) and Q(t)=agP(t); then
Q=0Q(1). We define a set XqCR™ by Xo=0 if QnX =0, by Xo=R} "' xR!
if QNOX#0, and by Xo=R"™? otherwise.

In Case J we let K;={QeK|QNX#0, QNoX=0}.

The following two lemmas are obvious.

3.6. Lemma. (1) If Q,ReK, QNR#D, and Q#R, then int QNint R=0 and
)\Q//\RE{%,LQ}.

(2) If QEK and 0<t<3, then 2stAgv/n<d(Q(t)) <2tAg+/n and
d(Q(t), R" 1) =(3—t)Aq.

(3) If @, ReK and QNR=0, then Q(3)NR(3)=0. O

3.7. Lemma. (1) For QeK, if QNX#0, then zg€ X, and if QNX=0, then
Q(2)NX=0. For Q€K+, if QNIX#D, then 2g€dX, and if QNOX=0, then
Q(2)NOX =0.

(2) If QeK, then Q(2)NX=Q(2)NXo=0ag[P(2)NXe]. O

3.8. Lemma. In Case J, Q(2)CCyxR! for each Q€K;.

Proof. Let Q€Ky. Consider a point a=(z,y,2,u)eR* PxRPZxR! xR! of
Q(2). Since |z|<3sAqy/n—p<Ag/2x<z/x, we have acCyxR!. O

3.9. Lemma. If Q€K, then FfIQ(%) respects Xg and
FiQ(3)NX =F;Q(3)NXq.

Proof. For Q€K; in Case J, the first claim follows from 3.4 and 3.8; otherwise
the claim is implied by the fact that F respects X. Since Q(3)nX =Q(%)0XQ by
3.7(2), the second claim follows. O



364 Jouni Luukkainen

3.10. Lemma. There is c=c(n)>1 such that ag|P(3): (P(3),d)— (H",0)
is ¢-BL for each Q€K.

Proof. As for [19; 6.15] by the aid of 3.6(2). O

3.11. Constructions

For Q€K and 2€R™ we set

e z2—F¢(2
& = d(FyQ, R, ﬁ{;(d=$, F} =B} Fraq.

Thus, ﬁé is a similarity map R"—R", and Fé is an embedding of aélRﬁ > P(3)
into R™. Obviously, ﬂé respects X¢o. By 3.7(2) and 3.9 it then follows that F£|P(%),
too, respects Xg.

For Ye{Xg|QeK} we let Gy CEy (P(3),R") be the set of all embeddings
F3|P(3) where QeK, Xo=Y, and g: (R""!, Xo)—(R"™, X)) is a K-QC homeo-
morphism.

3.12. Lemma. The sets Gy are solid.

Proof. This can be proved as the implication (1)=-(3) of [19; 6.17] is proved
(cf. also [19; 6.20]) by the aid of 2.3, 3.6(2), and 3.10. O

3.13. Lemma. Let QeKX and let ¢'>0. Then there exists a LIP embedding
Y: P(5)—R™ respecting Xq such that d(v, Fé; P(3))<¢.

Proof. Choose 6>0 such that §<e'd}, and 6<d(F;Q(3), H"\FsQ(3)). We
show that there is a LIP homeomorphism u: H"— H"™ respecting X such that
d(p, Fy; H*)<6. Then the LIP embedding wzﬂcfgan|P(§) satisfies the lemma.
In fact, d(¥, Fg;;P(%)) <6/dé§a' and, since p respects X and pQ(3)C FrQ(2), it
follows by 3.7(2) and 3.9 that 1 respects Xg.

Suppose first that n#4, that p#4 if X=R}’?, and that p#4,5 if X=R}?.
Then the existence of u follows from 2.8.

Suppose now that n#5, that p#5 if X=R}?, and that p#5,6 if X=R}7.
Then by 2.8 there is a LIP homeomorphism g: (R* ™!, X)—(R"™!, X;) such that
d(g, f)<6/3. From [20; 2.16] (in whose proof the value of ro>0 plays no role) it
follows that the homeomorphism Fy: (R7, X)—(R7%,X) is LIP. Since d(Fy, Fy)<
3d(g, f), we can take p=F,|H".

Only the cases (a) (n,p)=(5,4) and (b) X:Ri’j’_ remain. In these cases,
by 2.8 and 2.9 there is a homeomorphism g: (R*~1, Xo)—(R""!, X;) such that
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d(g, f)<6/9 and such that (a) g|Xo or (b) g|0Xo, respectively, is LIP. Now
d(F,, F)<6/3. Since the homeomorphism p=Fy(g~! xid): R? - R has the form
¢(z,t)=(z,74(97 (z),t)), by 2.10 there is a LIP homeomorphism ¢’: (R}, X)—
(R7%, X) such that d(¢’, ¢) <6/3. Then h=¢'(gxid): R} —R’ is a homeomorphism
respecting X such that d(h, F,;)<6/3 and such that (a) h|X or (b) hl0XoxR1,
respectively, is LIP. Hence, by 2.8 there is a LIP homeomorphism u: H"—H"
respecting X such that d(u, h; H*)<6/3 implying d(p, Fg; H™)<6. O

3.14. Remark. The application of 2.8 in the proof of 3.13 does not lead to a
dependence on the stable homeomorphism theorem. For consider, e.g., the case
8Xo#0. We may assume that the LQS homeomorphisms f and f|0X, are sense-
preserving. Then by the proof of [19; 3.12] there are isotopies f=id and f]0X,2id,
and these can be extended to isotopies Fy2id and Fy|cl(0XNH™)=id. Thus,
the homeomorphisms f, fl0Xo, Ff|H™, and Ff]0XNH" are stable as needed if
(n,p)#(5,4) and p#5. On the other hand, if (n,p)=(5,4) or p=>5, it is easy to see
that h is stable as needed.

3.15. Lemma. There is M=M(n, K)>1 such that
1/M<d)/df <M, df,<Md(F:Q(%),R"™)

whenever Q, REK with QNR#(D.

Proof. The former assertion can be proved as that in [19; 7.5] by the aid of
3.6(2) and 2.3. The latter assertion then follows from the fact that

Q(3) CU{ReK|QNR#0}
by 3.6(3). O
3.16. Lemma. There is ¢'=c'(n, K)>1 such that
BHIF;Q(5): (FrQ(5),0) — (R, d)
s ¢/-BL for each Q€K.
Proof. As for [19; 7.6] by the aid of 3.6(2), 2.3, and 3.15. O

3.17. Constructions

For 0<i< N we set

Vi=U{Q(+277 )| Qeki), Wi=U{Q(1+277%)|Q ek}

7-935212 Arkiv f6r matematik
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then Vo=Wy=0. If QeK; and 1<t§§, we set

Vo(t)=P(t)Nag'Vi-1, We(t)=P(t)Nag Wi_;

then, by 3.6(3) if ¢>2 or trivially if i=1, agVq(3) is the union of the sets
Qr=Q(3)NR(1+27%) where REX}_; and QNR#0. Clearly, the set

5={Va(3)|QeKIU{Wo(4)| ek}

is finite.

We apply 2.7 for QeK with U=P(3), U'=P(3), V=Vu(3), W=
Wq(3), Y=Xg, and F=Fx,={g|P(3) lgegXQ }; this is possible by 3.12 and 3.13.
Since S and {Xg|Q€K} are finite, we obtain:

3.18. Lemma. Let ¢ >0 and L>1. Then there are positive numbers 6=
6(e’,n, K)<e' and L'=L'(¢',n, K, L)> L with the following property:

Let QEK, let geFx,, and let h:Vo(5)—R™ be a locally L-BL embedding
respecting Xq such that d(h,g;Vo(3))<6. Then there is an L'-BL embedding
W:P(§)—R" respecting Xq such that d(h',g; P(3))<e¢' and h'=h on Wg(3). O

3.19. Constructions

First note that 5, 5, 3, 3 is an arithmetic progression with difference L. By
3.12, there is a number g=g¢(n, K)>0 such that |g(z)—g(y)|>¢ whenever Q€K
9€Gx,, and x,yeﬁ(}—g) with |z—y|>/12. Let ¢, ¢/, and M be as in 3.10, 3.16,
and 3.15, respectively. Define numbers éy>6n-1>...260>0 by 6N:min(q/(M+
2),e/c’) and 6;_1=6(6;,n, K)/M, where §( ) is as in 3.18. We also define numbers
Lo<..<Ly by Lo=1 and Ly=cc'L'(6;,n, K, \;), where L'( ) is as in 3.18, where
j>1, and where A\j=cc’ M L;_; (this M is erroneously missing in [19; 7.9]). Observe
that the sequences (8o, ...,6n) and (Lo, ..., Lx) depend only on (n, K,¢). We show
by induction that the following lemma is true for every integer j€[0, N]:

3.20;. Lemma. There is an embedding F;:V;— H™ respecting X with the
following properties:

(1) d(Fj,Ff;Q(1+2*j_1))§§jdg for every QeKC;.

(2) F;Q(1+277"1)CFQ(3) for every QeK;.

(3) F; is locally L;-BLH.

Proof. Since V=0, 3.20¢ is true. Suppose that 3.20;_; is true. Thus we have
an embedding F;_;:V;_1—H". We define F;(z)=F;_(z) for e Wj_1. Let Q€K;.
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Then F£|P(%)EQXQ. Define an embedding thﬂéFj_laQ[VQ(g). Consider Re
KCs_; with QNR#0. By 3.20;_1(1) and 3.15 we obtain

d(hq, Ff;a5'Qr) = d(Fj_1, Fs; Qr)/dh < M&; 1 = 5§(8;,n, K).
Hence, d(hQ,FCfQ; Vo(3))<6(8;,n,K). For R as above we have
holag'Qr = (B5(85) ™) (BLF;-11Qr)(aqleg' Qr).

Here F;_1QrCF;R(%) by 3.20,_1(2). Hence, B}|F;_1Qr is ¢-BL between ¢ and d
by 3.16. Moreover, ﬂé(ﬂlfz)_l is M-BL in d by 3.15. Thus, hQ]aE)lQR is locally
A;-BL in d by 3.20;_1(3) and 3.10. Hence, hq is locally A;-BL. We show hq to
respect X¢. Suppose that R is still as above. Let x€Qg and yeaé(%) Since
|a51(x)—a51(y)|2z/12, the choice of ¢ implies |Fc’;(aél(x))—F£(a51(y))|Zq
yielding |Fy(z)— Fy(y)] qué. Since

|Fj_1(z)— Fy(z)| < M&;_1d} < Ménd) < gdf,

we conclude that F;_1QrCFrQ(3L). Since Fj_; respects X, it follows by 3.7(2)
and 3.9 that hQ|a51QR respects Xg. Thus, indeed, hg respects Xy. Hence,
we can apply 3.18 with &'=4;, g=Fé|P(%), h=hg. We obtain an (L;/cc’)-BL
embedding thip(%)—*R" respecting X¢ such that d( ’Q,Fé; P(2))<6; and hl,=
hq on Wo(3). Setting sz(ﬂé)_lhbaél on Q(14+27771) we obtain a well-defined
map Fj:V;—R". We show that F; satisfies the conditions (1), (2), and (3), that
F; is injective, and that F} respects X.

To prove (1), let QeX;. If QeK;_q, (1) follows from 3.20;.1. If QEK;, we
obtain

d(Fy, F; Q1+2797Y)) =dhd(hy, Ff; P(1+27771)) < §;d),.

To prove (2), let again Q€K}. If Q€K _y, (2) follows from 3.20;_;. Sup-
pose QEK;. Then d(hiy, F}; P(3)) <6; <6y <qimplying hiy P(1+27I1)CF)P(%).
Hence (2) is true. Observe that (2) implies F;V;CH™.

If QeK;_,, then F; is locally L;-BLH on Q(1+277=1) by 3.20,_1. If Q€K
then 3.10, 3.16, and (2) imply that F;|Q(1+277~') is L;-BLH. Hence, F} is a
locally L;-BLH immersion.

We now show that F} is injective. First, F;|W;_1 and F;|Q(14+277~1) for each
Q€K; are injective. Moreover, if @, R€K; and QNR=0, then (2) and 3.6(3) imply
that F;Q(1+277-1)nF;R(1+27771)=0. Hence, it suffices to show that Fj(z)#
Fj(y) whenever j>2, z#y, z€Q(1+27771), and yeR(1+277971) where Q€K;,
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ReK_,, and QNR#0D. The equality Fy=(8))*higag' is valid on Q(3)NV;.
Hence we may assume that y¢Q(§). Since d(Fé(aél(z)),FcfzaP(%)) >gq, we then
have |Ff($)_Ff(y)|qué. By (1) and 3.15 we obtain

| (@)~ F;(y)| 2 |Fy (@)~ Fy (y)| = [F;(2) = Fy (2)| = |F (y) = F5 (y)
> qdfy—6;df,—8;df, > (q— (M +1)bx)df, > ndhy > 0.

It follows that Fj: V;—H™ is an embedding.

We finally show Fj to respect X. First, F;|W;_; respects X. Consider Q€K;.
Then F;|Q(1+27771) respects Xg. Hence, it follows from (2), 3.7(2), and 3.9 that
F;|Q(1+277-1) respects X. Thus, F; respects X. [

3.21. Completion of the proof of 3.1. We show that 3.1 is true with L=Ly
defined in 3.19. Let F:H™— H"™ be the map of 3.205. We show that the map
F=FyUf:R%? —R" satisfies 3.1. First, Fiy is an embedding, and Fy is locally
Ly-BLH. Clearly F respects X. To prove the condition (1) of 3.1, let z€H™.
Choose Q€K containing z. Then 3.20x(1) yields IFN(z)—Ff(x)lSéNdégadg/c’.
By 3.205(2) and 3.16 this implies o(Fn(z), Fy(z))<e. Hence (1) is true. Since
FyH™"=H", it follows from (1) that FyH"=H". From (1) it also follows that
Fn(z)— f(zo) as z—xo€R"™ 1. Thus, F is a homeomorphism. Hence, (3) obtains
by [19; 6.21]. Finally, (4) follows from (3) and from the analytic definition of
quasiconformality {23; 34.2]. O

The following lemma will be needed in the last section.

3.22. Lemma. Suppose that f|B" !(r)=id for some r>0 in Theorem 3.1.
Then there is w, €(0,1) depending only on n such that F can be chosen so as to
satisfy F|C™(w,r)=id.

Proof. We check that the above construction for F' works if just one choice is
made more carefully. First note that F¢|C™(r)=id. Thus, if Q€K and Q(2)CC™(r),
then de=2)\Q by 3.6(2), and therefore Fé]P(2) is a restriction of the map :R"—
R, z2/2. Let w=(1+2v2n)"!. Then Q€K and QNC™(wr)#0 imply Q(2)C
C™(r); this follows by 3.6(2) from the facts d(Q, R""!)<wr and d(C™(wr), RT N
C™(r))=(1-w)r/v2. Let w,=w".

We show that we can add to 3.20; the following condition:

(4) F;|Q(1+27771)=id for every Qe with QNC™(wir)#0.

Let Q€K with QNC™(wir)#0. If Qe;_,, then (4) follows from 3.20;_1(4). Let
Q€K;. Consider REK;_; with QNR#AD. Since Q(2)CC™(w’~'r), we conclude
that F;_1|Qgr=id. Hence, hg=6 on aélQR. Thus, hQ=0|VQ(§-). Now note that 6
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is 2-BL with 2<M<X;<L;/cc’ and that 6 respects Xg. Therefore we can define
©=0IP(3). It follows that F;|Q(1+277~1)=id.
We now have F|C"™(w,r)=id. O

4. Complementary results

In this section we first apply Theorem 3.1 to show in 4.1 that F|X in 3.1 can be
prescribed if F' is claimed to be quasiconformal only. In 4.3 we consider Euclidean
Lipschitz properties that F' inherits from f in 3.1. Theorem 4.4 uses another ex-
tension method at the limit K —1. Higher codimensional extension is the topic of
4.5. Theorems 4.6 and 4.8 are corollaries for quasisymmetric homeomorphisms of
sphere pairs.

4.1. Theorem. Let 1<p<n>2, let X€X(n,p), and let
R X)) = (R, Xo) and g¢:(X,Xo)— (X, Xo)

be homeomorphisms with f|Xo=g|Xo. Let f and g be K-QC and 7=(n, K) when-
ever p>2; let fUg: R 1UX—-R"1UX be 1-QS and 7=(n,n) whenever p=1.
Then there is a K*-QC homeomorphism F: R R with FIR""'=f and F|X=g
where K* depends only on 7.

Proof. By 3.1 there is a K-QC homeomorphism Fp: (R%, X)—(R%,X) ex-
tending f where Ko=Ko(7). By replacing (f,g) by (Fy'f,F; 'g) we may assume
f=id. Then g|X,=id. If X=R}'"?, let X;=R}’”; then we can extend g by reflection
to a K-QC homeomorphism g1: X; —X; with g1|0X;=id. Thus, we may assume
X=R"". Then, proceeding by induction on n—p, we may assume p=n—1. Let
Y={z€R}|z1>0} and Z={z€R% |2, <0}; then R} =Y UZ and X=YNZ. Let
vy =(fUg)|0Y and pz=(fUg)|0Z. There are L-BL homeomorphisms o: Y —R7
and B: Z—R7 with L an absolute constant such that a|Y NR™"!=id and B|ZN
R"~!=id and such that o|X and 3| X are isometric. Then the self-homeomorphisms
gy=apya~! and gz=BypzB~! of R*"! are K-QC if p>2 by [23; 35.1] and 7;-QS
with 7 (t)=L%n(L?t) if p=1. By 3.1 there are K;-QC self-homeomorphisms Gy and
Gz of R7 extending gy and gz, respectively, with K1 =K;(7). Let K*=L*" %K.
Then Fy=a"'Gya:Y =Y and Fz=03"1GzB: Z— Z are K*-QC homeomorphisms
extending oy and @z, respectively. Thus, F=FyUFz:R} —R" is the desired
K*-QC homeomorphism. [

4.2. Remark. The assumptions in 4.1 are necessary. For consider first a K-QC
homeomorphism F:R%} —R%, n>2. Then F is n-QS with 7 depending only on K
by [2; 5.23]. Suppose n>3. Then F|R"! is K-QC by [7; Corollary] as is also
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F|X by [7; Theorem 2] if 2<p<n, Xe€X(n,p), and F respects X. Moreover, the
case p=1 of 4.1 really differs from the case p>2. For example, the homeomorphism
FRISRL z|zfe, is QS (by [23; 16.2] if n>3) as is also g=id|R"}", but
fUg is not LQS at 0.

4.3. Preservation of Lipschitz properties in 3.1

Consider the behaviour in the Euclidean metric of the homeomorphism F
as given in Theorem 3.1. We show that F inherits various Lipschitz properties
from f. Of course, F'|H™ is LIP. For 2=(z,t)€ H" write §(z)=d(z, R""!)=t. Then
Li(z,F)=L,(2,F)§(F(2))/6(z) and Ly(F(2), F~')=L,(F(z), F~')6(z)/6(F(z)).
Here L,(z, F)<L and L, (F(z), F"')<L by 3.1(3), e ©<8(F(2)) /6(Fs(z)) <e* by
3.1(1), and &(F¢(z))=7¢(x,t). Suppose that f|B™'(r) is A-Lipschitz. If
z€C™(r), then 7¢(z,t) <At and thus Lg(z, F)<A*=e°LA. Hence, F|C"(r) is A*-
Lipschitz. If f~1|fB" (r) is \-Lipschitz and 2€C™(r), then 7¢(z,t)>t/\ and
thus Ld(F(z),F_l)S)\*. It follows, e.g., that if f is A-BL, then F is A*-BL,
and that if f is LIP, then F is LIP. Assume now p>2. Choose a homeomor-
phism n: R} —R% depending only on (n, K) such that f is -QS. If z€ X, define
T})(z)zma,x{|f(a:)—f(y)|]yEXO, |z—y|=t}. Then 72(2) <74(2) <n(1)73(2). Tt fol-
lows that if f|Xg is A-BL, then F|X is n{1)e* LA-BL, and that if f|X, is LIP, then
F|X is LIP. In the case p=1, note that if f is as in 4.2, then |F(0,t)|<e°74(0,t)=
e°t? for t>0, and therefore F|X is not LIP.

For K-QC homeomorphisms with K sufficiently close to 1 there is an ele-
mentary and explicit extension method due to Tukia and Viisild [21; 5.4], who
considered more generally s-QS embeddings f: R*—R", k<n, with small s. In the
next theorem we check that in our special case this method is respectful. The BLH
condition of the theorem was known to Tukia and Véaisdld [26; 4.5].

4.4. Theorem. Let 1<p<n>2 and X€X(n,p). Then there is Ko=Ky(n)>1
with the following property: Let f:(R"1, Xo)— (R 1, Xy) be a K-QC homeomor-
phism with K<Ky. Then there is a homeomorphism F:(R%},X)—(R%, X) which
satisfies the conditions (2)—(4) of 3.1 with L=L(n,K)—1 as K—1 and for which
F|H™ is piecewise-affine.

Proof. Replace p by m and let X'=R}"™. Tt suffices to modify the proof of
[21; 5.4] in the special case fR?=RP? with p=n—1 as follows. First, make sure that
the vertices of the cubes in J(n—1) of side length 1 are in Z"~! and that each
of X'NH"™ and 0 XNH™ is the underlying space of a subcomplex of the triangula-
tion W of R®*~\R""!. Let each (n—1)-frame wg be ordered as (wg"m“, ...,wg_l,

W, -+, wg ) when forming the orthonormal (n—1)-frame vg=G(wgq). Observe
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that in [21] no use has been made of the stated sense-preserving nature of various
embeddings. Thus, it is not necessary to assume the n-frames ug to be posi-
tively oriented, and we can define ug=e, for each Q€ J(n~1). It follows that
hoR%} =R for each Q, that hg X=X if ag€dXo, and that hgX'=X"if ag € Xo.
Then gR?} =R . For each vertex b of W in X we choose the cube @=Q(b) in
such a way that ag€Xy, with ag€dXy whenever b€dX. If X=X’ it follows
that gXop=Xo and gX CX, which imply that gX=X. In the case X# X' we have
that g[8X]COX, yielding g[0X]=8X, and gX C X', from which we conclude that
gX=X.

Finally, from [21; (5.7), (5.8), and 3.5] it easily follows that L,(z,g)<L; and
lo(x,9)>1/L, for each z€ H™, where

Ly =Li(n,q) = (1+18n®(n+1)M(n)q) /(1-9n?q) — 1

as ¢—0, which implies that g|H™ is L;-BLH. Thus, F=g|R"} satisfies the theo-
rem. O

4.5. Extension from dimension n—1 to n+k

Let 1<p<n>2 and k>1. For simplicity we consider only the case Xg=
R"17=1 of 5.5 for the case Xo=R "?~'. Suppose that f is a K-QC self-
homeomorphism of (R*~!, R"~1P~1). Let F be the K3-QC self-homeomorphism
of (R}, R}?) extending f with K§=K(n,K) whose existence is guaranteed by
3.1. Then we can extend F' by reflection to a Kj-QC self-homeomorphism Fy of
(R™,R™P). Repeating this process, we can extend f to a K}-QC self-homeomor-
phism Fi of (R"tF R"T*P+k) with K;=K}(n+k,K). By 4.4 we may assume
that K;—1 as K—1. By 3.1 and 4.4 we can choose F|H™ to be L-BLH with
L=L(n,K)—1 as K—1. Then F}j can also be obtained by rotating F' around
R™ 1. More precisely, let zE R"** and write z=(z, te) where zeR™~!, ecS*, and
t>0. Then define Fi(z,te)=(z’,t'e) where (2’,t')=F(x,t). Now it is easy to show
that Fi|[R"**\R""! is L-BLH; cf. [20; 3.13]. Then F} is L2("+k=1D_.QC. Still
further, the same method of [21; 5.4] we used for 4.4 gives directly a number Kj=
Ki(n+k)>1 and in the case K <K} an extension F}, such that Fy|R"T*<R""! is
piecewise-affine and Ly-BLH with Ly=Lx(n+k,K)—1 as K—1.

The previous theorems imply analogous results, Theorems 4.6 and 4.8, on ex-
tending QS self-homeomorphisms to ball pairs from the bounding sphere pairs. The
absolute case p=n of the first theorem and a generalization of the absolute case of
the second theorem to embeddings f: $¥* —R™, k<n, are due to Tukia and Viisild
([20; 3.15.4], [22; 2.18] and, respectively, [21; 5.23], [26; 4.6]).
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4.6. Theorem. Let 1<p<n>2 and let f:(S™71,8P71)— (5", 57P71) be an
1-QS homeomorphism. Then f can be extended to an 1n*-QS homeomorphism
F:(B",BP)—(B™, BP) where n* depends only on n and n. Moreover, one of the
following two conditions can be added:

(1) We can choose F|B™ to be L-BLH with L=L(n,n).

(2) If g: BP— BP is an n-QS homeomorphism with f|SP~1=g|5?~! and if fUg
is n-QS whenever p=1, then we can choose F|BP=g.

Proof. We may assume that f(e;)=e;. Let X=R'P. Choose a M&bius homeo-
morphism ¢: R*—R" such that ¢ H"=B", that ¢(co)=e;, and that gR™?= R?.
Then ¢X=BP~{e;}. By [25; 3.2, (1.8), and 3.10], the homeomorphism f;:
(R 1, X3)—(R"1, X,) defined by ¢! fy is 6-QS with  depending only on 7 as
also in (2) are the homeomorphism g;: X — X defined by ¢ ~'gy and f; Ug; whenever
p=1. By 3.1 we can extend f; to a K-QC homeomorphism F;: (R}, X)—(R%, X)
with K=K (n,n). Moreover, we may assume in (1) by 3.1 that Fy|H™ is L-
BLH with L=L(n,n) and in (2) by 4.1 that Fy|X=g;. Extend Fj to a homeo-
morphism Fi:R? —»R7%. Then F=¢F;p~':(B" BP)—(B", BP) is a K-QC ho-
meomorphism extending f such that F|B™ is L-BLH in (1) and that F|BP=g
in (2). Now |F(0)|<a(n,n)<1 by [22; 2.17]. Hence, there is a K;-QC homeomor-
phism A:R™—R™ such that k(F(0))=0, h|R"\B"=id, and Ko=Ko(n,n). Let
Fy:R"—R™ be the KoK-QC homeomorphism obtained from hAF by reflection;
then Fs=h 1Fp:R"—>R" is KZK-QC and F=F3|B". Hence, F is n*-QS with
n* depending only on (n,n). O

4.7. Lemma. Let n>2, and let f: B*— B" be a K-QC homeomorphism such
that f|S™ ! is s-QS with s<%. Then |f(0)|<a=a(n, K,s)<1 with a—0 as K—1
and s—0.

Proof. By [26; 2.3], f|S™~! is n-QS with a universal homeomorphism 7. Hence,
|£(0)|<b(n, K)<1 by [22; 2.17]. Suppose that the second assertion of the lemma
is not true. Then for some e>0 there are K;-QC homeomorphisms f;: B»—B"
with f;|S™~! being s;-QS such that K;—1, £>s;—0, and |f;(0)|>e. Applying
[18; 3.5-3.7] and passing to a subsequence, we may assume that (f;|S""!) con-
verges uniformly to a homeomorphism A: S»~1— S™~1 which must be an isometry.
Extending each f; by reflection to a K;-QC homeomorphism g;: R*—R", applying
[23; 19.4(2), 20.5, 21.5, and 37.3], and passing again to a subsequence, we may
assume that (f;) converges uniformly to a Mobius homeomorphism g: B"—B",
Since g|S™"~!=h, it follows that g is an isometry, which contradicts the inequality
9(0)[>e. O
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4.8. Theorem. Let 1<p<n>2. Then there is so=so(n)>0 with the following
property: Let f:(S™71,8P71)—(8""1,8771) be an s-QS homeomorphism with
s<sg. Then f can be extended to an s*-QS homeomorphism F: ( B", B?)—( B", BP)
such that F|B™ is L-BLH where s*=s*(n,s)—0 and L=L(n,s)—1 as s—0.

Proof. We may assume that f(e;)=e;. Define X, ¢, f1 as in the proof of 4.6.
From [25; 3.8 and 3.10] we see that there is an absolute constant s; >0 such that if
s<si, then f; is K-QC with K=K(n,s)—1 as s—0. Thus, choosing so=s¢(n)>0
with sg<min(s, %) small enough and assuming s<sg, by 4.4 we can extend f;
to a homeomorphism F: (R, X)—(R%, X) such that F1|H™ is L-BLH with L=
L(n,s)—1 as s—0. Define F and choose h as in the proof of 4.6 but now by 4.7
with Kg=Kg(n,s)—1 as s—0. Then F satisfies the theorem. O

5. Extension of locally quasisymmetric homeomorphisms

In this section we use mainly the term LQS rather than the term LQC. We
prove LQS versions of Theorems 3.1 and 4.1 and of the higher codimensional ex-
tension 4.5.

In the following lemma w,, is the number of 3.22.

5.1. Lemma. Let 1<p<n>2, let X€X(n,p), let f:(R" 1, Xo)—(R" 1, Xo)
be an LQS homeomorphism, and let ACRY be compact. Then there is ro>0 with
the following property: For everyr>rq there is a QS homeomorphism ¢: (R%, X)—
(R%,X) such that o=f on B"~'(r), that ¢|H™ is BLH, and that ¢B%(ro)DA.
Moreover, if f|B"1(s)=id for some s>0 and if r>s, then ¢ can be chosen so as
to satisfy ¢|C™(wns)=id.

Proof. We may replace f by f—f(0) and A by A— f(0) arriving thus always
at the situation f(0)=0. Choose ro>0 with FyB}(rg)DA. Consider r>ro. If it is
assumed f|B"~1(s)=id, assume r>s. Let C=C"(2r). Then B%}(rq)CC.

We wish first to extend f;=f|B""1(2r) to a QC self-homeomorphism g of
(R, X,). By [23; 34.7] or [9; Theorem 4], f1 is QC. If n=2, the existence
of g follows from [9; Theorem 5]. Suppose that n>3. Let a:R*"'—R""! be the
inversion in $”2(2r); then aXo=X,. The LQC embedding ho=a fa: B*~1(2r)~
{0}—R""! respects Xo. Thus, by the relative (or respectful) Schoenflies theorem
[6; 2.4] (for a slightly corrected and completed proof of which see [12]), there is a
QC embedding h: B*1(2r)—R""! extending ho|S™2(2r) and, if p#1, respecting
Xo. By composing h with a suitable QC homeomorphism R""!—R"~! which
respects X if p#1 we may assume that h(0)=0 always. Then g=f;U(aha|R™ '\
B"~1(2r)) is the desired homeomorphism.
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We have that Fy=F; on C. Consider ¢>0. By 3.1 and 3.22 there is a
QS homeomorphism ¢: (R%, X)—(R%, X) extending g such that o(p, Fy; H")<e,
such that ¢|H™ is BLH, and that ¢|C™(w,s)=id if f|B""'(s)=id. Then
o(p, Fy; CNH™)<e. By choosing ¢ small enough we have that d(p, Fy; B (ro))
is so small that ¢B% (ro) D A. Then ¢ satisfies the lemma. [

5.2. Theorem. Let 1<p<n>2, let XcX(n,p), and let f:(R"71, Xy)—
(R™1, Xy) be an LQS homeomorphism. Then f can be extended to an LQS ho-
meomorphism F: (R%, X)—(R%, X) which is LIPH on H™.

Proof. We construct inductively numbers r;>j and QS self-homeomorphisms
p; of (R, X) for j>1 such that, setting s;=2r;/wy (>r;), we have that ¢,;=f
on B"1(s;), that ¢;|H™ is BLH, that ¢; B} (r;) DB%(j), that rj 1>r;, and that
ir1=9; on C;=C"(wps;)DBY(r;). We obtain r; and ¢; from 5.1.

Suppose that we have constructed r; and ;. Define an LQS homeomorphism
g:goj_lf: (R™ 1, Xo)—(R" !, Xo). Then g|B"!(s;)=id. Thus, by 5.1 there are a
number 7,47 >max(j+1, s;) and a QS homeomorphism ¢: (R}, X)— (R}, X) such
that p=g on B""!(s;41), that ¢|H™ is BLH, that @Bi("'j+1)3@‘7~_131(j+1), and
that |C;=id. Then ;1 =p;¢: (R, X)— (R}, X) is the desired homeomorphism.

By setting F'=¢; on B%(r;) for each j we obtain the desired LQS homeomor-
phism F: (R%,X)—(R7, X) extending f and LIPH on H*. O

5.3. Remarks. 1. The absolute case X =R of 5.2 without the LIPH property
was proved in [10; 9.2]. The above proof for it is a simplification of that in [10].

2. In 5.2, if p>2 and f|Xy is LIP, then F can be chosen such that F|X is
LIP. This follows from the construction of F', where in the proof of 5.1 note that
[12; Theorem 3] produces h with h|h~! Xy LIP whenever ho|hy ' X is LIP and that
¢|X is LIP by 4.3 whenever g|Xy is LIP.

5.4. Theorem. Let 1<p<n>2, let X€X(n,p), and let f:(R"1, Xp)—
(R, Xo) and ¢: (X, Xo)— (X, Xo) be LQS homeomorphisms with f|Xo=g|Xo
and such that fUg is LQS at 0 if p=1. Then there is an LQS homeomorphism
F:R%} =R} extending f and g.

Proof. The proof is similar to that of 4.1; only resort to 5.2. O

5.5. Extension from dimension n—1 to n+k

We consider only the case XO:Ri_l’p_l; cf. 4.5 for the case Xo=R"" 1P,
However, for notational reasons we change Xg. Thus, define

RY? ={z e R™ |z,_p41 >0}
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for 1<p<n as then (R*™ R™T*PT)—(R" R7P) x R* for k>1. Now suppose that
f is an LQS self-homeomorphism of (R"~1, ﬁ’}r—l’p_l) with 2<p<n. Let F be the
LQS self-homeomorphism of (R"~?, ﬁi_l’p ~1)x R extending f which is given by
5.2. Then we can extend F by reflection to an LQS self-homeomorphism Fy of
(R”,f{i’p ). Repeating this process, we can extend f to an LQS self-homeomor-
phism F} of (R"**, ﬁfrk’p *k) for each k>0. Alternatively, as F|H™ can be chosen
LIPH, we can also obtain Fj for each k>1 by rotating F around R"~! as in 4.5;
now Fi|R"**\R"~1 is LIPH and F} thus LQS.
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