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Hyperbolicity of localizations 

Tatsuo Nishitani 

1. I n t r o d u c t i o n  

Let P(x,D) be a differential operator  of order m in an open set ~ c R  n+l 

with coordinates x = (x0, x ~) -- (x0, Xl, ..., xn), hence a sum of differential polynomials 
Pj(x,D) of order j (j<_m) with symbols Pj(x,~). In [7] Ivr i i -Petkov has proved a 
necessary condition for the Cauchy problem of P(x, D) to be correctly posed which 
asserts that  Pm-j(z) must vanish of order r -2 j  at z if Pro(z) vanishes of order r 
at z with z=(x,~)ET*~2\O. This enables us to define the localization Pzo(z) at a 
multiple characteristic z0 (of P,~(z)) following Helffer [4] which is a polynomial on 

Tzo(T*~). 
In this note we show that  Pzo (z) is hyperbolic, that  is verifies Gs con- 

dition if the Cauchy problem for P(x, D) is correctly posed. The proof is based on 

the arguments of Svensson [9]. 

Since P~o (z) is hyperbolic one can define the localizations P(zo,~l ..... ~8)(z) suc- 
cessively as the localization of P(~0,~l ..... zs_~)(z) at z~ which are hyperbolic poly- 
nomials on Tzo(T*f~)~-...~-T~8 (T*f~) (see Hbrmander  [6, II] and At iyah-Bot t -Gs  

ding [1]). It  may happen that  the lineality A(~o,~ ..... ~8)(Pm) of Pm(~o,~ ..... ~8)(z) 
is an involutive subspace with respect to the canonical symplectic structure on 
Tzo(T*~). In this case we prove that  for the Cauchy problem to be correctly posed 

it is necessary tha t  

P(zo,~l ..... zs)(z)=Pm(~o,~ ..... ~,)(z). 

This argument was also used in Bernardi-Bove-Nishi tani  [2] with s--1.  

2. T h e  l o c a l i z a t i o n  is h y p e r b o l i c  

We denote by Lz'~ 'r the set of pseudodifferential operators P near z0 with 
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symbol P(x, ~) verifying 

P(x,~)~ E Pm-j(x,~) 
j=o 

in every system of homogeneous symplectic coordinates around z0, where Pm-j (x, ~) 
are positively homogeneous of degree m - j  in ~ and vanish of order at least r - 2 j  
and Pm(x, ~) vanishes exactly to the order r at z0. Note that we may replace in the 
definition "every" by "some". 

L e m m a  2.1 (Helffer [4]). Let P~L m'~ Then Z0 " 

(2.1) Q(x ,~ )=exp  ~ OxjO~y P(x,~) 
j=o 

~s invariantly defined in Lm'r/Lm'~+l : Let X be a homogeneous symplectic trans- Z 0 I Z 0 
formation around zo and let F be a Fourier integral operator associated with X and 
P = F P F  -1. Then we have 

~)()/(x, ~) )=  Q(x,~) 

in Lm'r/L m'r+l where Q is associated with P by (2.1). z 0 / z o 

i rn~r  Definition 2.1. We define the localization Pzo(X,~) of PC zo at z0=(Xo,~o) 
as the lowest order term of the Taylor expansion of 

#2mQ(xo +#x, #-2~o + # - i ~ )  

as #--*0 which is invariantly defined as a polynomial on T~o(T*l~ ). If y are local 
coordinates around the origin and P(y, ~) is the full symbol of P for the coordinates 
(y, ~dy), then we have 

Pwo ( Y t ( X o ) X ,  t y ' ( x o ) - l ~ )  = Pzo ( x ,  ~ ) ,  w o  - -  ( y ( x o ) ,  t y t ( x o ) - l ~ o ) .  

(2.2) 

Writing Q(x, ~) as the sum of homogeneous parts Qm_j(x, ~), it is clear that  

Pzo(X, = Qm-j ,zo(x ,  
r--2j_~0 

Qm y,zo(Z)=Pm-j,zo(Z)+ E c"P(m~i,zo(~) (z) 
i<j , lc~l=j-- i  

with some constants ca where Q,~-j,zo (x, ~) and Pm-j,zo (X, ~) are defined by 
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Pm-j  zo (z) = lim #- ( r -2 j )Pm-j  (Zo +#Z). 
' ~---*0 

m Let P(x, D)=~-~j= o Pj(x, D) be a differential operator of order m on f~ con- 
taining the origin where Pj(x, D) is the homogeneous part of degree j with symbol 
Pj(x, ~). Assume that  the plane x0=0 is non-characteristic and we are concerned 
with the Cauchy problem with respect to x0--const. Let z0 be a multiple character- 
istic of P,~. By the necessary condition of Ivrii-Petkov [7] stated in the introduction 
we conclude that  PCLzo '~ with some r_>2 provided that  the Cauchy problem for P 
is correctly posed. Then we have from Lemma 2.1 the following 

P r o p o s i t i o n  2.2. Assume that the Cauchy problem for P(x,D) is correctly 
posed near the origin and let zoET*f~\O be a multiple characteristic of P,~. Then 
the localization Pzo (z) is an invariantly defined polynomial on Tzo (T*~). 

Let us denote by /~z0 (x, ~) the lowest order term of the Taylor expansion of 
~ t 2 m p ( x o + I Z x  , p - 2 ~ 0 + p - l ~ )  a s  #---+0. Then we have 

L e m m a  2.3. The following two conditions are equivalent. 
(i) /~zo(Z) is hyperbolic with respect to 0=(0, Co), 
(ii) Pzo (z) is hyperbolic with respect to 0. 

Proof. Recall that  Pzo(Z)=Er_2j>_o Pm_j,~o(z). Since/~zo(z) is hyperbolic if 
and only if P,~-y,zo (z) are weaker than Pm,zo (z)--Qm,zo (z) (see Hhrmander [6, II], 
Svensson [9]) the proof is immediate by (2.2). 

Now our aim is to prove 

T h e o r e m  2.4. Assume that the Cauchy problem for P(x, D) is correctly posed 
near the origin and let zoCT*~\O be a multiple characteristic of Pro, Then the 
localization P~o (z) is a hyperbolic polynomial with respect to 0=(0, e0). 

Let z0 be a characteristic of order r0 of Pro(Z) SO that  P~o(z) is a polynomial 
of degree ro. We denote by P(zo,~l)(z) the localization of Pzo(Z) at zl, that  is the 
first coefficient of p~~ ) that  does not vanish identically in z: 

#r~ , #---*0 

(see Hhrmander [6, II] and Atiyah-not t -Gs [1]). We call r l  the order of 
z~. From Lemma 3.4.2 in Atiyah-Bott-Gs [1] it follows that  P(zo,~)(z) is 
again hyperbolic with respect to 0. Furthermore zl is a characteristic of Pm,zo of 
order rl and Pm(~o,z~)(z) is the principal part of P(zo,~)(z). On the other hand 
Corollary 12.4.9 in Hhrmander [6, II] shows that  

d'Q,~_j,zo(Zl)=O, u < r l - 2 j  
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where d~Q(z) denotes the ~-th differential of Q with respect to z. Since Qm-j,~o (z) 
are homogeneous of degree r 0 - 2 j  it is clear that  

P(~o,z~)(z)= E Q,~-2j(~o,~,) (z) 
rl--2j_>0 

where 

Qm-j(~o,~) (z) = lim #-(r~-2J)Qm_j,~0 (zl +# z )  
tt--+u 

which is homogeneous of degree rl  - 2 j  in z. Repeating the same arguments we get 

L e m m a  2.5. Let P(zo ..... zk)(z) be the localization of P(zo ..... zk_~)(z) at zk where 
its order is rk (>2).  Then we have for every j with r k - 2 j > 0  

d~Qm_j(~o ..... zk_x)(Zk) = 0, V < rk--2j 

and hence 

Qm-y(~o ...... k)(z) = lira ~ #-(~k-e~)Qm_i(~o ..... ~_~)(zk +#z)  

exists. Moreover P(zo ..... zk)(z) is equal to 

Qm- (zo ..... 
rk --2j>0 

and hyperbolic with respect to O. 

Let zk be a characteristic of Pm(zo ..... zk_~)(z) of order rk (>2).  C o r o l l a r y  2.6. 
Then we have 

(2.3) 

and hence 

(2.4) 

exists. 

dUPm_j(zo ..... zk_l)(Zk) = O, ~ < rk--2j  

Pm- (zo ..... = l %  ,-(rk-2J) pm_j(zo ...... + 

Proof. Assume that (2.3) and 

(2.5) Qm-j(zo ..... z k _ i ) ( z ) = P m - j ( z o  ..... zk_l)(Z)- f  - E C P(") " " m-i(~o ...... k_l)(~)t z) 
~<j,l~l=j-i 

hold with k=p where ca are constants. Then it is easy to see that  (2.5) with k = p + l  
holds. Thus (2.3) with k = p + l  follows from Lemma 2.5. By induction on k we get 
the desired conclusion. 

Let A(~ o ..... zs)(Pm) be the lineality of Pm(zo ....... ) which is defined by 

A(zo ..... zs)(Pm) = {Z]Pm(~o ..... ~s)(w+tz) = Pm(zo ....... )(w), Vt E R,  Vw e Tz o (T*~)} 
n 

and let a=~-'~j=od~jAdx j be the canonical symplectic two form on T*~. For 
SCT~ o (T*~) we denote by S ~ the annihilator of S with respect to a: 

S ~ = {z eTzo(T*12)la(z,w) =0,Vw e S}. 
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T h e o r e m  2.7. Assume that the Cauchy problem for P(x, D) is correctly posed 
near the origin and 

A(~ o ..... ~)(Pm) ~ cA(~ o ....... )(Pro). 

Then we have 
P( o . . . . .  . . . . .  

Example 2.1. Let 

P(x,~)=(~2 o 2 ~ : 2 x ~ ~ 2 ~ --Xl~n--~l)(~O -- l~n--  ~ l )+P2(~0,  Xl~n, ~l)~n 

where P2 is a homogeneous polynomial of degree 2. With z0--(0, en) it is clear that  

P4,zo = (~02 _ x  12 -~1)(~02 2 _ x  12 _2~1),2 

Let Zl be ~o=xl=a, hER,  ~1=0 so that  

P4(zo,z~) = 4a2(~0 -Xl )  2, 

Q3,zo = 6ix1~1 +p2 (~0, xl,  ~1). 

Q3(~o,zl) =p2(a, a, 0). 

Since A(zo,~l)(P4)~cA(zo,zl)(P4) it follows from Theorem 2.7 that  p2(a,a,O)=O. 
Similarly choosing zl to be ~o=a, xl = - a ,  ~1--0 we get p2 (a , - a ,  0)=0. Thus 

P2(~O, Xl, ~1) = C(~ 2-x2)+~lpl(~O, Xl, ~1) 

where Pl is linear. Finally one can write 

P(x,~) = (~02 _Xl~ n2  2 -~12 + C~n)(~02 _z l~  n 2  2 _ 2~2) +~IL(~o, Xl~n, ~l)~n 

with a linear function L. 

Example 2.2. Let 

P(x, ~) = (~0 - Xo~) 2 (~0 + zorn) +a(~o - xo~n)~,, +~(~0 + Xo~n)~n 

where c~, f~EC. With zo=(0, e~) we have 

P3,~o = (~o-Xo)2(~o+xo), Q2,zo =o~(~o-xo)+(~-i)(~o+xo). 

Taking zl to be ~0=1, x o = l  it follows that  

P3(~o,~l)=2(~o-Xo) 2, Q2(zo,~l)--2(/3-i). 

Since A(~o,~I)(P3)~cA(~o,~I)(P3) we have ~--i  by Theorem 2.7. Set 

pl(x,~) = ~ o - X o ~ ,  p2(x,~)= (~o-Xo~n)(~o+Xo~n)+(a+i)~,, 

then ~ = i  implies that  
P(x, D) =p~  (x, D)p~(x, D) 

where p~ (x, D) are Weyl realizations of pj (x, ~), see H6rmander [6, III]. 
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3. P r o o f  o f  T h e o r e m  2.4 

To prove Theorem 2.4 we construct an asymptot ic  solution depending on a large 
parameter  contradicting an a priori estimate tha t  a correctly posed Cauchy problem 
must satisfy. In constructing a desired phase function of the asymptot ic  solution we 
follow the arguments of Svensson [9]. We first derive an a priori estimate assuming 
that  the Cauchy problem for P(x, D) is correctly posed in both  f~t and ftt for every 

small t where f~t={xef~ixo<t } and fh={xEf~ixo>t}.  Let ~=(~0, . . . ,a~)EQ~_ +~ 
and set 

y ( ~ ) = Z y j a  -~j, , ( ~ ) = ~ , j ~ - %  yj , ,~ea~+~,~eO§ 
j=o j=o 

which are assumed to be convergent in a neighborhood of A=oc. For a differential 

operator P on C ~ ( f t )  with C ~ coefficients we set with x E Q +  

P~(y(a), ~(a); x, ~) = P(y(a)+),-~x, a~v(a)+x~) 

where s  (s176 ..., A - ~ x ~ )  etc. 

P r o p o s i t i o n  3.1. Assume that 0Eft,  y0=0 and that the Cauchy problem for 
P(x, D) is correctly posed in both f~t and f~t for every small t. Then for every 
compact set W c R  ~+1 and for every positive T > 0  we can find C > 0 ,  X>0 and 
p E N  such that 

lulco(w~) <_ c~(~+~)PIP~ulc,(w~), luIco(w,) <_ c~(~+~)PIP~uIc~(w~) 

i fuEC~(W), A~ N, Itl<r where ~=maxj crj. 

Pro@ Recall the following a priori estimate a proof of which is found in 
HSrmander [5]: for every compact set K c f t  there exist positive constants C,T 
and p E N  such that  

(3.1) lulco<g~) ~ CIPulc,(g~), I~lco(K~) ~ CIPuIcp(K,) 

for uEC~(K) ,  ItI<~ -. Setting P(x,D)--e-i;<<v(~)'x>P(x,D)e i;~<v(~)'x> we get 

from (3.1) that  

lulco(,(,) _< cl~'PlPu[cp(~,), A >_ ~1. 

For a given compact set W c R  n + l  one  can find a compct  set KCQ so that  
u(A~x-y(A))EC~(K) ,  VuEC~(W)  if A>A2. Then the desired inequality follows 
from (3.1). The second est imate is proved in the same way. 
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Let z0 be a characteristic of Pm of order r. We may assume that  z0--(0, en) 
without restrictions. We specialize Proposition 3.1 setting 

y(~) = ~-~/2~(~),  ~( ; )  = en+A-~/2~(~)  

where y( )=Y~J=Jo Y9 ~-j' ~( ) = E j = j o  ~J)~-J are meromorphic in a neighborhood 
of A=c~ and x / 2 + j 0 > 0 .  With F(A)--(9()~),z)(A)) it follows that 

+ 

= 

By Lemma 2.3, /~o is hyperbolic with respect to 0 if Pzo is. Now assuming 
t ha t /~ o  is not hyperbolic with respect to 0 we look for an asymptotic solution with 
complex valued phase function to Pu~O. The main step is to prove: 

P r o p o s i t i o n  3.2. Assume that P~o is not hyperbolic with respect to 0. Then 
we can find Fl(S)--~-~. z~s', z~ER 2n+2 which is meromorphic in a neighborhood of 
s--0, an open set W C R  2n+2 and - l < a < 0  such that 

?zo(V~(s)+s~z+s"~O)=cs -~* (n~(~,z)+O(s~)), z C W  

with some 5>0 where cr m* ER  and RI(~-, z) is a monic polynomial in ~- which 
has a non-real root for VzEW. 

Admitting Proposition 3.2 we prove Theorem 2.4. Taking )~=s -1 and a / 2 = - a ,  
Proposition 3.2 yields 

(3.2) P~0 (r(A) + (A"/2x, A"/2~)) = cA "~* (R(x, ~) + O(A-~)). 

It is clear that R(x, ~) is a monic polynomial in ~0 and R(x, ~)=0 has a non-real 
root for every (x,~')EW' where W' is an open set in R 2n+l. Therefore we may 
assume, by shrinking W ~ if necessary, that  

l 

R(x, ~) = 1-I (~0 - f j (x ,  ~'))rJ 
j = l  

where f j(x,~') are real analytic and mutually different from each other in W ~ and 
I m f l r  in W ~. Let r be a solution to 

= <  > 

which is defined near 2 with (2, ~ ) e W  t. Set 

E(x) -- exp( i )~r  

and study 

E(x) - l  P~o (F()~)+ (;~/2x, A-~/2D))E(x) exp( i )~w(x))  

where w(x) is a C ~ function near ~ and al  >0 which will be determined in the 
following lemma. 
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L e m m a  3.3. There exists 0 < a l  < a  such that for every w(x) we have 

~5~ o (F(A)+ (A"/2x, ~-./2 D))E(x) exp(iA #' w(x)) 

= ) ,~*-~ ' ("-" ' )  (n(x, w~(x))+o(1)) E(x) exp(i)~"'w(x)) 

where 
L ( x , r  E R(~)(x'~)/a!+S(x'r 

I~1=~ 

and S(x, ~) is a polynomial in ~ of degree less than rl. 

Proof. Recall that 

e - i ~  r p~o(F(A )+(A~/2x , )~-~/2D) )(a(x)e'~" r 

= ~(~!)-~O~Pzo(r(~)+(~./~x, ~-"/2~))l(~=~.r162 
C~ 

where r  z) = r - r  < Cx (x), z -  x >. On the other hand we have 

O?Pzo ( r ( ~ ) +  (~"/2x, A--/2~))I (e=~o-) = A n*--f~'  (R(~)ix, ~)  + O(X-~)) 

by (3.2) and hence the result. 

Now to prove Theorem 2.4 it is enough to follow the same arguments as in 
Ivrii-Petkov [7] and Flaschka-Strang [3] (see section 6 in Ivrii-Petkov [7]). 

It remains to prove Proposition 3.2. We first recall the following result of 
Svensson [9]. Let q(z)=~rj=o qr--j(Z) be a polynomial of degree r in z E R  N, Y---- 
2(n+ 1) where q~_j(z) stands for the homogeneous part of degree r - j .  Let f(t ,  s) 
be a polynomial in t with coefficients which can be expanded in a Puiseux series in 
s E R  in a neighborhood of s=0.  We denote by R(f( t ,  s)) the Newton polygon of f 
(see Svensson [9]). Then the result of Svensson [9] asserts that 

T h e o r e m  3.4 (Svensson [9]). The following two conditions are equivalent. 
(i) ~-~'=o qr-j(z) is hyperbolic with respect to 9=(0,  Co), 
(ii) qr(9)~O and R(tkq~_k(~/(s)+tO))CR(q~(~(s)+tg)), l < k < r ,  for every 

~ / ( s ) : ~  z,s v, z, ER  N which is meromorphic in a neighborhood of s--0. 

L e m m a  3.5. Assume that q~ is hyperbolic with respect to 9. Let ~ ( s ) = ~  zvs v, 
z, ER  y be meromorphic in a neighborhood of s=-O. Then there is a neighborhood 
U of the origin in R g such that 

R(qr(7(s)+tz+tO)) = R(qr(~/(s)+tO)), Vz E U. 
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We first show that 

R(qr(~/(s)§ C R(q~(~/(s)+tO)), Vz � 9  N. 

Since q(~)(z)=O~qr(z) is weaker than qr it follows from Theorem 12.4.6 in HSrman- 
der [6, II] that the hyperbolicity ofq~ is not altered by adding any linear combination 

of q(~)(z), I/~l > 1, Then Theorem 3.4 shows that 

R(zZtlZJq(')(7(s)+t6)) C R(q~(7(s)+tO)), Vz �9 R N 

which proves (3.3) because 

q~(~/(s) +tz +tt?) = E q(') (7(s)+tO)z~t I~1/13!. 

Using (3.3) we end the proof. Write 

and let (l, k) be any vertex of R(q~(~/(s)+tO)). Note that  

(3.4) O~oqr(;(s))=cJ(l+o(1)), c#O. 

From (3.3) it follows that 

(3.5) E O~o q(r~)(?/(s))z~/13!i!=O(J) 
i+l~[=k 

for every z e R  N and hence O~oq(O)(~/(s))=O(s~), i+]~]=k. Hence taking U suffi- 
ciently small we conclude that the left-hand side of (3.5) is equal to cst(l+o(1)) 
with c~0  by (3.4). This together with (3.3) proves the assertion. 

L e m m a  3.6. If z avoids the union of the zeros of finitely many polynomials 
in z then R(qj(~(s)+tz+tO)) is independent of z and 

R(qj (~/(s) +tO)) c R(q3 (7(s) +tz +tO)). 

Proof. Recall that 

=  ,r 
k i+lZl=k 
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It is clear that  

E O~oq~)(~/(s))z~//3!i!=J(Pk(z)+~ ' s---+O 
i+l~l=k 

with some polynomial Pk(z) and an integer l if the left-hand side is not identically 
zero. This proves the assertion because 0~r qj (7(s)) = O(sl). 

To simplify notations we write 

q~-2j(z)=Pm_j,zo(Z), q(z)--- E q~-:j(z) 
r--2j>O 

and assume that  q is not hyperbolic with respect to 0. Then by Theorem 3.4 we 
can find a non-negative integer k and 7 ( s ) = ~  z,s  ~, z, c R  N which is meromorphic 
in a neighborhood of s - -0  such that  

R(t2kq~-2k(~/(s)+tO)) r R(q~(~/(s)+tO)). 

Hence by Lemmas 3.5 and 3.6 one can choose a neighborhood U of the origin in 
R N and Z ~, the union of the zeros of several polynomials, so tha t  

R(t2kq~-:k(7(s)+tz+tO)) 92 R(q~(7(s)+tz+tO)), z E U, z ff Z'. 

We now follow the proof of Theorem 1.1 in Svensson [9] to conclude that  there are 
an integer p, a real constant c r  and a set Z which is the union of the zeros of 
several polynomials such that:  

(a) R(crsPrq(c-ls-p(~/(s)+tz+tO))) is independent of zcU,  zfJZ and has a 
line segment with slope - p ,  p - l < p < p  as a part  of the boundary. 

(b) The right endpoint of the line segment is a vertex of the Newton polygon 
R(q~(7(s ) +tz +tO)). 

Let (10, k0) be the right endpoint of the segment and set ko#+lo=g. 

L e m m a  3.7. We have 
(3.6) 

= 

k 

Z ( cki(z)tks  k-i) + 
k#+l=g i=0  ktt+l>g 

for zCU, z•Z where Cki(Z) are homogeneous of degree i in z and ckoo~O. Moreover 
cki(z) is not identically zero for some (k, i) with k<ko. 

Proof. With 71(s)=c-ls-PT(s) we have 

k - i+lN=k 
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Taking ~-:1 we see that  the coefficient oft k in the right-hand side is O(s l) (k#+l=g) 
for every z with zEU, zCZ by (a). This shows that  

(csp)'-kO~oq(~)(~l(s)) : s ~ ( b ~ + o ( 1 ) ) ,  i +  191 : k, k ~ + l  = g. 

Thus the coefficient of t k is equal to 

k 

s ~  Z (b{,z'+~ 
i=o ]Zi=k-i 

and hence the result. In particular, since (10, ko) is a vertex of R(q(~/(s)+tO)) we 

have 
(csp)'-~oa~o(~(s))=cjO(l+o(1)), c#o 

which proves ckoo#0. The last assertion is clear because the line segment contains 

another  vertex different from (lo, ko). 

We now prove Proposition 3.2. Taking t=s ~ ( s>0)  and changing c-lz, C-IT 
to Z and T in (3.6) we have 

k 

C ! Z k-i  ) (3.7) q(Fl(S)+S~Z+S~70)=cls-m* ~ ~ ki( )T +o(1)  
--k#4-1=g i=0  

: C1 s-m* (R(T, Z)+O(1)) 

where Fl(s)=c-ls-PT(s), a=#-p and hence - l < a < 0 ,  m*=pr-g and c ~ i ( z ) =  
ck-{ck{(CZ). On the other hand after changing s to - s  in (3.6) we take t=s" ( # > 0 )  
and change c-l(-1)-Pz, c - l ( - 1 ) - P ~  - to z and ~-. Then (3.6) turns out to be 

(3 .8)  
k 

~k#+l=g i=0  

: c2s -'~* (R'(~, z)+o(1)) 

where F2(s)=c-l(-s)-P'y(-s), C~{(z)=(--1)P(k-i)Ck-icki(C(--1)Pz). Therefore to 

prove Proposit ion 3.2 it is enough to show that  either R(T,z) or R'(T,z) has a 
non-real root for some zEU, z~Z. 

Set #=a/b where a and b are relatively prime so that  k with kp+l=g takes 

the form k=ko-jb, j = 0 ,  1, .-.,j0. Thus R(T, z) becomes 

Jo ko-jb 

j : 0  i : 0  
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Recall that  a~0r and hence we may assume that  a~o>0. Let S be the set of indices 
(j, i), j+i>O such that  a}~ is not identically zero and remark tha t  S contains at 
least two elements. Set 

i 
V = min 

(j,i)ES,jb+i<ko jb§ 

which is less than  1 of course. Plugging T----IZp~ into R(T, z) it follows that  

i='y(jb+i) 

If V>0 then no t e r m s  ~ k o - 1  ~ko--2 Occur in the first term of the right-hand side 
because b>2 and "y< 1. This implies that  

i='y(jb~-i) 

has a non-real root for every zCU, z~Z. Then taking zr  sufficiently close to the 
origin we conclude that  R(Izp~ , z)=0 has a non-real root ~ and so does R(T, z)=0. 
We turn to the case V=0. This means that  there is j > l  with a}0~0. Since 

jo 
R(T, z) = a}oT + O(Iz I) 

j=o 

the same argument can be applied if either b > 3 or a~o > 0 to conclude that  R(~-, z ) = 0  
has a non-real root for some zCU, z~Z. It  remains to examine the case b=2 with 
a~0<0 and hence a- -1  necessarily. In this case we employ RI(T, Z). Noting that  
the coefficient of ~-ko and 7 k~ in R'(T, z) are equal to (--1)Pk~ and --(--1)Pk~ 
respectively the proof is reduced to the preceding case. Thus we have proved Propo- 
sition 3.2. 

4. P r o o f  o f  T h e o r e m  2.7 

Our aim in this section is to prove Theorem 2.7. Let zk be characteristics of 

P(zo ..... zk_l)(z) of order rk ( rk~2) ,  l < k < s  and let Pm-j(zo ..... zk)(z) be given 
by (2.4). We first give another formula which defines Pm-j(zo ..... ~k)(z) directly. 

Let 0 < # 0 < # 1  < . . .<#~ be a sequence of positive parameters  w i t h  ~j:O(~tj+ lm+l) as 
].tj§ 1 ---~ 0. 
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L e m m a  4.1. Let #j be as above. Then 

Pm- j  ( zo § #ozl § § IZo ... #k -  l Zk § ~0 ... JAk Z) 
--  . ro- -2 j  . r l - -2 j  rk --2j 
- , o  ,1  ""#k (Pm-j(~o ..... ~k)(z)+O(#k))  �9 

Proof. Since z0 is a characteristic of P,~ of order r0 it follows from Corollary 2.6 
that  P,~_j(zo+poZ)=So~ Hence 

Pm- j  (zo +#o (zl § ----/A; ~ --2j (Pm-j,zo (Zl § JA1 Z) "~ O(]A0))" 

Since Zl is a characteristic of P-~,~o of order rl we see from Corollary 2.6 again that  

P.~- j ,~o  (Zl §  z) = ]A~ 1-2j  ( P m - j ( z o , z l ) ( z )  § 1 )). 

Noting that  #0= O(#~  +1) we get the desired result with k = l .  A repetition of the 
argument completes the proof. 

Assume that  A(~ o ....... )(Pro) ~CA(~0 ..... ~)(Pm) and recall that POo ..... ~8)(z) is an 
invariantly defined polynomial on T~o(T*f~ ). Then one can find local coordinates x 
preserving the plane x0=0 such that  

Pm( o ..... 

with a homogeneous polynomial q of degree rs where x=(Xa, Xb), x~=(X0, ..., Xk), 
Xb=(Xk+l, ..., Xn) is a partition of the variables x and ~=(~,~b)  is that  of ~ (see 
Proposition 2.6 in Nishitani [8]). 

L e m m a  4.2. In the above local coordinates x we have 

P(~o ....... ) (z)= ~ Pm-jOo ..... ~.)(z). 
re --2j_~0 

Proof. By Lemma 2.5 it sufficies to show that  

(4.1) Q,~-j(zo ..... z . ) (z )=P,~- i (zo  ..... ~ ) ( z )  

in these coordinates. Since P(~o ..... ~8) (z) is hyperbolic it follows from Corollary 12.4.8 
in Shrmander [6, II] that  Qm-j(~o ....... )(z) are polynomials in (~a,Xb) and hence 

Q(~) (z)=0 if l a [> l .  Recall that  m--j(zo ..... zs)(c~) 

Qm-j(zo ...... k_ l ) (z )= Pm-j(zo ...... k_l)(Z)+ ~ C P(~) - . . . . .  z k _ l ) ( . ) ( z )  

i<j ,  tc~l=j--i 
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with some constants ca. Using this formula and the fact 

Qm(zo ...... k-l)(z) =Pm(zo ..... zk-1)(z) 

we conclude (4.1) by induction on j .  

It is clear that  what we shall prove is that  

(4.2) P,~-J(zo ....... ) (z)- -0 ,  j_>l ,  rs-2j>_O. 

Assuming that  (4.2) is false we construct an asymptotic solution to Pu~O contra- 
dicting the a priori estimate in Proposition 3.1. Let us take 

8 

nj=(rn+l) 8-j, l < j < s ,  n o = E n  k 
k = l  

so that  with p0=/~ -1/2+n~ /_tj=)~ -n~5, j>_l we have 

�9 m + l  

= = , j + l  

for sufficiently small 5>0.  Note that 

ro -- 2j P0  ... p ~ l - - 2 j  : A m l ,  

L m, = (-�89 +noS)ro+j- E nkrkS--2j5 nk. 
k = l  k=l+l 

Let us set 

~( A )u ~- ZO, + A--1/24-n~ z1~, Jr- A--1/24-noS--nlS z2u -~... + A - 1 / 2 + n o S - 2 ~ - I  nke zs~, 

= ( y ( : , ) ,  

where zj.=(xj,y~j) for zj--(xj,~j) and I<<y<<A 5/2m. When ~=1 we write 7(A) 
for 7(A). dropping v. We now study 

P(Y(  )Q +'~-a x'  )~l]rl( /~ )-I-/~a ~) = E )~ m--J Pm--J("/(/~ )u + (/~--CrX' /~cr-- l~))  (4.3) 

with 

)~--aX ~- ()~--l/2-t-r162 , )t~ = (~--1/2--r , .~-1/2+r ) 

where 0 < e < 5 .  Setting X=(~a ,  xb), Y=(~b, Xa) and taking the homogeneity into 
account the right-hand side of (4.3) is written as 

E ~m-Jr 'm-Jpm j(~/(/~)+.X 1/2+eY v 1 + / ~ - l / 2 - e X  v 1). 
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L e m m a  4.3. Le t  r s - 2 j < 0 .  T h e n  tak ing  5>0 sma l l  we  get  

(4.4) ~ m - j v m - J p m _ j ( ' y ( ~ ) + ~ - l / 2 + e Y  v , + ~ - 1 / 2 - E X , - 1  ) = 0 ( ~  m+m*-6 /2 )  

where m * - - ( - } + n o 6 ) r o - E L ,  nkrk6. 

Proof.  When r o - 2 j  <0 the assertion is clear because m - j _ < m - r o / 2 -  3' Let 
ro-2j_>0 and % - 2 j < 0 .  Choose l to be the smallest integer satisfying r ~ - 2 j > O .  

Since 
"~ (A) m_ Z0 -t- . . .-~ ,'~ - ' / 2 + n ~  E /  =IlnkS(ZIJY)~--nlSZlA-l"~-...) 

and P,~- j ( zo  ..... zz)(z)  exists by Corollary 2.6 the left-hand side of (4.4) becomes 

) ~ m - J l 2 m - j  )~mZ(Pm-j ( zo  ..... z t ) ( Z l + , - l - . . . ) ~ - O (  A - n l 5 )  ) �9 

Since m * - ( m l - j ) = 5  y ~ = l + , ( 2 j - - r k ) n k  > 6  and u,~<<A5/2 we obtain the assertion. 

We turn to the case r s - 2 j > O .  From Lemma 4.1 with k = s  it follows that  

/vn - j p m - J Prn _ j ( ~/ ( /~ ) + )~ - ' / 2 + e ( yu _ ~ -~- /~ - 2 r X v _ , )) 

~_ l ] m - j / ~ m - j + m ~ - l - ( 5 - e ) ( r ~ - 2 J ) ( P m _ j ( z o  ..... z~) (Yv -1 -1- /~-2eXu-,) -~-O(/~-5+e)) .  

Noting that m~_, - j -  (5 -  e)(r~ - 2j) =m* +e(r~ - 2j) and P,~- j ( zo  ....... )(z) is inde- 
pendent of Y (see the proof of Lemma 4.2) the right-hand side yields 

v ~ - j  ,~,~+r~* - ~ ,  +2~j (P-~-J(~o ....... ) (X/c- 1 ) -~- O(,~ -5-1- (2rs Jc')a )). 

Taking e>0 so that  2~(2m+1)<6 we summarize what we have proved. 

L e m m a  4.4. Le t  u=O)~ 2~ wi th  0 E R \ 0 .  T h e n  we have  

P ( y ( ) ~ ) + ) ~ - ~ x ,  ),uT/()~) +)~'~) 

= ~  u O-3Pm_j ( zo  ..... z ~ ) ( X . - , ) + O ( A  -~ /2 )  

rs -- _0 

where 3 > O. 

Let us set 

R(X)= 0- P _jiz o ....... )(X) 
rs --2j~_0 

where X=(~a,  Xb)=(~o, Z ' ) .  
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L e m m a  4.5. Assume that s o m e  P m - j ( z o  ..... zs)(Z) with j> l, rs-2j>O is not 
identically zero. Then with a suitable 0 E R \ 0  

R(X) : 0  

has a non-real root ~o for some X'. 

Proof. It  is clear with a small positive s that  

R(~o, ~X')  = c~s  + O ( ~ ) +  ~ e-J~P~(Rj(X)+O(~)) 
r~ --2j~0,j_~l 

with a constant c ~ 0  where pj are non-negative integers. Recall that  there is j > l  
with Rj(X)~O. Letting 

~/= min PJ 
j>_I,Rj(X)~O j 

and setting O----c~0 we have 

R(~o,~X')=c~s+ ~ O-JRj(X)+o(1), c--~O. 
pj - j " / = 0  

Since the degree of Rj are less than or equal to r 8 -  2j, j > 1 it is clear that  

<~'+ Z ~-~Rj(X)=O 
pj -- j~=0 

has a non-real root for some X ~ changing ~ to - 5  if necessary. Taking c > 0  suffi- 
ciently small we get the desired assertion. 

The rest of the proof of Theorem 2.7 is a repetition of that  of Theorem 2.4. 

Remark. If we are interested in the microlocal Cauchy problem near z0 then 
the wave front set of the asymptotic  solution that  we have constructed should be 
contained in a conic neighborhood of z0. Hence the sign of ~ in Lemma 4.5 is limited 
to be positive. In this case we could have a weaker assertion: P(~o ....... )(z) has only 
real zeros ~0 for every (x, ~'). 
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