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1. I n t r o d u c t i o n  and  m a i n  resu l t s  

In this paper, we study the small and big Hankel operators from one weighted 
Dirichlet space to another. We characterize the analytic symbols for which these 
operators are bounded, compact or belong to the Schatten p-classes for a certain 
range of p. The endpoints of this range are also discussed. 

Let D be the unit disk in the complex plane. Let dA(z)=l/7~dxdy be the 
normalized area measure on D. For a < 1, set 

dA,~(z) = (2-2a)(1-~[z[2) 1-2~ dA(z). 

The Sobolev space L 2'~ is the Hilbert space of functions u: D--~C, for which the 
norm 

2 ~ \ 1 / 2  

[ ,u , [ a : - ( fDU(Z)dAa(z )  -~-JD(0~t/0z 2-~-cOu/cO22)dA,~(z)) 

is finite. The weighted Dirichlet space D~ is the subspace of all analytic functions 
in L2,% (This scale of spaces includes the Bergman space (a=-�89 the Hardy 
space (a=0)  and the classical Dirichlet space (a---�89 The orthogonal projection, 
P~, from L 2'~ onto De can be understood as the integral operator represented by 

po(u)(w)=s f D x(z)xKo(z,0u 0 w)eA.(z) 
(1) Pa r t  of  the  research for th is  pape r  was done at  I n s t i t u t e  Mittag-Leffter.  T h e  a u t h o r  is 

very  gra teful  to the  ins t i tu te  for providing excellent  working env i ronmen t  and  f inancial  suppor t .  
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Here Ks ,  the reproducing kernel of D~, has the expression (see [W]) 

/o7o~ 1 K~(z,w) = 1+ ( l_st)3_2a dsdt. 

Let P denote the set of all analytic polynomials on D. For a < l ,  7 < 1 ( 1 + a )  
and fEL 2'~, the small and big Hankel operators with symbol f are defined on P, 
respectively, by 

h(s~)(g)=P~(f~ ) and H~)(g)=(I-P~)(/g), Vge P. 

This definition is fine because of the fact t h a t / g  is in L 2'~ if fEL 2'~ and gCP, and 
1 P~ is bounded on L 2'~ if 7 < ~ ( l + a )  and a < l  (see Lemma D later). 

The set P is in fact dense in DZ for any/3<1.  Hence we can regard the small 
and big Hankel operators as operators on D~. 

We will in this paper consider only analytic symbols. 
Suppose H and K are Hilbert spaces. The Schatten p-class Sp(H,K), 

(0<p<oo)  is the set of all linear operators T, from H to K,  for which the sequence 
of the singular numbers { Sk(T)=inf{ IIT-RII :rank(R) <k  } }~--0 belongs to 1 p. The 
Sp(H, K) norm of T is defined by IITIIs~(H,K)= II{Sk(T)}lll~. 

Previous work has obtained necessary and sufficient conditions for the bound- 
edness, compactness, and for the membership in the Schatten p-classes of the small 
and big Hankel operators acting on the Hardy and Bergman spaces. We refer the 
reader to [P1], [P2], [R1], [R2], IS], [A], [AFP], [J1], [Z] and their references. For 
the other weighted Dirichlet spaces some results for the boundedness and for the 
membership in the Schatten p-classes of these operators can be found in [W] and 
[RW1]. 

In this paper, we will characterize the symbols f for which H (~) and hi~), as 
operators from DZ to L 2'~, are bounded, compact or belong to Sp for a certain 
range of p. We discuss also the endpoints of this range. (The ranges of a,/3, 7 and 
p are stated later.) 

For 0<p~c~  and - c ~ < s < c %  Bp, BL~ and b~ denote the spaces of analytic 
functions on D defined as follows: 

B~ = { f :  (1 - I z l ) ' ~ - s f  ('~) (z) e LP( (1 -N2)  -1 dA) }; 

1 dA) }; BLp = { f:  (1--1z')ra-sf(m)(z)C LP((1-1zl2) -1 log 

bL={f:(1-1zl)m-sf(m)(z)--*O, as I z l ~ l } .  

Here m is a nonnegative integer so that  m>s. Blp/P=Bp is the usual Besov space 
0 __ and b~-Bo is the little Bloch space. 
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A nonnegative measure # on D is called an a-Carleson measure if 

fD C 2 Ig(z)l 2 d#(z) < Ilgll , Vg e n . .  

The best constant C here, denoted by II/~ll~, is said to be the a-Carleson measure 
norm of #. 0-Carleson measures are just the classical Carleson measures (see [G]). 
There are many equivalent characterizations on the a-Carleson measures (see for 
example [St] and [KS]). In this paper, however, we do not need them. The above 
definition seems easier to work with in our proofs. 

We use Sp ~ to denote Sp(DE, L 2,") and X~ (0 < r < 1) to mean the characteristic 
function of the set D \ r D = {  z:r< Izl <1 }. Our main results are stated as follows. 

T h e o r e m  1. Suppose a < l ,  Z---~lT' a - Z < l ,  ~ /< �89  0 < p < o c  and f is 
analytic on D. Then 

(1) H (7) is bounded or compact ffom D E to L 2,~ if and only if II If'12dA~llE <~ 
or Ilxrlf'l 2 dA~IIE~O as r ~ l_,  respectively; 

(2) / f z < l T ,  1 / ( l + Z - a ) < p  and Zp<l , then T-~('Y)..y ~_SEap if and only if f e  

then eS " if and only ify i8 constant. 

T h e o r e m  2. Suppose a < l ,  Z<  I,  a - Z < l ,  ~ /< �89  0 < p < c o  and f is 
analytic on D. Then 

(1) h ('Y) is bounded or compact from Dz to n 2 '~ if and only if I I I f ' l  ~ dd~ lIE < oo 
or IIXrlf'l 2 dA~IIE---+O as r---~ l_,  respectively; 

(2) / f Z <  1 and Zp<l ,  then h~)eS~p~ if and only if feB~/p+~-z .  

T h e o r e m  3. / f a < l ,  �89 < Z < I ,  7 <  �89  andp>l /Z ,  then the following are 
equivalent: 

(1) H ?  ) or h (~) is bounded from D E to L2'~ 

(2) H (~) or h~) is compact from DE to L2'~; 

(3) H (~) or h?  ) is in SZp ,'~ 
(4) f is in Do. 

T h e o r e m  4. Suppose a < l  and l < p < c ~ .  Then 
(1) I fp>2  and f E B L ~ ,  then H(p ) and ~(~)=ql/P~" , t , f  ~_~,p , 

(2) I fp<2  and H~ ~) or h~a)eS 1/pa, then I E B L ~ .  

Some of our results above can be reduced to the results in [P1], [S], [AFP], [J1], 
[W] and [RW2]. The main work in this paper is to characterize the boundedness 
and compactness of the small Hankel operators and the Schatten p-classes of the 
big Hankel operators and to provide a proof for Theorem 4. 

8-935212 Arkiv ff6r matematik 
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We take up some basic results in Section 2 and prove Theorems 1, 2, 3 and 4 
in Sections 3, 4, 5 and 6 respectively. In Section 6, we discuss some examples which 
show that  the conditions in Theorem 4 are "sharp" but not sufficient. 

Throughout this paper, the notation "~" means comparable and C means a 
positive constant which may vary at each occurrence. We will use (., "Is to denote 
the inner product in L 2,s. More precisely, for u, vEL 2's 

(u,v}~=/DU(Z)dAs(Z)/DV(Z)dAs(z)+/D Ou Ov ~z (z)~z (z) gAs (z) 

+ f D  Ou Ov ~z (Z)~z (Z) dAs(z). 

2. P r e l i m i n a r i e s  

For c~< 1, the space A 2,1-2~ is the subspace of all analytic functions in L2(dAs). 
It is easy to check that  A2,1-2S=Ds_l (their norms are different but equivalent). 
The orthogonal projection from L2(dAs) onto A 2'1-2s is the integral operator de- 
fined by (see [Z] for example) 

D U(Z) dAs(z). 

The Hankel operator with symbol f from A 2,1-2fi into L2(dAs) is densely defined 
by 

 z(g) = Vg e P 

The following theorem, which can be found in [J1], is needed in Section 3. 

T h e o r e m  A. Suppose a, fl, a - ~ < l  and f is analytic on D. Regard YIf as 
an operator from A 2,1-2~ to L2(dAs). Then 

(1) H /  is bounded or compact if and only if f is in B~ -~ or in b~ -~ respec- 
tively; 

(2) If 1 / ( l + / 3 - a ) < p ,  then ~I I 6Sp if and only if feBlp/P+S-~ ; 
(3) If p < l / ( l + ~ - a ) ,  then ~I/asp if and only if f is constant. 

The following result, which is needed in Section 4, can be found in [RW1]. 

T h e o r e m  B.  Suppose g is analytic on D, 13< 1 5, or, T > - 1  and min(cr,~-)+ 
2 ~ > - 1 .  Then 

J D  - - -  dA(z) dA(w) ~ l dAB(z)" 
Is(z) ~ g ~ W ~ ~ ~ # 

(1 b12) (1 Ig'(z)l 
] l -zwl3+ '~+~-+2z ~ JD 
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For a fixed wCD, let ~ be the function defined by ~ ( z ) = ( w - z ) / ( 1 - ~ z ) .  
We know ~ : D - - * D  is an analytic, one to one, and onto map. The hyperbolic 
distance on D, which is MSbius invariant, is defined by 

d(z, w) = log 1 - I ~ ( z ) l  " 

A sequence { z j } ~  in D is called a d-lattice (see [R2]), if every point of D is 
within hyperbolic distance 5d of some zj and no two points of this sequence are 
within hyperbolic distance d/5 of each other. Associated to each d-lattice {zj}~,  
there exists a disjoint decomposition { D j } ~  of D such that  

{z e D : d ( z ,  zj) < d/lO } C_Dj C_ { z e D : d ( z ,  zj) < 10d} 

and 

D j dA( z ) ~ (1-Izjl2) 2 

(see [CR] for details). 

For a measure # on D, the Toeplitz operator, T (z), with symbol p is defined 
on DZ by 

{T(Z)(g)' h}z = / D  g(z)h(z)  d#(z).  

For the following theorem, proofs of the parts (a), (b), (c) and (d) can be found 
in [St], [RW2], [L], and [W], respectively. 

T h e o r e m  C. Suppose /3<1, # is a nonnegative measure on D, { z j } ~  is a 
d-lattice in D and { D j } ~  is the corresponding disjoint decomposition of D. Then 

(a) T (z) is bounded if and only if p is a ~-Carleson measure. 

(b) T (~) is compact if and only if p is a/3-Carleson measure and 

IlXr#]l~ ~ 0 as r ---+ 1_. 

(C) If~3< 1 1 T(fl) 5, P> 0 and/3p < ~, then belongs to Sp if and only if 

E ( # ( D j ) ( 1 - l z j l 2 ) 2 Z - 1 )  p < co. 
0 

(d) If~3 >1 T (j3) 5, p>0  and/3p> 1 5, then is bounded, compact or belongs to Sp 
if and only if p is a finite measure on D, i.e. p(D)<c~.  



400 Zhijian Wu 

L e m m a  D. Suppose/3>-1 and b>l+ �89  Then the operator defined by 

H--]'r) F(z) (1-1z[2) b - 2  dA(z) F 
] l-~w] b 

is bounded on L2((1-Iz12) z dA). 

This result can be found in, for example, [R2] for b>2. For the full range, it can be 
proved in a similar way. See also [Z]. 

Remark. A consequence of Lemma D is that  P~ is bounded on L 2'~ 
if 7<�89 In fact Ou/Oz is in L2(dA~) if uEL 2,~ and 

Ou 

0% P~(u)(w)= /D -~z (Z) dA.~(z), Vu E L 2'~. 
(1 -Zw) 3-2"~ 

Applying Lemma D with b = 3 - 2 %  we get the desired result. 

3. P r o o f  o f  T h e o r e m  1 

Because of the independent interest, we break the proof of Theorem 1 into 
several lemmas. 

L e m m a  3.1. Suppose a , / 3< l ,  ~<�89 and f is analytic on D. Then 

H(~): DZ --+ L 2'a 

is bounded, compact or belongs to Sp (0<p<co)  if and only if 

H(~): DZ ~ L 2'~ 

is bounded, compact or belongs to Sp (0<p<c~)  respectively (compare the result in 
[J2]). 

Proof. By the assumption on a and "~ and the remark following Lemma D, we 
have that P~ and P~ are both bounded on L2,% Clearly 

= and = 

Hence for gEP, we have the following identity: 

H(~) (g)- H(~) (g) = (]g-  P~(]g) ) - ( f  g -  P~( f g) ) 

= P~(fg)-P~(fg) = P~(fg-P~(fg)) = -P,(]g-P~(fg)) .  

This yields that  

H(a)= H(~)-PaH('~) and H(~)= H(a)-P~H(a). 

The desired result follows. [] 

For a function f ,  define Mf to be the multiplication by f .  
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L e m m a  3.2. Suppose c~,j3<1 and f is analytic on D. Then H~):D~--~L 2,~ 
is bounded, compact or belongs to Sp if and only if both of the operators 

M f , : D z ~ A  2'1-2~ and EI f :A2 ' I -2~L2(dA~)  

are bounded, compact or belong to Sp respectively. 

Proof. Let gEP. By the definition of the big Hankel operator, we have 

H(~) (g)(w) -- ( I -  P~ )(]g)(w) 

: 

With this formula, it is easy to check 

/D OH(") (g) U(")(g)dA"(z)=O' O~ (w)= f'(w)g(w) 

and 

OH(~) (g) /D Ow (w) f(w)g'(w)-- ' 02 = f(z)g (z)-~--~K~(z, w) dAn(z) = FIf(g')(w). 

Notice that g, hEDz if and only if g~, hrEA 2'1-2~. The desired result follows from 
the following computation: 

---- (Hl(g ), Hl(h ))L2(dA~)+ (f  g, f h)i2(dA,~) 

= ((Hf) Hf(g ), (h))A2.1-2~+((Mf,)*Mf,(g), h)~. [] 

L e m m a  3.3. Let a, t3<1 and O<p<co. Regard M I, as an operator from D# 
to A 2'1-2a. Then 

(a) M I, is bounded or compact if and only if II If'12dA~ll# <~ or 

Ilzrlf'12dA~ll#--*O as r - * l _ ,  

respectively; 
(b) If t3<�89 a-t3<1, 1 / ( l + # - a ) < p  and t3p<l, then MI, eS  p if and only if 

(c) / fZ< �89  a - t 3 < l  and p<l / ( l+ j3 -a ) ,  then MI, CS p if and only if f is 
constant. 
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Proof. For g, hEP, we have clearly 

((Mf,)*Mf,(g), h)z = (fig, f'h)LJ(dA~) = f g(z)h(z)lf'(z)l 2 dA~(z). 
Jr) 

This is equivalent to 

(3.1) - 

- - I f q J d A a .  

A direct consequence of (3.1) is that Mr,, as an operator from D~ to A 2'1-2~, 

is bounded, compact or belongs to SB if and only if T(~) is bounded, compact ~]f']JdAc, 
or belongs to Sp/2 respectively. Part  (a) is then a consequence of Theorem C, (a) 
and (b). 

To prove (b) and (c), let {z j}~  be a d-lattice in D. Theorem C, (c) says that, 

T(~) for /3p<l ,  the Toeplitz operator if,12dA~ is in Sp/2 if and only if 

]f'(z)]e dA~(z)(1-]zj]e) ez-1 < oc. 
J 

For d small enough the above inequality is equivalent to 

OO 

E suP{I f ' (z) [P}(1-[z j  12) pz-B~+p < c~. 
0 /3j 

And this is a discrete version of 

(3.2) /D ]ff (z)[P(1--]Z[2)Pfl-Pa+P-2 dA(z) < 00. 

If p> l / ( l  +t3-a) ,  then (3.2)is just IlfllPB~/p+._, <Oc. If p < l / ( l  § then 

(3.2) is finite for the analytic function f / i f  and only if ff  =0, that is f = constant. [] 

By Theorem A, Lemmas 3.1, 3.2 and 3.3, we see that to complete the proof of 
Theorem 1 it is enough to show the following (compare a similar result in [RW1]). 

L e m m a  3.4. Suppose a,/3, a - / 3 < l  and f is analytic on D. Regard Mr, as 
an operator from D~ to A 2'1-2~. Then 

(a) Mr, is bounded or compact implies f is in Dc~NB~ - z  or in DaAb~ -~, 
respectively. 

1 1/(1+/3-a),  then Mf, eSp implies feBlp/p+~-~. (b) If ~< ~ and p> 
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Proof. The constant 1 is in DZ, hence the boundedness of Mr, implies 
f t E A 2 ' l - ~ ,  that is fED~. 

For a fixed w E D, let 

(1-lwl2) ~/~-'~ z 
ew(z )=  (1_~z)3_2~ and f w ( z ) = ( 1 - [ w [ 2 ) l / 2 ( l _ ~ z ) l _  ~. 

Straightforward computations show that  the norm estimates [[ew[[A2,1-2~x1 and 
[[ f~ I[~ x 1 are independent of w. 

Since ( 1 - ~ z )  2~-3 is the reproducing kernel of A 2'1-2~, we have 

D zf'(z) dA~(z) 
(M I, (f~), e~>A2,1-2. = (1 --Iwl2) 2-" (1 -- ~z) l -n(1- -  w2) 3-2" 

= WI'(w)(1 --Iwl2) l+n-" .  

This yields that 

[f '(w)l(1-[w[2) 1-1-~-c~ _< CIIMf,(f~,)IIA~:-~,~. 

Hence, if Mr, is bounded, we get 

If ' (w)l(x- Iwl2) 1+~-" _< CIIMs, II. 

This is fcB~o-~. 
Notice that  fw--*O in D~ as [w[--~l_. Hence the compactness of My, yields 

that 

If'(w)l(1-1wl2) 1+~-'~ <_ CIIMs,(f~)IIA~,I-~,~ 4 0  as Iwl--, 1_. 

Thus f E b~ -n. 
Part (b) is true for 1/( l+~-a)<p<2 (<1//3) by Lemma 3.3. For p>2,  we 

need to estimate the BpUP+~-Snorm of f .  The discrete version of this norm is easy 
to work with in our case. For d small enough, we choose a d-lattice {zj}~ in D 
such that  

= .In ]f'(z)[P(1-[Z]2)p§176 dA(z) 

CK) 

• ~ If'(zj)lP(1-Izj I~?§ 
o 

On the other hand, a result in [R2] says that  if {zj}~ is a d-lattice in D, then 
{f~j }~o and (e~j }~o are, respectively, the images of some orthonormal sequences in 
DZ and A 2'~-2~ under bounded maps. Hence if p_> 1, then (see [RS2]) 

OO 

I(Mr (fz~), %)A~,I-~~ I p <_ CIIMr I1~. 
o 
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This, together with the previous computation, yields 

IS'(z,)l'O-Izj 12Y +:-'~ ___ CIIM:, II~. 
o 

And thus f E B  1/p+'~-~ for p>2.  [] 

4. P r o o f  o f  T h e o r e m  2 

In this section, we assume, for convenience, that f has the expansion f (z)= 

E o  fk z~. 
L e m m a  4.1. Suppose a,/~, a - / ~ <  1, ~/< �89 + a )  and f is analytic on D. Then 

h(~):D~--~D-~ is bounded or compact implies f is in D~NB~ -~ or in D~Nb~ -~, 
respectively. 

Proof. The following proof is similar to the proof of Lemma 3.4. The constant 
1 is in DZ and it is clear that h(~)--f,  hence the boundedness of h (~) implies f cD~.  

Let [/~] be the greatest integer in/~ and set n =  1-[/3]. For a fixed w E D, let 

f~(z) = (1-1wl2)-112+~+~: (1-1w]2) 3/2-~ 1 
( l _ ~ z )  ~ and gw(z)= ~ ( 2 - 2 a )  ( ( 1 - ~ ) 2 - 2 ~  1). 

Straight forward computation yields that the estimates I I f~ll~ • 1 and I Ig~ I I,~ ~ 1 are 
independent of w. 

It is easy to check 

(h(:")(f,,),~ >o = (P.~(f E ),g~>~ 

= ([P..:(f-f~)]',g~)L2(dA.) = (1-1wl2)a/2-'~P../(ff~,)'(w) 

(i -lwl~Y §247 f<,,§ (w)" 
( 3 - 2 7 ) ( 4 - 2 ~ )  ... ( n + 2 - 2 ~ )  

This yields the estimate 

If(n+l)(w)l(1-[Wl2)n+l~-/3-~ ~_~ Cllh~'Y)(f~)ll~. 

Hence, if h (~) is bounded, then 

If(n+l)(W)[(1--[Wl2) n+l+~-~ <_ CIIh('Y) II. 
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That is feBr 
Notice that f~--~0 weakly, as [w[-~l_. Hence the compactness of h (~) yields 

IIh~'~)(f~,)ll<,-~O as I~1~1_. 

This implies 
[f(n+l)(w)l(1-lw[2)"+l+Z-~'~O as [ w [ ~ l _ .  

Thus f Eb~ -~. [] 

We will see in the following discussion that the second part of Theorem 2 can 
be reduced to the results by Peller, [P1] (io>_1) and Semmes, [S] (p< l )  (see also 
[R2]). 

For a <  1 and k--0, 1, 2, ..., set ~/k,~--IIz k I1~, and find explicitly: ~/0,~--1 and for 
k_>l 

2 k2/D [zk-l[2 dA,,(z) = k 2 r ( k ) r ( 3 - 2 a )  
~/k,~ = F ( k + 2 - 2 a )  

Thus 

(4.1) 7k ,o-~(k+l)  ~ k = 0 , 1 , 2 , . . . .  

The sequences {zm/%~,Z}~ and {2n/'~,,~}~ are clearly orthonormal bases of 
D~ and D--~ respectively. The matrix elements of h(~): DZ--*D-~ related to these 
bases can be computed as follows. 

(h(f ") (zm/~, , ) (~) ,  ~'V~n,,~)~ = ~ '~,~,~ (P-, (f(z)~m)(~), ~,~),~ 

f = \JD Y(z)zm dA.,(z) j,:, ,~" dA~(w) 

=.y-, .y-, ( f  y(z)zmdA.(Z) /D~'~dA~(~ ) 
"~'~ "~'~ \ JD  

+ ~'Tn,.y JD f'(z)z m+'~-I dA.y(z) ) 
2 

= "~m+ 1,')' 5n,O~m 
(m+ 1)2"ym,Z'~n,~ 

2 
-t n~m+n'~'Tn'a fm+n.  
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(Here 5~,o--1 if n=0;  0 otherwise.) Hence h~ ~) ES~ ~ if and only if the matrix 

( 2 sz _y_.,~c~ . /  n72m+n,77n,o~ )~x~ 
(4.2) 7m+l,-r v~,0j,~! + [ , ~  

(m+  1)27m,~%~,~ ]m,n=O \ [m+n)~/,~,ZTn,7 /m,,~=o 
defines an Sp operator on l 2. The first matrix of (4.2) is a rank one operator (because 
all columns are zero except the first one) and its SB norm estimate is 

7m+1,7  6n,Ofm -~- ~ (m"~l)~--~m,l~Tn, a /m,n=OH 
Jm, =0 

ISml  
- (rn+ 1)4+2~-4~ 

0 

< C/n If'(z)12(1-]zl2) ~+2~-4~ dA(z) 

l+a, /D (since 7< T )  <C If'(z)12(1-1zl2)2+2z-2~dA(z) 
2 < CNil]B -,. 

Using (4.1), we know that  the second matrix of (4.2) defines an Sp operator on 
12 if and only if the matrix 

((7"n--~-l)--'~(n-.~-l)l+a--2~'~(Tr't-[-n)fm4_n)~m,n=O 

does. It is then a consequence of the results by Pellet [P1], and Semmes [S], that for 
/3< 1 7 <  �89  p>0  and/3p< 1, the above matrix defines an Sp operator on 12 

if and only if ~--~-o kf kzk ~'l/p+~-~-lDp , i.e., fcB~/p+~-~. Theorem 2, (2) is hence 
obtained by these facts and Lemma 4.1. 

To prove the first part of Theorem 2, we notice that h(~): DZ---+L 2'̀ ~ is bounded 
or compact if and only if the operator defined on l 2 by the second matrix of (4.2) 
is bounded or compact respectively. This matrix operator is clearly corresponding 

o h(~) o h(~) which maps D~ to A 2,1-2a. It is easy to verify that ~-Z I to the operator ~-~ i 
has the integral expression 

f'(z)g(z) dA.r(z)=~.r(f,9)=~.rM.f,(9), VgeP. ff--~h~)(g)(w)---- /D (l_ 2w)3-2,r 

Clearly MS, is bounded or compact from D~ to L2(dA~) if and only if MS, 
is bounded or compact from D~ to A 2'1-2~ respectively. Since /3  is a bounded 
operator on L 2 (dA~) if 7 < �89 (1 + a ) <  1 (see the remark following Lemma D),we get 
the "if" part immediately by Theorem C, (a) and (b). 

We need the following lemma to continue our discussion. 
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L e m m a  4.2. Suppose a , / 3 < l  and V<�89  If the operator P~M:,:D~--~ 
A 2,1-2~ is bounded or compact, then the operator P~-I/2M:,: ~ - - * A  2'1-2~ is boun- 
ded or compact, respectively. 

Proof. We will prove the lemma by showing that  the boundedness or com- 
pactness of P~M:, implies the boundedness or compactness of P~-I/2Mf,-  P~M:,, 
respectively. 

By previous computation for obtaining matrix (4.2), we see that the matrix 
of the operator PcrMf,: ~---+A 2'1-2a related to the bases {2"~/%~,~}~ in ~ and 
{(n+l)zn/%~+l,~}~ in A 2'1-2a is 

/ (n-~- 1)'~2m+n+l,a~/n-kl,a ~e ~oo 
M ~  

(?Tt ~-n-------~ 1)"/m,,6"/2+1,"-"""""~'--'-ff jm+n+l)m,n=O. 

Transferring the difference of the operators P~-I/2M:, and P~M:, into the difference 
of their corresponding matrices, we have 

((~/2 ,.~2 )(n_f. 1),~/2m+n+l,7,~/n+l,a ~:',a m+n+1,'~-112 n+l,~ _1 fro+n+1 �9 
M ~ - I / 2 - M 7  = 72 ,72 n+1,~-1/2 m+,~+l,~ (m+n+l)Tm,ZV2n+l,~ /m,~=o 

Using the identity 

V2 _ 2 m+n+l(T--1/2~n+l~ 
~ 2  _ 2 n+ l,'7--1/2"Ym+n+ l,"/ 

we get 

1-- n + 4 - 2 ~  - 1  
r e + n + 4 - 2 7  

m + n + l ,  m+--n-~-29/] 

~2m+n+l,q,_ 1/2 _ m - 1 +  ~ , 

m + n + l  Vm+-+l,-r ) 

7ra+n-kl,~ M - / - 1 / 2 - M ~ - -  f -m(n+ l)Vn+l'a 2 oo 
2 \ 7m,~7~+l,v (re+n+ 1) 2 fm+n+l/m,~=o 

-[- ~ m('rt-~- 1)~n+ 1,o~ ")/2+n+ 1,~-- 1/2 fm-bnq-1 ~oo . 
k (m+n+l)2 /m,n=O 

By Peller's result, [P1], the first matrix is bounded or compact on 12 if and only if f is 
in B ~  -~ or in b~ -~, respectively; and the second matrix is bounded or compact on 12 
if and only if f is in B ~  -~-1 or in b~ -~-1, respectively. Notice that  B ~  -~ C B ~  -z -1  
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and b~-Ecb~ -E-l ,  we have hence Pn-1/2My,-P~Mf,: ~ - - * A  2,1-2~ is bounded or 
compact if and only if f belongs to B~  -E or b~ -E, respectively. 

An implicit consequence of the proof of Lemma 4.1 is that i f / 3 ~ M f , : ~  
A 2,1-2~ or P~-I/2Mf,: ~---~A 2'1-2~ is bounded or compact, then f is in B~ -E or 
in b~ -E, respectively. Lemma 4.2 hence follows. [] 

To prove the "only if" part of Theorem 2, (2), we compare ~ and My, 
by considering their difference 

My, - 0 h ( ~ - 1 / 2 ) .  DE ~ L2(dAa). 
~--~f 

We need to estimate this difference. 
Let gEDE, 0<r, s< l ,  we have 

_ 0___ h(j_l /2)()(z)  f ' ( z ) (g (w)-g(z ) )  
My,(g)(z) -~z �9 ,g,, , - - - ~  (1_2w)4_2~ dA.~_l/2(z). 

Then 

My,(g)(z)- . . . .  I = /D f '(z)(g(w)--g(z) 4-2~ dA.y_l/2(z) 2 

= /D\rD-'~JfrD 2~2(/D\rD 2"~- frD 2 I' 
hence 

=2 + + 
\ r D  \ s D  D D D 

= 2(I(r, g)+II(r,  s, g)+III(r, s, g)). 

a h(~-1/2), We will gather the estimates of the L2(dAa) norm of My, (g)--5~ f tg) in 
the following lemma (compare the result in [RWl]). 

L e m m a  4.3. Suppose c~<l, D<I~, a - ~ < l ,  -y<�89 0<r,  s < l , _  f E B ~  -E 
and g E D E. Then 

2 
Mp (g) - --0 h(~-1/2)02 f (g) L2(dA,~) -- < 2(I(r, g)+II(r,  s, g)+III(r, s, g)), 
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I(r,g) = sup {If'(z)12(1-1zl2)2§ 
Izl>r 

II(r, s, g) = C(1-  r)-8+2e-2~-2n (1 - s )  2-2n ][f[[2 _~ [[g[[~, 

III(r, s,g) < C(1-r)-6(1-s)-611fll2s~_~( sup {Ig(w)12}§ sup {Ig(z)[2}). 
1~l_<8 izl_<r 

Remark. If r=O, then II--III=0. 
The following lemma will be employed to estimate II. 

Lemma 4.4. Suppose c~-/3<1, gEDz and 0 < s < l .  Then 

D\sD Ig(w)12 dAn(w) <_ c(1-  s)2- 2n+2f~llgll2 ~. 

Z Proof. Let gEDz and g( ) - -~o gn z~" It is easy to check 

]lgll~ • E ( l  § 2. 
o 

Hence we get the pointwise estimate 

(5 ) Ig(w)l 2_< (l+n)2~lg~[ 2 (l+n)-2/~lwnl2 < c(1-lwl2)-l+2~l[gll~. 
x 0 / 

This is enough to obtain the desired result. [] 

Proof of Lemma 4.3. By the Schwarz inequality, we have 

fD fD\,. :eAn(w) 
- \,D II--~wl ~-~  (1--Izl~) 3 ~ - n §  dA(z) 

• Ig(w)-g(z)l~(" Izl:)~+n-~-:~ dA(z)} dAn(w) \'['-- 

-< I~,>~sup{]f'(z)12(1-'zl2)2+2~-2n} fD{fD (1--]ZI2)l+n-2~'l--2w'a-2~ dA(z) 

• Ig(wl--g(~)12(1--N:) dA(z) } dAn(w). 

409 
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Since 

fD (1--[Z12)1§ 
ii-~wl4-2-Y 

we can continue the estimate by 

dA(z) • (1 -Iwl2) -1+~, 

_< sup {If'(z)12(1-1zl2) 2+2~-2~} 
Izl_>r 

X /D fi) [g(w)-g(z)[2 (1-[zl2)l+'~-2f~-2"r dA(z)(1-[w[2)-a dA(w)" 
[1-z, wl4-2"Y 

The double integral above is comparable to Ilgll~ by Theorem B. Hence we get the 
desired estimate for I(r, s, g). 

Again by the Schwarz inequality, we have 

II(r,s,g)=/D fr f'(z)(g(w)--g(z)) dA~_l/2(z) 2 \sD D (1--zw) 4-2~ dA~(w) 
_< sup {If'(z)12(1-Iz12) 2+2~-2~ } 

Izl_<r 

\~D D (1--1zl) s-4~ (1-1zl2)-2"Y-2Z-2'~dA(z)dA'~(w) 
_< sup {If'(z)12(1-]z12)2+2~-2~}(1-r) -s+2~-2~-2~ 

Izl_<~ 

• fD\~D f~D (Ig(w)12 + Ig(z)l 2) dA(z) dA~(w). 

Using Lemma 4.4, we get 

/D\~D f~D (Ig(w) 12 + Ig(z) [2) dA(z) dA~ (w) 

</D\~D ( Ig(w)l~+ f~D Ig(z)I2)dA(z)dA,~(w) 
< C((1-s) 2-~"+~'llgll~+(1-s) ~-~"llglS) 

hence 
II(r, s, --8§ 2--2c~ 2 g)<C(1-r) ( l - s )  ]]fllB~-zIIgU~" 
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Similarly 

dA'r-1/2(z) 2 III(r,s,g)= ~D ~rrD f'(z)(g(w)-g(z) zw) 4-2~ dA~(w) 
_< sup {[f'(z)12(1-Izl2) 2+2~-2~} 

Izl_<r 

x f~D ~D Ig(w)--g(z)'2(1--H2)-2"r-2Z-2~(1--rs) s-4"r dA(z)dA~(w) 
<_ C[[f[[2B~o_,(1--r)-6(1--s)-6( sup {[g(w)[2}+ sup {[g(z)]2}). 

Iwl_<8 Izl_<r 

The proof is complete. [] 

The "only if" part of Theorem 2, (2) can now be proved as follows. Suppose 

first h ('r) is bounded from D~ to L 2'~. Then by Lemma 4.2, ~ f is bounded 

from D~ to L2(dA~). By Lemma 4.3, (r--0),  we have for any gED~ 

_< [1(o, g)]~/2+ Iih~-~/2)l] I lgl l ,  -< C(ll f IJ,~-, + Ilh(~ ~) II)llgll,. 
Hence by Lemma 4.1, we get 

DIg(z)121f'(z)12 d A . ( z )  = IIMT (g)llL(dAo) _< CIIh(~)ll211gll~. 

Now suppose h (~) is compact from DZ to L 2'~ and {gj}j>_o is a sequence in D~ 
with Ilgj[[~<l and gj-+O weakly in DZ as j--~c~. We want to show that  Mp(gj)-+O 
in L2(dA~) as j--+c~. Notice that  

< M~"  ~ 0 h(~_l/2)~ ,11 +]1 0 h(~_l/2)~g.~ll 
IlMp(gj)Jli~(dA~)_ f ~gJJ~z f ~gJ)lli~(dA.) lib--/ S ~llL~(dAo)" 

By Lemma 4.3, we get 

l I M p  (g j )  2 

+2 Oh~'r-1/2)(gj) :2(dA~)" 

By Lemma 4.2, the compactness of h~ e) from D/~ to L 2'~ implies the compactness 

of h (~-1/2) from DZ to L 2'~. Hence the last term of the above inequality converges 
to zero as j---*cx~. By Lemmas 4.1 and 4.2, we have I(r, gj)--+O uniformly for j as 
r--~l_. For fixed r~(0 ,  1), we have clearly II(r, s, gj)--+O uniformly for j as s--+l_. 
Since gj-+O weakly in D~ as j--~oc, we have III(r,s,gj)--+O, for fixed r and s in 
(0, 1), as j -+oc .  These facts show that  

IIM r (gj)llL~(dA~)~O as j --* ec.  
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5. P r o o f  o f  T h e o r e m  3 

We know from Lemmas 3.1, 3.2 and 3.4 that  H~) :  D~---~L 2'~ is bounded, coro- 

T(n) pact or belongs to Sp if and only if the Toeplitz operator if,]2dA,~ is bounded, 
compact or belongs to Sp/2, respectively. We know also by Theorem C (d), for 
f~,p/~> 1 that  these properties are equivalent to 

iD If'(z)]2 dA,~(z) < co, 

which means that  fcD~.  
For the small Hankel operator, from Section 4, we know that  h(~): DZ---*L 2''~ 

is bounded, compact or belongs to Sp if and only if the operator defined on l 2 by 
the matrix (4.2) is bounded, compact or belongs to Sp. As we saw in Section 4, the 
Sp norm of the operator corresponding to the first matrix of (4.2) is dominated by 

CSD If'(z)12(1--lz]2) 2+2~-2'~ dA(z). 

This can be further estimated by (since we assume �89 </7<1 in Theorem 3) 

< c SD If'(z)l (1--1z12)3-2'  dA(z) < C iD If'(z)12(1--1z12)2 dA(z). 

Thus if f is in D~, then the operator corresponding to the first matrix of (4.2) is 
in Sp for any 0 < p <  co. If p/~> 1, a result in [W] yields that  the operator defined on 
l 2 by the second matrix of (4.2) is bounded, compact or belongs to Sp if and only 
if fCD,~. 

6.  P r o o f  o f  T h e o r e m  4 a n d  s o m e  f u r t h e r  d i s c u s s i o n  

1 and "y<l(l+c~),  it is easy to compute and get that  For c~<l, f~=~ 

 llhu,)( zk 
#,  1 

• JS If'(z)l~(1--Izl2)~-<" log ~ dA(z). 

Hence we have (see also [W]): 
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L e m m a  6.1. Suppose ~<1 ,  ~__1_2 and V<�89 Then H (~) or h~ "y) is in 
S~2 ~ if and only if f E BL~. 

To prove Theorem 4, (1), we apply the interpolation theory to the map 

(6.1) f~-* g (~) (or h(~)):DUp --~ L 2'~, p = 2  or c~. 

We know, by Lemma 6.1, that  this map takes functions in BL~ to operators (from 
D1/2 to L 2,a in $2 and, by Theorems 1 and 2, this map takes functions in 

BMO~ : { g is analytic in D :  Ig'(z)l 2 dA,~(z) is a 0-Carleson measure } 

to the bounded operators (bounded from Do to L2'~). Interpolation theory then 
insures that  the map (6.1) takes functions in the spaces between BL~ and BMO~ to 
the operators (which map the corresponding spaces between D1/2 and Do to L 2'~) 
in the corresponding spaces between $2 and the space of the bounded operators. 

In [RWl], one can find the atomic decomposition theorem for BMO~ (for a = 0 ,  
see also [RSl]). The result of the atomic decomposition for BL~ is similar to the 
same type of result for Bp (see [R2]). Using these results and the methods in [RSl] 
and [R2], one can prove easily that  the spaces intermediate between BL'~ and BMO~ 
are the spaces BLp, 2<p<c~ .  The spaces intermediate between D1/2 and Do are 
clearly the spaces D1/p, 2<p<c~ .  And it is a result from the theory of Schatten 
p-classes that  the spaces between $2 and the space of bounded operators are the 
spaces Sp, 2<p<c~ .  Hence 

H~ ~) or h(~): D1/p ~ L 2'~ 

is in Sp, 2<p<cx), if f is in BLp. 
Let l < p < c ~  and q be the conjugate of p: 1/q+1/p=1. It is easy to see, by a 

standard dual argument, that the dual of BL~ is BL~ under the pairing 

D 1 dA(z), f E B L ~  a n d g C B L p .  (f, g> = f'(z)g'(z)(1-Iz[2) 1-2~ log 

The second part of Theorem 4 is in fact a "dual" result of the first one. To 
see this we suppose, for example, that  H~ ~) is in S 1/p~, l < p < 2 .  We know from 

Section 3 that  H (7) is in Sip/p~, l < p < 2 ,  if and only if Mr,:  D1/p--~A 2,1-2~ is in Sp. 
Let q be the conjugate of p and g be in BL~. Then, by the first part of Theorem 4, 
we have Mg,: D1/q-~A 2,1-2~ is in Sq. Notice that  

1 f i , z , 2 k  ~ zk 2 k 
log 1--1z] 2 -- 1 k -- kl/p kl/q" 
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By using (4.1), we have 

D 1 dA(z) [<f,g>l : f'(z)g'(z)(1-lzl2)l-2'~log 

= MI' k~/p , M g , -  ~ A2,1_2 ~ 

< CII(M~,)*MrlIs, 

<_ CIIMs, IIs~IIM~,IIs~ 
<_ CIIMz, IIs~IIglIBLv. 

This implies tha t  f is in BLp. A similar argument  will prove tha t  the same result 
~i/p~ is t rue if h (~) is in l < p < 2 .  u p  

We now discuss the conditions for the symbols in Theorem 4. 

Let fz(z)=z k and f2(z)=(1-~tz) 2a-2. We first est imate their BLp norms. 

o 

ilflllPBL_kp r(k_l)P(l_r)(l_a)P_llog 1 dr 
1-r  

1 fOO 1 r(k_l)p( l_r)(l_a)p_l+ j dr =k, j 
1 

• ( k + l )  '~p l og (k+  1); 

1 dA(z) 11/2][~L; : C/DO-[zlb(1-~)P-lll-azi(~-3/P log 

oo 1 

~ E  (j+l)(3-2a)p-21al2j f rJ(1--r)(1-~)P-Zl~ 1 1 dr 
~ r o Jo 

• E (j+l)(3-2")p-2lal2j E n-l(j+n)(~-l)P 
o 1 

o o  

E (j + I )( 2-~)p- 2 log(j + l )]al 2j 
o 

1 
x (1 - ] e l2 )  (a-2)p+l log 1 - [ a l  ~ "  

We then  estimate the Sp norms o f h  (~) and H (~) We know tha t  h (~) is a rank k + l  
f l  f l  " f l  
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operator and hence 

2 p 2 p h(~) 7k+l,a ~ n~&,~ 
'~ 112 = ( k + l ~ p T 0 , ~  +m _k (k+1)Tm,l/p%,~ 

(k+2)2~ P ~ n ( k + l )  2~-1 P 

(by (4.1)) •  + 2-j'_ k (m+l)UP(n+l) ~ 
• (k+ 1) ~p log(k + 1). 

And by Lemmas 3.2 and 3.3, we have 

(o~) P v IIH)~ lip ~ IIMsl IIg+ IIHsllI~ • IlMs; I1~. 

Here we regard MS, 
singular values 

Therefore 

as an operator from D1/p to A 2'1-2a. 

k2~k+m,~ ~oo 
(k-'Fm)2"Ym,1/p Jm=0' 

Clearly Mfl has the 

~o k2"Tk+'~'~ P ~ k2p(k+m+l)'~P 
liming= (k+m)~zm,1/p • 0 (k+m)~P(m+l)•176 

Hence 

I Ih~ ) II. • I IH~  ) II. • IIf~ I I-L~. 
These estimates show that  the conditions of the symbols in Theorem 4 are sharp. 

However, the following estimate on the Sp norm of h (~) shows that  the condi- f2 
tions of the symbols in Theorem 4 are not sufficient at least for h (~) in Sp. 

It is easy to check that  h (~) is, at most, a rank two operator and hence I2 

II h(s~)lip ~ IIh~ ) 112 ~ Ill2 IIB~/=§ ~ (1--la12)~+~/p-2- 
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