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Subsolutions and supersolutions 
in a free boundary problem 

Antoine Henrot(1) 

A b s t r a c t .  We begin by giving some results of continuity with respect to the domain for the 
Dirichlet problem (without any assumption of regularity on the domains). Then, following an idea 
of A. Beurling, a technique of subsolutions and supersolutions for the so-called quadrature  surface 
free boundary problem is presented. This technique would apply to many free boundary problems 
in R N, N_~2, which have overdetermined Cauchy data  on the free boundary. Some applications 
to concrete examples are also given. 

1. I n t r o d u c t i o n  

In a beautiful paper of 1957, [4], Arne Beurling investigated a free bound- 
ary problem for the Laplace equation with the Canchy data prescribed on the 
free boundary. More precisely, this question related both to the electrochemical 
machining problem and to various hydrodynamics problems (see Acker [1], Alt-  
Caffarelli [3], Carleman [5]) is the following. Let F be a given Jordan curve in the 
complex plane and Q a positive continuous function defined on C. Can one find 
an annulus w having F as one boundary component and another boundary com- 
ponent V (the free boundary) such that  there exists a harmonic function V in w 
satisfying 

V=O o n F ,  

(1.1) V -- 1 on "7, 

I V y ]  = Q on "7. 

Arne Beurling in [4], (see also Tepper [21]), using the powerful tools of com- 
plex analysis presented an original way to prove existence of solutions to the prob- 

(1) This  work was done while the author was at  the University of Nancy I (France) supported 
by URA 750 CNRS and project Numath  INRIA Lorraine. 
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lem (1.1) by means of subsolutions and supersolutions. Here a subsolution would 
be a domain ~ such that  the harmonic function, which solves the Dirichlet problem 

A V = O  i n f ' ,  

(1.2) V = 0 on F, 

V = I  on 7, 

has, on 7, a gradient greater than Q (and similarly for a supersolution). 
In the present paper we use again this idea, but for a different free boundary 

problem. Given are a positive distribution # with compact support in a N and a 
positive continuous function g, and we have to find a domain ~ such that  there 
exists a potential u satisfying 

- A u = #  inf', 
(1.3) u = 0 on Of~, 

]Vu l=g  o n 0 ~ .  

This problem is known as the quadrature surface free boundary problem and 
has already been investigated for instance by Shahgholian in [18] and Shapiro- 
Ullemar in [19]. It is related to quadrature domains and quadrature surfaces ques- 
tions, see Aharonov-Shapiro [2], Gustafsson [9], [10] and Sakai [17], and also to hy- 
drodynamics problems (like Hele-Shaw problems) or electromagnetic shaping prob- 
lems (see Crouzeix-Descloux [6] and Henrot-Pierre [12], [13]). 

The results we present in this paper are very similar to Beurling's results but  the 
tools employed are completely different since we consider the problem in R N, N > 2 .  
Furthermore, the techniques which are developed here could certainly apply to the 
generalization of problem (1.1) in N dimensions. 

For technical reasons we need in this paper some results of continuity with 
respect to the domain. This kind of results is important  in, e.g., topics like shape 
optimization. Usually, to obtain such results, we need an extra assumption on the 
regularity of the limit domain (e.g. Lipschitz boundary).  In Section 3 we choose 
to work with general domains but, per contra, we have to strengthen the kind of 
convergence. 

In Section 4 we state some results of stability for the sets of domains which will 
be called subsolutions and supersolutions. Then, in Section 5, we give the result of 
existence using subsolutions and supersolutions for problem (1.3). It is easy to see 
afterwards that  the existence can be ensured only when a subsolution is available. 

In Section 6 we give some applications of these results. First we consider 
combination of Dirac measures with an example in two dimensions which shows 
that uniqueness of a solution is not true in general. Then we give a constructive 
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way to obtain existence which is applied to the case of the distribution m# when m 
describes R+.  

To conclude, this idea of Beurling seems to me applicable to many free bound- 
ary problems with overdetermined Cauchy data  on the free boundary even in N- 
dimensions. 

Acknowledgements: The author is very grateful to Professor M. Pierre for many 
fruitful discussions. He also thanks Professor J. Sokolowski for suggesting to him 
to use results of Mikhailov in the proof of Proposition 3.1. 

2. S ta t ement  of  the  problem 

Let # be a given positive distribution in the Sobolev space H - I ( R  N) (which 
can be identified to the topological dual of the Sobolev space H I (RN ) ,  see e.g. [7]), 
N > 2 with compact support K in R N and g a positive continuous function given in 
K c (the complement of K).  We look for a bounded domain ft in R N, containing K,  
such that  there exists a solution to the following overdetermined Cauchy problem, 

(2.1) 

- A u = t t  in f t ,  

u = 0 on F = Oft, 

IVul=g o n F .  

We do not assume any regularity property of ft, so the solution is to be taken 
in the weak sense, i.e. 

(2.2) u �9 HoZ(ft) and, for each v �9 H~(ft), /~ Vu(x)Vv(x)  dx = (#, v), 

the meaning of the somewhat ambiguous third condition being specified below 
(see (2.6)). 

Let us denote by C the set of all bounded (open) domains containing K.  For 
a given w6C, we denote by V~ the solution of the Dirichlet problem 

f - A V e = #  inw,  
(2.3) 

V~ = 0 on Ow, 

and we assign to w the following quantities which are defined on Ow, 

(2.4) 
a(w, g) ---- a(w) = lim inf(g -1 ]VV~ ]) 

b(w, g) = b(w) -- lim sup(g -1 I VV~ I), 
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where the limits are taken for xEw, tending to the boundary of w. By means of 
these limits we define the following three sets of domains, 

A(g) = A = {w �9 C; a(w) > 1}, 

(2.5) B(g) = S = {w �9 C; a(w) <_ 1}, 

Ao(g) = Ao = {w �9 C; a(w) > 1}. 

We are now able to give a precise sense to the third condition in (2.1). 

(2.6) ~ �9 C is a solution of the free boundary problem if ~ �9 AMB. 

We introduce some notation which will be useful in the following. We will 
denote by/~ the fundamental solution of - A f t = #  in R g which is given by 

(2.7) EN(x-y) d#(y), 

where EN is the fundamental solution of - A  in R N given by { 1 
EN(X) =--~-~ log IxI for N = 2 (we will set k2 = - 2 7 @  

(2.8) 1 1 
EN(X) = kN Ix] N-2 for N _> 3, 

where kN is a negative constant whose exact value is kN----(2(2-N)~rN/2)/F(N/2). 

3. Some results  of  cont inu i ty  wi th  respect  to  the  domain  

In free boundary problems like in shape optimization the question of continuity 
with respect to the domain is very important.  It is related both to the kind of 
convergence of the domains wn to the limit domain w and to the regularity of the 
domain w. In this section we choose a strong kind of convergence (see (3.2) and (3.9)) 
but we do not assume any regularity property for w. In [16], Pironneau considers 
a weaker convergence of the domains (Hausdorff convergence) but he needs some 
extra assumptions to obtain his convergence result. In [15], Osipov and Suetov give 
a sufficient condition of convergence for the solutions of the Dirichlet problem in 
term of Mosco convergence of H a (wn) to H a (w). See also [20] where Sverak obtains 
interesting results in dimension 2, using the orthogonal projections on H(~(w~) and 
H01 (w). 

Let w be a bounded open set in R g.  For each E>0 we will denote by ];6 the 
following domain, 

(3.1) ];~ = {x �9 R N, d(x, Ow) < ~}, 
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where d(x, L) is defined for every compact subset L of R N by 

d(x, L) = inf Ix-Y[. 
y c L  

P r o p o s i t i o n  3.1. Let w~ be a sequence of domains converging to a domain w 
belonging to C in the following sense, 

(3.2) V ~ > 0 , 3 n 0 E N  suchthatn>no ~ wnClZ~Uw andw~C~Z~Uw c. 

Assume moreover that ~TV~ is uniformly bounded outside K, i.e. 

(3.3) there exists a neighbourhood W of K, with WCw and a positive constant M 
such that Vn, VXEWn\W, [VV~n(x)I<M. 

Then Y ~  converges to Y~ in HI(R N) (as usual we extend V~ EH~(wn) by 
zero outside wn ). 

Proof. Let D denote a ball containing w and all the w~. We have 

f VV~ n (x)Vw(x)dx = (#, w) for each w E H~(w~). 
n 

Extending all these functions by 0 in D yields ( -  denotes such an extension) 

DV~Z~(x)V~(x) dx = (#, t~) for each t~ E Hi(D) such that  ~/wn E Hl(w~). 

Applying this relation to t~=V~  yields f [VV~(x)12dx< I[#l[ I[V~[IH], where 
I[#[[ is the norm of # as a continuous linear form on H01 (D) and the Poincar~ inequal- 
ity shows that  V~n is bounded in HI(D ). Therefore, we can extract a subsequence 
which converges, in the weak topology of H 1, to VEHI(D). 

Let w E:D(w), since d(supp w, Ow) is strictly positive, by assumption (3.2) there 

exists no such that  n>no~wET)(wn), and then 

/D V V ~  (x)Vw(x) dx = f~ VV~  (x)Vw(x) dx= l#' wl' 

and taking the weak limit, 

(3.4) ]~ VV(x)Vw(x)  dx = (~, w). 

This relation (3.4) is also true for every wEH~(w) by density. 

Now, it remains to prove that  VEH~(w) to identify V and V~. We use for this 
a characterization of H0 ~ (w) that  we can find in Mikhailov [14] in the regular case 
and in Osipov and Suetov [15] for the general case. 
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L e m m a  3.2. Let V be in Hi(w). If there exists a constant C such that for 
each s>0  small enough, we have 

(3.5) fv~n~ V2(x) dx < Cr 2, 

then Y belongs to H~(w) (see proof in [15]). 

So, let e>0 be fixed. According to (3.2) there exists no such that n>no yields 

(3.6) Own C P~. 

Let us fix n greater than no and consider a sequence (~q)q>_l of functions in 
:D(wn) converging in Hl(wn) to V~. Since V~q--*VV~ a.e., we have IV~qI<M+I  
a.e. (and then everywhere since V~q is continuous) in wn\W using (3.3). 

For each x in )2~Nw, there exists y in D, Ix-ylN2e and ~q(y)=0. Then 

and then 

fO (x-y) dt I q(x)l = < 2 e ( M + l )  

~ ~2q (x) dx~-4e2(M+l)2mes('lg~nw)~-Ce2' 
r 

(x) dx < 2, 

since ~q converges to Vwn in L2(D). 
This property being true for each n (with C independent of n), we have 

(3.7) ~ n ~  V2(x) dx < Ce 2, 

because we can extract from the sequence V,~, a subsequence converging to V in 
L2(D) by Rellich's theorem. Using Lemma 3.2, we have proved that V belongs to 
H~(w). 

Now applying (3.4) with w--V yields: 

~]VV(x)12dx=(pt, V}= lim f [VV~n(x)]2dx, n-~+~ j~. 

and the convergence of V~ to V is therefore strong in Hi(D) ,  which finishes the 
proof. 
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Remark 3.1. When we investigate the previous proof, we observe that  the con- 
vergence of wn to w occurs twice. First when we claim that  wE:D(w) implies 
wE:D(w,) for n large enough, and later when we claim that  for every x belong- 
ing to lZeMw, we can find y in D\wn with I x - y [ < 2 s .  Consequently it is possible to 
weaken assumption (3.2). For example, when Wn is a decreasing sequence of open 
domains, the first point is automatically fulfilled and we can state the following 

proposition. 

P r o p o s i t i o n  3.3. Let w ,  be a decreasing sequence of domains which belong 

to C converging to w in the following sense: 

Off C Vs>0 ,3n0  suchthatVxE]2~Mw, B(x,4e)M no50"  

Assume moreover that (3.3) is satisfied. Then V ~  converges to V~ in H I ( R N ) .  

Proof. Obviously, we have then B(x,  4s)Mw~r for all n>no and the proof is 
the same as in the previous proposition (with 2~ replaced by 4~). 

In the case of a decreasing sequence of domains wn converging to w in the sense 
of (3.8), we can use the property of the functions V~ and V~ to be harmonic on 
w \ K  to specify the kind of convergence. We recall that  a sequence of harmonic func- 
tions V~  converges to a harmonic function V~ in 7-t(w\K) (the space of harmonic 
functions on w \ K )  if V~. uniformly converges to V~ as well as all its derivatives on 

every compact subset of w \ K .  

P r o p o s i t i o n  3.4. Let wn be a decreasing sequence of domains converging to a 
domain w belonging to C in the sense (3.8). Assume moreover that (3.3) is satisfied. 

Then Vo~. converges to V~ in TI (w\K) .  

Proof. By the maximum principle V~o. is a decreasing sequence of harmonic 
functions on w \ K .  Let x0 be fixed in w \ K  near the boundary of w. By assump- 
tion (3.3) and the mean value inequality, the sequence V~.(xo) is bounded in R 
and then the Harnack theorem (see e.g. [7], vol. 1, Corollary 9, p. 300) gives the 

announced result. 

Now, we give a similar result of convergence when w is per turbed only in a 
neighbourhood of a point of its boundary. This result may allow, for instance, to 

replace any open domain by a domain locally more regular. 

P r o p o s i t i o n  3.5. Let wEC,  xCOw and wn be a sequence of domains such that 

(3.9) ~n/~03 is included in the ball centered at x of radius 1/n, 



86 Antoine  Henrot  

where the symmetric difference of w~ and w is defined by 

Wn/~0.) : (Wn \~d) U (t,.,d\~Mn). 

Then Vw, converges to V~ in H I ( R N ) .  

Proof. The beginning of the proof is the same as in Proposition 3.1 since it is 
clear that  for any compact K1Cw we have KI  Cwn for n large enough. Again, it 
remains to prove tha t  V (=  weak-limit of V~.) belongs to HI(w) .  For this purpose, 
we are going to use the characterization of H01 (w) related to spectral synthesis tha t  
we can find in Hedberg [11] or Deny [8] (for initial reference), 

V �9 Hi(w) if V[~c -- 0 quasi-everywhere. 

(We define, as usual, Vl~c as the restriction to w c of a (2, 1) quasi-continuous 
representative of V.) 

Let F be any compact  subset of w c which does not contain x. Since d(x, F)>0, 
there exists No such that  F c w ~  for every n>No, and then V~IF--O. Now since 
V~ ,  n>No converges weakly to V, there exists a linear convex combination of 
the V ~ ,  n>No which converges strongly in H 1 to V. Such a convex combination 
vanishes on F and converges quasi-everywhere to V, so V = 0  q.e. on F.  This result 
is true for each F not containing x and the (2, 1) capacity of x (see e.g. [11] for 

more details) being zero (in dimension N > 2 ) ,  we have proved that  V - 0  q.e. on w ~ 
which finishes the proof. 

4. P r e l i m i n a r y  r e s u l t s  c o n c e r n i n g  t h e  se t s  A a n d  B 

Let us now claim some stability results for the set of domains B. 

P r o p o s i t i o n  4.1. Let w~ be a decreasing sequence of domains in B converging 
to a domain w, belonging to C, in the sense of (3.8). Then w belongs to B. 

Proof. We first want to apply proposition (3.4), so we have to prove uniform 
boundedness of [VV~ I (assumption (3.3)). 

The function V ~ - f t  and all the functions O(V~- f t ) /Oxi  are harmonic on wn. 
By the maximum principle applied to each function O(V~- f t ) /Oxi ,  it follows that  
on Wn 

(4.1) ] i = l  cgw,~ 
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Now the assumption that  Wn belongs to B implies that ,  in a neighbourhood of Own, 
we have 

(4.2) IVV,~ I _< IIg[ILOO(D). 

Let W be any neighbourhood of K strictly contained in w. Using (4.1) and (4.2) 

we obtain for each x in Wn \ W 

D\W 

and so we have obtained that  for each x in wn\W, we have 

IVV~,~ (x)l <_ v"NIIglIL~(D ) + ( v / N +  1 sup IVftO, 
D\W 

the right-hand side being a constant independent of x and n. 
Then, according to Proposition 3.4, V ~  converges to V~ in 7l(w\K). Now an 

elementary calculation proves that IVV~ 12 is subharmonic where V ~  is harmonic, 
i.e. on wn\K. Let us denote by F the boundary of W defined above. Since V V ~  
converges uniformly to VV~ on F, we have IVVw~I2~IVVwl2+I on F for n large 
enough. 

Let us introduce a sequence of harmonic functions r as solutions of the Dirich- 
let problem 

{ Ar = 0  in wn\W, 
r = g2 on Own, 

Cn--~ [VVw[2+ 1 on F. 

Since [VVo~n[ 2 is subharmonic on w n \ W  and [VV~n[2<g 2 on Own, we have 

(4.3) IVV  12 Cn on wn\W. 

We want to prove that  w belongs to B. Assume, for a contradiction, that  there 
exists x COw such that  

(4.4) lim sup IVV~(z)I 2 >_g2(x)+a with a > 0 .  
Z - - ~ X  
ZEW 

If we can prove that,  for n large enough, 

(4.5) Cn(x) < g2(x)+ /2 
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the result will follow immediately from uniform convergence of [VVw~ [2 to [VV, o [2 
and from inequality (4.3). 

Now let us introduce the harmonic function r which solves the Dirichlet prob- 
lem 

A r  i n w \ W ,  

r = g2 on Ow, 

r  on F. 

It follows from Harnack's theorem and monotony of the sequence r that  r 
converges to r in TI(w\K)  (see the proof of Proposition 3.4) and inequality (4.5) 
follows immediately which finishes the proof. 

L e m m a  4.2. If wl,w2 belong to B, so does their intersection. 

Proof. Let us set V=V~ln~2, VI=V~ 1 and V2=V~ 2. Since WlNW2Cwl and 
V 1 - V  is harmonic on wlNw2, we have by the maximum principle V1-V>O on 
wl nw2 and moreover for each x belonging to OWl NO(wl~w2) (where both V1 and 
V vanishes) we have 

(4.6) lim sup IVVl(Xn)l lim sup IVV(x~)l 

for every sequence xn converging to x in wl Nw2 (we have obviously the same prop- 
erty for V2 and V). Since every point of O(WlnW2) belongs either to 0Wl or 0w2, 
we obtain immediately from (4.6) 

]VV(xn)l < 1 for xn converging to x in 021N022 limsup g(x~) - 

and then wl Aw2 EB. 

L e m m a  4.3. Assume wlCa~2, colEAo and aJ2EB. Then co2 contains the 
boundary of Wl. 

Same proof as in [4], Lemma II, since gr 1 --go2 2 is harmonic in Wl. 

5. T h e  e x i s t e n c e  r e su l t  

We are now able to prove the main result of this paper which is a result of 
existence when a subsolution (i.e. a domain in A0) and a supersolution (a domain 
in B) are available. 
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T h e o r e m  5.1. Assume 120Cwo, woCB, 12oEAo. Then there exists a solu- 
tion ~ for the problem (2.1) such that ~ 0 C ~ C w o .  

Proof. We consider the set S--{wEB:12oCwCwo}, which is not empty since it 
contains w0. We are going to construct a minimal element of S which will be the 

desired solution. 
For this purpose, we form I ,  the intersection of all wES, and we set ~----I. The 

domain ~ is not empty since ~0 is included in I .  

First we have to prove tha t  ~ belongs to B. 

We can choose a sequence (Dn)n=l ..... oo of domains belonging to S such that  

f i  Dn= N w=I .  
n = l  wES 

We define a decreasing sequence 02 n by wl =D1 and w~+l =wnMD,~+l. 
By Lemma 4.2, all the Wn belong to B. To prove that  ~ belongs to B it remains 

to prove, according to Proposit ion 4.1, that  wn converges to ~ in the sense of (3.8). 

Let ~>0 be given, we assume for an indirect proof that  

(5.1) for each n, there exists xn C 12~N~ such that  B(xn, 4~)C ~dn. 

We extract by compactness a subsequence xnk converging to x in 12~N~C'N~N~. 
By the triangle inequality, (5.1) implies that  

(5.2) there exists k0 such that  k > ko ::~ B(x, 2e) C wnk. 

But it follows that  B(x, 2 e ) C I  and then B(x, 2e)C ~ which is in contradiction with 

x E ~  and we have proved that  ~ belongs to B. 
Moreover, according to Lemma 4.3, ~ contains the boundary  of 120. This 

domain ~ is not only minimal in S (by construction), it is also locally minimal in B 
in the sense that  there exists a neighbourhood N of its boundary  such that  12 does 

not contain any wCB, w : ~  and OwCN. 
We are going to prove tha t  ft is a solution of the free boundary  problem. 

Assume that  this is not true, then there exists a point xEO~ such that  

(5 .3)  l iminf  ]VVa] _ 1 - a  < 1. 
xn ~x, xnEgt g 

Let us introduce O = { z e ~  such tha t  IVY~(z)llg(z)< 1 - ~ / 2 }  which is an open sub- 
set of ~. Assumption (5.3) means that  for every n C N ,  B(x,n-1)MO is non empty. 
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Let us choose for each n a closed subset Fn of positive capacity in B(x, n -1 ) N (.O 
and let us set 

(5.4) 5n  = ~ - F n .  

We are going to prove that  ~n, which is strictly contained in ~, belongs to S 
for n large enough, which leads to a contradiction. 

Since f~ contains ~ , ,  by the maximum principle we have 

(5.5) V,~:=V5 <_Va onlY. 

Now, the boundary of ~n is composed on the one hand of 0f~, but for every 
point y in this part we have (since Vn(y)=Va(y)=O), by (5.5) 

Ivy (y)l l imsup IVVn(Y)I < l imsup - -  < 1, 
g ( y )  - 9 ( y )  - 

and of the boundary of Fn. But on Fn, [VVa[/g<l-a/2 and since ~n converges 
to ~ in the sense (3.9), we have, according to Proposition 3.5, 

Vn-Va- -*0  i n H  1. 

Then the L2-convergence of VVn to VV~ proves that,  up to a subsequence, and for 
n large enough, 

(5.6) [VYn] < 1 -  a g o n  OFn 

and for such n, we have therefore 

l imsup [VV~[ _< 1 on 05n 
g 

which finishes the proof. 

The interest of Theorem 5.1 is that  to prove the existence of a solution for the 
problem (2.1), we can compute solutions of the Dirichlet problem (2.3) for particular 
domains. For a ball, for instance, we possess an explicit integral representation of 
the solution of (2.3) that  we are going to use now. 

In all the following, we are going to make an extra assumption on the growth 
of the function g at infinity, we assume from now on that  

1 
(5.7) g(x) =O([x]N--1) when [x[~-~-(:x). 
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T h e o r e m  5.2. There exists a solution to the problem (2.1) if Ao is non empty. 

Proof. To prove Theorem 5.2 it is sufficient, according to Theorem 5.1, to prove 
that  for R large enough the ball BR=B(O, R) belongs to B. 

Now it is well known that  the solution of problem (2.3) for the ball BR is given 
by (see for instance [7]) 

(5.s) Ry ) 
and then on rn=OBn; IVVR(x)I=VVR(X).n is given by 

(5.9) fK R -M IVVR(x)] =CN R ix_y l y  d#(y) for x e F R ,  

where CN is a positive constant depending on N. We obtain immediately 

R 
IVVR(X)I <_ CN ~ -~-----------~ I#l for x e FR, 

where 5-~maXyeK lYl, and I#1 is the total variation of #, and then the convergence 
of IVVR(x)I/g(x) to zero on FR follows from (5.7). 

For a given distribution #, the proof of existence of a solution for the prob- 
lem (2.1) amounts to looking for a domain in the class A0. We give in the following 
section a constructive way to obtain such a domain and some examples of applica- 
tion. 

6. A p p l i c a t i o n  a n d  e x a m p l e s  

(a) F i r s t  e x a m p l e :  c o m b i n a t i o n  o f  D i r a c  m e a s u r e s  

Let xl ,x2, . . . ,xm be m points in R N and al,a2, . . . ,am positive coefficients. 
We consider the following combination of Dirac measures, 

m 

(6.1) , =  
i = 1  

Although # does not belong to H - I ( R N ) ,  for N > 2 ,  the theory that  we have 
developed in the previous section works in this situation. Indeed, the two main 
points we need in order to apply the theory are the following. 



92 A n t o i n e  H e n r o t  

There exists a solution V,o for every bounded domain w for the problem (2.3). 
This solution is given using the Green function Go~ of w, by 

(6.2) V~(x) = - ~ aiGw(x, xg). 
i = 1  

We are able to prove Propositions 3.1, 3.4 and 3.5 (continuity with respect 
to the domain), which can be done either using formula (6.2) and continuity of 
Green functions with respect to the domain or using variational formulation of 
problem (2.3) (see [7]), let 0e]0, 1[ then V~ is characterized by 

V~ E W~'P(~) with p = N - O  
N - 1  

fn  N - O  VVcoV~=(#,~) for every ~Ew~'q(~t) with q =  1 - 0  

- -  and 

and following the proof of Proposition 3.1. 
Now we are able to prove the following proposition. 

P r o p o s i t i o n  6.1. Let # be given by (6.1), then for every 9 satisfying (5.7) 
there exists a solution for the problem (2.1). 

Proof. According to Theorem 5.2, we have to find a domain in A0. Let us 

denote by 
m 

i = 1  

with ~ small enough so that  all the balls are disjoint. We obtain immediately 

(6.3) V~(x) :-- Va~ (x) = ~ (EN(X--Xi)--EN(~)) for x e B(x~, e) 

and on 0 ~  

1 _ CNai for x E OB(xi,e), IVY~l=cu~l~_x~lU_ ~ eN-~ 

where e N is a positive constant. So it is clear that  for c small enough, f~ belongs 

to A0. 

When N=2,  we can use conformal mappings to compute the solution(s) of 
problem (2.1), see [12], [13] and also [19]. These computations show that,  in general, 
we have not a unique solution to this problem for a given #. Another interesting 

m situation is to let the total mass Y]~i=l c~i increase. We observe various topologies 
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(1 convex) (convex) 

connected solutions 0 2 2 1 

a / l  0 2.300 2.827 7r 

disconnected solutions 1 1 1 0 

Figure 1. 

for the solutions ~t and also a sort of bifurcation situation happens. We are going 
to present here a simple but typical situation, the case of two Dirac measures with 

the same coefficient, 

(6.4) # = a b - x + a b x  

with a > 0  and x and - x  on the real axis of the complex plane (x>0) .  We denote by 
l(--2x) the distance between the two points. We choose for function g the constant 

function 1. 
We can state the following proposition. 

P r o p o s i t i o n  6.2. Let It be given by (6.4), l=2x  and g - 1 .  We look for the 
regular domains ~ (i.e. of class C 2) which are solutions of the problem (2.1). 

(1) For a<Trl, there exists a (unique) disconnected solution, it has two con- 
nected components and it is given by 

~ = B - x ,  tAB x, ; 

for a>Trl there is no disconnected solution. 
(2) For 2.300. . . I<a<7ci ,  there exist two connected solutions, one contained 

in the other. 
(3) For zcl<a, there exists a unique solution (which is connected). Moreover, 

for 2.827... l < a there exists a convex solution. 

We summarize the results in Figure 1. 

Sketch of the proof. (1) Each connected component  of a solution ~t must meet 
the support  of It (otherwise, we would have u = 0  on this component and then 
IVul--0), therefore a solution has at most two connected components.  If there are 

exactly two, on each one we have to solve the problem 

{ - A u - - a 6 z  i n w w i t h z = x o r - x ,  

U = 0  on  0 ~ ,  

IVul = 1 on Ow, 

4-Arkiv f'6r matematik 
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whose unique (regular) solution is a disk of center z and radius 27r/c~, see [12] or [18], 
so the result follows since these two disks must be disjoint. 

(2) and (3) Looking for the connected solutions ft we introduce a conformal 
map �9 transforming the unit disk ft0 into ft. We can assume that  the inverse image 
of x and - x  are a and - a  on the real axis, with 0 < a < l .  

If we set v(x, y)=log  Iq~'(x+iy)l we have proved in [13], see also [12], that  v is 
the solution of the Dirichlet problem 

(6.5) 
A v = 0  ) inf t0 ,  

/ 2a(1-a 4) 
v = log ~-a-~ ~ ~ on 0 a 0 = r 0  

We are able to solve explicitly (6.5) using a Fourier expansion of the function 
appearing in the boundary condition (see [12]), and we obtain 

O'(z) o~ ( 1 - a  4) 1 
7r a 4 ( z 2 - 1 / a 2 )  2 

and by integration 

- 2 z  
O(z)--  c~(1-a4)47ra 2 [z2---~/a 2 " l/a-zjl/a+zl +-a log .--v-----/�9 

These maps are univalent for every a, 0 < a <  1. It remains to solve the equation 

~(a)=x=l/2 

to obtain effectively a convenient conformal map. The study of the function a--* �9 (a) 
gives the announced result (for the convexity, we observe that F =~(F 0 )  is convex 
if and only if a<l/v'~). 

(b) Use  o f  level  se t s  

If % is any level surface of/5, the function defined in (2.7), which includes K,  

(6.6) Vc ---- {x �9 RN;/~(x) ---- c �9 R} ,  

we denote by ~oc = {x �9 RN;/~(x) > c} the "interior" of 7c and the potential associated 
to wc is given by 

Vc:=V~o =p-c. 
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Since ]VVc]=IV/2] which is a known function, a simple way to prove existence 
of a solution for the free boundary problem (2.1) is the following, 

]" if there exists a level surface of/~, including K, 
(6.7) / on which IV~l/g_> 1, then there is a solution to problem ( 2 . 1 ) .  

This criterion (6.7) is indeed only a sufficient criterion of existence but  it is 
rather simple to use. For instance, we can determine the region outside K where 
IVs  1, and then look for a level surface of/~ in this region to obtain existence. 

Another application is given in the following result. 

P r o p o s i t i o n  6.3. Let # be given. There exists a number m 0 E R +  such that 
(i) if m < m o  there is no solution to the free boundary problem associated 

to the measure m#; 
(ii) if m > m o  there is at least one solution to the free boundary problem 

associated to the measure m#.  

Proof. We set 

I = {m E R +  such that  there exists a solution for the measure mp}.  

We have to prove that  I is an interval like [m0, +oc[ or fro0, +oo[. For this 

purpose we prove 
(1) if m l E I  then m > m l ~ m E I ,  

(2) I # 0 .  
The first point. Let (~1, U1) be the solution associated to the measure m l # .  

For m > m l ,  we set V = m / m l U 1  and we have 

- A V =  rn ( - A U 1 ) = m #  onf~l ,  
ml  

V = 0 on 0~~1, 

and 
IVVI m IVUll 
- - - -  - -  > 1 ,  

g m l  g 

so f~l belongs to Ao(m#)  which proves existence of a solution for m#.  
For the second point we are going to use criterion (6.7), the fundamental  solu- 

tion associated to m# is here mfz, so we begin by proving; 
(a) There is always a level surface of/2 including K ,  say % 

Since 7 is also a level surface for the measure rap, it will remain to prove 
(b) when m goes to infinity, 7 is contained in the set 

x E R  N IV/~(x)l > 1 } .  
: m g ( x )  
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Let 
5 > sup M. 

y c K  

We can easily prove that  there is a level surface of/2 in the ring 

C = {x e a N :  v ~ 5  < Ixl < ( v ~ + 2 ) 5 }  

which includes K.  Indeed, for every ~ E ~  N-l ,  the unit sphere of R N, we have 

while 

~ ( ( v ~ + 2 ) 5 ~ )  < fK  EN ((V~+2)6~--lYl) dp(y) < I , I E N ( v ~ 5 + 6 )  

and then there is at least one point on the segment [x/-Nh~, (x/-N+2)6~] where /2 
takes the value c--]#]EN(~/Nh+5) and then "~cCC. 

Now to prove (b), we have to verify that  on %, 

(6.8) Iv l > > 0 
g 

(since for m large enough, we then have IV (m~) l / g> l  on %). 
Now, 

Oft 1 f .  x i - y~  
Oxi -- kN .,~ i x_y iN  dp(y), 

but in the ring C, we have ]x[>v/-N6 and then, for each x in C, there always exists 
at least one index i0E{1, . . . ,N} such that  xi0 >Yio for every y in K (because the 
hypercube circumscribed to the ball of center 0 and radius 5 is contained in the ball 
of center 0 and radius v/-N6). It follows that  Oft/Ox~ o >0 for this x, that is to say 
IV~I >0 on 7~, which proves (6.8) and Proposition 6.3. 

7. Conc lus ion  

Following Beurling, we are able to distinguish three different types of solutions 
for the free boundary problem (2.1) defined as follows. 

If (~), u) is a solution of 

-Au----# i n f , ,  

(7.1) u = 0 on Off, 

IVul=g on0n, 
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we denote by ( ~ ,  u~) an (eventual) solution of 

(7.2) { - - A u ~ = ~  i n ~ ,  

u~ = 0 on 0ft~, 

]V#~[ = g  on 0 ~  

with 1 - r  l + e .  

If ~ is shrinking as A increases, the solution ~ will be called elliptic. If  ~t~ is 
monotonic increasing with A, fl will be called hyperbolic. Finally, if ~ does not 
exist for A > I  (or for )~<1) but two solutions fix and t2~ do exist for 1 - e < A < l  (or 
for l < ~ < l + e )  such that  i 2 ~ C ~ C ~ ,  where both  regions tend to ~/as  ~--~1, then 

will be called a parabolic solution. 

The procedure developed in the present paper  allows us to obtain only elliptic 
and parabolic solutions. This is due to the fact that  each elliptic solution is locally 

minimal in the set B while hyperbolic solutions are locally maximal  in the same 
set. The difference between these cases is that  each locally minimal region in B is 
a solution while maximal regions in general are not solutions. 

Nevertheless, using conformal mappings like in 6(a) we are able to obtain all 
types of solutions. For instance in the case of two Dirac measures like in (6.4) we can 
classify the solutions with the value of a = ~ -  1 (l/2) (see the proof of Proposit ion 6.2), 

for 0 < a < 0 . 8 3 2  we obtain an elliptic solution, 
for a=0.832 it is a parabolic one, and 
for 0 . 8 3 2 < a < 1  we have a hyperbolic solution. 
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