
Ark. Mat., 32 (1994), 157-193 
(~) 1994 by Inst i tut  Mittag-Leffler. All rights reserved 

Sampling and interpolation of entire functions 
and exponential systems in convex domains 

YuriY I. Lyubarskil and Kristian Seip(1) 

1. I n t r o d u c t i o n  

The possibility of representing functions which are analytic in a bounded convex 
domain G c C  by means of exponential series, was first investigated by Leont%v [5] 
(see also his monograph [6] and the paper [13] for the history of such represen- 
tations); Leont%v was concerned with series which are convergent in a "weak" 
compactwise topology and in other naturally related topologies. 

In the light of LeontPev's work, it seems interesting to look for a counterpart,  
for Hilbert spaces of analytic functions in convex domains, of the highly developed 
theory of nonharmonic Fourier series in the classical space L2(-Tr, 7r). Via duality 
arguments, this theme, in its turn, is closely connected to sampling and interpolation 
problems in special spaces of entire functions. 

In the present paper, we obtain solutions to the latter type of problems, and 
we "translate" these results into results concerning exponential systems in convex 
domains. Our results and techniques are inspired by work of Beurling [1] in the 
classical situation. It should be noted, however, that  in our setting, Beurling's 
approach yields complete results, while this is not the case in the classicM Hilbert 
space setting (where the concern is about exponential systems in L2(-Tr, 7r) and 
sampling and interpolation in the Paley-Wiener space of entire functions). We shall 
see that  what is crucial for such completeness to be obtainable, is the structure (to 
be made precise below) of the boundary of the convex domain in question. 

Throughout  this paper, G denotes a bounded convex set in C. We consider 
exponential expansions in the Smirnov space E2(G), which is the closure of the set 
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of all polynomials in z with respect to the norm 

= foa If(z)12 ]dz[. []IH22(G) 

The functions in E2(G) are analytic in G and have nontangential limits at almost 

every point of OG. E2(G) is a Hilbert space with inner product 

(f' g)E2(G) = fOG f(z)g(z)[dzl. 

It  is clear that  E 2 (G) is an extension of the Hardy space H 2 in the unit disk. For 

basic facts about  Smirnov spaces, we refer to [16]. 
Let A={A~} be a sequence of distinct complex numbers. To such a sequence 

we associate a system of exponentials in E2(G), 

E(A) = {en(z)}, 

where en(z)=cne anz and e~>0  is chosen so that  Ile~llE=(O)=l. It  was proved in [9] 

that  if G is a convex polygon, one may construct a set A in such a way that  the 
system g(A) constitutes a Riesz basis in E=(G). Later, it turned out (see [13]) that  
for more general domains G even very regular sets A do not generate Riesz bases 
in E2(G).  

Instead of Riesz bases, it seems natural  then to s tudy frames. The notion of a 

frame was introduced by Duffin and Schaeffer in the context of nonharmonic Fourier 
series [3]; we say tha t  g(A) is a frame in E2(G) if there are positive constants A 

and B such that  

AHfN2E=(a) <- Z [ (f ' en)E=(a) ]2 <- BIIfH2E=(a) 
n 

for all feE2(a). By a standard duality argument (see, e.g., [3]) we find that E(A) 
is a frame if and only if every function fEE2(G) can be expressed as an exponential 

series 

f ( z )=Zanen(Z ) ,  
n 

convergent with respect to the norm I]'I]E2(C), and 

-1 2 [2 _ A - 1  . S IlfllE=(C> -< Z lan < I[fll~(a/ 
n 

Assuming (roughly speaking) tha t  OG is smooth and all points of OG have 
positive curvature, we obtain a condition on A which is necessary and sufficient for 
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E(A) to constitute a frame in E2(G). This condition is given as a relation between 
angular densities of A and the curvature of OG. In particular, it follows that  C(A) 
can never constitute a Riesz basis in E2(G); this remains true if we assume that  
only some arbitrary part of OG is curved, a result which, we should add, has also 
been obtained independently by Lutsenko and Yulmuhametov [10]. 

Our results concerning properties of the moment sequences {(f,  enlE2(G)}, fe  
E2(G), rely on the fact that  there exists a Paley-Wiener theorem for convex sets 
[12] (see also [11], where a more general result is proved), i.e., one may establish 
a natural correspondence between the dual space of E2(G) and a certain space of 
entire functions of exponential type. We prove sampling and interpolation theorems 
for spaces of entire functions and then use the Paley-Wiener theorem to interpret 
these results as statements about the moment sequences {(f ,  en>E2(G)}. 

We have found it more convenient to study the sampling and interpolation 
problems in appropriate spaces of entire functions of the second order rather than 
in spaces of functions of exponential type (as in the classical setting). In fact, the 
study of these problems forms the body of the paper. 

In order to explain our independent interest in these problems and to provide 
some background, we recall the main results of [17, 18], on which our analysis is 
partly based. For a > 0 ,  let d#a(z)=e-2~lZl2dm(z), where m denotes area measure 
in C, and define the Bargmann-Fock space F 2 to be the collection of entire functions 
f(z) with the norm 

IIf]l~,2 -- ] ]~ [f(z)12d]~(z) < ~ .  

A discrete set F = { • }  of complex numbers is a set of sampling for F 2 if there 
exist positive numbers A and B such that  

(1) dl[f[[2,2 ~ ~ e -2~l'yjl2 If(Tj)[ 2 < B[If[]2,2 
7nEF 

for all f �9 F~. If to every/2-sequence {aj } of complex numbers there exists an f �9 F~ 
such that e-~JT~J=f(~/j)=aj for all j ,  the set F={Tj}  is said to be a set of interpola- 
tion for F~. Sets of sampling and interpolation are described in terms of Landau's 
generalization of Beurling's notion of uniform densities [4]. We consider then uni- 
formly discrete sets, i.e., discrete sets F={~j}  for which q=q(F)=infjck [Tj-~/kl >0. 
We fix a compact set I of measure 1 in the complex plane, whose boundary has 
measure 0. n - ( r )  and n+(r) denote respectively the smallest and largest numbers 
of points from F to be found in a translate of rI, and we define the lower and upper 
uniform densities of F to be 

u-(r) D-(r)=liminf r2 and D+(r)=limsup n+(r) 
r - - + ~  r---~ (x) r 2 
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respectively. Landau proved that  these limits are independent of I .  

The main theorems of [17, 18] are the following. 

T h e o r e m  1.1. F is a set of sampling for F~ if and only if F can be expressed 
as a finite union of uniformly discrete sets and contains a uniformly discrete subset 
F' for which D - ( r ' ) > 2 a / ~ .  

T h e o r e m  1.2. F is a set of interpolation for F 2 if and only if F is uniformly 
discrete and D + (F) < 2c~/~r. 

A basic tool for proving these theorems is the shift invariance of F 2, namely, 

the translations 

(Tcf)(z) = (T~ f)(z) -- e-'~z-('~/2)lr f(z--}-~) 

act isometrically in F~. In fact, F~ enjoys a group theoretical interpretation; it is a 
space of projective representation 4~-*Tr of the group of all complex numbers. We 
note that  the classical spaces of bandlimited functions (the Paley-Wiener  spaces) 
are connected in a similar way to the group of real translations; for that  reason, 
the technique of using shift invariance in [17, 18] could essentially be copied from 
Beurling's work on related problems for bandlimited functions [1]. 

In our situation, we encounter spaces of entire functions which do not admit  
such a group theoretical interpretation, although they are closely connected to the 

classical Bargmann-Fock spaces. I t  is quite natural  to expect that  the reason for a 
set to possess the sampling or interpolating property is of an analytic nature rather 
than due to the group structure of the subjects at hand. In the present paper,  we 

try to separate these two aspects in order to understand what analytic properties 
and what "remainings" of the group structure are really essential. 

The main definitions and results on sampling and interpolation in spaces of 
entire functions of the second order are formulated in Section 2. The main theorems 
are proved in Sections 3-5. In Section 6, we transform them to apply to entire 
functions of exponential type. In Section 7, we obtain a solution to the frame 
problem in the Smirnov spaces. Section 8 is an appendix containing some details 
of a paper  of Sodin and the first author [15] concerning the construction of entire 
functions of a certain prescribed growth. This work has previously been published 
only as a preprint in Russian. It  is essential for our proofs, and for the convenience 
of the reader, we have elaborated some of its details. We are grateful to M. L. Sodin 
for his kind permission to include this material.  

For the terminology and basic properties of entire functions used in this paper, 
we refer to Chapter  I of [7]. 
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2. Sampl ing and interpolat ion of  entire functions:  Main results  

In this section we state our main theorems on sampling and interpolation of 

entire functions. 
Let h be a 27r-periodic 2-trigonometrically convex function, put 

d#h ( z ) = e - 2h(arg z)lzJ 2 din(z), 

and define the following generalized Bargmann-Fock spaces, 

F~ = { f :  f entire, Ilfllh,2 = .ffr~ If(z)12 dlZh(Z) < cx3 }, 

F ~  -- { f :  f entire, IIfllh,~ = sup If(z)le -h(argz)Nl~ < oc }. 

Throughout the paper, we shall assume that  

(2) heC2[0,27r] and ~(O)=h(O)+lh"(~)>O, 0e[0,27r]. 

We see that h(0)--c~>0 corresponds to the classical situation treated in [17, 18]. 
A sequence F of distinct complex numbers is said to be a set of sampling for 

F~ provided there are constants 0 < A < B < e e  such that  

AIIf]12,2 < ~ I/(7)12e -2h(arg'~)l~/12 < BIIfll2h,2 
"rEF 

for all fCF2; F is a set of sampling for F ~  if there is a constant K > 0  such that  

KIIfllh,oo <-- sup If(~/)le -~(~rg~)l~l~ 
"~cF 

for all f E F ~ .  The sequence F is a set of interpolation for F~ (p=2 or ec) if 

f ~ {f(7)e-1~/12h(arg"/)},,/Cr 

maps F~ into and onto l p. 
We shall generalize Beurling and Landau's notion of uniform densities in order 

to describe sets of sampling and interpolation for F~. To this end, assume that  
F={'~k) is a uniformly discrete set. Let # denote cardinality of a finite set, put  
D(a, r)= { z: Iz-al <r }, and define 

n;(r,O)=liminf~ inf #(rnD(oe~r 
o--*~ tlr 



162 YuriY I. LyubarskiY and Kris t ian Seip 

and then 

Likewise, define 

and then finally 

D[(s 0) = lim~f n[(r,O) 
7rr 2 

D-(r ,  0)= lira D;-(r, 0). 
6--+0 

n+(r,O)=limsup{ sup #(raD(oe'*,r))}, 
o ~  Ir 

D+(r, 0) = lim sup 
r - ~  7rr2 

D + ( F, 0) = ~im D + ( F, 0). 

D - ( F ,  0) and D+(  F, 0) will be referred to as lower and upper angular densities. 
Note that  we may repeat Landau's analysis in order to see that  D(a, r) could 

be replaced by a+rI,  I of measure v/-~, OI of measure 0, without altering the above 

definitions. 
The main theorems are given below. In all these statements, we assume that  

h and 5 satisfy (2). 

T h e o r e m  2.1. F is a set of sampling for F~ if and only if it can be expressed 
as a finite union of uniformly discrete sets and contains a uniformly discrete subset 
F' for which 

inf (D-(r ' ,0)-25(e) / . )  > 0. 
0<0<27r 

T h e o r e m  2.2. F is a set of sampling for F ~  if and only if it contains a 
uniformly discrete subset F ~ for which 

inf ( D - i F ' , 0 ) - 2 5 ( 0 ) / x )  > 0. 
0<8<2~r 

T h e o r e m  2.3. F is a set of interpolation for F~ (p--2 or oc) if and only if 

sup (D+(r, 6)-25(0)/~) < 0. 
0 < 0 < 2 r  

Note that  Theorems 2.1-2.3 reduce to the main theorems of [17, 18] when 
h ( 0 ) - a ;  see also [14], where another approach is suggested to describe sets of 
sampling for F 2. 

Theorems 2.1-2.3 will be proved in Sections 3-5, while in Section 6 we will 
discuss some slight extensions of these theorems relevant for the application to 

exponential systems in Smirnov spaces. 
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3. P r e l i m i n a r i e s  a n d  s o m e  a u x i l i a r y  r e su l t s  

In this section we describe some notational conventions and introduce some 
tools to be used in the proofs. 

We let 

][ f , F[,h,2 = ( ~cr e- 2h(arg'r)alq"2 [ f ("/ ) ,2 ) 1/2, 

and similarly, 

JJf [ FJPh,~ = sup  e -h(~rg ~)l~l~ [f(~)J.  
7EF 

Sometimes we will have h(O)-a, in which case we replace h by a in these expres- 
sions. This somewhat sloppy notation should not cause any confusion, since it will 
always be clear from the context what the index refers to. 

A sequence Qj of closed sets converges strongly to Q, denoted Qj--+Q, if 
[Q, Qj]--,o; here [Q, R] denotes the Fr~chet distance between two closed sets Q 
and R, i.e., [Q,R] is the smallest number t such that  Qc{z:d(z,R)<t} and RC 
{ z:d(z, Q ) < t  }, where d(., .) denotes Euclidean distance in C. Qj converges weakly 
to Q, denoted Qj~Q, if for every compact set D (QjAD)UOD--+(QND)UOD. 
F ~ = l i m j ~ ( F - a j )  will mean that  F-aj~Fq Following Beurling, for a closed set 
F, we let W(F) denote the collection of weak limits of translates F + z .  We note 
that  W(F) is compact in the sense that  every sequence of elements F j E W ( F )  has 
a subsequence converging weakly to some element in W(F). 

W(F) will, as in [17], be an important  concept in our analysis. However, now 
we need to take into account how a set F~EW(F) is obtained, i.e., in what direction 
F is translated when approaching the limit F ~. In order to make precise statements, 
we introduce the following concepts. Let A-- {aj } C C, aj --+ c~, arg(aj) �9 [0, 27@ Put  

dir(A) -- D {arg(aj)}j>~ 
n 

(the bar denotes closure of the set); when taking the closure, we assume 0=27r. 
Then define 

A_ (A) = min{ 5(a) :  a �9 dir(A) } and A+(A) -- max{ 5(a) : a  �9 dir(A) }. 

P The spaces of interest when approaching the limit Ft=lim(F-aj), will be F~_(A ) 
and FAP+ (A), respectively, i.e., classical Bargmann-Fock spaces. Then "in the limit", 

we may use the techniques developed in [17, 18]. 
We introduce now an operation of directional translation in F ~ .  Let 

v(z, a) -- e-[a]2h(arg a)--z~t[2h(arg a)--ih'(arg a)]q-(~/a)z 2 [(1/2)ih(arg a)q-(1/4)hH(arg a)]  
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and define 

T~a f(Z) = v(z, a)f(a+ z); 

note that  for h (0) - -a ,  we are back to the translation operator for the classical 

spaces. 
T h is in general not isometric. On the contrary, it may very well take us out of 

the space. Locally, however, it behaves much like the classical translation operator,  
as shown by the following lemma. 

L e m m a  3.1. Thf satisfies 

(3) If(a~-z)le -]a+zl2h(arg(a+z)) ~-- e ~ ITh f ( z ) l e  -5(arga) , 

as ]a]--~c~, z belonging to a compact subset of C, and 

(4) If(a-~-z)]r -la+zl2h(arg(a+z)) ~- ( l~ -O([z l ) ) lT : f ( z ) l e  -5(arga)lz]2 

as ]zl--~O, independently of ]a I. 

Proof. We write 

]f(a-~-z)le -]a+z]2h(arg(a+z)) ~- ] f (a+ z)] le--la]2h(arga)--]z]2h(arga)-2zah(arga) I 

• le{--]a]2[h(arg(a+z))--h(arg a)]} • e{--2z~[h(arg(a+z))-h(arg a)]} 

X e {-]z]2[h(arg(a+z))-h(arg a)]}] 

-_ ]f(a+z)lle-lal~h(~rg a)-bzl~h(~rg a)-2znh(arg ~)1 • ] e{zH}eUI)e{I) l" 

Clearly {I}--~0 as ]a]--~cc. Using Taylor 's formula, we obtain 

Re{II}=Re{i~z2h'(arga)}+o(X), la,---~oc; 

{ �9 Re{III} = Re igzh'(arg a)- ~ --a z2h'(arg a) 
z a  

1 ~ z2h" (arg a)- + 4 41zl2h"(arga)} +~ lal --~ co' 
1 

where both  o(1)'s are uniform with respect to z, z belonging to a compact subset 

of C. Collecting our estimates, we see that  (3) is proved. 
(4) follows in a similar fashion for large a; for small a the estimate is obvi- 

ous. [] 

As a first application of this lemma, we prove a Bernstein-type estimate. Here, 
and in the sequel, we let S(I, h)(z)=e-h(argz)lzl2f(z). 
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L e m m a  3.2. For every f C F ~  we have 

I IS(f, h)(a)l-IS(f ,  h)(a+z)ll<_ O(N)llfllh,~, 

where the bound in O(Izl) depends only on h. 

Proof. In view of (4), we may write 

I IS(f, h)(a)l-IS(f ,  h)(a+z)ll< [S(Thf, 5(arg a ) ) (0 ) - - s (Th f ,  5(arg a))(z)l 

+O(H)IS(Thf ,  5(arg a))(z)[. 

Now the result follows from the Bernstein-type estimate in the classical situation 
(see Lemma 3.1 of [17]) and (3) of Lemma 3.1. [] 

The next lemma is an immediate consequence of Lemma 3.1 and the corre- 
sponding estimate in the classical situation, which in turn is a consequence of the 
mean value inequality for subharmonic functions; see (3) of [17]. 

L e m m a  3.3. For every f E F ~  and zEC we have 

IS(f,h)(z)l <C(h,r) f f If(r (5) 
J J D  (z,r) 

The next auxiliary result reveals the existence of certain functions in F ~  which 
grow in a very regular manner. These functions are analogues of the sine-type 
functions introduced by Levin [7] (see also [13]). 

Below, if f is an entire function, Z(f )  denotes the zero set (counting multiplic- 
ities) of f ;  the symbol x between two positive quantities means that  their ratio is 
bounded from below and above by positive constants. 

L e m m a  3.4. For every h of the prescribed type there exists a function g(z) 
with simple zeros such that 

(6) Ig(z)l x d(Z(g), z)e h(arg z)]zt~. 

This lemma was proved in [15]. In Section 8, we have included an outline of 
the construction of the function g. It follows from this construction that  

D -  ( Z(g), O) = D+ ( Z(g), O) = 5( O) /Tr 

for each 0E [0, 2~r) (a more precise statement about the distribution of the zeros can 
be made, as follows from the explicit construction of g). Note that  when h(z ) -a ,  g 
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can be chosen to be the Weierstrass a-function corresponding to a suitable square 
lattice. 

We shall now see an important  consequence of the above lemma. In some sense, 
the next result is the converse of Lemma 3.1: Lemma 3.1 is the vehicle to be used 
when we go from F~ to a space F~X(A) , while the next lemma is used when we 

P "return" to F p from F~_ (A)" 
Let z--a 

Pa,R(Z) = I I  (1-- ~-a_ a )  ' 
ACZ(g)ND(a,R) 

where g is the function of Lemma 3.4. We define 

W(Z,a)=g(Z)/p.,a(Z), 

and prove the following estimates. 

L e m m a  3.5. Let aj-~oc and argaj--+0. Then, as j--+oc, 

(r)  [w(z, aj ) I ~ e h(arg z)lzl=e -a( O)]z-a~ ]2 

for Iz -a l<R,  and 

(s) Iw(z, aj)l <_ eh(arg z)lzl2e-a(O)R2(l+log(lz-aj ]2/R))+O(1) 

for ]z-a] > R. These estimates hold for any fixed R > 0  with bounds which are inde- 
pendent of R. 

Proof. To estimate PR,a, we introduce the function 

(9) 
UR,a(Z):~(~) /fa_;~l<_Rlogl--Z~----~_a a dm(.~) 

<5 (._8 ) /~)~ z i a  
- -  log  1 - ~ - -  din(A). 

re I_<R A 

A direct calculation shows that  

{ 5(0)'zl2, Iz[ < R  

(10) uR,o(Z) = 5(0)R 2 log +6(e )R  2, Iz[ > R. 

A modification of the computations in Steps 2, 6, and 7 in Section 8 shows that 

(11) IPR, ,(z)I = e + o 0 )  
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as j--~c~, when, say, d(z, Z(g)MD(aj, R) )>e>0 and with O(1) depending on E but 
not on R. 

Finally, if )~EZ(g)MD(aj, R), we have 

(12) 
..6(o) (z) e_e(0) PR,a~ ()~-t-z) e_5(O)lJ~_a~+zl 2 l ~_a~PR,a~ 

- -  = - -  X 1  

Z Z 

for ]z] _<e< �89 by the maximum and minimum principle and what has been 
shown above. The lemma now follows if we combine (10), (11), and (12) with 
Lemma 3.4. [] 

4. P r o o f s  o f  T h e o r e m s  2.1 a n d  2.2 

We start by noting that  we may restrict our attention to uniformly discrete 
sets. 

L e m m a  4.1. If  F is a set of sampling for F ~ ,  then F contains a uniformly 
discrete subset that is also a set of sampling for F ~ .  

Proof. This follows from Lemma 7.1 (compare the proof of Theorem 2 in [1, 
p. 344]). [] 

L e m m a  4.2. There exists a positive constant B such that 

Ill I FI12,2 _< Bllfll2h,2 

for all f E F 2 if and only if r can be expressed as a finite union of uniformly discrete 
sets. 

Proof. As the proof of Lemma 7.1 of [17]; note that  (5) is needed. [] 

L e m m a  4.3. If  P is a set of sampling for F 2, then F contains a uniformly 
discrete subset that is also a set of sampling for F 2. 

Proof. For e > 0  we construct (as we may) a uniformly discrete subset P ~ of 
F such that  d ( r  for each ~EF. We have then r=Ur162 By 
the preceding lemma there is a uniform bound, say P, on the number of points in 
rnD(r e_<�89 

Proceeding as in the proof of Lemma 3.2, we easily deduce the estimate 

I If(r162162162162162 I --< c1r162 (//D(~,I)If(Z)I~ d~h(z)) 1/~' 
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which holds for, say, ]~-~'] < �89 C depending only on h. We square this inequality 
and sum over F (for each ~EF we pick some point e'er'nO(C,:)): 

~-i~l[f(~)[e-h(argr162 ]f(~,)[e-h(arg(')]r [2 < C~2 ~ / f D  I f ( z ) l  2 d#h(Z) 
(EF ((,i) 

<_ PC:'llfll ,,. 

This gives us 

:~]f(<)]2e-2h(argr162162162 V/-~: ,]  f H ~,2, 

and hence 

Hf rHh,2 --< PHf]F']]h,2+CsHfHh,2 �9 

The proof is finished since : is arbitrary. [] 

Therefore, we assume for the rest of this section that  all sets F are uniformly 
discrete. 

The basic ingredient in the proof of the necessity parts of Theorems 2.1 and 2.2 
is the following lemma. 

L e m m a  4.4. / f  F is a set of sampling for F~ (p= 2 or ~)  and F' =lim(r- ar 
a j - -~ ,  then F' is a set of sampling for FP (A). 

Proof. Consider first the case p=2 ,  and suppose the lemma is false. We put 
a = A _ ( A )  and see that the assumption implies that  for any : > 0 ,  we can find an 
f e F  2 such that  I l f l k 2 = l  and IIflF'll~,2<:. Let f<Y> denote the N t h  partial sum 
of the Maclaurin series of f .  Choose N so large that  we have ]lf<g>ll~,2>�89 and 

IJf <g> Jr'lJ~,2<2:. This is clearly possible since f<g> approximates f uniformly on 
compact sets and approaches f in the norm of F 2. 

We define 
fj (z) = w (z, aj)f <N) (z-- aj), 

where w(z, aj) is the function of Lemma 3.5. We choose R so large that  

/ ~ , < R  'f<N>(z)'2 d#~(z) > ~' 

and at the same time 

(13) f f, z If< - R2 :~176 din(z) < 
I>R-I 
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which clearly is possible since f(N) is a polynomial. By Lemma 3.5, (10), and (11), 
we find that  

IlSjll~ > c1 
and 

Ifj(r -~jcP < c~. 
( ~ F ' + a i n D ( a  i ,R) 

These estimates hold for all sufficiently large j ,  where C1 and C2 are independent 
of R and j .  We finally choose j large enough to obtain 

ISj(-y)l~e -~h(~'g~)l~'~ < 2 c ~  
~,EFND(a i,R) 

Then by (13) and (5), we have 

"~cF 

This finishes the proof when p=2.  
We argue in the same way when p =  oc. Suppose we can find an f E F ~  such 

that  IlYll~,~--1 and II$1r'll~,~_<e. We may also assume that  If(0)l>�89 We shall 
again pass from f to a polynomial, but  the passage is now a little harder. It may 
be noted that  the trick to be used here, is an adaption of that  used in the proof of 
Lemma 4.2 of [17]. 

We write 

S(z) = Z ~ z ~  
k=0 

and introduce the function 

N 

s~N> (r E Ck(1--6)k zk' 
k=0 

where N and 0 < 5 < 1  are to be chosen so that  we may replace f by f}N>. 
In order to compare S and f~Y), we need some estimates. Cauchy's formula 

gives 

and by Stirling's formula, we obtain 

O O  

(14) ~ lekl Izl k < CIIfll~,~lzl2e ~l~P, 
k 
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C an absolute positive constant. Thus, 

If~N> (z)l <_ CIIfll,~,~lzl2 e ~<x-~)~l~'~. 

Let p = e  -1, and choose N so tha t  

sup If(z)--f<N>(z)le-'~lzl~ < e. 
Izl<~ 

We choose ~=E 3/2 so that  I z - ( 1 - ~ z ]  < c  1/2 when Izl <R.  By our choice of N and 

Lemma 3.2, we obtain 

(15) If( 'y')l e-~l~'l~ < C~ x/2 

for -y'cO(0,  ~ )nr ' .  On the other hand, when Izl___Q, we have 

(1 - ~)2 Iz12 - Iz l  2 _< - ( 2 ~  3/2 - ~3)lzl 2 _< -Iz l  1/2, 

assuming ~<1. Hence, in view of (14), we have 

If~g> (z)l e-'~lzl~ <_ C~ 

for Izl>0, so (15) holds for aZZ ~ ' e r ' .  
We now define 

fj(z) = w(z, aj)f(~N) (z--aj), 

and see that  we may finish the proof as we did in the case when p = 2 .  [] 

Proof of the necessity parts of Theorems 2.1 and 2.2. By the construction of 
our lower angular density, we have 

inf D -  (F0) = D -  (F,/9) 

where the infimum is taken over all ro=l im(r -a  D for which dir(A)={0}.  By 
Theorems 2.1 and 2.3 of [17] (which are the same as Theorems 2.1 and 2.2 above 
when h(8)~c~) and Lemma 4.4, it follows that  

D -  (r, o ) -  2~(O)/Tr > O. 

This relation yields the results since the compactness of W(F)  then ensures that  

i~f(D-(F,O)-2~(O)/Tr) >0 .  [] 

In the proof of the sufficiency par t  of Theorem 2.2, we shall need the following 
lemma. 
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L e m m a  4.5. If inf(D-(F,O)-6(O)/Tr)>O, then F is a set of uniqueness for 
F~. 

Proof. Suppose the assertion is false. Then there is some nonzero function 
f c F ~  vanishing on F. We may assume that 0 r  and that f ( 0 ) = l .  We apply 
Carleman's formula to the upper half-plane, thus 

( ) /0 1 r~ 1 log If(Rei~ sin 0 dO ~k ~ sin0k--TrR2 
(16) rk<R,0<0k<~ 

1 f l R ( l  1 )  + ~  x2 R~ loglf(x)f(-x)ldx+C, 

where F={rke i~ } and C is a constant which does not depend on R. We have 

(17) 

where 

r.h.s, of (16) _< C+I,(R)+I2(R), 

f0 7r I I ( R ) -  R h(O)sinOdO, 
--T" 

/2(R) = ~(h(Tr )+h(0) ) .  

The left-hand side can be approximated in the following way. We divide the 
half-plane into disjoint ceils Qn,j, j <_n, such that  

(18) fQ (6(O)+e)r dr dO= 1, 
n , j  

where 
1 in f (D-  (F, 0 ) -  26(0)/~r). 

This is done by letting 

and then dividing the half-plane into n sectors, corresponding to numbers 0--0n,0 < 
0n,1 <... < 0,~,n = r ,  such that 

Qn,j={z :t~_l <_M<t~}, O~,j_l <_argz<_O~j, 

satisfy (18) for all j = l , 2 , . . . , n .  
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For each pair n,j, let ~n,j=On,je ir EQn,j be such that  

1 r 
( 1 0 n , J ~ s i n ( r  (r__~ff)  sinO(5(O)+e)rdrdO" 

On,j R 2 ] Q ,~ 

By the definition of our angular densities, it is clear that  we can find a subsequence 
{Zn,j}j<_n CF such that  

sup [r Zn,jl < 00. 
n,j  

A straightforward estimate then shows that  

1.h.s. of (16)= fo R fo ~ ( ~ - ~ ) s i n 0  (l(h(O)+lh"(O))+e)rdrdO+O(logR). 

We remove the second-derivative by integrating twice by parts and obtain 

1.h.s. of (16) = I1 ( R ) + h  (R)+ ~ R +  O(log R). 

This contradicts (17). [] 

Proof of the sufficiency part of Theorem 2.2. Suppose F is not a set of sampling. 
Then we may choose a sequence A={aj}CC and { f j } c F ~  in such a way that 

fj(aj)e -h(~g"j)l"jl~ = 1; ]l fJ Irllh,~ < - 1/j, 

sup I[ f j  IIh,~=K<oc. 
J 

We may assume a r g ( a j ) ~  0, and by the above lemma that  l aj l~ ~,  since otherwise 
we have already obtained a contradiction. So we have 

Ifj(z+aj)l e-lz+a~leh(arg<z+a~>> <_ K. 

We now form a new sequence of functions, 

Cj(z) = v(z, aj ) f j (z  +aj) ,  

where v is as in Lemma 3.1. We have then r  and in view of (3), we obtain 
a nonzero limit function CeF6(0) vanishing on F'. This implies D-(F')_<2~(0)/Tr, 
and we have thus proved the sufficiency part of Theorem 2.2. [] 

Proof of the suffciency part of Theorem 2.1. In view of Lemma 4.2, we need 
to show that  there exists a positive constant A such that  

IIf I FII~,2 _ Allffl.,2 
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for all fEFh,2. We shall apply an argument which was used in [2] in order to obtain 
an interpolation formula which will solve our problem. 

Let 
F F  ' O - - { g e F  F :e--h(argz)lz12[g(Z)[---40 as [Z I--'r 

F ~  '~ is a closed subspace of F ~ .  Suppose F is uniformly discrete and 

2~/7r = i n f (D-  (F, 0) - 26/7r) > 0. 

poo~O Then, by Theorem 2.2, F is a set of sampling for F~h+e, and therefore also for ~ h+~" 
By standard arguments (see [2, Section 5]) this implies, for all ~ c C ,  the existence 
of a sequence of numbers {gj(~)} such that  

(19) e-(h(argr162 E gJ(~)f('TJ)e-(h(argTJ)+e)lT~12 
"yj CF 

with 

E Igj(OI <-M, 
"~j EF 

M independent of ~. 
Now let f c F  2. We apply (19) to the function 

fr : e2r162 f(z) ,  

c~,0 which is seen to belong to F~+~. A straightforward computation (as in [2, Section 5]) 
leads to the desired conclusion. [] 

5. P r o o f  o f  T h e o r e m  2.3 

In the sequel, p may be either 2 or oc. 
Note first that  if F is a set of interpolation for F p, there exists a constant KB, 

depending on h and F, so that  the interpolation problem can be solved in such a 
way that  

(20) Ilfllh,p <-- Kpllf l rtlh,p. 

This follows by a standard argument involving the Closed Graph Theorem. This 
observation, in conjunction with Lemmas 3.2 and 3.3, yields the following result 
(compare Lemmas 5.1 and 6.1 of [17]). 
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L e m m a  5.1. Every set of interpolation for F~ is uniformly discrete. 

The next lemma is the main auxiliary result needed for proving the necessity 
part  of Theorem 2.3. 

L e m m a  5.2. If P is a set of interpolation for F~, and F' =lims__.cr ( F -  as) for 
some a={aj}, aj--*oo, then F' is a set of interpolation for FPA+(a) . 

Proof. We may assume arg a s --*0. First note that  F' is also uniformly discrete 
with separating distance not exceeding that of F. Let F ' = { z k } ~ ,  and let IZkl< 
IZk+ll, k - - l ,  2, .... We have to solve the interpolation problem 

f(zk) = wke ~(~ f c F[(0) 

for every sequence w={wk)El p. Let us fix such a sequence and also some R>0 ,  
and let N(R) denote the number of points from F' contained in the disk D(0, R). 

We index F-as={z~ y)} so that  z~ s)--*zk as j--*oo. 
Using the assumption on F, we may construct a function fj (z)CF~ such that  

fj(z (j)-'~-aj) = { v(z~s)' aj)-lwke'S(~ k <_ N(R) 
0, otherwise 

with v as in Lemma 3.1. By (3) of that  lemma, we have for sufficiently large j ,  

II fs I r lib,p< c ,  

C independent of R. We define 

Cj(z) = v(z, aj)f j(z+as) 

so that  
r (z (j)h = wke~(0)lz(k~)12 J~ k J , k= I,2,...,N(R). 

Using (3) of Lemma 3.1 and (20), we have for sufficiently large j ,  

fr < K2e ~(~ Izl < R 

when p =  co, and 

f fD(O,R) ICJ(Z)I2 d#~(o)(Z) < K3 

when p=2, where K2 and K3 are absolute positive constants. 
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We let j--*oo, choose an appropriate subsequence {jl}, and obtain a limit 
function r in the disk D(0, R) such that  

if p=oo,  we have 

r ---- Wke ~(~ k = 1, 2, ..., N(R); 

{r 1< K2e ~(~ {z{ < R, 

K2 independent of R, and if p=2, 

/D(O,R) {r d#~~ <- K3, 

/<3 independent of R. 
We finally let R--~oo and obtain the desired limit function f .  [] 

Proof of the necessity part of Theorem 2.3. We have 

sup D+(r0) = D+(r, e), 

where the supremum is taken over all sequences F e = l i m ( F - a j )  for which dir(a)-- 
{0}. By Theorems 2.2 and 2.4 of [17] and the two lemmas above, it follows that  

D+(r, e)-2~(e)/~ < 0, 

which yields the desired conclusion in view of the compactness of W(F). [] 

Proof of the suj~iciency part of Theorem 2.3. We shall construct an explicit 
interpolation formula. For that  purpose, we need the function g of Lemma 3.4 con- 
structed for h(9)-~,  with 2e/~r<sup(D+(r,  ~)-25(0)/~r). Arguing as in [1, p. 356], 
we can find a uniformly discrete sequence F '={~j}  which contains F and is uni- 
formly close to the zero set Z(g)={zj} of g, i.e., we have 

sup [zj-~}[ < co. 

Since both r and Z(g) are uniformly discrete, we may also assume that  

Z t inf [ k--~j[ > 0. 
k#j 

We fix j and form the infinite products 

kl~#j( z ) ( z  1 z 2 ) kj(z)= 1 , : ~  exp _7-~_,~ 
~k \~k-~ 2 (z~--~)~ 
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l - I (  z ) ( z  1 z 2 ) g j ( z ) = ( z - z j )  1 - ~  exp _-------~,-~ 
k#d" zk \Zk--~/) 2 ( Z k - - ~ )  2 ' 

which clearly are well-defined entire functions. 
Repeating the technique of estimation leading to Lemma 2.2 of [18], we obtain 

that  
Igj(z)l e~l~l log I~1 ]kj(z)l _< 

C d(z,- Zg-z j )  

with C and c constants depending on F' and Z(g), but  not on j .  Now clearly 

g(z) = gj ( z -  zj)w~ (z), 

w d some zero-free entire function satisfying 

- -  C ' c  (h (a rgTj ) -c ) lT j l  Iwj(~) l  ' '~ 

Cj ~ 1 independently of j .  We define 

- k ( z - ~ ' )  w,(z)  C j ( z ) -  , , ~ j (~ j )  

for which we then have 

ICj( Z ) ] < Ce(h(arg Tj )-e)lTj ]2e(h(arg z)-e)]Z]2eC]Z--Tj ] log ]z-Tj ]. 

Now it is easy to see that  that  the formula 

(21) r t z ~ - -  ~ ' ~  a "e 2 s ( ~ z - I T }  [~)A .[ z'~ 

J 

solves our interpolation problem both for p=2  and p--c~ (in fact for all 0 < p <  
~ ) .  [] 

6. T w o  m o d i f i c a t i o n s  o f  t h e  m a i n  t h e o r e m s  

When applying our theory of sampling and interpolation to exponential systems 
in Smirnov spaces, we shall need some results which differ slightly from those in 
Section 3. It is the purpose of this section to point out how to make the appropriate 
extensions. 
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Let 

d~h,s(z) = (l +lzl)2Sd~h(Z), 

s a real number, and define correspondingly 

{ //o } h,~ -- f entire If(z)l 2 d#h,8(z) < c~ 

Similarly, 

F~h,~ ---- { f ent ire:suplf(z) l(1WIzl)  ~e-h(argz)jzt2 < ~ } "  
c 

The definitions of sets of sampling and interpolation are modified in the obvious 
way. To sum up, the following holds. 

T h e o r e m  6.1. The theorems of Section 2 remain valid when replacing F p by 
F~,~ in all statements, where s is an arbitrary real number. 

Proof. We introduce the function 

q(z) : s log(1 + Izl), 

and note that  

(22) q(a+ z) = q(a)+o(1) 

as a--*oo for z belonging to a compact set and that  

(23) [q(a+ z)-q(a)[  <_ s log( l+ lz [ )  , 

independently of a. Using these properties of q, all proofs in the previous sections 
can be modified in a straightforward manner. 

We indicate some of the changes. In Lemma 2.1, introduce a factor exp(q(a)) 
in the definition of v(z, a), and the lemma remains true. In Lemma 2.2, observe 
that we need both properties (22) and (23). In the proof of Lemma 4.4, we replace 
the function fj  (p=2 or cr by the function ]j(z)e -q(a) and use (23) to verify that  
the same method of proof applies. [] 

The second extension concerns what happens when we have a certain symmetry. 
More precisely, suppose now h(0) is 7r-periodic and that  r = - r .  Denote by F~,s, e 
the closed subspace of even functions in F~, 8. The definition of sets of sampling 
remains the same, while the definition of sets of interpolation for F~,8,e needs an 
obvious modification: we require f (~ / )= f ( - ' y ) .  Then the following statement holds. 
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T h e o r e m  6.2. I f  h is 7r-periodic, F = - F ,  then all the theorems of Section 2 
remain valid when replacing F p by F~,s; e. 

Proof. The sufficiency parts of the theorems are obvious. As to the necessity 
parts, note that  Lemmas 4.1, 5.3, and 6.2 can be restated with FP,~,~ in place of 
F~'. To see this, we argue as follows. In the proofs of Lemmas 4.1 and 5.3, replace 
f j (z)  by f j ( z ) + f j ( - z ) ,  and in the proof of Lemma 6.2, construct even functions 
f j ,  and proceed as before. The rest of the proofs are unchanged. [] 

The point of this theorem is that  it allows us to pass from functions of order 
2 to functions of exponential type by means of the transformation C=z 2. As an 
example, we formulate a counterpart  of the classical Cartwright theorem (see [7, 
p. 206]; a similar theorem holds in the L 2 case, which, notably, is not the case in 
the classical setting). 

Let k be a 27r-periodic trigonometrically convex function satisfying 

(24) k �9 C2[0, ~r] and Q(r = k ( r162  > 0, r �9 [0, 2~r). 

We say that  A is normalizing for k if there exists a positive number c(k, A) such 
that for any positive 6<c(k,  A) the conditions 

sup If ( A )[e -k(arg ~)j)`l ~_ 1 
),cA 

and 
sup If(C)] e-(k(arg r162 < ~ ,  

r 

f an entire function, imply 

sup If(C)le -k(arg r _~ Ke, 
r 

K~ independent of f .  
In order to reformulate the results proved for functions of order 2, we let A 1/2 

denote the set of all complex square roots of the elements in A. Thus for AEA both 
values of x/~ are contained in A 1/2 . 

Using Theorems 6.2 and 2.2, and the interpolation formula used to prove the 
sufficiency part of Theorem 2.1, we obtain the following statement. 

T h e o r e m  6.3. A is normalizing for k if and only irA 1/2 contains a uniformly 
discrete subset F for which 

o<!nf t o - ( r ,  > o. 
_ r  r 
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7. E x p o n e n t i a l  s y s t e m s  in S m i r n o v  spaces  

Let G be a convex domain with support function k satisfying (24). We note 
that  the function ~ = k + k "  has a geometric interpretation: Q(r is the radius of 
curvature of the supporting point of the ray r162 

We may now state the solution to the frame problem described in the intro- 
duction. 

T h e o r e m  7.1. The system of exponentials C(A) is a frame in E2(G) if and 
only if A 1/2 is a finite union of uniformly discrete sets and contains a uniformly 
discrete subset F for which 

i ~ f (D- ( r ,  r  2e(r > 0. 

The following theorem is also of interest; here the moment space of C(A) in 
E2(G) is the set of all the moment sequences, {<f, en)E2(a)}, feE2(G) .  

T h e o r e m  7.2. The moment space of the system of exponentials E(A) in E 2 (G) 
is 12 if and only if A 1/2 is uniformly discrete set and 

sup(D+ (A 1/2, r  2Q(r162 < 0. 
r 

We shall see that  these two theorems follow from Theorem 6.2 by an application 
of the following Paley-Wiener theorem. For convenience, we use here the norm 

Ilfll~,~ = 4 Jfc If(z)12e-2hf~rg ~)lzl= Izl din(z), 

which clearly is equivalent to the norm that  we used in the previous section. 

L e m m a  7.3. The transformation ~----~f, given by 

f~(z) = fog ~;)er Idzl, 

is a bijection of E2(G) onto F2,1/2,e, where 

h(O) =k(-O/2) ,  

and 

ILl, liE L x II~IIE=(G)" 
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Proof. We have that  f~-~r  ), is an isomorphism between the Hilbert 
spaces F~,1/2, ~ and 

P~'-1/2-- { ~ entire: f c  '~b(~)'2e-k(arg~)'r176 ' 

and so we need to show that ~ -~f~(v /z )  is bijective from E2(G) to P2,_U2 and 
norm-preserving up to equivalence in norms. But this follows from [12] and [13]: We 
combine the Pale~Wiener  theorem for convex sets [12] with Lemma 2.9 of [13]. [] 

Using this lemma and the fact that  

Xz 2 lie IIE2(c)=(I+IAI) l/2ek(--argA)lAI, 

(see Lemma 2.10 of [13]), we obtain the two theorems above from Theorem 6.2. 
One may show that  these theorems are valid for the whole scale of spaces E 2 

considered in [13]. 
It is interesting to observe that  in particular, no system of exponentials $(A) 

is a Riesz basis in E2(G). This statement remains true if we require only 

(25) kEC2[r162 and 0 ( r 1 6 2 1 6 2  r162162 

as shown by the two theorems below. Note, however, that  when the conditions (24) 
hold, the zeros of the function g of Lemma 3.4 generate a system E(A) which is 
complete and minimal and forms a basis of summation in EZ(G) [13]. 

T h e o r e m  7.4. Suppose the condition (25) holds with 0<0o<01_<29r. Then 
if the system of exponentials E(A) is a frame in E2(G), there exists a uniformly 
discrete subset F of AU2 for which 

icnf(D-(F, r > 0 

for every dosed interval I c  (0o, 01). 

T h e o r e m  7.5. Suppose the condition (25) holds with 0_<0o<01_<27r. Then if 
the moment space of the system of exponentials C(A) in E2(G) is l ~, we have 

sup(D+(A 1/2, r  20(+)/r < 0 
r 

for every closed interval IC(0o, 01). 

Theorem 7.4 follows directly by repeating the arguments in Section 5. As to 
Theorem 7.5, let g in Lemma 3.4 be constructed with respect to a function h that 
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satisfy (24) for all 0, coincide with h on some closed interval contained in (00, 01), 

and enjoy the estimate h(O)<-h(O) for all 0; it is easy to see that  such a function 
exists. This function g can be used to obtain an analogue of Lemma 4.4, which 

implies Theorem 7.3. 
It is reasonable to ask if convex polygons with a finite number of sides are the 

only domains for which it is possible to construct Riesz bases. 

8. A p p e n d i x :  A n a l o g u e s  o f  s ine  t y p e  f u n c t i o n s  

What  we refer to in the title of this section, is tha t  the function g of Lemma 3.4 
has growth properties analogous to those of the sine type functions, which were 
introduced by Levin in his study of exponential bases in L2([-Tr, ~]) [8]. We present 
here a proof of Lemma 3.4 which is a variation of the construction in [15]. 

We put  H(z)=lzi2h(arg(z)), which is a subharmonic function. The density Q 
of the Riesz measure u of H with respect to Lebesgue measure is 

du 2 reiO" 
(26) g ( z ) -  dm - 21r 5(0)' z - -  

We shall first construct a uniformly discrete sequence {Q} which is the zero set of 
an entire fnnction f of order 2 such that  

(27) log I f ( z ) l - H ( z ) - q l o g  Izl = log d(z, Z( f )+O(1) ) ,  

where 

This construction contains the main step of the proof of Lemma 3.1. 
We first construct {Q}. It is enough to obtain the sequence with the desired 

properties for g(s z ) ,  s>0 ,  and then pick the sequence {Q/s} .  We let s be such 
that  

1 ~027r 5(r de 2. 

We next divide C into a union of disjoint annuli, 

R n = { ~ : n - l < _ [ ( [ < n } ,  n - -  1 ,2 , . . . .  

We have 
u(Rn) 1~ n /i 2~ -- - 5 ( r  d e  t dt -- n 2 - ( n -  1) 2 -- 2 n -  1.  

71" --1 



182 Yuril  I. LyubarskiY and  Kr i s t i an  Seip 

Each Rn may be divided into 2 n - 1  cells {Qn,j} such that  

(28) v(Q,~,j)--1, j = 1 , 2 , . . . , 2 n -1 .  

Indeed, choose numbers .r,/, .12n- 1 satisfying 0 < Cn,0 <--. < Cn,2n--1 < 27r, such that  kWn,3 J j=O 

1 fCn.~ 1 
(29) - -  ] 

n-�89 

Then the cells Q,~,j ={  ~ER,~ :r <~bn,j } all satisfy (18). 
Let 

(30) Cn,j = f l r d-(C), 
JJr n,j 

which is the center of mass of Qn,j with respect to dr.  By the assumptions on v, 
there exists an r  such that  D(~m#,c)ND(~n,j,r when (m,i)~(n,j). It is 
also clear that  the diameters of the sets Qn,j are uniformly bounded. 

Let ~ = ( n , j ) ,  and consider the discrete integer valued measure 

r /= E 5Q, 

where 5Q is the Dirac measure located at Q. Define correspondingly the following 
5-subharmonic function 

/ c l o g  1 - z  (31) w ( z ) =  ~ d(v(~)-r/(~)) .  

We shall mainly be concerned with a detailed estimation of this function, and in 
particular, we shall obtain the estimate 

(32) Iw(z)-qlog Izll 

for zffE~=U~ D(Q, c), e some arbitrary positive number. 
Having this estimate, we argue as follows. The function V - w  is subharmonic 

with a discrete integer-valued Riesz measure v and so 

H(z)-w(z) = log If(z)l, 

where f is an entire function whose zero set is {Q}. By (32), 

log If(z)[ = H(z)+qlog Izl+O(1) 
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for zCE~. (27) will then follow from an application of Lemma 3.1. 
We prepare for the proof of (32). Let 

IIN={(:2N--I<[~[<2N}, N = 1,2,3,... 

and II0=D(0, 1). Let zEC\E~ be fixed. Choose N=g(z) such that 

2 g - ( l / 2 )  < [Z[ < 2 g+(1/2). (33) 

Then 

(34) N log 2 = log [z[ +O(1) 

as z--+c~. Let H(z)=HNUIIN+I, and rewrite (31) in the form 

~(z) = ~l(z)+~2(z)+~(z), 

where 

N--1 
w l ( z ) = E  E / /Q  { l ~  - l ~  }du(~), 

w=(z)= ~ / fo ,{ logl-~- logl-~}d, , (r  
Qr 

wa(z): k E f/Qe{ l ~  -log l - ~  }du(,). 
n=N+2 Qr CIIn 

We shall obtain the estimates 

(35) 
(36) 

(37) 

from which (32) will follow. 

wl (z) = q log ]z] +O(1) ,  

w2(z) = O(1), 

w3(z) = O(1), 

These estimates are obtained through steps 1-7 below. 

Step 1: Estimates of the summands in (31). Let 

1 B~(z,~)=log l -~  -log l - ~  -Re{ (Q_ z ~ )  (~-Q)}. 

183 
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By (30), we have 

and hence, 

(38) 

/ /Q (4-Q) du(z) = O, 

/ /Qe {log 1 - ~  -log 1 - ~  } du(4)=//0.~ B~(z'4)du(4)" 

The needed estimates for B~ (z, 4) are the following. (a) For Q~ c Ha, n_> N +  2, 
4~Q~, 

KIzl (39) IBe(z, C)I ~ ]QII~, 

(b) If 4EQ~cII(z ) and Q~ has no common boundary points with the cell Q~ con- 
taining z, then 

(40) B~(z, 4)+ 2 Re (4-Q)2 < - -  
( 4 ~ - z ) 2  - 

(c) For 4EQ~CHn, n<N-1, 

B{(z, 4) - 1 (4-4{) 2 (41) ~ Re 4~ 

K1 K2 
Iz-QI 3 14~1 ~' 

K3 K4 
< ~ 14~1 ~ 

In order to prove these estimates, note first that the function 

is analytic in Q~ since 4r We see that 

B~(z, 4) = Re{L(4)-L(Q) - L'(Q)(4- 4) }. 

When proving (a), we start from the identity 

L(4) -L(Q)-L ' (Q) (4 -Q)  = L"(s)(4-s) ds; 

when proving (b), our starting point is the identity 

L(4)_L(Q)_L,(Q)(4_Q)+ 1 ( 4 - Q ' ~  I ( _ ~ Q )  l j r  r -~ \-~-~ ] =-~ +-~ L'"(s)(4-s)S ds; 



Sampling and interpolation 185 

and when proving (c), we begin with the formula 

1 r 1 [(-Q'~ +~_/~ r 
L ( ( ) - L ( ~ ) -  L ' ( ~ ) ( ~ - ( f ) -  ~ \ - - ~ - -  ) -- - 2  \ - ( ~ ' -  ) L'"(s)(~-s) s ds. 

Straightforward estimates (which we omit) lead from these formulas to the desired 
conclusions. 

Step 2: Estimate of w3. We first calculate the number ak of cells Qe which are 
contained in IIk: 

2 k 

(42) a k =  E 1---- E (2m--1)=3"2k-2" 
Q~CYI~ r a = 2 k - l + l  

Using (38) and (39), we obtain from this 

-~ ~ ~ SIQ IB,(.,OI"(O 
n = N + 2  Q~cHn 

o0 Klz[ o~ an 
-< E E Ir - < K2N E --2.~ - < K. 

n = N + 2  Q~CII n n : N + 2  

So estimate (37) is proved. Note that, in particular, we have then proved the 
convergence of the integral which defines w. 

Step 3: Partial estimate of w2(z). First note that, for zq[E~, the contribution 
to w2(z) from the cell Q~ containing z, as well as from its nearest neighbor cells, is 
bounded. We let Q(z) denote the union of the cell Q~ containing z and its neighbor 
cells, i.e., those cells which have common boundary points with Q~. We write 

(43) w 2 ( z ) = - ~ R e {  E 1 i iQ  ((_~)2dv(~)}+S ' 

where, here and in the sequel, the prime denotes omission of those terms corre- 
sponding to Q~cQ(z). Using (38) and (40), we obtain the estimate 

1 1 
(44) [S[<-K1 E [z_r ~-K2 E i(d2. 

Q~cH(z) Q~CII(z) 
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We find that 
1 gceN 

i~1 ~ < ~ < 2K. 
Qr 

It is likewise clear that the first summand is bounded; this is a consequence of the 
regular distribution of the points Q and the fact tha t  (l+x2+y2) -3/2 is integrable 
with respect to Lebesgue measure over R 2. 

We are thus left with the following expression for w2, 

(45) 1 1 ffQ w 2 ( z ) = - ~ R e  E (Q_-z)2 (r162 
Q~cH(z) 

This sum will be estimated in Step 6 below. 

Step 4: Partial estimate of Wl. By (3.1) and (4.4), we have 

N - 1  

wl(z)=-~Re E E ~ ( ~ _ Q ) 2 d u ( ~ ) + S ,  
n=0 Q~CII,~ 

where 
N--1 / / K 1  K2 "~ 

Isi_<E E �9 
n=0 Q~cH~ 

It is easy to deduce from (42) that the right-hand side of this expression is bounded. 
Hence, 

(46) wl(z) = - ~  Re E r~ (~_Q)2 du(~)+O(1). 
Q~c D(O,t2N_ I ) 

From Steps 3 and 4 we see that  it is crucial to calculate the integral 

I, = f f_ (C-C,) ~ d,(C). aaQ 

This is done in the next step. 

Step 5: Estimate of Ir We claim that we have 

(47) I~ = le2 iarg(Q)  (1 5(a~g~))+O(n-1). 
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In order to prove the claim, we show first that 

(48) = m(Q~)dm(r ~_O(n_l) ' 

as n--~cc, where 

f /Q dm(~) q = r m(Q~) 
r 

is the center of mass of Qr with respect to Lebesgue measure, and then we perform 
an explicit evaluation of the integral. 

Let 

1 (49) Cn,j - 5(r +r 

An elementary estimate (which we omit) shows that 

(50) Cn,y = (n-- �89 e ir 'j (1 + O(n-2)). 

In order to prove (48), we write 

(51) Ir162162162162 (r162 

Continuity of (~ and v(Qr imply 

(52) dt,(r --1 din(C) 
-- (l+O(n))rn(Q~-----~' 

Q~ being the cell containing 4. We insert (52) into (51) and obtain (48). 
1 We now evaluate the integral in (48). Let ~=(n , j )  and An,j-~(r162 

SO that we may write 
m( Qn,j ) = 2nAn,j. 

Direct calculations give 

(54) Cn*,j = ( n -  

and 

(55) 

2~n +O(n_3) ) eir sin An,j 
An,j 

JQ 42 dm(~) n2ei2r J sin2An, j 
~,j m(Qn,j) 2An,j 
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Inserting (54) and (55) into (48), we obtain 

�9 ( s in  2An j 
(56) 1{:~e'~"\ 2-57~,j' 

We use (50) and the fact that  

sin 2 A n ~ \ . . . .  sin A~,j 
' J  | ~- �9 eZZ(pn,j 

XS-- -- i~ An, j ] An,j 

~_O(n-2) 2A~,~ - 2n~(r 

~O(n-2). 

to estimate (56), and arrive at (47) after some elementary computation. 

For future convenience, we rewrite (47) as 

h = ~ ( r  (57) 

where we have defined 

~IJ(~) = ~2 e2i arg(r (1 ~(ar~ ~) / ; 

note that  (57) holds with r replaced by any point r162 

Step 6: Final estimate ofwl(z). In view of (46), we need to estimate the sum 

Q(cD(0,2 N-l) 

By (57), we may write 

~ (Q )  t-O(1). 
Qr N-l) 

We have 

II(Z)= : 

while on the other hand, 
El =I(z)+O(1). 

This proves (35). 

Step 7: Final estimate ofw2(z). Now we need to estimate the sum 

E 2 =  E I{ 
Q:n(~) (r162 
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We shall compare the sum with the integral 

I2(w) = p.v. fl/2<]~1<2 ~(s)  - -  

where W=2-Nz. Since 1 / V ~ < I w ] < v ~ ,  it is clear that  

 2(w) = o (1 ) .  

We define 

and find that  

dr(s) 
S_W)2 

f f  dr(() 
Jy(z) = Y l (r 

I2(2-N z) = JN(z)+O(1). 

189 

Simple estimates (which we omit) show that  

E2=JN(z)+O(1), 

and this relation completes the proof of (36). 

In order to obtain the estimate (27), we have to investigate what happens close 
to some point (EZ(f) .  By Lemma 3.1, we have 

(58)  f(~--~Z Z) e-h(arg(~+z))lC+z]2----(l+O(IzI) ) ~ e -5(arg~)[z[2.  

We know that  (27) holds in E~, and thus by the maximum and minimum principle 
applied to T~f(z)/z in D(0, e), we see that  (27) holds in the whole plane. 

The construction is not complete, since we need to get rid of the term qlog Izl 
in (27). We choose e>0  such that  

(59) 

Then the function 

e < inf 6(0). 
0 

hi(O) = h(O)-e 

We construct an entire function f l  with respect to hi is of the prescribed type. 
as described above, and another function f2 with respect to h2(O)-e in a slightly 
different way. We choose f2 in such a way that  by moving a part  of its zero set, we 
obtain the desired growth. 

7-Arkiv f'6r matematik 
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To ensure that the zero set of the product f l  (z)f2 (z) is again uniformly discrete, 

we proceed in the following way. Let 

i(2 2 = - ~ ) ~  

fo 6(o)eo' 
and choose 

1 
e -  7rs~k2. 

We see that (59) is satisfied if we let k be a sufficiently large integer. We define 

61(0)=d(6(0)-~) 
and 

Then 

62(0)=s~k2e 

lf02~ lf02~ - -  6 1 ( 0 )  dO -- - 62 (0)  dO = 2. 
7r 7r 

We construct a function with respect to 61 as above; it means that the zeros of f l  

will be concentrated along the circles Izl--sl(n+�89 We then construct a function 

with respect to 62 whose zeros are concentrated along the circles Izl =n ,  so that the 

zeros of f2 are concentrated along the circles Izl=slkn. 
We turn to the construction of f2. Let now 

R n = { W : t n _ l < _ l w l < t n } ,  n =  1,2,..., 

where tn= ~ .  We put dv2(z)=52(argz)dm(z), and note that 

~(Rn) 6(r dCt 2 2 = dt = t n - - t n _  1 =- 2n. 
--1 

We divide each R~ into 2n cells {Qn,j} as above, but take care to choose Qn,1 so 

that 

f fQ~,l w dy2(w) > O. 

We repeat the above arguments and obtain a product which satisfies 

/1 (z)f2(z) = emZ)+(ql+q2),og ,z,+o(1) 
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In order to get rid of the term involving log Iz], we modify f2 in the following 
way. Let { n},~=l denote the positive zeros of f2 ordered so that  )~n<An+l for 
n = l ,  2, 3, .... Since An=Slkn+O(n -1) as n--~oc, we have that  

satisfies 

n=l  

log Ir = ~(slk) -1] Im z] +O(1) 

when d(z, {An})>~. Consider the function 

r ( 1 z2 

using the Stifling formula in a standard way, we obtain 

log Ir = 71"(8 1 k) - l l  Im z 1-4  7 log Izl + 0 ( 1 )  

when d(z, Z(r162 We finally put 7--(ql  +q2) /4  and define 

fl(z)f2(z)r 
g(z) = r 

We claim that  this function is of the desired type. 
In order to prove the claim, two things must be checked. Firstly, we may have 

double zeros. However, since the zeros of f l ,  say {4n,j}, satisfy 

I~,,,j I = Sl (Tt-- 1) _~O(n-1), 

and the zeros of f2, s a y  { W n , j }  , satisfy 

IWn,yl = 81]s O( , / - t -1 ) ,  

these can occur either in some finite disk or along the real axis. Double zeros along 
the real axis can be avoided by choosing the zeros of f l  to have some positive 
distance to the axis (it follows from the construction that  this is possible), and 
double zeros in a finite disk can be removed by splitting them into two simple zeros 
without changing the asymptotic behavior of the function (since only finitely many 
points are involved). 
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Secondly, we must  check that  the asymptot ic  behavior is of the right type also 
in small disks around the zeros of r To see that  this is the case, we use Lemma 3.1 
and obtain an est imate which is similar to (59). 

A final remark is due: If h is known to be ~-periodic, we may construct an 
even function g in the same way as f2 was constructed above (in other words, we 
do not need f l ) .  This construction is the original one, which is described in detail 
in [15]. 
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