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Equivalent norms for the 
Sobolev space W o  'p 

Andreas Wannebo 

A b s t r a c t .  A new proof is given for a theorem by V. G. Maz'ya. It gives a necessary and 
sufficient condition on the open set ~ in R N for the functions in W o 'P (~ )  to have the ordinary 
norm equivalent to the norm obtained when including only the highest order derivatives in the 
definition. The proof is based on a kind of polynomial capacities, Maz'ya capacities. 

I n t r o d u c t i o n  

Let ~ be an open subset of R N. The Sobolev norm is given by 

'[U['wm'P(~) = [a~t<m (J [Dau[P dx)l/P" 

Here a is a multiindex. Define W:'P(gt) as the closure of C~(12) in the norm 
H Hw~,p(a). There is a seminorm, [ ]m,p,a, defined as 

= ID~ul'dx) 1/'. 
A question solved by V. G. Maz'ya, (see the book [4, 11.4.2] and the reference given 
there), is the following: What  is the necessary and sufficient condition on ~2 for 

lulm,p,~ ~ IlulIwm,p(~), 

when uEW~'V(~2)? Here "~" as usual denotes that  the quotients between the 
quantities are bounded by positive constants. Here the equivalence is independent 
of  U. 

R. A. Adams has given a sufficient, non-necessary condition in his book, [2, 
Th. 6.28], unaware of the result by V. G. Maz'ya. The aim of this article is to 
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give a different proof of the theorem by V. G. Maz'ya based on a kind of capacities 
here called Maz'ya capacities, see [3] or [4, 10.3.3], instead of capacities related 
to Bessel capacities. This application gives an indication of the usefulness of the 
concept of Maz'ya capacities. The proof is divided into two parts. The first one 
consists of a proof that  a necessary and sufficient condition can be given in terms of 
Maz'ya polynomial capacities. The second one is a proof that  this condition can be 
translated to corresponding capacities related to Bessel capacities. Generally these 
capacitities can not be translated to each other like this, but here it is possible due 
to the geometric formulation of the condition. The major part of the first part of the 
proof will be used elsewhere as a lemma in the proof of a certain Hardy inequality 
for domains in R N. If p=N then this lemma makes it possible to give a necessary 
and sufficient condition on the domain for the Hardy inequality to hold. The lemma 
is used in the proof of the necessity. It can be added that  the sufficiency in fact holds 
for general parameters. (Observe that  the condition is formulated in a way that 
admits testing on actual domains--a  property not properly emphazised in this area.) 
As mentioned above we in the present article actually give two different formulations 
of the necessity and sufficiency condition, but since the capacity formulation related 
to Bessel capacities is so superior in practice we do not emphasize this and here 
instead see the Maz'ya capacities only as a tool in the proof procedure. 

V. G. Maz'ya actually proves a stronger statement, but this is a corollary of 
the theorem we indicated above. This statement has as an application a result on 
the solvability of a Dirichlet problem. Let c~ and/~ be multiindices, lah 1131 <m.  Let 
a,~z(x) be complex, bounded and measurable functions on the open set ~ in R N, 
such that a ~ = ~ Z ~  and 

> 

J~l=f~l=m JZl=m 

for 5=cons t .>0 .  Now define the operator 

B u =  ( - 1 )  m ~ D~(a~Dau) �9 
Ic, l=l~]=m 

From the theorem by V. G. Maz'ya it follows that  the above necessary and 
sufficient condition also is a necessary and sufficient condition for the equation 
BT=I, with f in L r ( a ) ,  r/(r-1)>_2, 2<_r<2N/(N-2m) for N>_2m and 2<r<c~ 
for N < 2 m ,  to have a distribution solution in the space L~'2(f~), defined as the 
completion of C~(f~) in the norm 

(,,~l=m ~ 'D~u]2 dx) 1/2" 
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For this see [4, 11.7.2]. We will use the notation that  A is a generic positive constant, 
which may change even within the same string of inequalities. 

R e s u l t s  

First we give a definition of a condenser capacity equivalent to the correspond- 
ing Bessel capacity when p > l .  Let Q denote an open cube in R N, ~Q denote the 
cube with the same centre and orientation, but  dilated a factor A. Let m denote a 
positive integer. 

Definition 1. Let p > l ,  let K be a closed set in (~, let 

and define 

S/<- - {uEC~(2Q)  :UlK> 1} 

Cm,p(K, 2Q) = inf E IID~ull Lp" 
UESK 

I~l=m 

According to the results by D. R. Adams and J. C. Polking in [1] and also by 
V. G. Maz'ya, see [4, 9.3.2], we have that  this capacity is equivalent for p > l  to the 
capacity C~,B(K, 2Q) defined as follows. 

Definition 2. Let p>_l, let K be a closed set in Q and let 

S~ = { u E C~ (2Q): u -- 1 in a neighbourhood of K } 

and define 

C~,p(K, 2Q)= inf E IID"ullip. 
,,es~ I~l=m 

We shall use Maz'ya capacities, which are a generalization of the capacities 
above. 

Definition 3. Let K be a closed set in Q. Let :Pk denote the set of polynomials 
of degree less or equal to k with fQ IPI p dx= (side Q)N. Furthermore let Sp, K denote 

the set of functions in C~(2Q) ,  which coincides with P in a neighbourhood of K.  
Then define the Maz'ya capacity %~,k,p by 

%~,k,p(K, 2Q)= inf inf ~l m ~ ID~u[Pclx" 
P C P k  uEs  ] = Q 
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In these kind of situations it has no significance if we take this definition or e.g. the 
one where the pth  root of the quantity is taken. 

Relative versions of the capacities above are defined as the value of the capacity 
of the image of the set K after a dilation mapping Q onto a unit cube. They will 
be denoted by a * on the corresponding capacity. 

Much of the usefulness of the Maz 'ya  capacities lies in the following result by 
V. G. Maz'ya,  see [3] or [4, 10.3.3]. For u e V ~ ( K C ) ,  l < p  and Q with side h we 
have that  

(1) fQ lul p dx h'~p 
sup ,.~ 

~eC3c(g o) }-~q~l=m fQ ID~ulP dx ~/*,m_l,p(K, 2Q) ' 

when ~/*,m_l,p(K, 2Q) is small and non-zero, i.e. there is a positive constant Co 
independent of K,  such that  this capacity is less than  Co. 

On the other hand L H S < A . R H S  for all closed sets K .  

Now we turn to the main theorem, proved by V. G. Maz 'ya  in [4, 11.4.2]. 

T h e o r e m .  Let p>_ 1. The following statements are equivalent for the open set 
f~ in R y : 

(i) R y can be tesselated into equally sized cubes {~)i} such that 

inf C~,v(fKAOi , 2Qi) > 0; 
i 

(ii) lulm,  llullwm,  if ueWy'P(a). 

Proof. Obviously it does not mat ter  if we prove the result for relative capacities 
instead. 

The structure of the proof is that  first we prove the theorem with a relative 
Maz 'ya  capacity instead of the capacity C~,p, and then we end with an estimate 
that  shows that  with the geometrical situation at hand the otherwise inequivalent 
capacities turn out to fill the same purpose. 

Accordingly we begin with a proof that  (ii) is equivalent to 

(iii) R N can be tesselated into equally sized cubes {~)i} such that  

in f~ /*m_l ,p(acnQi ,  2~i)  > 0. 

First we prove tha t  (iii) implies (ii). The t ru th  or falsehood of either s tatement  is 
not changed by a dilation. Without  loss of generality we may hence assume that  the 
cubes have side 1. Assume (iii) is true and let ueW~'P(f~) .  We use interpolation, 
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see [2, Th. 4.13], and the result (1) by V. G. Maz'ya and get for 1/31<m that 

�9 , -  1>.o /o ~_ A ' ( ( 'Tm,m-l ,p( f l  •Qi,  2 Q i ) ) - l q  = ]Daul p dx. 

We sum the inequality over/3 and i and get 

HU]]w..,p < d .  ((inf ~/*,,~_l,p(f~cnQi, 2Qi) ) - I  +1)  �9 lu]m,p,a. 

Thus we have proved that (iii) implies (ii). 
Conversely to prove that (ii) implies (iii) we assume that (iii) is false for f~ and 

prove that then also (ii) is false. 
Let the sidelength of the cubes be h, which later will be chosen arbitrarily 

large. Choose Qio =Q such that * c - "Tm,m_l,p(f~ n Q , 2 Q ) < r  where ~ is small and to 
be chosen later. There is a uCC~(f~), with 

(2) hmp" E f^ 'D'u'P dx < A~" f~ lu, p dx 
I,~f=m ar J ~4 

according to the result (1) by V. G. Maz'ya. 
1 Now let r  with r on ~Q0, where Qo is a unit cube. Put  CQ= 

r where xQ is the center of Q. We want to compare HCQuHw,.,p(~) 
and ]r Note that  

"P /(1 I[r llwm,,(a) -> lul pdx. 
/2)Q 

On the other hand by Leibnitz' formula, interpolation, [2, Th. 4.13], and (2) we 
have that 

<_d. ~ h-("-t~l)P, fc [D"u]P dx 
I~1<_,~ Q 

l~l=m 

<_ Ah-~P(l+e) f lulPdx. 
JQ 
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If we can prove tha t  

A j~(1/2)Q iUiP dx ~- iQ IUIP dx 

we are done, since then 

A. l]r > h "~p. ]r 

and now h can be made arbitrarily large. 

We have a weak Poincar~ inequality, see [4, 1.1.11. Lemma], that  says that  
there is a polynomial P of degree less than or equal to m - l ,  such that  

f lu-PI p dx < Ah mp. ~ f ID'~ul p dx. 
JQ l aTZ=m J Q 

(Actually the formulation given there covers only h--1,  but it is easy to derive 
the formulation above from this. Start with a unit cube. Then dilate the inequality 
with a factor h. Then h mp appears as a dilation factor. Furthermore, the polynomial 
is changed by the dilation, but this does not matter ,  since it is only the existence 
of a polynomial that  matters .)  

We may by compactness of the set of polynomials in question assume that  P 
makes the LHS a minimum. From this and (2) we get 

(3) SQ iu-PiP dx<_A~.iQ iuiP dx. 

Thus by the triangle inequality and by (3) we have that  

\J(1 / \ J (  ( f /2)Q iuIP dx~I/P > (il/2)Q x l/p x l/p _ - ( j  )o , . - . , . .x j  
(4) _>(f(ll2)QIPIPdx IP-A '/'(fQ lul" 

But if we use a fixed cube Q, then since norms in finite dimensions are equivalent, 
we get for any P of degree less than or equal to m -  1 that  

A(~((ll2)Q IPIP dx)IIp > ( i  Q -  'lip IPI p dx) . 

Now by dilation this holds for any cube. The RHS above is greater than or equal 
to 

(SQ ' l ip  ' l ip  j.i..x) -(i ,.-.i..x) 
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by the triangle inequality. This quantity is by (3) greater than or equal to 

(/Q MV dx)l/P-- A~/P ( fQ [u[P dx) 1/p. 

Now by (4) and the estimates above we obtain 

A ~(1/2)Q [U[P dX ~ /Q [U[P dx 

if E is small enough. 
This proves that  (ii) implies (iii). Hence we have that  (iii) and (ii) are equiva- 

lent. 
In the second step we show that  we can substitute C~,p for "/*,m-l,p in con- 

dition (iii) and obtain condition (i). We assume that  (iii) holds. First we note 
that  

~/*,m_l,p(g, 2Q) I/p <_ A.C~,p(K, 2Q). 

This follows if we take P--const .  in the definition of the Maz'ya capacity. Now it 
remains to estimate the Maz'ya capacity under the condition (i). 

Let {Q~} be the cubes of (i). Let k be a large integer. Form a tesselation of R N 
! with a subset of {kQi}. We denote this subset {Q,~}. The statements are invariant 

under dilations. Without loss of generality we may assume that  the sides of {Q~} 
equal 1. Let CQ~ be a partit ion of unity with respect to the cubes {Qi}, such that  the 
functions are the translates of each other, with respect to any translation mapping 
the respective cubes on each other. Let CQ~ be a C ~ function. Fhrthermore let 
~bQ,[Q~=const.~0 and ~dQ~l(2Qi)c=O. Pick an arbitrary cube Q' in {Q~}. Assume 
that  u and P are nearly optimal in the definition of "y,~,m_l,p(f~CNQ ', 2Q'). By 
Leibnitz' rule, by a trivial estimate, by a Poincar6 inequality for functions with 
compact support and finally by the definition of 7m,m--l,p, we have that  

(5) 

E 
{i:QicQ'} I~l=m {i:q, cq'}  I~l<m 

<_A / IO%lP dx 
I~l_<m 

< A }2 f ID~ dx 

A''/m,m-l,p(a nQ, 2Q'). 
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Hence it suffices to prove that  

f ID~(r p dx > cons t .>  0 
. ]  

for some i0, Qio cQ'. We claim that  if k is sufficiently large it is possible to, to 

any polynomial P in Pro-1 to choose a cube Q~o such that  IIPI[Q~o >const.  >0. This 
follows by the following argument: Since norms in finite dimensional space are 
equivalent we have tha t  

1 = IIPIIL, cQ,)~ IIPIIL~(Q,). 

Furthermore we have by the equivalence of norms in finite dimensional space 
that  

IIVP]IL~O(Q,) < AHPIIL~(Q,), 
which implies that  we can choose k such that  there is a Qio covering a maximum 
of IPI in Q' and such that  

1 max IPI IPl-> 2 xcQ' 

in Qio. 
Since r can be taken as test function for C~,p(~tcoQ~o,2Qio), since 

IPI ~1  in 2Qio, by Leibnitz rule, by the triangle inequality, by a Poincar~ inequality 
and by (5) we get that  

:,o.I,o,ou>,.,x) I'' 

+. z " "".. 
IJl+l-rl=-~ 

I/~l<m 

~-A(ia~=m/ 'DC~(~bQ,oU)[P dx)l/P 

<_ A')' . . . .  1,p(OC[']Q/, 2Q'). 

End of proof. 

The following stronger formulation is a consequence. It  is how V. G. Maz 'ya  
formulated his theorem. 
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Coro l l a ry .  Let p> l.  The following statements are equivalent for an open set 
in R N . 

(i) R g can be tesselated into equally sized closed cubes {Q~} such that 

inf C~,p(fFOQ)i, 2Qi) > O. 

(ii) Let uEW~'P( f t ) .  Then 

(f lulq dx)l/q < A(, ~= / lD%lP dx) I/p, 

where 

(1) p < _ q < N p / ( N - m p )  when p > l  and m p < N ;  
(2) p<q<oc  when p > l  and m p = N ;  
(3) p<q<c~ when m p > N  and p> l.  

Proof. By the Sobolev imbedding theorem and the proof of the previous theo- 
rem we have that 

\ l / p  / r x l/p 
< A  (:~,u,.x)'"_ (/o.,.,.,x) +.~ r / ,~ 

/ klal=mJQi 

.(r I ."'" < ]D'u[ p dx}  . 

Now raise to the pth power and sum over i. 

(/o .,,x)"~_.. z/,~176 
l~l=m 

but by an elementary inequality for sums we have that the LHS is greater or equal 

to 

(~io.,-,'.-)": 
since p/q~_ I. End of proof, 
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