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An algorithm that changes 
the companion graphs 

M. Azram 

In troduct ion  

Knot theory is a rich subject because of its many readily available examples. 
It has undergone dramatic changes during the last 12 years. A connection between 
knot theory and graph theory has been established by Reidemeister [R]. Graphs 
of knots (links) have been repeatedly employed in knot theory [Au], [C] and [KT]. 
In the recent past L. H. Kauffman [K] has established that  "Universes of knots 
(links) are in one-to-one correspondence with planar graphs". In the proof, he has 
beautifully given the method of constructing corresponding universe from a given 
graph. With the introduction of LR-Graphs, one can easily extend the one-to-one 
correspondence to knots (linked links). The pivotal moves in the theory of knots are 
the Reidemeister moves. I will view these moves as Reidemeister moves of type I, 
type II and type III as shown in Figure 1. 

Graph theoretic versions of Reidemeister moves has been discussed in detail 
by Azram [Az2]. Yajima-Kinoshita [YK] have shown that the companion graphs 
corresponding to a projection are equivalent. I myself have shown via Reidemeister 
moves that the graph corresponding to black (white) regions of a prime knot as well 
as that of composite knot is equivalent to its companion [Azl]. 

Having equivalence of companion graphs, construction (ahead) of the compan- 
ion graph of a given connected planar LR-Graph and graphic versions of Reide- 
meister moves, it is natural to consider how one can change a given graph to its 
companion and vice versa by applying the graphic moves corresponding to the basic 
Reidemeister moves and without reference of the knot (link). 

This article is devoted to write an algorithm that changes the graph correspond- 
ing to the black (white) regions of an altenating knot (linked link) with all labels 'L' 
(or 'R') to its companion graph. Consequently, by constructing the corresponding 
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Type I: 

Type II: 

Type III: 

Figure 1. 

knots (linked links) one has a systematic rather than hit and trial approach of chang- 
ing an alternating knot (linked link) to its mirror image. If the companion graph 
turns out to be isomorphic with the given graph then obviously the corresponding 
knot (linked link) is achiral. 

Bas ic  b a c k g r o u n d  

A knot is an isotopy class of the embedding of the unit circle in R 3. A link 
with n components is an isotopy class of the embedding of a collection of n disjoint 
circles in R 3. If one considers a representation of a link, i.e., an embedding of n 
disjoint circles in R 3, then an individual simple closed curve of the representation 
is called a component of a link. A link of just one component is a knot. It is tacitly 
assumed that  the closed curves are piecewise linear, i.e., they consist of a finite 
number (possibly very large) of straight line segments placed end to end. This 
is a technical restriction which merely avoids wild knots and links [CF] or [FA]. 
Restricting the components to being differentiable would do equally well. 

A projection of a knot (link) is simply a diagram obtained by mapping the 
knot (link) under orthogonal projection of R 3 onto R 2 in R 3. The direction of the 
projection is always chosen so that  when the projection of two distinct parts of the 
knot (link) meet in R 2 they do so transversally at a crossing point, i.e., as in Figure 
2(a) and never as in Figure 2(b), (c) or (d). 

At a crossing an indication of which of the two arcs corresponds to the upper 
string and which to the lower string can be given by breaking the line corresponding 
to the lower string at the crossing. In the future, knots (links) will be confused with 
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Figure 2. 

their class of projections with crossings indicated unless otherwise stated. 
A knot (link) diagram can be considered as a planar graph with 4-valent ver- 

tices: 

We call such a planar graph the universe of a knot (link). At the points corre- 
sponding to double points of a given projection of a knot (link), the point with 
greater 'z' coordinate is an overcrossing and the point with smaller 'z' coordinate 
is an undercrossing. An alternating knot (link) is a knot (link) where the crossings 
alternate under-over-under-over, etc. as one travels along each component af the 
knot (link), (crossing at all crossing). Two knots (links) are equivalent (via Reide- 
meister moves) if and only if (any of) their projections differ by a finite sequence 
of Reidemeister moves. We will denote this equivalence by ~,  i.e., KI,~K2 means, 
K1 is equivalent t o / ( 2  via Reidemeister moves. If in a given knot (link), all of the 
crossings are reversed, i.e., overcrossings changed to undercrossings and vice versa, 
then the resulting knot (link) is called its mirror image. A knot (link) is said to be 
achiral if it is equivalent (via Reidemeister moves) to its mirror image. Let K be 
a diagram resulting as a projection of a knot (link). Let K* be its universe. By a 
region of K,  we mean the correpondiug region of K*, which is a maximal portion of 
the plane for which any two points may be joined by a curve such that  each point 
of the curve neither corresponds to a vertex of K* (view K* as a planar graph) nor 
lies on any curve corresponding to an edge of K*. 

A link will be called unlinked if it is equivalent to a link whose projection con- 
tains at least two non-empty parts which are contained in disjoint simply connected 
subsets of the plane, otherwise we will call it a linked link. A knot is an unknotted 
knot if it is equivalent to a knot that  has a projection with no crossings, otherwise 
it is knotted. A prime knot is a knotted knot which can not be expressed as a sum 
(Figure 3) of two knotted knots. A composite knot is a knotted knot which is not 
a prime knot. Note that  the sum of two links of more than one component is not 
well defined unless it is specified which two components are to be banded together. 

For a given diagram of a knot (link), shade (checker board shading) its regions 
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Figure 3. 

[R2] white and black so that the unbounded region is white. We will refer to the 
shaded regions as the black regions and the unshaded regions as the white regions. 
Now associate a pseudograph to the knot (link) so that the vertices of the graph 
correspond to the black regions and the edges correspond to the crossing shared by 
the black regions. We will call such a graph as the graph corresponding to the black 
regions of the knot (link). Construction of the graph corresponding to the white 
regions is similar. The LR-Graph corresponding to the black (white) regions of a 
knot (link) is the graph whose edges are labelled as 'L' or 'R' depending on whether 
the upper string at the corresponding crossing falls on the left or on the right side 
when going from either black (white) region to the other black (white) region. 

Let G be the graph corresponding to the black (white) regions of a given knot 
(link). By the companion of G, we mean the graph corresponding to the white 
(black) regions of the same knot (link). If the given connected loopless bridgeless 
planar graph corresponds to the black regions of a knot (link) then to construct 
its companion graph, all one needs to consider is that the vertices of the required 
graph correspond to the regions of the given graph. The edges correspond to the 
edges shared by the regions of the given graph and the labelling of the edges is just 
opposite to the labelling of the corresponding edge in the given graph. Alternatively, 
one can also construct the companion graph of a given graph as follow. 

Fix one of the boundary vertices of the given graph. Consider the other vertices 
corresponding to the bounded regions of the given graph and then repeat the above 
construction while considering the fixed vertex as the vertex that corresponds to 
the unbounded region. It is straightforward to observe that the graphs constructed 
by these constructions are isomorphic. It may be noted that, if the given connected 
loopless bridgeless planar graph corresponds to the white regions of a knot (link), 
then the construction of the correponding companion graph is the same as discussed 
above. 

If in the above construction, the given graph has a loop and/or bridge, then 
the companion graph can be constructed as follows; 

(1) Ignoring the loops/bridges, construct the companion as discussed earlier. 
(2) Suppose there is a loop at say vertex V~. Join that part of the graph 

enclosed by the loop to the part of the graph incident at Vi by a bridge and label 
this bridge opposite to the labelling of the loop. Now, change the graph at both 
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ends of this bridge to its companion. The same can be repeated to all the loops. 

(3) Let there be a bridge adjacent to vertices Vi and Vj of a given graph. 
Change the graph at either end of this bridge to the companion and then contract Vi 
on Vj or vice versa and then place an oppositely labelled loop at Vi =Vj enclosing one 
of the parts  of the graph tha t  was incident to vertex Vi or Vj before the contraction. 

The following are the graphic moves corresponding to the Reidemeister moves 
studied on the black regions. For more details and observations, see [Az2]. 

T y p e  I m o v e  Graphic move 
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Case IV: Regions 1 and 2 are the same. 

Type III move 

Case I: Regions i, 2, and 3 are distinct. 

Type Ill move 

Case II: Two of the regions I, 2, and 3 are the same. 

Type Ill move 
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Graphic  move 
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Case III:  Regions 1, 2, and 3 are the same. 

283 

Graphic  move 

4 

Figure 4. 

Algorithm 

In the next few pages an algorithm will be given that changes the graph corre- 

sponding to the black (white) regions of an alternating knot (linked link) with all 

labels 'L' (or 'R') to its companion. Before applying any graphic move, one may 

construct the companion of the given graph and can select either the graph or its 

companion to be changed to the other. The one with a smaller number of bounded 

regions will be preferred. This is not necessary but it helps to reduce the work. 
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Case  I 
The given graph is loopless and bridgeless. 

S u b c a s e  I 
The given graph is loopless, bridgeless and has no cut-vertex, i.e., it is a single 

loopless block. 

S t e p  I 
Without loss of generality, let all the edges be labelled as 'R'. Note that a 

region bounded by only two edges will not be considered as a polygonal region. 
Among all the regions of the given graph that  share their boundaries with the 
unbounded region, choose the one which shares the greatest number of edges with 
the unbounded region. In the case of more than one such region, choose any one. 

S t e p  I I  
(a) If the selected region is polygonal, i.e., is bounded by a polygon with at 

least three edges and each vertex is of degree 2. We introduce an edge labelled 
'L' incident to any of the vertex of the polygon as shown in Figure 5(a). As a 
consequence, the said vertex is a candidate for a Reidemeister move of type III 
(graphic version). Perform it. Then a consecutive vertex is now a candidate for a 
similar move. Continuing consecutively, one arrives at the required graph. 

-- ) .... 
v__x / 

_ R . . . .  R / R  

L 

(a) 

R R 

(b) 
Figure 5. 

L 

(b) If the selected region is like the left part of Figure 5(b) then introduce an 
edge labelled L as shown in that figure, and then perform a move of type III, and 
then a move of type I to get the required graph. 

(c) If the selected region is as shown in Figure 6(a) where the number of edges 
bounding it can be as smM1 as 2, we let i be a vertex of degree greater than 2 that is 
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Figure 6. 

adjacent to a vertex of degree 2 (if i - j  pa th  consists of more than one edge shared 
with the unbounded region, otherwise, pick either of the vertices incident to the 
edge in common with the unbounded region) in the selected region. Now, perform 
a Reidemeister move of type II  at vertex i as shown in Figure 6(b), where the edge 
labelled R1 means that  it is labelled as R but is a result of the very first move of 
this nature. Performing a Reidemeister move of type I I I  at vertex i, the result is 
shown in Figure 7(a). 

(a) 

i + 1  

i - 1  

~ R  ~ ~ ~~/~1 

(b) 

R 

i - 1  

Figure 7. 
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If the vertex i+1  is a candidate for a Reidemeister move of type III, perform 
it; otherwise, proceed as shown in Figure 7(b). Perform a Reidemeister move of 
type III at the vertex i+1  and proceed similarly over all the consecutive vertices 
until one reaches the vertex i - 2 .  Proceed in the same fashion at vertex i - 2  and 
then stop. Note that  one must do the following in step II(c). 

(i) Label the edges as R1, R2, ..., Rn as has been shown at vertex i and vertex 
i +  1 (n depends on the number of vertices involved in performing the move of type II 
as at vertex i and vertex i+1) .  

(ii) While performing the moves, especially of type III at a vertex, if it results in 
any of the situations shown in Figure 8, perform the required move before proceeding 
to the next vertex. 

R(L) L(R) 

"..... R(L). L ( R ) J  ~ "......J 
7 - ~ II 

Figure 8. 

(iii) If, during step II(c), any vertex turns out to be a vertex of degree 2 with 
both incident edges labelled R then perform a move of type III at that  vertex by 
introducing an edge labelled L incident to it as is done in step II(a). 

S t e p  I I I  
Choose the bounded region whose bounding edges have the edge labelled R1 

in it. If no such region exists or R1 was eliminated during step II, or R1 is the only 
bounding edge labelled R, then proceed to edge R2 and so forth. Repeat step II(c) 
for this region starting at the vertex incident to R1 with all the other incident edges 
labelled as R till the last vertex which is incident to a boundary edge of this region 
and is labelled as R. Let Rl l ,  R12, ..., Rlal be the resulting edges like R1, R2, ..., Rn 
in step II(c), where al < ~ .  Continue similarly to R2, ..., Rn and label the resulting 
edges as 

R21, ]:~22, ..., R2a2. 
R31, R32, ..., R3a3. 

Rnl, Rn2, ..., Rnan. 



An algorithm that changes the companion graphs 287 

S t e p  I V  
Repeat step II(c) and step III until all the edges labelled R are changed into 

the edges labelled L. Note that  in the final stages one may have; 
(i) A vertex of degree 3 that  itself is a candidate for a move of type III. If so 

perform it. 
(ii) A vertex of degree 2 with both incident edges labelled as R. If so, proceed 

as in step II(iii). 
(iii) A vertex of degree 2 with oppositely labelled edges. If so, perform a move 

of type II. 

S u b c a s e  I I  
The given graph has no loop or bridge but has cut-vertices. 
Let the vertex V be a cut-vertex of the given graph. Change each block of the 

graph incident to vertex V to its companion as has been done in subcase I, i.e., 
apply the algorithm of subcase I consecutively to each individual block at vertex V. 
If there is more than one cut-vertex, proceed similarly at each one. 

Case  I I  
The graph has a loop and/or  bridge. 
Change a loop and/or  bridge as discussed in the construction of the companion 

graph and then change the other parts of the graph as discussed in case I (subcase 

I and II). 
The following is an example in which a planar connected loopless bridgeless 

graph with all edges labelled as R has been changed to its companion by the graphic 
moves. By ~. I mean that  a move of type a has been performed at the * location. 
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