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Resonances for perturbations of a 
semiclassical periodic SchrSdinger operator 

Fr@d@ric Klopp 

Abstract.  In the semi-classical regime we study the resonances of the operator Pt:--h2A+ 
V +t. 6V in some small neighborhood of the first spectral band of P0- Here V is a periodic potential, 
6V a compactly supported potential and t a small coupling constant. We construct a meromorphic 
multivalued continuation of the resolvent of Pt, and define the resonances to be the poles of this 
continuation. We compute these resonances and study the way they turn into eigenvalues when t 
crosses a certain threshold. 

O. I n t r o d u c t i o n  

In a previous paper  [K1] we studied the semi-classical eigenvalue problem for 

the following opera tor  act ing on L2(Rn) :  

(0.1) Pt : -h2 A + V +t 6V, 

where V is a periodic potential ,  6V a compac t ly  suppor ted  potent ial  and t a real 

coupling constant .  

For h small enough we proved tha t  there exists a threshold T~v ( T e v = 0  if n = l  

or 2, and Tsv>O otherwise), such that ,  for t>T~y, Pt admits  a simple eigenvalue 

A(t) in a ne ighborhood of the first band  of P0. 

In this paper  we are dealing with the  resonance problem for Pt, and conse- 

quently, as we will see later on, with wha t  happens  to A(t) when t gets smaller 

t han  T~v. 
Resonances have been studied quite extensively for various operators  in the 

last 20 years, and there exist various definitions of them, all of which lead to  m a n y  

investigations (see, for example, the works of P. D. Lax  and R. Phillips [LxPh], 
J. Aguilar  and J. M. Combes  [AgCo], E. Balslev and J. M. Combes  [BaCo], M. Reed 

and B. Simon [ReSi], W.  Hunziker [Hul], B. Simon [Sil], [Si2], B. Helffer and 
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J. Sj6strand [HeSj], B. Helffer and A. Martinez [HeMal, P. Hislop and I. M. Sigal 

[HiSig], E. Balslev and E. Skibsted [BaSk], A. Orth [Or], etc.). 

However, in most of these papers the authors studied resonances for pertur- 

bations of the Laplace operator. In our case, we are interested in resonances for 

perturbations of a periodic SchrSdinger operator. The problem of the multivalued 

meromorphic continuation of the resolvent of an operator of the form (0.i) has 

already been studied in a quite general setting. 

In the one-dimensional case (n= i), in [Fill, N. E. Firsova constructs the mero- 

morphic continuation of the resolvent of Hill operators and perturbed Hill operators 

on the Riemann surface of quasi-momenta. In [Fi2], she studies resonances for a 

Hill operator perturbed by an exponentially decreasing potential. She shows that, 

in each gap (of the Hill operator) of sufficiently high energy, there exists one or an 

odd number of resonances for the perturbed Hill operator. 

In a more general case (no restriction on the dimension), in [G62] (see also 

[G~I]), C. G6rard constructs a multivalued meromorphie continuation of the resol- 

vent of a periodic Schr6dinger operator. He gives a geometric interpretation of the 

branch points of this continuation, and shows that the branch points contained in 

a simple band are the critical values of the band function (i.e. the Floquet eigenval- 

ues). At last, he also gives some properties of the possible resonances for a periodic 

SchrSdinger operator perturbed by an exponentially decreasing potential. Never- 

theless, under such general assumptions, he is not able to show the existence of 
resonances. 

As we already pointed out, in this paper we will study the resonances for Pt 
only in some small neighborhood of B, the first band of the spectrum of P0. Under 

generic assumptions on V this band will be simple for h small enough. Using the 

reduction done in [Kl], as a first theorem, we show that Rt(z) (resp. Ro(z)) can be 
continued as a multivalued meromorphic (resp. analytic) operator-valued function 

in some small complex neighborhood of B. The branch points for both of these 

functions are the critical values of the band function. And these branch points 

are of logarithmic type if n is even, and of square root type if n is odd. To prove 

these results we rewrite Pt via some adapted Fourier transform and we push the 

relevant momentum space (in our case, it is a torus due to the periodicity of the 

background potential V) into C n to move the essential spectrum away from the real 

axis (see [G~2]). This is some kind of analytic dilation method adapted to periodic 

problems (see [AgCo], [Hul] and [Cy]). 

Then we define the resonances as the possible poles of the continuation of 
the resolvent. We show that ,  in dimension 1 or in dimension larger than 3, some 
neighborhood of the interior of B is free from resonances. So we may only find 
resonances near the edges of the band B (at least if n ~ 2 ) .  
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If n r  and n < 4  (resp. n>5 ) ,  we prove the existence of one or more resonances 
when t~Tby (resp. t<T~y) and t is close enough to T~v. We locate these resonances 
on the different sheets of the Riemann surface where we could continue Rt(z). We 
compute the asymptotics of these resonances when t tends to Tbv. So we can follow 
the way in which these resonances turn into a unique eigenvalue when t increases 

and crosses T6v. In a way these resonances are per turbed bound states (see [Hu2]). 
Using the previously cited asymptotics,  we compute the imaginary par t  of the 

resonances we found. One must notice that ,  in odd dimension, there is always one 
resonance tha t  is located on the real axis of the second sheet of the Riemann surface 
associated to the problem. If n ~ 3 ,  it is the only existing resonance (at least in the 
domain we study). 

Finally, using these results on resonances, we prove that  there are no eigenvalues 
for Pt embedded in the interior of the band B, at least when t is close enough to T~v. 

The paper  is organized along the following lines. After this short introduction, 
in Section 1 we describe our precise framework and state the main results. In 
Section 2 we construct the analytic continuation of Rt (z), the technical part  being 
described in the appendix, Section 4. In Section 3 we compute the resonances and 
prove the absence of embedded eigenvalues. 

Acknowledgements. The author would like to thank J. Sjbstrand for suggesting 
him this subject, as well as B. Helffer, C. Gbrard and L. Robbiano for many  helpful 

discussions, and A. Bardot  for efficient typing assistance. 

I. D e f i n i t i o n s  a n d  r e s u l t s  

1. D e f i n i t i o n s  

L n Let L be a lattice: =~]~j=l Zuj where (u j ) l<j<n is a basis of R n. Let L* 
be the dual lattice of L (i,e L * = { 7 ' e ( R n ) * ; V T e L , 7 ' . T e 2 ~ Z } )  and T~-(Rn)*/L *, 
the dual torus. We consider the following periodic Schrbdinger hamiltonian acting 
on L2(Rn): 

(1.1) P = - h 2 A + V  

where 

(H.1) V E C ~ ( R n ,  R)  and V is L-periodic, 

that  is V x e R  n, V~eL,  V(x+~)=V(x). 
Under assumption (H.1) it is well known that  the spectrum of P consists of 

bands; these bands consist of purely absolutely continuous spectrum. It  is in a 
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neighborhood of such a band that  we are going to define and study the resonances 
for certain perturbations of P in the semi-classical limit (i.e h--*0). 

Let a(P) be the spectrum of P. First, to isolate one of the bands of a (P)  from 
the rest of the spectrum, we will need two more assumptions on V. Here we will 
only give an approximative statement of these assumptions, the rigorous statement 
being found in [K1]. Suppose 

(H.2) for 5>0 small enough, {xER~; V(x)<_5} has only one non-empty connected 
component in each cell of the lattice L; this component is compact and its diameter 
in the Agmon metric is 0. (The Agmon metric is the metric induced by the measure 
sup(V(x)-5,  O)dx.) 

We call the connected components of {xERn; V(x)~0},  the wells of V; by 
assumption (H.2), these can be indexed by the points of L. For ~,EL we define P~ 
to be the operator P where all the wells, except the well corresponding to % have 
been filled (see [K1] for a precise statement). 

Let us suppose that  there exist #(h), a simple eigenvalue of P0 and a(h), a 
positive function of h, such that  

(H.3) 
(i) #(h)---~0, a(h)---+O and hloga(h)---+O when h-+0, 
(ii) for h small enough, 

a(Po)N[p(h)- 2a(h), #(h)+ 2a(h)] = {#(h)}. 

One knows that  under assumptions (H.1)-(H.3), for h small enough, there exists 
an analytic function Wh defined in a neighborhood of T in C n, such that,  for 0 c T ,  
wh (0) is a simple Floquet eigenvalue for P (i.e. a simple eigenvalue for the operator 
defined by P on L2={uEL2oc; Vg'cL, u(x+7)=ei~eu(x)} (see [Sj])) and that  there 
is a neighborhood of p(h) of size a(h) in which the spectrum of P consists of the 
band Wh(T) (see [Or], [K1]). 

Let us consider the operator Pt 

(1.2) Pt = P + tbV = - h  2 A + V + tSV, 

where V satisfies (H.1)-(H.3), t is a real parameter and 5V satisfies 

(H.4) 5V is a C a function, compactly supported in a sufficiently small neighbor- 
hood of the well 0, non-negative and strictly positive in the well 0 (see [K1] for a 
precise statement). 

We now recall the reduction theorem stated in [Zl]. Let Ft(cL2(Rn)) be the 
spectral space associated to Pt and the interval [#(h)-a(h) ,  #(h)+a(h)] and Ht the 
orthogonal projection on Ft. Then 
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T h e o r e m  1.1. Assume (H.1)-(H.4). 
(0, ho) and Vte [-a(h)/4, a(h)/4], 

(a) 

There exists some h0>0 so that Vhc 

a(Pt) N [#(h)-  aa(h), #(h)+ ~a(h)] C [#(h) -a(h) ,  It(h)+a(h)], 

(b) PtHt is unitarily equivalent to ftt: L2(T)--*L2(T) defined for fEL2(T) by 

f t t f  = Wh" f +b(t)(Ho + K(t) ) f , 

where: 

(i) CO h is the Floquet eigenvalue for P defined above, 
(ii) II0 is the orthogonal projection on the vector 1 in L2(T), that is, for f E  

L2(T) 1/. 
II0f - Vol (T~ f(O) dO, 

(iii) K(t): L2(T)-*L2(T) is an operator whose kernel k(t, O, 0') is analytic in 
D(O, a(h)/4) x Wh x Wh, where Wh is a neighborhood o f t  in C n and D(O, a(h)/4)= 
{zeC; Izl<a(h)/4}. Moreover, there exists e>0 such that 

sup I k(0, 0, 0')I_< e-4h, 
W h  X W h  

sup I Otk(t, O, 0') I<<_ e -c/h, 
D(O,a (h ) /4 )  x W h  X W u  

(iv) b(t) is a bi-analytic bijection between two neighborhoods of 0 in C. 

Remark. 
�9 One knows that 

b(t) = o.t. (1 +tq(t)) 

where q is analytic on D(0, a(h)/2) (see [K1] Section 3). 
�9 In the sequel, for te[-a(h) /4 ,  a(h)/4], we will denote by ~ t : F t ~ L 2 ( T )  the 

unitary equivalence realizing 
f~t = ~t Pt IIt ~';. 

In fact, 9ct is defined on L2(R n) and Ker~t=(Ft)  • The construction of ~ct 
([K1] Section 4) shows that, for tE(-a(h) /4 ,  a(h)/4), ~t and ~'t* can be defined 
as bounded operators depending analytically on t from L2(R n) to L2(T) and from 
L2(T/ to  L2(R n) respectively. 
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2. A n a l y t i c  c o n t i n u a t i o n  o f  t h e  r e so lven t  

The operator Pt being self-adjoint, its resolvent ( z - g t )  -1 is well defined as a 
bounded operator-valued analyticM function of z for z E C \ R .  We want to continue 
analytically (z-Pt) -1 when z crosses the real axis, z staying in a neighborhood 
of w(T). 

Let tE [-a(h)/4, a(h)/4]. Then, by definition 

(1.3) Pt = ritPtHt + (1 -IIt)Pt (1 - H t ) .  

So for z E C \ R ,  one has, 

(1.4) (z-Pt) -1 =n t ( z -P t i i t ) - l n t+(1 -n t ) ( z -P t (1 -n t ) ) - l (1 - i i t ) .  

For zEDh={zEC; d(z, Wh(T))<a(h) /4}  and tE [-a(h)/4, a(h)/4], we know by 
Theorem 1.1 that  

(1.5) d(z, a(Pt  (1-Kit))) > a(h)/4. 

So (1-IIt)(z-Pt(1-IIt))-l(1-IIt) is a bounded operator-valued analytical func- 
tion of z in Dh. 

Now, we want to continue analytically R(z,t)=IIt(z-PtHt)-lIIt for z in a 
neighborhood of the band wh(T) when z crosses wh(T). To do this, we will need 
some assumptions on the Floquet eigenvalue Wh. First we give some notations; 

we call Sh=SUPoeTWh(O), ih=infoeWWh(O) and f(h)=sh--ih the supremum, the 
infimum and the length respectively of the band wh(T). We also renormalize the 
band defining for 0 E W 

wh(0)-ih 
f(h) 

Let us suppose that  there exists h0 >0 such that the following holds: 

(H.5) 
(i) one has 

h.logf(h) = - S 0 + o ( 1 ) ,  when h--*0, 

where So is the shortest Agmon distance between 2 distinct wells. 
(ii) there exists W a compact complex neighborhood of T in C n, such that, for 

hE (0, h0), 02h is analytic in W, the only critical points of 02 h in W are the points of 
(~L) /L  and these critical points are non-degenerate. 

(iii) there exists C > 0  so that  

sup (sup (s p 
he(O,ho) \]c~]_<3 \ P E W  
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inf ( inf Idet(Hess(wh(0)))0 > C '  
he(O,ho) \SE(�89 

where det(Hess(f(x)))  is the determinant of the Hessian matrix of f at the point x. 
(iv) for ~>0, there exists 5(e)>0 so that 

VhE(O, ho), lV~h(8)l>5(g ) i f O e W a n d d ( e ,  1 * �9 (~L )/L )>~. 

(v) there exists w0, an analytic function on W, so that uniformly on W, ~ h - " ~ 0  

when h-+0. 

Remark. Following the appendix of [K1], it can be proven that, under suitable 
symmetry assumptions on L and V, (H.5) holds. 

We define 

A0 = {the critical values of ~0} = {~J; 1 ~ j  <p},  

and 
Oj = {the critical points of w0 associated to ~} 

1 * * ={e~;l<k<k,}c (~L)/L. 
In the sequel, these critical values will be ordered increasingly with the index j; so 
~=0 and ~=i. We define the internal critical points to be {~; 2<j_~p-l, i_~ 
k~_kj} and the internal critical values to be the critical values associated to these 
points. 

Notice that Wh and wo have the same critical points. Moreover the critical 
values of wa associated to the points of Oj are tending to ~ when h goes to 0. 

We define 

(1.6) R o ( z , t ) = ~ ( Z - - W h ) - l Y t ,  and 

(1.7) 

Thus 

(1.8) 

r(z ,  t) = 7,* (H0 +K(t))(z-~h)-if,. 

R(z, t) = Ro(z, t ) (1 -b ( t ) r ( z ,  t)) -1. 

One shows 
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P r o p o s i t i o n  1.2. Assume (H.1)-(H.4). Then, for h small enough, 
tE [-a(h)/4, a(h)/4] and zeC\wh(T) ,  

(a) Ro(z, t) is a bounded automorphism of L2(R n) satisfying 

1 
IIR0(z, t)IIs HR0( z, t)lls d(z, wh(T))' 

(b) F(z,t) is a compact operator from L2(T) to L2(T) satisfying 

Ilr(z,t)ll (.(T   <_ 2 f (z_ lh(0))2 dO 

Following [G61] and [G~2], we define our set of analytic vectors (i.e. dense 
subsets of L2(R n) on which we will be able to continue R(z,t)) to be, for a c R ,  

n2a(a n) = {u E :D'(Rn); e alxl "u e n2(Rn)} 

being provided with its natural norm II~IIL~ =ll eaFI '~IIL:. In fact, L~(R ~) will be 
a set of analytic vectors only for a > 0 small enough. 

Remark. One shows that there exists C>0  such that, for h small enough, 
for tE[-a(h)/4, a(h)/4] and for O<a<l/Ch, one has Ht(L2(R~))cL2(Rn) (see 
Section 2). 

For ( x , r ) E C x R  +, define [3(x,r) to be a square box in C with center x and 
side-length 2r and Dh(X, r)=ih+f(h)E](x, r). For E c C  we define 

E • = E n { z  �9 C; (Im(z) <> 0) or (Im(z) = 0 and Re(z) ~ ~h(T))}. 

Let us define 

c[-]h(r0) = (,wh(W)+f(h)D(O, ro))\ U Q h ( ~ , r 0 ) ,  
l<_j<_p 

and ~[~ (ro)= (CDh (ro)) • 
In Figure 1, (1) denotes points of wh(Oj), (2) is )~, (3) the length 2ro.f(h) of 

the side of the square [2h(A~, r0) denoted by (4). The shaded zones marked by (5) 
are q2~ (r0). 

One has 

T h e o r e m  1.3. Assume (H.1) (H.5). Then there exist h0>0, r0>0 and c>0 
such that for h�9 h0), for l <_j<_p, t � 9  [-a(h)/4, a(h)/4] and for zE[:]h~(~, r0), the 
following expansions hold: 

kj 

f(h)Ro(z,t) = ~ S(s .Hk, 0• (z,- t)+G~o (s 
k=l  
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Figure 1. 

kj 

f(h)r(z, t) = ~ S(2--ah(e])).H~K(2, t)+G~(2, t), 
k=l  

where: 
H + + L(L~(Rn),  L2_c(Rn))-valued functions, ann- (a) the ( k,o)l<k<_kj and Gk, o are 

lyric in (2, t) for (2, t )EO(~ ,  r0) • D(0, a(h)/4), 
H i + C(L2c(Rn),n~(R~))-valued functions, ann- (b) t he (  k,K)l<_k<_kj and G g are 

lytic in (2, t) for (~, t)eO(~Jo, to) • D(O, a(h)/4), 
(c) i f  n is odd, 

T:. ( _ 1 ) ( n _ l ) / 2 z ( n _ 2 ) / 2  ' S ( z )  = 

i f  n is even~ 

1 (_l)n/2z(n_2)/2.10g Z. S ( z )  = 5" 
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Moreover, Ro(z, t) (resp. F(z, t)) can be analytically continued from COh~(ro) to 
~Oh(rO) as an s L2_~) (resp. C(L 2, L2))-valued analytic function in z and t. 

Remark. s  F) is the set of bounded operators from E to F,  C(E, F) the set 
of compact ones. Here z 1/2 and log z are the principal determinations of the square 
root and the logarithm. 

For F a simply connected domain in C and E c F  a domain, blC(E, F) denotes 
the universal covering of E in F.  For ro>0  and l<_j<_p, we define 

 o)LU ) 
Let Ro e and F • be the analytic continuations of Ro and F defined from 

Ohi(), j , r0)  xD(0,  a(h)/4) to btC(ro,j) x n ( 0 ,  a(h)/4),  

and from 
COih (ro) xD(O,a(h)/4) to COh(ro) xD(0,  a(h)/4).  

Using (1.8) one immediately gets the following 

C o r o l l a r y  1.4. Assume (H.1)-(H.5). Then there exists h0>0, r0>0  and c>0  
such that, for hE(O, ho) and l< j<p ,  

�9 R can be meromorphically continued from 

D h• 0,-j r0) x D(O,a(h)/4) to blC(ro,j)xD(O,a(h)/4) 

as R i ,  an/:(L 2, L2_c)-valued meromorphic function in z and t. 
�9 R can be meromorphically continued from 

cO~(r0) xD(0,  a(h)/4) to cOh(ro) xD(0,  a(h)/4) 

as R • an f~(L2c, L2_c)-valued meromorphic function in z and t. 

Notice that, when one is dealing with the continuations at the edges of the 
band (i.e. j = l  or p), continuation from above the band or below is the same. 

3. R e s o n a n c e s  

We define 

Res• (r0, t) = {z E c Oh(r0); z is a pole of R+(z, t)}, 

and, for OcLtC(ro,j) ,  

Res• t ) =  {z e O; z is a pole of R+(z, t)}. 
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Def in i t i on .  z is said to be a resonance for Pt if there exists r o > 0  such that 

z E R e s  +(r0, t ) ,  or 

3 1 < j < p, 3 (9 C blC(ro, j )  such that z E Res + ((9, t). 

Remark. In this definition, no difference is made between actual eigenvalues 
and resonances. 

UC(ro , j )  is naturally provided with a r iemannian metric (induced by the eu- 
clidian metric on C). For 0 < r < r o ,  let O(r , j )  be the ball of radius r around A~ in 

LtC(ro,j) .  
Our first theorem states tha t  there are no resonances in a neighborhood of the 

interior of the band a~h(T). 

T h e o r e m  1.5. 
(a) For any dimension n there exist ho>0,  r0>0  such that, for hE(0, h0) and 

tE ( -a (h ) /4 ,  a(h)/4)  one has 
Res + (r0, t) = r 

(b) For n>3  and 2<_j<p-1 ,  there exists h0>0, r0>0  such that, for hE(0, h0) 
and tE ( -a (h ) /4 ,  a(h)/4) one has 

Res + (O(ro, j ) ,  t) = r 

Remark. In dimension n = 2  we get no results near the internal critical values. 

In dimension n =  1 such critical values do not exist. 
So, if Pt admits resonances, these arc located near the edges of the band w(T).  

We will only study what happens near the upper edge of the band; obviously, a 
symmetric  s tudy may be done near the lower edge. To compute these resonances 
we will need one more assumption on the band function Wh (an assumption tha t  is 
satisfied under suitable symmet ry  conditions on L and V when h is small enough 

(see [K1] Appendix)); we assume that  

(H.6) there exists only one critical point Os E (�89 such tha t  w h ( O s ) = s = ~  is 

the maximum of co h on W. 
We define 

D~ = I det(Hess(~h(Os) ) )1-1/2. 

We know tha t  near the edges of the band, R + = R  - so, for any t and O, a 
sufficiently small neighborhood of the edges of the band, one has 

Res+(O, t) : R e s - ( O ,  t) = Res(O,  t). 
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Under assumption (H.6), we define the following realisation of 14C(ro, Sh)= 
14C(ro, p). Define 

[]p (r0, Sh ) = 8h +e ipH" (Dh (rO, 0) \  [--to . f ( h ), 0]), 

UC(ro, s~) = {sh}U U Dp(ro, s~). 
pEZ 

We define for q EN 

UC(r0,sh,q)=(sh}U U Gp(ro,sh). 
--q~_p~_q 

We are now able to state the results about resonances near the upper end of 
the band Wh(T). In dimension 1 we get 

T h e o r e m  1.6. Let n = l  and assume (H.1)-(H.6). Then there exists ho>0, 
to>0 ,  to>0  such that, for hE(O, ho), there exist: 

(i) a function A:(O, go.f(h))--~(s,s+ro.f(h)) the values of which are simple 
eigenvalues of Pt and that admits the following convergent expansion: 

A(t)--Sh = f (h ) ' ( t )  2" ( E  a l ( h ) ' ( t ) l ) ,  
\ l E N  / 

where: 
�9 g = t / f ( h )  
�9 for any IEN, az (h )ER 

~ 21/2.TrO.Ds ) 2 
C~o(h) = \ Vol(T) .(l+O(e-c/h)) for some c>O,  

(ii) a function ~: (-to.f(h),O)-+i+e2i~r.(O, ro.f(h)) the values of which are 
simple resonances of Pt and that admits the following convergent expansion: 

)~(t)--sh =e2i~r" f (h) ' ( t  )2" (l~N(~l(h)'(t)l ) �9 

Moreover, for t E ( - t o ' f  (h), 0)U(0, t o ' f  (h)), one has 

Res(UC(r0, sh), t) = {~(t)}. 

Remark. For t>0,  .~(t) is the eigenvalue already found in [K1]. One can notice 
that for any t, Im(A(t))=0; so the resonances we get for t < 0  are 0-energy resonances. 
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l ~ - - ~ l h  ~ _ +  t > 0  ~ _ +  ~---- S l h - ~ 0  

Figure 2a. 

t < 0  1 t . . . .  x - - - - - - )  
8h J 

Figure 2b. 

Figure 2 shows the resonance picture near both edges of the band. The sheet 
numbered 0 is the physical sheet and number 1 the non-physical sheet. Figure 2a 
shows the picture of the resonances when t>0; we omitted to draw the (resp. non-) 
physical sheet near the upper (resp. lower) edge of the band as it contains neither 
eigenvalue nor resonance. Figure 2b shows the picture of the resonances when t<0.  

In Figure 2, X denotes an eigenvalue and x a resonance. 0 is the physical sheet 
and 1 the non-physical one. For t < 0  or t>0,  we only drew the sheet where there is 
either an eigenvalue or a resonance. The + or - signs indicate how the sheets are 
connected. 

In dimension 2 we get 

T h e o r e m  1.7. Let n = 2  and assume (H.1)-(H.6). Let qEN.  Then there exist 
hq>O, tq>0, rq>O such that there exists a function 

),: (0, tq . f (h)  ) --+ (Sh, sh +rq" f (h ) )  

the values of which are simple eigenvalues for Pc and that admits the following 
convergent expansion: 

so(h) ~(t)-s=/(h).exp ~ ~ Z 
l ~ _ O , m ~ _ O  

\ 
m _ . ~ l  s~,m(h).(t)~ m e mao(h)/~), 

where: 

�9 t = t / f ( h )  
�9 for any (l,m), SZ,m(h)ER 

Vol(T). (l+O(e_C/h)) 
s 0 ( h ) -  2QTI.D8 for some c > O. 
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- 2  

t . . . . . . . . . . . . .  - 1  

[ . . . . .  X -  . . . .  

8h 

[ . . . . . . . . . . . .  - ~  +1 

Figure 3. 

Moreover, for  re(0, {q . f ( h ) ), one has 

Res(UC(rq, sh, q), t) = {~(t )} ,  

and, for te(-{q, f(h), 0), 

Res(blC(rq, Sh, q), t) = r 

Remark. A is the eigenvalue already found in [K1]. So, in dimension 2, one does 
not get any actual resonance near the edges of the band but only eigenvalues (see 
Figure 3). One may draw a symmetric picture for t<0. 

In Figure 3, X is an eigenvalue for t>0. The numbers at the left of the sheets 
indicate how these are connected. 
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Let n_> 3. Define 

1 / T  1 I =  Vol(T----~" sh--wh(e) de. 

Let T~v be the threshold for the existence of an eigenvalue outside the band Wh (T) 
(see [K1]). Then one has 

T h e o r e m  1.8. Let n = 3  and assume (H.1)-(H.6). Then there exist ho>0,  
r0>0,  t o>0  such that, for hE(O, ho), there exist: 

(i) a function A:(Tav, Tsv +to. f (h)  )--~Sh +(O, t o ' f  (h)) that is a simple eigen- 
value of Pt and that admits the following convergent expansion: 

\ l E N  / 

where: 
�9 t = ( t - T ~ y ) / f ( h )  
�9 for any IcN,  az (h )ER 

{Vol(T) .~.  ( f (h) . I )  2 ~ 2. ( l+O(e-c/h)) ,  for some c > O. 
a0(h) = \ 25/21r2.D8 ] 

(ii) a function )~: (Tsy-{o" f(h) ,  T6y]-+Sh +e  2i~" (0, ro" f (h))  that is a simple 
resonance of Pt and that admits the following convergent expansion: 

\ f E N  

Moreover, for tE (Tev-{o.  f (h) ,  Tsv +{o" f(h)) ,  one has 

Res(UC(r0, sh), t) = {~(t)}.  

Remark. Here one sees that,  for decreasing t, the eigenvalue turns into a res- 
onance when t crosses the threshold Tsv. The resonance satisfies Im(A(t))=0; it 
is located on the real axis of the second sheet of the Riemann surface where the 
resolvent ( z - P t )  -1 is defined (see Figure 4). 

In Figure 4, X is an eigenvalue for t>T~v and x a resonance for t<_Tsv. 
To describe the resonances in dimension 4 we will need 

! L e m m a  1.9. Let qEN. There exist rq, rq and rq~>0, a a function analytic in 
a small neighborhood of (0, 0) in C 2 that is real if both of its arguments are real and 
such that c~(z, z')=o(Izl+lz'l) , and, for each - q < j < q ,  an open set Dj satisfying 

2~j~ , " " "  " e 2~j~ . (D(o ,  r 'q) \ i .  e . ~ - q , r ~ c , j c  (-r'~,0]), 
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< . . . . . . .  X ..... 

8h 

< I ..... -x ........ - >  I 

Figure 4. 

and such that, if  for zE1)j we define 

- z  ( (log(]ogl~g z ) 
yj(z) : 177gz" 1 + ~  

1)) 
' l o g  z ' 

then yj: l)j--+e 2ij€ (D(O, rq) \ i. ( - rq ,  0]) is bijective and 

- y ~ ( z ) . l o g ( y j ( z ) )  = z .  

We then get 

Theorem 1.10. Let q E N  and assume (H.1)-(H.6). Then there exist hq>O, 
rq >0, tq >0 such that, for hE (0, hq), there exists an analytic function g admitting 
the following convergent expansion near (0, 0): 

g(v,w)= ~ ~,z(h).v~.w m, 
l>_O,m>_O 

where 
�9 for any (l,m), a,~,z(h)ea 

c~0,0(h) = V ~  "( l+O(e-~/h)) ,  for some c > O, 
4re 2 "Ds 

such that if we define 

[= t-T~v 
f ( h )  and A p ( t ) - s  = f(h).yp(e2iq~f).g({, yp(e2iq~{)/{), 

for -q<p<_q and t e (  ( T e y - t q .  f ( h ) , T e y  +tq. f (h ) ) ,  then 
�9 for t>Tey ,  Ao(t) is a simple eigenvalue of Pt, 
�9 fort<_T5y, Ao(t) is a simple resonance of Pt, 
�9 forpT~O and for any t, iv ( t )  is a simple resonance of Pt. 
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Moreover, for t e ( T~y - tq . f ( h ) , Tsy + tq . f ( h ) ) , one has 

Res(UC(rq, sh, q) , t )= U {Ap(t)}. 
--q~_p~_q 
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and for zED(O, rq) \ i . ( - rq ,  O) 

Vol(T) 

{�89 7r. (-1)(n-1)/2z(n-4)/2 if n is odd, 
g n ( z ) =  1 ( ~n/2 

~ . ~ - l j  .z (~-a)/2.1og z if n is even. 

Then one has 

Theorem 1.11. Let n>_5, qCN and assume (H.1)-(H.6). Then there exist 
hq>0, rq>0, tq>0 such that, for hE(O, hq), there exists an analytic function an 
admitting the following convergent expansion near (0, 0): 

Z 'vz'wm, 
l~_O,m~_O 

where 
�9 for any (1, rn), c~,m(h)ER 
�9 (~'~,o(h)=--(~.I2)/OI.(l+O(e-c/h)), 

2n~ /2  (QI2)(n-2)/2 .Ds.( l+O(e-C/h)) ,  OZ n 
0,1(h)---- F ( n / 2 ) . V o l ( T ) . f ( h ) 2  ( - O I ) n / 2  

for some c>O such that if we define 

{= ( t - T ~ v ) / f ( h )  and )~p(t) - s = e 2iwr. ( t - T s y ) ' a n  ({, gn (e2W~{)), 

for -q<_p<_q and tE(T~y-{q ,  f (h ) ,Tev  +{q. f(h)) ,  then 
�9 for t>_T5v, Ao(t) is a simple eigenvalue of Pt, 
�9 for t<Tev,  Ao(t) is a simple resonance of Pt, 
�9 fo rpr  and for any t, Av(t) is a simple resonance of Pt. 

�9 ( S h _ W h ( O ) )  ~ dO, 

Remark. We compute the imaginary part of these resonances and get, for - q <  
p<_q, 

p.Tr.{ 
Im()~p(t))=.o,o(h). f (h) .  ((l~g ~ '  ) . (1  +o(1)). 

Figure 5b shows a picture of these resonances. 
Let n>5 and define 
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. . . . . . .  X . . . . . .  

8h 

X 

X 

[ ......... X .... - ~  1 

Figure 5a. n_~4, n odd. 

Moreover, for t e ( Tsv - tq . / ( h ) ,  T~v + tq " f ( h ) ) , one has 

Res(UC(rq, sh,q),t)  = [_J 
- -q~p~q  

Remark. One computes  the  imaginary  pa r t  of these resonances to obtain: 
�9 if n is even, for -q<p<_q, 

Im(Ap (t)) = ~.p. f ( h ) .  a~, 1 (h). ( -  1) n/2. ( t)(~-2)/2,  

�9 if n is odd,  for p even, 

Im(Ap(t))  = 0 

and, for p odd, 

Im(Ap(t))  = f (h) .a~,  l (h) .  ( - 1 )  (p+1)/2 �9 (n-2)/2 

Figure 5a, b, c, show pictures of these resonances depending on n. 

In all these pictures,  x is a resonance for t<T~v  (or t<_T~v if n = 4 )  and X is 
an eigenvalue or a resonance for t>_Tsv (or t>T~y  if n = 4 )  depending on in which 

sheet it is located.  

4. E m b e d d e d  e i g e n v a l u e s  

A corollary of the  preceding s tudy  is 
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~ 3  2 X 
t . . . . . .  x . . . . .  - 2  

~21 ......... x t .... X -1  

] . . . . .  X . . . . . . .  

Sh 

t-- X . ~  .. . . . . . . .  +1 

Figure 5b. n_>4, n_----0(4). 

Theorem 1.12. Let n E N  and assume (H.1)-(H.6). Then there exist h0>0 
and t0>0 such that, for hE(0, h0), one has 

(a) if  n = l :  f o r t E [ - t o . f ( h ) , t o . f ( h ) ] ,  there is no eigenvalue of Pt embedded in 
[ih, 8hi, the band of the essential spectrum, that is 

(r( Pt ) N [ih, 8h ] = O'cont ( Pt ) N [ih, 8h ]. 

(b) if n>3: for t E [ T b v - t o . f ( h ) , T b v + t o . f ( h ) ] ,  there is no eigenvalue of Pt 
embedded in (ih, Sh), the band of the essential spectrum, that is 

f f (Pt)N(ih ,  8h) : (Tcont(Pt)N(ih, 8h). 

Remark. In dimension 2 one can state a similar result outside some neighbor- 
hoods of the inner critical points of Wh. 
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- 2  

C x t ..... x ...... - 1  

C 
1 

8 !  . . . . .  x . . . . .  

Figure 5c. n_>4, n--2(4). 

II .  A n a l y t i c  c o n t i n u a t i o n  of  Ro a n d  F 

1. T h e  u n i t a r y  equiva lence  Jc't 

We will first recall some facts from [K1]. Under assumptions (H.1)-(H.4), let 
(~t,~)~eL be the Hilbert basis spanning Ft constructed in [K1]. We know that there 
exist h0>0 and C > 0  such that,  for hE(0, h0), tE(-a(h)/4, a(h)/4) and for any 
~EL, 

(2.1) II~t,~(')el'-~l/ChliL2(Rn ) <_ C. 

One defines the projector Ht on Ft, for pEL2(Rn),  

(2.2) IItp = E(~l~t,,v)~t,,v, 
~'EL 
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where (.I.) denotes the scalar product in L2(Rn). 
We also define 9vt: L2(Rn)--*L2(T) and .T'~:L2(T)--~L2(R n) for ~oEL2(R~), 

uEL2(T) and 0ET by 

(2.3) (.Ttp)(O) = ~-~'~ (~ I ~,,~)~,~.o , 
~EL 

and 

(2.4) f't*u= ~ ( V o l T )  f r  e-i'Y'~ u(O)dO) qot''~" 

~t realises a unitary equivalence from Ft to L2(T) with inverse ft*. 
For a>0, let Wa=T+iBc~(O,a) and O(Wa) be the set of bounded analytic 

functions in W~ provided with the L ~ norm (here Bc~ (0, a) denotes the ball of 
center 0 and radius a in cn) .  One has 

L e m m a  2.1. There exists C0>0 and h0>0 such that for hE(O, ho) and 0< 
a<a' <l/Coh 

(a) IIt is continuous from L2a(a n) to L2a(a n) , 

(b) Yzt is compact from L2a(R n) to O(Wa,), 
(c) 5rt * is continuous from O(Wa) to L],(R~). 

These results are uniform in t and h small enough. 

Proof. Let ~EL](Rn).  Then for 7EL 

(2.5) (~ I ~,~) = L~  (e-(aix'+lx-~'/ch))" (~a,xl~(X)). (elX-~'/C%~,~ (X)) dx 

so by (2.1) 

(2.6) =Ce--~ 

Then, using (2.2) and taking Co large one gets 

"/EL 

which proves (a). 
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Using estimate (2.6), (b) is immediate. To prove (c) one uses Stokes' formula 
and the analyticity of u to write, for 750  

T e-eY'~ u(O) dO = /T-i(~"9/Iq e-i'Y'~ u(O) dO 

f -i-~.o / "a~/'~ dO 

_< Vol(T).e -~'lq IIq oO,Wo. 

Then, using (2.4), one gets (c). 

2. The  analyt ic  cont inuat ion of Ro and r 

By (1.6) (1.7) and (2.3)-(2.4), for ~EL2(R n) one has 

( 1 f;e-i"/'~ ( 2 . 7 )  R~ Vof(T) z-~h(O) dO ~,~ 
"yEL 

and 

(2.s) r(z't)(~)="~[(j[T (l+k(t'"O))'~'t(cp)(O) dO . 

Let O<a'<a<l/Ch. For 7EL we define II~(z): (.9(Wa)--~C by 

1 s e"~~ 
u ~ Vol(T------5" z-~h(O) ~0 

and rk(z, t):O(Wa)--~O(Wa) by 

1 fT ( l+k(t , . ,  0)).u(O) 
(2.9) u H  Vol(T~" Z--wh(O) dO. 

Both of these operators are compact. 

After renormalizing the band by introducing s we prove, using 

Proposition A.I, that the operators f(h)II~(z) and f(h)Fk(z,t) can be analyti- 

cally continued from above or below the real axis to a neighborhood of wh(T)\ 

{Wh(O]); l~_j~_p, l~k~kj} as compact operators from O(Wa) to C or O(Wa) with 

the following upper bounds for the norm: 

f(h) lln~(z)llo(wa)~c < CeN"Im(s 



Resonances for perturbations of a semiclassical periodic Schr6dinger operator 345 

and 

f(h)IIrk(z, t)HO(Wo)-~o(wo) <_ c 

for some C > 0. 

Moreover, Proposition A.2 gives us precise expansions for these continuations 
near the branch points which are the critical points of Wh. Using this, one easily 
gets Theorem 1.3 by (2.7) and (2.8). 

Estimate (b) of the Proposition A.2 applied to OtFk(z,t) combined with the 
estimates known for the kernel k implies that, for (~,t)E[Z(~, r0)• a(h)/4), 
one has 

(2.10) E :E N • ~ e_c/h. IIO~H~,k(z, t)II o(wo)~O(Wo)+ Ila~Ck (z, t)II O(Wo)---,O(Wo) _< 
l</<kj  

I I I .  T h e  s p e c t r u m  of  r 

By (2.8) and (2.9) F and Fk are unitarily equivalent. So we will now study the 
spectrum of Fk. Taking z and t as usual, let us define F0(z): (D(Wa)---+(9(Wa) by 

1 fT ~(0) u H Vol(W~ Z--Wh(O) dO, 

where the expression to the right is viewed as a constant function. Obviously, the 
spectrum of F0 consists of 2 eigenvalues, 0 of infinite multiplicity and 

• = 1 fT 1 
Vol(W) " Z--Wh(O--~ dO 

of multiplicity I with eigenvector the constant function 1. For xr one 
computes 

0 (2.11) (x -r~  = x 

By Proposition A.2 one has an expansion 

kj 

f (h)F0 (z) -- E S ( s  Wh (O~)). gzt  0 (s + G~ (s 
/=1 

Then using (2.11) one gets the estimate 

1 cIs(z)l 
(2.12) II(x-ro(z))-lll-< r~+  Ixl.lx-I(z) l Ixl 
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Using estimate (b) of Proposition A.2 applied to Fk-Fo,  for (s j ,r0) x 
D(0, a(h)/4), one gets 

(2.13) E 
l<l<kj 

II H~k (~, t)-H,~o (~)IIo(wo)-~o(wo) 

+11C~(2, t)-C~o (2)llo(wo)-~o(wo) < e-~lh. 

1. Investigations near the regular values of Wh 

One gets 

L e m m a  2.2. For any ro>0 small enough there exist ho>0 and C>0 such 
that, for he(0, h0) and for zel4C(C[3(ro), ~ E]+(ro)), 

a(rk(z, t)) C {0, I ( z )}+Dc (0, C. IS(z)l. Ilklloo,wo). 

Proof. By Propositions A.1 and A.3 we know that, for ro small enough, zE 
b/C(r c rq• and for some C>0  (depending only on to), 

1 C 
(2.14) C. f(h---~ <- ]I(z)] < f(h---~" 

By Proposition A.1 we know that, for zEl4C(CE](ro), ~ [3+(ro)) and some C>0, 

1 Z k(t,.,O') dO' 
Ilrk(z,t)-ro(z)llo(wo) <_ Vol (T~  _ .  Z--Wh(O') O(Wa) 

< C'llkll~,wo 
- f(h) 

By (2.12) and (2.14) weget that, ifxr for some 
C>0  and h small enough, then 

II(x-Po(Z))-lllo(wa) < 

So using the following resolvent formula 

(2.15) 

f(h) 
C.llkll~,Wo 

( x - r  k(z, t)) -1 = (x-ro(Z))  -1. ( 1 - ( r  k(Z, t)-I~o(z)) .(x-cO(Z, t)) -1)-1,  

we get the announced lemma. 
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2. I n v e s t i g a t i o n s  near  t h e  crit ical  va lues  

Let 1<jKp and let )~Yo=ih+f(h)"~Jo be a critical value of~0 rescaled to the size 
of the band. We recall that ,  for 0 < r < r 0 ,  O( r , j )  is a ball of radius r.f(h) around 
)~o in ldC(ro,j). Then the following holds: 

L e m m a  2.3. Assume n>_3. There exist hr>O, C r > 0  when O<r is small such 
that, for hE(O, hr) and zCO(r,j), one has 

a(G(z,  t)) c {O,I(z)}+Dc(O, G.II(z)l.llkll ,Wo). 

Proof. If n>3 ,  the proof is exactly the same as for the case of the regular 
values except that  one has (2.14) only for z in the usual complex plane (the first 
sheet of the universal covering). So the upper bound on I(z) still holds true for z 
equal to a branch point (as S is continuous at z=0) .  Then by connectedness of the 
universal covering and continuity of I(z), one gets this bound in a neighborhood of 
the branch points in the universal covering. The same is true for the estimate of 
IIFk(z, t ) -F0 (z ) l  I. This gives the lemma. 

In dimension n = l  or 2 we will assume (H.6). We will only study the spectrum 
of Fk near the edges of the band. For qCN and Z=Sh or ih define 

OC(q,r,z)= U (z+e P 'Dh(r'O))cOC(r'z)" 
--q~p~q 

One has 

L e m m a  2.4. Assume n = l  or 2. For any qEN, there exist ha>O , rq>O and 
Cq>0 such that, for he(O, hq) and zEO(q, rq,Sh)UO(q, ra,ih) one has 

a(G(z, t))c D c  (0, ~h))UDc(I(z), Cq'lI(z)l'HkH~,wo). 

Remark. Notice that  when 2 tend to ~h, f(h).I(z) tends to co, so for 2--~h 
chosen small enough, 

Dc (0, ~h)  ) NDc(I(z), Cq.,I(z)l.,,k,,~,wo) = r 

This holds uniformly in h. 

Proof. We will only prove Lemma 2.4 for z close to the maximum; the case 
of the minimum goes along the same lines. Using the fact that  there is only one 
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critical point corresponding to the maximum, say 0~, by the expansion given in 
Theorem 1.3 and the computations done in Section 4 one has, for z close to Sh, 

f(h).Fk(z, t) = S(5-gh)Ak +a(5, t). 

Here G(z,t) is a compact operator such that  for some Cq>O and re>O , for z in 
(PC(q, rq, Sh) and t as usual 

Ila( ', t)llo(wo) O(Wo) < G. 

Moreover, Ak is the rank one operator defined for uEO(Wa) by 

Ak(u)(O) =/7. (1 +k( t ,  O, Os)).u(O~), 

where 
1 2n/2.Vol(OB(O, 1)). Idet(Hess(~h(Os)))n -1/2 

_</3 = Vol(W) 

for some C > 0 independent of h small enough. 
By perturbation theory we know that  

_<C 

(2.16) cr(f(h).Vk(z, t)) C Dc(0 ,  Cq)UDc (~'S(Y--~h), Cq. 19"S(~--~h)l" Ilkll ,w ). 

By Proposition A.2 we know that  there exists C a >0 such that  for zEO(q, rq, Sh) 

1 I(z).f(h) I 
- - 

So using (2.16) one gets the announced result. 

Remark. 1. In odd dimension, because the branch points are of square root 
type (so the Riemann surface associated to the analytic continuation is only finitely 
"sheeted"), one may choose rq, hq, and Cq independent of q. 

2. Here we did not treat the case of the inner critical points in dimension n = 2  
(such points do not exist in dimension n = l ) .  In dimension 2, one sees that,  when 
h goes to 0, for any 0 < k < k j ,  ~h(0 k) tends to ),% Hence, for 2 tending to one of 

the Wh(0]), it is not possible to control the behaviour of the expansions given in 
Proposition A.2 without further assumptions on the behaviour of the critical points. 

As will be seen in the next section, these lemmas will suffice to conclude that  
resonances can only exist near the edges of the band. So we are going now to study 
more precisely the spectrum of Fk near Sh (the other side of the band can be treated 
in the same way). 
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Proposition 2.5. Assume (H.6) and let qEN. Then there exist hq>O, rq>O 
and Cq>O such that, for he(O, hq), there exists a function vp(z,k) defined on 
OC(q, rq, Sh) verifying: 

(a) vp(z, k) is a simple eigenvalue of Fk and 

a(Fk(z, t) )NDc (I(z),  II(z)---~i ) = {vp(z,k ) }. 

(b) For zEOC(q, rq, Sh) we define the coefficients a~,mER by 

f(h)'I(z) = S(z--sh)" (Ea~ ') + E a~ 1 (Z--Sh)l' 
\ / E N  : 1EN 

and al~ if m>_2. 
Then, for zEOC(q, rq, Sh ), the function vp(z, k) admits the following uniformly 

convergent expansion: 
If n = 1 or 2 then 

f(h).vp(z,k) ~-S(2--gh). E a~, m(t)(~-~h)l '(S(z-sh))-m' 
I~N,mEN 

where the coefficients (a~,m(t))zeN,,~eN are analytic functions in rEDo(0, a(h)/4), 
real valued for t real and 

lakt,m(t)-a~m I < Cq.r~ 1.S(rq) m. Ilkll~,w~, 

IO~a~.(t) I <_ C~ .r (  * �9 S ( ~ )  ".  IIkll~,~:o. 

I] n>_3 then 

f(h).vp(z,k)= ~ a~,m(t)(2--~h)Z.(S(~--gh)) m, 
IEN,mEN 

where the coefficients (a~,m(t))leN,meN are analytic functions in reDo(0, a(h)/4), 
real valued for t real and 

]a~,l (t)-a~,ol <_ Cq.rq~.S(rq)-m.}lk}loo, w~, 
la~,o(t)-a?,ll < Cq.r; z.s(rq) -~.llklloc,wo, 

{a~.~(t) I <_ Cq .r~ z .S(r~) -m. IIklloo,wo 

10ta~,m(t)l < Cq .r;  t. S(r~) -"~. [[kll~,w~ 

for m > 2, 
for any m. 
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Remark. 
�9 The remark following Lemina 2.4 still holds for this proposition. 
�9 Using the notations of appendix A one has 

aO 1 AO(1 ) (4zr) n/2 
o,o = Vol(T) r(~/2) .Vol(T)  ]dct(Hess(wh(O~)))[-U2' if 1 < n < 2, 

and 

aO 1 (4~r) "/2 
o,1 - Vol(T) "A~ = F(n/2) .Vol(T) '  Idet(Hess(wh(O~)))[-1/2' if n > 3. 

Moreover, for n > 3  and 0<l<(n-3)/2, a ~ is given by the expansion (A.17) for 
- -  l , O  

J(~, 1), that is 
a~ s (-1)~ 

~,0 = (~h_~h(O))~+ ~ dO. 

Proof. For h small enough consider the following family of projectors 

IIk,~ = fc(X-r~.k(z,t))-ldx, a ~  [0,1], 

where C is the complex contour {xEC; Ix-I(z)l=-II(z)l/4} and F~.k is the operator 
Fk where one has replaced the kernel k by a .k.  This family is analytic in a in the 
norm sense. By (2.12), (2.15), and by chosing h small enough to get ]]kl[~,w o < �88 
we see that  Hk,o is of rank 1. So IIk,1 is of rank 1 which gives point (a). 

Assume n = l  or 2. For yEC and 5~Dc(sh, rq), consider the operator 

where Hk(2, t) and Gk(5, t) are the operators given in Theorem 1.3 (in this case, 
because one looks at the edge of the band, these operators do not depend on whether 
one continues analytically from below or above the band). Then Theorem 1.3 says, 
that  for zEldC(q, re, s~) 

(2.17) f(h)'Pk(z,t) = S(5--Sh)'Ok ( s(~l~h) ,z) .  

Noticing that 

lim ( sup 1 ~-~Okzeotq,r,~h)l S(~-~h) ) =0,  
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and letting Z---+Sh in (2.17), one gets 

�9 1 

By part (a) of this proposition, Ok(0, Sh) admits a simple eigenvalue in Dc(1 ,  �88 
isolated from the rest of its spectrum. 

As Ok(y,2) is analytic in y, 5 and t, there exists b>0 such that,  for (y,2, t)E 
Dc(0,  b) x Dc(gh, b) x Dc(0,  a(h)/4), there exists v(y, 2, k(t)), a simple eigenvalue 
of Ok(Y, z) isolated from the rest of the spectrum. This eigenvalue is simple and 
therefore analytic in its parameters, so it admits the following convergent expansion 

m, 
1CN,mCN 

where the coefficients a~m(t ) are analytic functions in t that  are real when t is 
k 0 real. The estimates on lal,m-al,ml and IOta~,,~l are immediate consequences of the 

Cauchy estimates applied to this expansion and the estimates (2.10) and (2.13). 
By (2.17), if 1/S(2-~h)EDc(O,b), then 

~ ~ 1 

This gives the convergent expansion for vp(z, k(t)) in the case n = l  or 2. 
Assume n > 3  and let Hk(2, t) and G(2, t) denote the same operators as above. 

For y E C  and 2EDc(~h, rq) consider the operator 

Ok(y, 2) = y.Hk(2, t)+G(~, t). 

For the same reasons as above there exists b>0 such that  for (y, 2, t)EDc (0, b)x 
Dc(gh, b) x Dc(0,  a(h)/4) there exists v(y, 2, k(t)), a simple eigenvalue of Ok(y, 2) 
isolated from the rest of the spectrum. Moreover, 

v(S(2--gh), 2, k(t)) = f(h).vp(z, kit)). 

Now the conclusion follows along the same lines as in the case n =  1 or 2. 

I I I .  C o m p u t a t i o n  o f  t h e  r e s o n a n c e s  

By (1.8) and Corollary 1.4, to say that  z is a pole of R+(z , t )  is equivalent to 
say that  1 is an eigenvalue of b(t)F• t). 
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1. I n v e s t i g a t i o n s  a w a y  f r o m  t h e  e d g e s  o f  t h e  b a n d  

(a) Far away from the internal critical values. Let r0 be small enough and h0 
be chosen as in Lemma 2.2. Then there exists a constant C( r0 )>0  such that,  for 

zel~C(CD(ro), [3• one has 

IZ(z)l < C(r0) 
- f ( h ) "  

By Proposition A.3 we know that  there exists c( r0)>0 such that  

z �9 uc(cD(r0), D • 

when I Im(I(z))l>_c(ro)/f(h). So, by Lemma 2.2 and by the estimate on Ilkll~,wo 
given in Theorem 1.1 one has for z�9 [ ]e( r0)) rqR and h small enough 

(3 .1)  
e(r0) } a(Fk(z,t)) C D(O, e--1/Ch)u Z �9 C; ]Im(z)l >_ ~ , 

for a certain C >  0. But, for t E [ -a (h ) /4 ,  a(h)/4], we know that  b(t) E R and Ib(t) l < 
2a(h). Then, by (3.1), for h small enough, 1 can not be an eigenvalue for b(t). 
Fk(z, t), so z can not be a resonance of Pt. 

(b) Close to the internal critical values for n>_3. Except for the fact that one 
uses Lemma 2.3 instead of Lemma 2.2 the proof is the same as above. 

Remark. In dimension 1, the only critical values are the extrema. In dimen- 
sion 2, the problem near the internal critical values (i.e. that  are no extrema) comes 
from the fact that  if there are 2 critical values of ~d h that  are asymptotically equal 
when h goes to 0, then in the expansions given for I(z) near these values there 
may occur compensations for Im(I(z))  (i.e. this imaginary part  may become 0). 
Consequently, the largest eigenvalue of b(t).Fk(z, t) may be real and equal to 1 (see 
the remark following Lemma 2.4). 

2. C o m p u t a t i o n  o f  t h e  r e s o n a n c e s  n e a r  t h e  e d g e s  o f  t h e  b a n d  

We will only study what happens in a neighborhood of Sh, the maximum of Wh. 

(a) Proof of Theorem 1.6. Let n= 1. Using Lemma 2.4 and the expansion given 
in Theorem 1.1 for b(t), we see that  for te[-ro. f(h) ,ro. f(h)] (for a certain r0>0  
given by Lemma 2.4), the only eigenvalues of b(t).r~(z, t) that  may be equal to 1 
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are the ones contained in Dc(b(t).I(z), [b(t).I(z)[/4). So by Proposition 2.5 we just 
have to solve 

(3.2) b(t).vp(z, t) = 1. 

Let us first make a change of variables. Let t=t/f(h). Then 

b(t) = ~.~. ( l + f ( h ) .  (t.q(tf(h)))) = g.t. ( l+~( t ) ) ,  
f(h) 

where ~ is analytic in Dc(0 ,  a(h)/f(h)) and satisfies [~[ <C.f(h). 
By Proposition 2.5 and the remark following it, we know that there exists r0 >0  

such that for z in b/C(r0, Sh) 

f(h).vp(z,k) =S(2--~h). E a~, m(t)(2-~h)t'(S(2-sh))-m" 
tEN,mEN 

Therefore (3.2) becomes 

(3.3) g.t.(l+~(t')).S(,5--,~h). E ate, "~(f(h)'~)(2-~h)t'(S(2-~h))-m=l" 
tEN,mEN 

For z in LtC(ro, Sh) set 

(3.4) 2--~h = ~ 2  

where f iEDc(0,  r0). 
Doing this, we uniformize the function S on LtC(ro, Sh). Plug (3.4) into (3.3) 

and use the definition of S to get 

(3.5) ~'Q. .(l+~(t)).Ea~,,~(t . f(h)).-  ~ .u2t+m = 1. 
2 l,m 

For t ~ 0  and ~ 0 ,  (3.5) becomes 

(3.6) g(t, f i )=0 ,  

where 

(3.7) 
7~"~  ~ m 

l ) m  
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It is clear that g is analytic in a neighborhood of (0, 0), and that 

(3.8) g(0,0) = 0  and Oeg(O,O) = 1. 

We can apply the implicit function theorem to equation (3.6) in a neighborhood 
of (0,0) in C 2. So there exist t0>0, r0>0 and an analytic function ~:Dc(0,  t0)--+ 
Dc(0,  r0) such that,  for t e D c ( 0 ,  t0), 

=0. 

Moreover, we compute 

(3.9) 
2 

where ~ is function analytic in De(0, t0). 
As the coefficients a~,,~(t) are real for real t, g(t,~) is real when t and ~ are 

real. Hence the coefficients of the power series expansions of ~ and ~ are real. The 
estimate of the leading coefficient of ~([) comes from (3.6), (A.16) and Proposi- 
tion 2.5. 

Plugging (3.9) into (3.4) w h e n / 5 0 ,  we get the announced result. Of course, 
one can do a symmetric study in LtC(ro,iu). [] 

Proof of Theorem 1.7. Let n=2 .  By the same arguments as in the proof of 
Theorem 1.6, it is clear that  we only have to solve equation (3.2) for vp(z, t), the 
eigenvalue of Fk(Z, t) given by Proposition 2.5. 

Let qCN. Using the expansion of vp(z,t) given by Proposition 2.5, for zE 
LtC(q, rq, Sh), we have to solve equation (3.3). Again we will uniformize S on 
l~tC(ro, Sh), the change of variable now being 

(3.1o) z - s h  = exp( ), 

where ~ E ( - c x ~ , - R 0 ) + i R  for some R0>0. For some Re>0 , exp is an analytic 
embedding from (-oc,  -Rq)+i(-q.lr+~r/2, q.Tr+Tr/2) into LtC(q, rq, Sh). 

Plug (3.10) into (3.3) and use the definition of S to get 

.~-m.exp(/.g) = 1. (3.11) 2 l,m 

Let ~ = l / g .  Notice that, for fLE(-oc,-Rq)+i(-q.~r+Tr/2, q.lr+Tr/2), one has 
Re~<0.  For t r  and ~r (3.11) becomes 

(3.12) 



Resonances for per turba t ions  of a semiclassical periodic Schr6dinger opera tor  355 

where 

/ ,m m 1 (3.13) g(t,~)=-~.t.(l+O(t)).Ea~,m(t'f(h))" (-~)'~'~ . e x p ( ~ ) - ~ .  

Obviously g can be defined as a function with continuous derivatives in some neigh- 
borhood of (0,0) in C• and then it satisfies (3.8). So we can 
apply the implicit function theorem to get a unique solution to equation (3.12) 
which, moreover, is of the form 

(3.14) ~(t)= ~'a~176 "t" ( l+~(t ) ) .  
2 

The condition Re(~(t))<0 tells us that there is no solution of (3.12) when t<0. To 
get some precision on ~, we look for solutions to (3.12) of the form 

~(~)-- 0"a~176 (0) .~. (1 +~.~(~))-1, 
2 

where ~ is a function such that ~(0)=C, a constant to be chosen later on. Plug 
this ansatz into (3.13) to get 

g( t '  Q'a~176 " t ' ( l -Ft 'w)- l )  

~ Q'aok,o(_0)'t~ m 
=--~-"t'(l+q(t))'Ea~"~(t'f(h))" \ 4 . ( l + t . ~ )  ] (3.15) 2 z,.~ 

•  -F o'a~176 
\ ~.ao,o(O).t 2. ( l+ t .~)  

So, for t~0, (3.12) becomes 

(3.16) 

where 

(3.17) 

h (t, ~ 'exp ( -  ~.a0k,20(0).~) ' ~ )  =0 '  

h(t, ~, ~) : t .f(t ,  ~, ~) = a~176 (0) + ( l + q ( t ) ) . E  a~,,~(t.f(h)) 
l + t . ~  /,rn 

ao o!0! / 
4.( l+t .  w)]  .t.x.exp,Q~o,o~,)/.[~J 
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The function f is analytic in some neighborhood of (0, 0, 0) in C 3 and satisfies 

/ (0 ,0 ,  0) = O~h(O, O, O) 

(3.18) = C.a~,o(O ) o'a~176176 4-a0k0(0).0~(0)+f(h).0tak0,0(0) 
4 

and 

O~f(O,O,O)-=--ako,o(O).(1 ~'a41 (0 ) )  . 

Choose C such that f(0,  0, 0)=0. Using (A.16) and the estimates on a k given in l,m 
Proposition 2.5, we can apply the implicit function theorem uniformly for h small 
enough to construct N c C  2, a neighborhood of (0,0), and an analytic function 
~: N--*C such that f( t ,  ~:, z~(t, 2) )=0.  Then by (3.16), we get that 9, the solution 
of (3.12), satisfies 

.0)) 
2 ~ Q.a0k0(0) 

Using the properties of the coefficient a~,m(O ) one completes the proof of Theo- 
rem 1.7. [] 

Proof of Theorem 1.8. Let n=3.  Let t0>0 be fixed and arbitrarily large. We 
know that I(z)/f(h) is bounded in lAC(ro, Sh) for a certain r0>0. By Lemma 2.3 
and using the fact that Ilkllo~,w~ <e -c/h (for a certain c>0),  it is clear that, for 
h small enough (depending on t0) and te[-to.f(h),to.f(h)], the only eigenval- 
ues of b(t).rk(z,t) that may be equal to 1 are the ones contained in Dc(b(t). 
I(z), Ib(t).I(z)I/4). 

We only have to solve equation (3.2) for vp(z, t), the eigenvalue of Fk(z, t) given 
by Proposition 2.5. We recall that  by Proposition 2.5 there exists r0>0  such that, 
for z in 5/C(r0, Sh), 

Z 
IEN,mEN 

where the properties of the coefficients akl,m are given in Proposition 2.5. 
Letting z--~Sh, we see that we need to take t > 0  for (3.2) to admit a solution 

in UC(r0, Sh) for r0>0 small enough. (3.2) can be rewritten 

(3.19)   )lJ0m=l 
/EN,mEN 
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For te[-a(h)/4, a(h)/4] let g(t)=t'(l+q(t))'ako,o(t). Then IO~g(~)l>c for a 
certain c> 0 and h small enough. So the equation g ( t )=  1 admits a unique solution 
T~v in [-a(h)/4, a(h)/4]. One has 

Tsv = _ O .(l+O(e-c/h)). 
X(~h) 

(see [K1] for more details). We define T~v=f(h)'T~v. 
We will solve (3.19) for t close to Tsv and z in LlC(ro, Sh). To uniformize S we 

make the following ansatz for zELtC(ro, Sh) 

Plugging this into (3.19) we are to solve the equation 

(3.20) g ( t , u ( t ) ) = l ,  

where 

(3.21) g(t, u ) =  Q.t. ( l+q( t ) ) .  E a~,'~(f(h)'t)'(-2) m'(t'~+2t" 
/EN,mEN 

We notice that  g is analytic in (t, u) in a neighborhood of ( •v ,  0) and satisfies 

g ( ~ v , 0 )  = 1, 

Oeg(Tsv, 0) = - 2 .  (1 +q(Tsv))'p'Tsv "a~,l(TSv). 

So by the estimates on the coefficients a k given in Proposition 2.5, we can use the l,m 
implicit function theorem, uniformly for h small enough, to get t0 > 0 and ~, a func- 
tion analytic in Dc(Tsv, t0), such that  g ( t , ~ ( t ) ) = l  for tEDc(T~v,t0) .  Moreover, 
one gets 

~({) = 2g. (1 +q(T~v)).a~, o (T~v) .~. ( l+~( t ) ) ,  
~r'a~,l (T~v ) 

where 9 is analytic in Dc(T~v, t0) and 9(Tsv)=0. 
One ends the proof of this theorem in the same way as the proof of Theo- 

rem 1.6. [] 

Proof of Lemma 1.9 and Theorem 1.10. Let n=4 .  In this case S(z)=�89 
Fix q E N and -q_<j _< q. It is immediate to see that,  for rq > 0 small enough, -z - log  z 
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maps e 2ij~. (D(O, rq)\i. (-rq, 0]) to an open set 7)j such that the following holds for 
some r~ and r~t>0 (depending on rq): 

e2iJ~ ~.(-rq,rq)C "" ~ e2iJ~.(D(O, rtq)\i.(-rtq,O]) 

We now make the following ansatz 

u 
(3.22) z(u) . . . .  (1+9(u)) ,  

log u 

where g will be a function defined in some neighborhood of 0 such that g(0)=0. We 
try to find 9 such that for uET)j 

(3.23) -z(u).log(z(u)) = u. 

Plugging (3.22) into (3.23), we get 

u'(l+g(u))'( 1-1~176 u ~- ~ 1  .log(l+g(u))) =u. 

Hence, for u r  

(3.24) f(g(u),v(u),w(u))=(l+g(u)).(1-w(u)+v(u).log(l+g(u))) =1,  

where f(o~,v,w)=(l+e~).(1-w+v.log(l+o~)), w(u)=log(-log(u))/logu, and 
v(u)=l/logu. 

The function f is analytic in some neighborhood of (0, 0, 0) in C 3. Moreover, 
one computes f ( 0 , 0 , 0 ) = l  and 0 ~ f ( 0 , 0 , 0 ) = l .  Hence we can apply the implicit 
function theorem to find N, a neighborhood of (0, 0) in C 2 and c~(w, v): N--+C, an 
analytic function such that f(c~(w, v), w, v)=1 for (w, v) EN.  

Now, noticing that 

log( -  log(u)) --+ 0 and - - 1  _~ O, 
log u log u 

when u--+O in :Dj we obtain that,  for s o m e  rq>O small enough, for zEDj, then 
(3.20) is satisfied if 

z .(l+~(l~176 1 II 
(3.25) h(z) = lo z log z ' Iog  

This finishes the proof of Lemma 1.9. 
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To prove Theorem 1.10, one just uses Lemma 1.9 and the technique used in 
the proof of Theorem 1.8, restricting the study to [3p(rq, Sh). [] 

Proof of Theorem 1.11. Let n>_5. For the same reasons as in the case n = 3  or 4, 
we only have to solve equation (3.2) for vp(z, t), the eigenvalue of Fk(z, t) given by 
Proposition 2.5. 

For n_>5 the situation is different from the ones previously discussed because 
the leading order term in the expansion of vp(z,t) is not S any more, it is Z--Sh. 
For q c N ,  we are going to solve equation (3.2) i n  OC(rq, Sh, q) (if q>2 and n is odd, 
since the singularity of S is of square root type, this is equivalent to solving (3.2) 
on UC(rq, Sh)). 

As in the proof of Theorem 1.8 one computes the threshold Tey=Q/I(sh). 
(l+O(e-c/h)). 

Fix q E N  and -q<j<_q. For zE[]j(rq, Sh), we make the ansatz 

(3.26) Z--Sh = e 2ij~'C'i" ( l + u ( t ) ) ,  

with u (0)=0  and C a constant to be chosen later on. 

Using the definition of S, we get that: 
(3.27) 

�89 +u(t  ) ) )(n-2)/2 
�89 ( -1 )  n/2- (Ct) (n-2)/2. (log t §  

= C (n-2)/2 "t'fn([, gn(t), u([)), 

if n is odd, 

if n is even, 

where 

{ g.(l+u)(~-2)/2 
if n is odd, 

f~(t,g,u)= g.(l+u)(~_2)/2+1.(_1)~/2.(C.t)(~_2)/2.10g(C(l+u)) 

if n is even, 

and gn is defined in Section 1. Notice that,  because n >5 ,  gn(z)-~O when z--*0 and 

fn(O, O, 0)=0.  
Plugging this ansatz into equation (3.2) we get 

(3.28) 

O" ([+ Tsv)" ( l+q({+T~v))  

x ~ a~,m(t)({)l+~.Ct+(~-2)/2m.(l+u({))~.f~(t,g~(t),u(t)) m= 1. 
/EN,mEN 
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By the definition of T6v we get for t'#O 
(3.29) 

(t+T6v)" E a~, m(t)(~)z+m-l"ct+m(n-2)/2" ( l+u( t ) ) l"  (f'~(t' gn(t), u(t))) m 
l+m>_l 

a~'~176 =0.  
+a~'~ t -T6v 

So to be able to solve this equation for t=0,  we must choose the constant C such 
that 

ft, n T~v "al,o (T~v ) . C + ao,o (T~v ) + T~v. O~ ~,o (T~v ) = O, 

that is 
C -  O'I2.(l+O(e-c/h))>O. 

0I 
Using the implicit function theorem we find a function u({, g), analytic in the neigh- 
borhood of (0, 0), such that  in this neighborhood 

F(t,  g, u(t, g)) = a~,o(t)+T6v a~'~176 t-(t+T6v) 
t-T6v 

(3.30) X E a~, m(t)({)l+rn-l"cl+m(n-2)/2 
l+m> l 

x (1 +u(t ,  g))Z. (f~({, g, u(t, g)))'~ = 0 

and u(0, 0)=0 (one checks that  0uF(0, 0, 0 )=T6v 'C  (~-2)/2"a~,o(T6V)). 
Then the solution we are looking for is 

z-sh = C.t .  (1 +u(t', gn (t)). 

Using equation (3.30) one computes 

0gr(0 ,0 ,0)  
0gu(0, 0) - OuE(0, 0, 0) - 

2nTr~/2 

F(n/2) .  Vol(T).f(h)  2 

This completes the proof of Theorem 1.10. 

c(n-4)/2, a~,l (Tsv ) 
a~,o(T~v) 

(~I2)(n-2)/2 
.Ds.(l+O(e-c/h)). 

(-o5,~/2 
[] 

3. E m b e d d e d  e igenvalues :  P r o o f  o f  T h e o r e m  1.12 

Let n ~ N  and n~2 .  Pick t as in Theorem 1.12. Suppose that  A is an eigenvalue 
of Pt in (ih, Sh). Then, by Theorem 1.1, there exists uEL2(T) such that, for OcT, 

(3.31) (A--wh(O) ).u(O) = b(t). ( (IIo+ K(t) )u)(O) = v(O). 
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Moreover we know that  v and wh are analytic in W, some complex neighborhood 
of T. So equation (3.31) shows that  one can define u as an analytic function in 
W\w~l()~). If we show that  u can be defined as an analytic function in some 
complex neighborhood of T,  we will be done. Indeed, if this is true, then for 

Im(z )#O 

(3.32) b(t) .r(z ,  t)(v~) = ( z - ~ ) . b ( t ) . r ( z ,  t) (~) +v~,  

where va=()~--Wh).U. When z---+k• using the asymptot ic  behaviour of F(z , t )  
given in Theorem 1.3, we obtain 

b(t). r ~ (~, t)(v~) = v~. 

So A will be a resonance of Pt (according to our definition), and we know that  this 
is not possible. 

Let 0 ~  be such that  wh(0~ and 0 ~ is not a critical point of wh. Then 
there exist No, a neighborhood of 0 in C n, No, a neighborhood of 0 ~ in C n, and 
D: No-*No, an analytic bijection such that:  

(a) D(NoNR)=NoAR, 
(b) V0=(01, . . . ,  On)ENo, Wh(D(O))=.~--01. 

Then, by (3.31), for 0ENoMR one gets 

(3.33) 01.uoD(O) =voD(O). 

As roD is analytic and uoD is in L 2 1or we see that ,  if OENoNR and 01=0, then 
roD(O) =0.  So, in some complex neighborhood of 0 one can factorize 

voD(O)=01.~(O), 

where ~ is an analytic function. 

Using (3.32) one can continue u analytically in some complex neighborhood 

of 00 by u(0)--~oD-l(0). So, if )~ is an eigenvalue of Pt embedded in (ih, Sh) 
and A is not a critical value of Wh, then any eigenfunction associated to A can be 

continued analytically in some neighborhood of T. Hence A will be a resonance 

which contradicts the results already proven. 

Let A be a critical value of Wh, non extremal if n_>3, and 0~ be one of 

the isolated critical points of Wh associated to )~. Then there exist p~{l, n}, No, 

a neighborhood of 0 in C n, No, a neighborhood of 0 ~ in C n, and D: No--+Ne, an 

analytic bijection such that: 

(a) D(NoNR)=NonR,  
(b) VO=(OI,...,On)ENo, _ _ 2 2 ~h(D(O)) = ~ - ( E l < ~ < p  0~ - E p + l < , < n  0~ ). 
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Then (3.31) becomes 

(3.34) ( E  0~-  E 
"l<_l<_p p+l<l<n 

Write, for 0=(01,0/), 

(3.35) E 02 -  E 

. ( u o D ( O ) ) =  voO(0). 

= +b(o ' )  = 
l<_l<_p p+l<l<n 

We know that,  if 0 is a real regular point of w, then w(0)=0 implies v(O)=0. Since 
there exists a sequence of real regular points of w converging to 0, we know that, 
for OcNoNR n, w(0)=0 implies v(0)=0. 

By Weierstrass' preparation theorem we can write 

(3.36) voD(O) = w(O).g(O) +01 "al (0') +ao (0'), 

where a0 and al are analytic functions in some neighborhood of 0 in C n-1. So, for 
0=(01 ,0 ' )EN0nR n such that  w(0)=0, 

(3.37) O1 "al (0') -Jr- ao (0 t) = O. 

We notice that  w(Ol,O')=O implies w(-01,0')=O. Hence, by (3.35), ax(0')= 
ao(O')=O if 017s 

Pick 0E No NR n such that  01 r  and w (t~)=0. Then b(0')< 0. So for O' real close 
to t~' there exists 0r real such that w(O1, O')=w(-01,0')=0. So al(O')=ao(O')=O 
for 0 ~ in some real neighborhood of ~1. As a0 and a 1 are analytic, they are equal 
to 0. 

One then concludes, by (3.34), that 

roD(O) =w(O)'9(O), 

which, in turn, says that u can be defined in some complex neighborhood of 00 by 
the following analytic function 

u(O) =goD-l(o). 

So, for A an eigenvalue of Pt embedded in (ih, Sh) which is the same as a critical 
value of Wh, we get the same contradiction as in the case when A is not a critical 
value of COh. 

If n = l  and A is a critical point of Wh (e.g. the minimum), then equation (3.34) 
becomes 02. (uoD(O))=voD(O) for 0 in some real neighborhood of 0. As u EL 2 (T), 
we know that, for some function 9 analytic in a neighborhood of 0 in C, 

roD(O) =02.9(0), 

so u can be continued as an analytic function of 0 in a complex neighborhood of 
the critical points of Wh. 

This completes the proof of Theorem 1.12. [] 
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IV. Appendix  

1. Analy t ic  cont inuat ion  of  some integrals  

Analogues of the integrals we will study in this chapter have already been 
studied by several specialists in algebraic geometry (see [La], [FFLP], [P]). Here we 
construct hand-made proofs to get h-uniform results. 

Let c>0 and u(x, O) be a function analytic in 0 in W~=T+iB(O, c) uniformly 
for xcX. We define, for 0 < d < c ,  

Ilu(x)ll , ,= sup I (x,O)l. 
OEW c, 

We study I(z, u )=fT  u(x, O)/(2--~h(O)) dO in the neighborhood of the band C~h(T). 
Let c E R and consider the transformation De:Wl/ch--+C n given by 

(A.1) 0 ~ O+ ie. Vgah (O). 

Then, for OEW1/ch, one has 

(A.2) VDe(0) = Id +ie(Hess(~h(O))). 

So by assumption (H.5), for C>0,  h small enough, for I~1 smart enough (depending 
on C), Ds is an analytic embedding. 

Let Im(5)>0 and ~<0. Using Stokes' formula one gets 

(A.3) 
I(Z'U): fD~(T) Z--~h(O)u(x'O) dO= IT u(x'D~(O))'Jac(Ds(O))z-wh(De(O)) dO 

~ u(x, O+ic(V~h(O))). Jac(De (0)) 
= 2_ h(O)_ielV h(O)l  +O(e  ) dO, 

(where by (H.5), O(~ 2) is uniform in 0 and h for h small enough). 
Let us recall some notations from Section 1, 

A0 = {the critical values of ~0} = {A~; 1 < j < p}. 

For r0 >0, [2(A j, r0) denotes a complex square box centered at A~ with side ro, and 

U 
"l<j<p " 

Using (A.3) one immediately gets 
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P r o p o s i t i o n  A.1. Let ~h satisfy assumptions (H.5). Then there exist h0>0 
and ro>0 such that, for hG(O, ho), [(z,u) can be analytically continued from the 
upper (or lower) half plane to c[3(ro). Moreover, for these continuations there exists 
C>O such that, for hE(O, ho) and zEC[3(ro) 

I/• u)l < Cllu(x)ll~,c.. 
We will now continue I(z, u) in the neighborhood of the critical values of C~h. 

For l< j<p  the following holds true. 

P ropos i t i on  A.2. There exist a>0  and h0>0 such that, for 5ED• 
one has 

kj 

_T(z, u ) =  ~ S(2--~h(O k)).g~,k(2 , u ) + G f  (2, u), 
k=0 

where: 
(a) H + j,k and G f  are holomorphic for 2 in [3(A~, a). 
(b) There exists C>0  such that 

sup ([H~,k(2, u)l+lG~(2, u)l ) < Cllu(x)ll~,c,. 

(c) One has 

g~,k(bh( O~), u) = 2 n / 2 .  ( +i) pk -Vol(0B(0, 1)).D~(O]).u(x, O k) 

where D~(O] )=ldet(Hess(gah(Ok) ) )1-1/2. 
(d) If n is even, S(Z)=I'(--1)n/2z(n--2)/2"Iogz, 

if n is odd, S(z)=�89 ~-2)/2. 
(Here log z and z 1/e are the principal deterrninations of these functions). 

Proof. We will only study the analytic continuation of I(z, u) from above the 
real axis, the procedure being identical when coming from the other side. Let 
Im(5)>0 and e<0. For ~>0 let us define Wj(o)=W\Ul<k<kj B(O), ~); it contains 

none of the critical points of c50 associated to A S. 
One has, using Stokes' theorem, 

E 
l < k < k  d 

=F. 
l<k<kj 

fo u(x, 8) + ~-~h(O) (Uce[o,e] De (Wj (Q))) 

. u(x, e) de+[  u(x, O) 
(el,00) ~--C~h(0) Jwj(0) ~--C~h(0~ dO 

/ .  u(x,O) dO+[ u(x,O) 
(0~,00) ~'--~h(0) JDe(Wj(Q)) Z--~h(0) dO 

m d O .  
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The function fD~(Tj(Q))U(X, O)/(5--~h(O))dO is analytic for 5 in a small neighbor- 

hood of A~ in C (depending only on e and Q but not on h small enough). 
For Q, e and h small enough 

contains no critical point of C~ h . On this compact set, using the Taylor formula one 
sees that  Im~h(0)<0.  Hence, using Stokes' theorem and regular deformations, one 
can continue analytically as a function of ~ in some small neighborhood of io, the 
following integral 

fo(U ~ ~Eo,~l u( x, O) dO. 
De(T j(0))) 

We just have to continue analytically an integral of the form 

u)=s u(x,O) 
(o'],o) 5"--J~h(O~ dO. 

Assumption (H.5) ensures that one can prove an h-uniform Morse lemma (for h 
small enough), that  is, there exist 60, Ql>0 such that,  for l < k < k j  and h small 
enough, there exist Pk c N  and a local analytic diffeomorphism Dk defined from a 
complex neighborhood of 0] to a complex neighborhood of 0 in C ~ such that  

�9 BR,~(Ok, 61)c(Dk)-l(BR~(O, 260)) and Bcn(Ok, 61)c(Dk)-l(Bcn(O, 260)), 
�9 for 0EBc~(0, 260), 

wh(D; l(O))=~h(Ok)+ E 02- E 02' 
l<_l<_pk pk+l<l<n 

�9 det(Jac(Dkl)(o))=2n/21det(Hess(~h(OJk)))l-U2 , 
�9 (Pk, n-pk) is the signature of Hess(Dh(O~)). 
Using this and regular deformations as before one gets 

J(~, u) = / B  u(x'D;l(o))'Jac(Dkl(o)) dO 
(O,oo) 5--Wh(D;l(o)) 

(A.4) fB u(O,x) 
+ (O~'o1)\D~ I(B(O'O~ ~__~h(O ) dO. 

The second integral of the right hand side of (A.4) can be analytically continued 
for 5 close enough to A~ (as we integrate over a domain free of critical points). Let 

u(x, D~ -1 (0)).Jac(Dk 1 (0)) 
J(5, u) = (O,~o) 2_~h(0])_y~l<_t_<p~ 02+Ep~+l<t<~ 02 dO. 
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Consider the following group of deformations. Define Ra: B(O, Do)---+C n for aE  
[0,1r/2] by 

(Oj)l<j<n ~-+ ((eic~oj)l<j<pk, (Oj)pk+l<j<n). 

The R~ are embeddings so O~e[0,~/2] R,~(B(O, go)) is an (n+l)-dimensional sub- 
manifold of C ~. Then by Stokes' formula 

J(2, u) = ; u(x, D; 1 oR,/2(O)).aac(D;loR~/2(O)) dO 
(O,oo) 2--~h (O])+El<z<pk O? +Epk+l<Z_<n 0~ 

U u(,, D~ -1 (O)). Jac(D~ -1 (O)) dO. + 
~c[O,~r/2](R~(OB(O,o0))) 5--Wh(Dkl(O)) 

The points of U~e[0,~/2] R~(OB(O, 60)) are regular for ~hoDk 1 and on these points 
one has Imwh(0)_<0. So, using regular deformations like De, one sees that the 
second integral defines a function analytic in a neighborhood of ~ .  

We are now only left with studying 

fo ~ f(&u) J(5, u) = 2_~h(O])+62 "6 n-1 d6, (A.5) 

where 

(A.6) = ~ u(x, D; 1 ~ Jac(Dk -1 ~ R~r/2) (6C r ) da. f(6, u) U(0,1) 

u(x'Dkl~176 E a~aa) "rp' 
p=O acNn;]a]=p 

one gets the following Cauchy estimate, 

(A.7) [as I ~ C. (360)- I< .  I1,~11oo,~. 

Here, for a=(al,...,an)ENnanda=(al,...,an)eOB(O, 1)cR n, we define 
n n ~ and C > 0  is a constant independent of h small [Ol[=~-~.i=l Ozi and a ~ = H i = l  a i , 

enough. 
Now, using (A.7) and carrying out the integration in (A.6), one gets 

f(6, u) = E Ap(u)oP' 
p=0 

Obviously, u(x, D~loR~/2(pcr)).aac(D~XoR~/2)(6~r) is analytic in 6 in De(0,260).  
Moreover, expanding this function in a power series 
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where 

(A.8) 

lAP (u)l = E 
o~ENn;lal=p 

aa'~OB(O,1)~176 E ]aal) aeNn;l~l=p 

_<c'. 5oo ,llull~,~. 

Obviously A2p+l (u)=0. So f(0, u) is analytic in Dc (0, 00) admitting a power series 
expansion that is well controlled in u. 

By (A.5) one gets the following 

f0 a~176 0 2p+n-1 (A.9) J(2, u) = E A2p(u) 2_~h(O])+O 2 do. 
pEN 

Now, we just have to continue analytically 

~0~o Q2p+n--1 Ip(5) = 2+0-""""--~"- do 

for 2 in a neighborhood of 0 in C. 
Let us write n=2k+v where v = l  or 2 and k>_0. Then 

(A.IO) 

Iv(2) = fjn~ o 
02(p+k). 0v-1 

s do 

(p+k p+k\ 1 z do 

f 
Oo Or--1 

= (-1)P+k2 p+k dO+Rp(2), 
./o 2+02 

where 

p§ fo oo Rp(5)= E \ l+l]  0 ~-l"(z§ zd0 
/=0 

is obviously analytic in 2 and satisfies, for 2eDc(0, 002/4) and a certain C>0,  

(A.11) IRp( )l _< p+k 

Easy computations show that 

~0 o~ 1 d 7r .~_1/2 f~ §162 1 dQ 
(A.12) ~ Q= 2 o ~+Q----~ 
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and 

(A.13) fo ~~ 0 do= 1 ~ 1 log(0~+~'). 

Remark. Here we use the principal determinations of the square root and the 
logarithm. 

So one gets 
Ip(~) = (-1)PhP.S(~)+ Rp(5), 

where S is defined in the statement of Proposition A.2, and Rp(5) is analytic for 
~eDc(0 ,  0~/4) and satisfies (A.11). Then, using (A.9), the sums being absolutely 
convergent by (A.8) and (A.11), one gets 

J(5, u) = S(~--~h(O~) ).H+k(E, u)+G+k(E, u), 

where 

(A.14) 

and 

(A.15) 

H+k(~, u) = E (--1)PA2p(u)(z--wh(O~))p' 
pEN 

G+k(~, u) = E A2p(u)Rp(~-~h(O])), 
pcN 

(both of these sums being uniformly convergent for ~ C Dc  (0, 0o2/4).) One computes 

(A.16) Ao(u)-- 2n/2.i pk .Vol(OB(O, 1)).]det(Hess(~h(Ok)))[-x/2.u(O~,x). 

Of course, the same study can be done for analytic continuation from above 
the band. This ends the proof of Proposition A.2. [] 

Remark. Let us assume (H.6) and that  n>3.  Let kn denote the largest integer 
smaller or equal to (n -3 ) /2 .  Using the Taylor formula one gets for 5~ [ih, Sh] 

(A.17) J ( L u ) =  (gh_~h(O))k+ldO "(2--gh) k 

f0X(/T (--1)kn+1'U(/' O) ) t/c.+Idt 
+(Z--Sh) kn+l" (t.(~__~h)+gh__~.~h(O))kn+ 2 dO �9 . 

One may use the same technique as before to continue analytically the last integral 
in formula (A.17) for 2 close to Sh- 
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2. Ano the r  poin t  of  view on I ( z ,  u) 

Let u be a function analytic in some complex neighborhood of T. Let ~u be 
the distribution on R defined for g E C ~ ( R )  by 

g) = fT dO. 

Then ~ is of order 0 and compactly supported. More precisely, supp(~u)C~h(W). 
If 5:E~h(T) and 2 is a regular value of Wh, then 

f{  u(O)da(O), (A.18) qOu(2) = 0eT;bh(0)=2} 

where da is the measure induced on {0 E T; ~h (0)=2}, a smooth compact subman- 
ifold of T, by the Lebesgue measure on T. 

(A.18) shows that p~ is analytic in a complex neighborhood of the regular 
values of ~h. 

For 2 such that Im 2r by definition 

So, if XE~h(T) and ~ is a regular value of ~h, then 

(A.20) lim Im-f(~+iy, u) = •  
y---+0=k 

This gives us 

Proposition A.3. 
(a) For any nEN, there exists r0>0 such that VrE(0, ro], there exist hr>0 and 

Cr>0 such that, VhE(0, hr) and VzEltC(C[~(r), D• 

c_L__r 
(*) I ImI(z)l > f(h)" 

For n>_3 and jq{1,p},  there exists rj>O such that VrE(0, rj], there exists 
hr>0 and c~>0 such that VhE(0, hr) and VzEO(r,j) the inequality (*) holds. 

Proof. Notice that, by (A.18), for 2E~h(T) and ~ a regular value of ~h, we 
know that ~1(~)>0. So, using (A.20), we get Proposition A.3. 

For n_>3, one just uses the expansion given by Proposition A.2. 

Instead of the study we did in the first part of this section, we could also have 
studied the singularities of ~ ,  at the critical values of ~h, and then have used the 
Cauchy formula (A.18) to get the information on -Y(2, u). 
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