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Weierstrass points and gap
sequences for families of curves

Dan Laksov(!) and Anders Thorup(?)

Abstract. The theory of Weierstrass points and gap sequences for linear series on smooth
curves is generalized to smooth families of curves with geometrically irreducible fibers, and over
an arbitrary base scheme.

0. Introduction

We present a theory of Weierstrass points and gap sequences for linear series on
smooth families of curves with geometrically irreducible fibers; the parameter space
is an arbitrary base scheme. The theory provides a flexible framework for studying
the behavior of Weierstrass points under deformation of curves, generalizing the
classical theory of Weierstrass points on a single Riemann surface.

The work is a continuation and extension of the results in [25] where we stud-
ied enumerative formulas for multiple points of linear systems on smooth families
of curves. That such an extension is natural and interesting is indicated by the
relations between multiple points and gaps of linear systems on smooth curves (see
[36] and [24]). Compared to [25] the present work has several new features:

First of all, we introduce and develop a theory of gaps and Weierstrass points.
We work, as in [25], in great generality with Wronski systems on a noetherian
scheme. For such systems we define gap sequences and Weierstrass points and show
that they satisfy properties analogous to those of gaps and Weierstrass points on
smooth curves. The gaps associated with a linear system on a smooth curve have
the following two key properties:

(1) The number of gaps at each point is equal to the number of gaps at the
generic point.
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(2) The number of gaps at the generic point is equal to the dimension of the

given linear system.
Moreover, a Weierstrass point is characterized as a point where the gap sequence is
different from the generic gap sequence. The main result (Corollary (3.3)) is that
the Weierstrass points are the points of the zero scheme of the wronskians associated
to the Wronski system. In particular, the Weierstrass points that we define have
the fundamental property of being the zeros of sections of locally free sheaves on
the total space.

When the scheme is the total space of a family of smooth curves and the
Wronski system is obtained from the sheaves of principal parts our theory generalizes
that for smooth curves (see [34], [35], [30], [23], [24]). We even show (Note (5.2))
that, when the family is proper, we can interpret gaps in terms of the existence of
poles of meromorphic functions.

Secondly, we extend, in Section 4, the theory of higher derivations in abstract
algebra developed in [25], and we obtain further generalizations of the works [21],
[34], [35] and [29]. In particular, we find in Theorem (4.11) a sufficient condition
for the gaps associated to an iterative derivation to have the second key property
above. Our results make it possible to give the exact relations between the local
theory of Weierstrass points, based upon higher derivations and most commonly
used in the literature, and the global approach of [23], [24], [25] and of the present
work. In fact, the present work started as an attempt to clarify these relations.

A third new feature of the present work is the refinement of Theorem (4.6)
of [25] and the adaptation of that result for use in our theory of gaps and Weierstrass
points. For the Wronski systems obtained from linear systems on a smooth family of
curves with geometrically irreducible fibers we establish in Theorem (5.5) both key
properties of the gaps. We establish the key properties without using the Riemann—
Roch Theorem for curves! The Riemann—Roch Theorem is an essential ingredient
in all other treatments, limiting them to complete curves (see [18] for example).

The final new feature of this work is its applicability to families with possibly
singular fibers. In this direction we present in the last section for a Gorenstein
curve the Wronski systems that form the natural generalization of the systems of
principal parts for a smooth curve. Our results generalize those of [27] to arbitrary
characteristics and globalize the wronskian determinant used in their work.

The main applications of our theory for smooth curves are to the universal
families of curves over various moduli schemes. Such families contain interesting
subsets defined by conditions of Weierstrass type. This is evidenced by a large
number of works (see for instance [2], [3], [4], [6], [7], [8], [9], [22], [26], [32], [33]). In
these works, the subsets are defined fiberwise, that is, as subsets of the individual
members of the family. Also in the series of articles [10], [11], [12], [13], [14], [15],
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containing many important results from the theory of curves, the central definition
of limit series on curves is based upon a Pliicker formula (also called the Brill-Segre
formula) on the individual members of the family. In this work we show how to
define such sets globally as relative schemes over the moduli scheme, and even as
zero schemes of sections of locally free sheaves. For families of hyperelliptic curves
such a global construction of Weierstrass schemes was given in [22].

We will express our thanks to S. L. Kleiman for his remarks that led to the
present formulation of Theorem (5.5).

1. Preliminaries

We collect, in this section, some of the fundamental properties of ranks of
maps between sheaves that are essential for the study of Wronski systems and their
wronskians in the sequel.

(1.1) Setup. We shall work with modules over a fixed (noetherian) scheme X. If
F is a module and x is a point of X, we denote by k(z) the residue field at x and by
F(z):=F®@r(z) the fiber of F at z. If v:G—F is a map of modules, we denote by
v(x): G(z)— F(z) the k(z)-linear map induced on the fibers. Unless the contrary is
stated explicitly, a module is assumed to be coherent and a locally free module is
assumed to be of finite rank.

(1.2) Remark. Let v:W—P be a map of quasi coherent Ox-modules. The
following two results are well known, see for instance [25, Lemma (4.2), p. 144]:

(1) If Wis flat and v is injective, then the map v(€) is injective for all associated
points & of X.

(2) Assume that W and P are locally free (not necessarily of finite rank). Then
v is injective if and only if the map v(£) is injective for all associated points & of X.

Assume that W and P are locally free. Then it follows from (2) that if v is injective,
then every exterior power Av is injective. The latter result can be shown to hold
without the noetherian hypothesis, see [5, AIIL.88], or [38, Lemma (1.4), p. 265].

(1.3) Definition. By definition, the rank of a map v: W— Q is the largest integer
7 such that A"v#£0.

When the target Q is locally free, the map v will be said to be of generically
constant rank if for every associated point £ of X, the rank of v is equal to the rank
of the map v(€). Note that if X is integral, then every map into a locally free sheaf
is of generically constant rank.
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(1.4) Lemma. Let v: W—Q be a map of modules, and let x be a point in X.
Assume that Q is locally free. Then the following inequality holds:

(14.1) rkv >rkuv(zx).

Moreover, the following two conditions are equivalent:

(i) Fquality holds in the above inequality. ‘

(ii) In aneighborhood of =, the cokernel of v is free and the image of v s free
of rank equal to tkwv.

Proof. The inequality (1.4.1) holds trivially. The equivalence of the conditions
is well known. To prove the equivalence, assume first that (i) holds. Let » be the
rank of v. To prove that the cokernel of v is locally free, we may work locally, and
assume that Q is free. Moreover, covering W with a free module, we may assume
that W is free. Then v is represented by a matrix. By condition (i), there exists an
rXr minor A of v, such that A(z)#0. Restricting the neighborhood of z we may
assume that-A is invertible. Denote by vy the submatrix consisting of the first r
columns of v. Without loss of generality we may assume that A is the determinant
of the submatrix consisting of the first r rows in vy. Then, since A is invertible
and A"tly=0, it follows from Cramer’s rule that every column in v is a linear
combination of the first r columns. In other words, there exists in W a free rank-r
submodule Wy which is mapped by vg onto all of Imv. Thus the cokernel of v is
equal to the cokernel of vg. Again, since A is invertible, it follows by Cramer’s rule
that the map vy from Wy into @ has a retraction. Hence the cokernel of vy is locally
free and the image of v is free of rank r. Thus (ii) holds. Conversely, it is clear that
(ii) implies (i).

Hence the Lemma has been proved.

Note. It follows easily from Lemma (1.4) that a map into a locally free sheaf
is of generically constant rank if and only if the image of the map is locally free of
constant rank on some open subset containing all associated points of X.

(1.5) Lemma. Consider a commutative diagram,

Q—=7P

where q is a surjection of locally free sheaves. Assume that the kernel of q is an
invertible module K. Let x be a point of X. Then the following inequalities hold:

(1.5.1) rkv>rku>rkv—1,
(1.5.2) rkv(z) > rku(z) >rkov(z)-1.
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Moreover, the following three conditions are equivalent:

(i) The first inequality of (1.5.2) is strict.

(ii) The map of fibers at x of the cokernels, Coker v(x)— Coker u(z), induced
by the diagram, is an isomorphism.

(iii) Equality holds in the second inequality of (1.5.2).

Proof. In the inequalities of (1.5.1) and of (1.5.2), the first inequality holds
trivially, and the second follows from [25, Lemma (1.4), p. 134]. To prove the
equivalence of the three conditions, consider the surjection Imuv(z)—Imu(z) in-
duced by ¢(z). Denote by J the kernel of the surjection. Then J#0 if and only if
the first inequality of (1.5.2) is strict. Clearly, J fits into an exact sequence,

0 J K(z) Coker v(z) — Coker u(z) —0.

The term K(z) is one-dimensional over «(z). Hence J#0 if and only if the map

of (ii) is an isomorphism. Therefore conditions (i) and (ii) are equivalent. The

equivalence of conditions (i) and (iii) is immediate from the inequalities (1.5.2).
We have thus proved the Lemma.

2. Gaps and Weierstrass points of Wronski systems

The central notion of this work is that of a Wronski system. In this section we
associate to any Wronski system the corresponding gap sequences and Weierstrass
points and give their main properties. We note in (2.10) that these properties are
analogous to the corresponding properties for meromorphic functions on Riemann
surfaces.

(2.1) Setup. Fix a Wronski system as defined in [25], that is, a sequence of
surjections g;: @;—@Q;—1 for i=1,2, ... of locally free sheaves Q; of rank i, together
with a sequence of maps v;: W— @, such that, for i=1,2, ..., the following diagram
is commutative:

v’l Vi—1

Qi —Ls Qi—l .

We denote by X; the kernel of the map ¢; and by &; the cokernel of the map v;.
Then K; is locally free of rank 1.
By Lemma. (1.5), the following inequalities hold:

(2.1.1) rkv; >tkv;_1 >rkv;—1.
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Similarly, if z is a point of X, then the following inequalities hold:
(21.2) rkvi(z) > rkv;_1(z) > 1k vi(z) -1,

and, moreover, the following three conditions are equivalent:
(1) The first inequality of (2.1.2) is strict.
(i) The map &;(z)—&;—~1(x) induced by ¢;, v; and v;_; is an isomorphism.
(ili) Equality holds in the second inequality of (2.1.2).

(2.2) Definition. An integer i>1 will be called a gap for the Wronski system
at the point x if the three equivalent conditions of (2.1) hold. The s’th gap at z
will be denoted gs(z). An integer i>1 will be called a generic gap for the system if
rkv;>rkv;_1. Denote by gs the s'th generic gap.

Note that if the v;’s are of generically constant rank and £ is an associated
point of X, then 7 is a gap at £ if and only if ¢ is a generic gap.

(2.3) Lemma. Let x be a point of X. Consider a sequence 1,2, ..., h where h
18 a positive integer. Then the rank of vy, is equal to the number of generic gaps in
the sequence. Similarly, the rank of vp(x) is equal to the number of gaps at x in the
sequence. Moreover, for every integer s the following conditions are equivalent:

(i) tkwvp(z)>s, (i) dim &x(z)<h—s, (iii) h>gs(z).

Proof. By (2.1.1), the following two inequalities hold:
(2.3.1) 0<rkv;—rkv;_1 <1,

and equality holds in the second inequality if and only if ¢ is a generic gap. Clearly,
the first assertion of the lemma follows upon addition of the inequalities (2.3.1) for
i=1,....h.

The second assertion of the lemma, follows by applying similarly the inequalities
(2.1.2).

The equivalence of the conditions (i) and (iii) follows from the second assertion
of the lemma. That the conditions (i) and (ii) are equivalent follows from the
equation rkvp(z)+dim &, (x)=h. The latter equations hold because Qp, is locally
free of rank A. Thus the third assertion of the lemma has been proved.

(2.4) Proposition. The number of generic gaps is finite and equal to the rank
of v; for all sufficiently large ©. Similarly, for any point x, the number of gaps at
x s finite and equal to tkv;(z) for all sufficiently large i. Moreover, the number of
gaps at T 1is at most equal to the number of generic gaps. Finally, the s’th gap at x
is greater than or equal to the s’th generic gap, that is,

9s (I) 2 9s-
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Proof. Clearly, the rank rkv; is bounded above by the largest integer ¢, such
that A" W+0. Hence it follows from the first assertion of Lemma (2.3) that the
number of generic gaps is finite and equal to rkv; for all sufficiently large i. Hence
the first assertion holds. The proof of the second assertion is similar.

Moreover, the third assertion follows from the first two assertions and the in-
equality (1.4.1). Finally, to prove the last assertion, consider the sequence 1,2, ..., h
where h:=g,(x). By the choice of h, the sequence contains s gaps at z. Therefore,
by Lemma (2.3) and the inequality (1.4.1), the sequence contains at least s generic
gaps. In particular, the asserted inequality g;<h holds.

(2.5) Proposition. (1) The following two conditions on points = of X are
equivalent:

(i) The number of gaps at = is equal to the number of generic gaps.

(i) For all sufficiently big i there exists a neighborhood of = over which the
cokernel E; is free and the image of v; is free of rank equal to rkv;.

Denote by U the subset of points x where the two conditions are satisfied. Then U
s an open subset of X. Moreover, if i is sufficiently big, then over U the cokernel &;
is locally free and the image of v; is locally free of rank equal to rkv;.

(2) Assume that W is locally free of rank v. Then the following two conditions
on points © of X are equivalent:

(iif) The number of gaps at x is equal to 7.

(iv) The map v;(z) is injective for some value of i.

Moreover, if there exists a point in X satisfying the latter conditions, then for every
point x, the four conditions are equivalent and the number of generic gaps is equal
tor.

(3) Assume that W is locally free. If the map v; is injective for some value of i,
then the four conditions are equivalent, and they hold for every associated point
of X. Conversely, if condition (iv) holds for every associated point of X, then the
map v; s injective when i is sufficiently big.

Proof. (1) Denote by U; the set of points « for which
(2.5.1) rkv; =rkv;(z).

By Lemma (1.4), U; is open and over U; the cokernel &; is locally free and the image
of v; is locally free of rank equal to rkv;. Now, when i is sufficiently big, say for
i>1g, the left hand side of (2.5.1) is constant and equal to the number of generic
gaps by Proposition (2.4). Hence it follows from (2.1.2) and (1.4.1) that U;CU;yq
for i>49. Let x be a point of X. By Proposition (2.4), (i) is satisfied if and only
if = belongs to the union ;5 U;. By Lemma (1.4), (ii) is satisfied if and only if «
belongs to U; for all sufficiently big i. Therefore (i) and (ii) are equivalent, and U
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is equal to the union UiZi0 U;. In particular, U is open. Moreover, U is equal to U;
when ¢ is sufficiently big, because X is noetherian. Therefore the last assertion
of (1) holds.

(2) The map v;(z) is a map of vector spaces, and its source has rank r. Clearly,
if v;(z) is injective, then v;(z) is injective for all 7>i. Thus (iv) holds if and only
if the rank of v;(z) is equal to r when ¢ sufficiently big. Hence it follows from
Proposition (2.4) that (iii) and (iv) are equivalent.

Assume that v;(z) is injective for some point x. Then, clearly, the rank of v;
is 7. Consequently, by Proposition (2.4), the number of generic gaps is equal to r.
Therefore, the conditions (iii) and (i) are equivalent for all points x. Hence, by (1),
all four conditions are equivalent.

(3) The map v; is a map of locally free sheaves. Therefore, by (1.2)(2), the
map v; is injective if and only if the map v;(§) is injective for every associated
point £. The assertions of (3) follow easily.

Thus the Proposition has been proved.

(2.6) Remark. The main difference between the theory of gaps for smooth
curves in any characteristic and for Riemann surfaces is that the latter have generic
gap sequence 1,2 ..., r for any linear system of dimension r. It is therefore interest-
ing to have criteria for when a gap sequence of a Wronski system is the sequence
1,2,...,r.

Assume that W is locally free of rank r. We shall say that a gap sequence is
classical if it is the sequence 1,2,...,7. Clearly, if the sequence of generic gaps is
classical, then rkv;=i for i=0,...,r and rkv;=r for i>r. Conversely, if rkv,=r,
then it follows from the inequalities of (2.1.1) that the sequence of generic gaps
is classical. The condition rkv,=r is satisfied if v, is injective. Indeed, if v, is
injective, then the exterior power A"v, is injective, cf. Remark (1.2).

Similarly, it follows from the inequalities (2.1.2) that the sequence of gaps at
a point z is classical, if and only if the map v,.(z) is injective. The latter condition
holds for all associated points of X, if and only if v, is injective, cf. Remark (1.2)(2).
As a consequence, the map v, is injective, if and only if the sequence of gaps at
every associated point of X is classical.

(2.7) Definition. A point z in X is called a Weierstrass point for the Wronski
system if there are non-negative integers g such that rkv,>rkwvg(z). Let 2 be a
Weierstrass point, and let g be the smallest integer such that rkv,>rkvy(x). Then
rkvg is called the rank of the Weierstrass point.

(2.8) Lemma. Let z be a point in X and g a positive integer. Assume that
the following equation holds:

rkvg_q1 =rkvg_1().



‘Weierstrass points and gap sequences for families of curves 401

Then, rkvg>rkvg(x) if and only if g is a generic gap and not a gap at x.

Proof. The assertion follows easily from the inequalities (2.1.1), (2.1.2) and
(1.4.1).

(2.9) Proposition. Let x be a point of X. Then x is a Weierstrass point
if and only if the sequence of gaps at x is different from the sequence of gemeric
gaps. Moreover, if © is a Weierstrass point, then the rank of x is equal to the
smallest integer s such that the s’th generic gap is not a gap at x. Finally, the set
of Weierstrass points is a closed subset of X.

Proof. Assume first that z is a Weierstrass point. Let g be the smallest integer
such that rkvg>rkvg(x). Then, clearly, rkvg_i=rkvg_;(z). Therefore, by Lemma
(2.8), the integer g is a generic gap and not a gap at .

Assume conversely that the sequence of generic gaps is different from the se-
quence of gaps. Then, since the number of gaps at x is at most equal to the
number of generic gaps by Proposition (2.4), there are generic gaps that are not
gaps at x. Let g=g; be the first generic gap which is not a gap at z. Then it follows
from Lemma (2.8), by induction on 4, that rkv;=rkv;(z) for i=1,...,9—1 and that
rkvg>rkvg(z). In particular, z is a Weierstrass point. Moreover, we note that by
definition of the rank of a Weierstrass point, the rank of x is equal to rkvy. By
Lemma (2.3), rkvg is equal to the number of generic gaps that are at most equal
to g, whence, the rank is equal to s.

Thus the first two assertions of the Proposition has been proved. To prove the
last assertion, consider the complement of the set of Weierstrass points. By the
definition, the complement consists of the points x satisfying for all 7 the following
condition,

(2.9.1) rkv; =rkv;(z).

Clearly, when i is sufficiently big, say for i>4g, the left hand side of (2.9.1) is
constant. It follows from the inequality (1.4.1) and the first inequality in (2.1.2)
that the condition (2.9.1) holds for all >4 if and only if it holds for ig. Hence
the complement of the set of Weierstrass points is equal to the set of points  such
that the condition (2.9.1) holds for i=0, ..., ip. It follows from Lemma (1.4) that the
condition (2.9.1) is an open condition. Therefore, the complement is open. Thus
the last assertion of the Proposition holds.

(2.10) Note. Proposition (2.9) shows that the Weierstrass points are those with
exceptional gap sequences. In the classical situation, a gap at a point z is defined
as an integer n such that there are no meromorphic functions with a pole of exactly
order n at x and no other poles. As is well known, and shown using the wronskian
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determinant, the gaps at almost all points are 1,2,...,g (where g is the genus of
the curve), the remaining points being the Weierstrass points. It was therefore
natural, as Schmidt did [35], to define the Weierstrass points of any non-singular
curve as being the points with exceptional gap sequences, even when the general
gap sequence is different from 1,2, ..., g. Proposition (2.9) shows that we could have
used a similar definition here. It is however preferable to use our definition, because
it relates the Weierstrass points to the ranks of maps of sheaves. One example
that illustrates this advantage is the inequalities of Proposition (2.4). The first
one of these, for s=1, was observed by Schmidt [35] and he suggested that the
remaining would hold. These were however first proved by Matzat [30]. From our
point of view these inequalities simply reflect the upper semi-continuity of ranks
of sheaves. Another example of the advantage of our definition is given by the
assertions of Proposition (2.5). These assertions state that the two key properties
of the introduction can be formulated in terms of rank conditions.

In Section 5 we shall make frequent use of this interpretation of the key prop-
erties to prove that the most common Wronski systems have the properties.

3. Wronskians

The main reason for introducing Wronski systems is that they, in a natural way,
give rise to certain maps called wronskians that generalize the classical Wronski
determinants. We shall in this section recall (from [25]) the main properties of the
wronskians associated to a Wronski system and show that the wronskians vanish
exactly at the Weierstrass points defined in the previous section.

(3.1) Theorem. Fiz a Wronski system as in (2.1). Moreover, fiz a sequence
ni,Ng, ... such that each n; is equal to 0 or 1. Set
rii=ni1+..+n; fori=1,2,...
Assume for i=1,2,... that
(3.1.1) rkv; <r;.

Denote by 11,19, ... the increasing sequence of indices i for which n;=1. Then:
For every positive integer h there is a canonical map,

Th

(3.1.2) wp: A\W—Ki,®...0K

Ty *

If one of the inequalities (3.1.1) for i=1,...,h is strict, then the map wy is equal
to zero. Assume moreover that every map v1,...,vn of the Wronski system is of
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generically constant rank. Then conversely, if wy, is equal to zero, then one of the
inequalities (3.1.1) for i=1, ..., h is strict.
The formation of the maps wy, of (3.1.2) commutes with pull-back as follows:
For any morphism of schemes f:X'—X, the pull-back of the Wronski
system (2.1) is a Wronski system on X' and f*wy, is equal to the map wp,
obtained from the pull-back of the system.
Finally, assume for i=1, ..., h that the inclusion map 1;: K;— Q; has a contrac-
tion 0;: Q;—K;. Then

T

Wh = /\(Qilviu ey Qirvi,«)y

where T:=ry and (0, Vi, ..., 0i,V:,.) 15 the map W—K;, @...®0K;,. induced by the
maps i, vi; .

Proof. All the assertions of the Theorem are proved in Section 1 of [25].

(3.2) Definition. Fix a Wronski system as in (2.1). Define the wronskians of
the system as the maps wy, of Theorem (3.1) corresponding to the sequence of n;’s
defined by the equations,

rkv,=ny+...4n; fori=1,2,....

Clearly, n;=1 if and only if ¢ is a generic gap of the Wronski system. Hence the
sequence 11,4z, ... of Theorem (3.1) is the sequence ¢y, ga, ... of generic gaps of the
Wronski system. Consequently, the h’th wronskian is a map,

(3.2.1) wh: AW =K, ®...0K,,,

where r:=rk vs. Note that the g;’s in (3.2.1) are precisely the generic gaps less than
or equal to h, cf. Lemma (2.3).

It follows from the theorem that if f: X’— X is a morphism such that every
map f*v; is of generically constant rank on X’—in particular, if X’ is integral—then
f*wr=0 if and only if at least one of the following inequalities is strict:

rk f*v; <rkw; fori=1,...,h.
Thus we have partly obtained a functorial description of the zero-scheme Z(wy)

of the wronskian. In particular we have obtained the following description of the
points of Z(wp):
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(3.3) Corollary. A point x of X belongs to the zero scheme Z(wy,) of the
wronskian wy, if and only if at least one of the inequalities rkv;(z)<rkwv; for
1=1,..., h is strict, that is, if and only if x is a Weierstrass point of rank at most
equal to rkuvy,.

(3.4) Note. It follows from (3.3) that the Weierstrass points of the Wronski sys-
tem are exactly the union of the underlying sets of the schemes Z{w;) for i=1,2, ....

Assume that every map v; of the Wronski system is of generically constant
rank. Then the gap sequence at any associated point £ of X is equal to the generic
gap sequence. Therefore, by Proposition (2.9), no associated point is a Weierstrass
point. In particular, the zero schemes Z(wp) of the wronskians are proper sub-
schemes of X.

4. Gaps of Wronski systems obtained from derivations

We shall extend the theory of higher derivations developed in [25]. In partic-
ular we shall study the properties of the Wronski systems associated to a higher
derivation. The results are central to our proof of the two key properties of gaps for
the Wronski systems associated to principal parts on a smooth family of curves with
geometrically reduced fibers. The local, algebraic, approach presented here repre-
sents a generalization of the methods for function fields used by F. K. Schmidt [34]
and [35], and continued by B. Matzat [30].

(4.1) Setup. Fix a (noetherian) ring k and a (noetherian) k-algebra A. Let D be a
higher k-derivation in A. Recall, cf. {25, Section 3], or [29, Chapter 9, Theorem 27.2,
p. 206], that D can be defined as a family of k-linear maps D;: A— A satisfying the
conditions,

DO(f):fv D'L(fg):ZDJ(f)D’L—](g) fOI'i"—‘O,].,... )
7=0

or, equivalently, as a map of k-algebras
D: A— A[[u]],

whose degree zero part Dy is the identity on A. The elements f in A such that
D;(f)=0 for i=1, 2, ... will be called derivation constants. It is easily seen that the
derivation constants form a k-subalgebra of A.

As in [loc. cit], the higher derivation D={D;} will be called iterative, if

D.D;= <’;’)Di+j for all ¢ and j.
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Clearly, if D is iterative, then 3!D;=(D;). In particular, over the field of rational
numbers an iterative derivation D={D;} is completely determined by the (usual)
derivation D7, and the ring of derivation constants is the kernel of D;.

(4.2) Definition. Fix a finitely generated free k-module V, and a k-linear map
v:V—A. Denote by Dy: AQV — A[[u]] the A-linear map defined by DV(a®f)
aD(vf). Moreover, denote by

Dy,i: A®V — A[[u]]/(u*)

the composition of the map Dy and the projection A[[u]]— A[[u]]/(u?). Clearly, the
quotient A[[u]]/(u?) is a free A-module of rank i and the following diagrams are
commutative:

ARV

(4.2.1) Dv,zi k

Allul/ () = Allu]]/(w7),

where g; is the natural projection. Consequently, the corresponding diagrams of
modules on Spec A form a Wronski system. The kernel of ¢; is the free A-module
of rank 1 generated by the image of u*~! in A[[u]]/(u?). Hence, the wronskians of
the system are maps,

(42.2) wp AQ \V = Ky, ®...0 K, = Audt++orT,

where r is the rank of Dy, and g1, g2, ... is the increasing sequence of generic gaps
of the system, see (3.2).

(4.3) Lemma. The derivation D extends uniquely to any localization of A.
Moreover, if q is an associated prime ideal of A, and k(q):=Aq/qAq is the corre-
sponding residue class field, then D extends uniquely to k(q).

Proof. The first assertion follows easily by the description of D as a map of
k-algebras A— A[[u]].

Therefore, to prove the second assertion, we may assume that A is a local ring
with g as its maximal ideal. Then, clearly, it suffices to prove that the composite
map D: A— A[[u]]— A/q[[u]] vanishes on g.

Since q is an associated prime we have that q is the annihilator, g=Ann g, of an
element g in A. Let I be the integer such that all elements D;(g) are in ¢’, but not all
are in q'*1. Such an integer exists by Krull’s intersection theorem, since Dy(g)=g
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is non-zero. Moreover, let ¢ be the smallest index such that Dg(g), ..., D;—1(g) are
in ¢'*1, but D;(g)¢q'*t!. Assume now, by way of contradiction, that there is an ele-
ment f€q such that D(f)#0. Then one of the elements D; f is outside ¢, and hence
invertible. Let j be the smallest index such that all elements Do(f), ..., Dj—1(f) be-
long to q, but D;(f) is invertible. Consider the coefficient

Dt (£)Do(9)+---+D;(f)Di(g)+...+Do(f)Di+;(g)

of w7 in the product D(f)D(g). The coefficient is equal to zero, because
D(f)D(g)=D(fg)=D(0)=0. On the other hand, all the terms in the above sum
are in g'*! except the term D;(f)D;(g) which is in g*\q"*!. This is impossible, so
we must have D(f)=0 for all feq.

Thus the Lemma has been proved.

(4.4) Definition. Let t be an independent variable over A[[u]], and denote by
Dy: A— A[[t]] the k-derivation defined by

Clearly, D induces a higher k-derivation D¢: A[[t]]— A[[t, u]] defined by
()-S5 S e
=0 =0 j=

On the other hand, a higher A-derivation Can: A[[t]]— A[[t, u]] is defined by substi-

tution,
Can (Z fiti) :=Zfi(t+u)i.
i=0

i=0
(4.5) Lemma. The derivation D is iterative if and only if the two composite
maps,
coef
A2 Al Z— Al ]

and
AL Al[H]) 225 Allt, o),

are equal.
Proof. The proof is a simple computation.

(4.6) Remark. Assume that D is iterative. It is an easy consequence of Lem-
ma (4.5) that the unique extension of D to the residue class field x(q) at an asso-
clated prime g, cf. (4.3), is again iterative.
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(4.7) Lemma. Assume that D is iterative. Let f, f1,..., fn, g1, .-, gn be ele-
ments of A. Assume that the following equation of power series in A[[t]] holds:

(4.7.1) Di(f) =91 De(f1)+--+ 90 De(fn)-
Then the following equations of power series hold:
(4.7.2) 0=D;(91)D:(f1)+...+D;(gn)Di(fr) for all i>0.

Proof. Tt follows from Equation (4.7.1) that the following equation holds in the
ring of power series A[[t, u]]:

(4.7.3) Zgj (f)(u+t)=>_ D(g;)D(f;)(u+1).
j=1 j=1

Indeed, evaluate Can and D on the right hand side of Equation (4.7.1). By
Lemma (4.5), D°°* D;=Can D;. Hence it follows from Equation (4.7.1) that the
results of the evaluations are equal. Clearly, evaluation of Can yields the left
hand side of Equation (4.7.3). Evaluation of D¢ yields the right hand side of
Equation (4.7.3), again because D°°*f D,=Can D;. Thus Equation (4.7.3) holds.

Substitute t—¢—wu in Equation (4.7.3) to obtain the following equation in
Alft,ull:

(4.7.4) > g;Du(fi)=>_ D(g:)De(fy)-
j=1 Jj=1

The asserted Equations (4.7.2) follow by equating the coefficients of u® for i>0 in
Equation (4.7.4).

(4.8) Proposition. Assume that A is an integral domain and k is a field. Let
V CA be a k-linear subspace of finite dimension. Then the following two conditions
are equivalent:

(i) The map Dy: A®,V — Al[u]] is injective.

(ii) The map Dy ;: A®,V — A[u]]/(u?) is injective when i is sufficiently big.
Moreover, if D is iterative and k is of characteristic zero, then the above conditions
are equivalent to the following:

(iil) The map Dy ;: A®V — Al[ul]]/(u?) is injective when i>rk V.

Proof. Denote by K the field of fractions of A. Clearly, the map in (i) or (ii)
is injective, if and only if the map defined similarly by replacing A by K and D by
its extension to K is injective. Hence we may assume that A is a field.

Clearly, (i) and (ii) are equivalent, and (iii) implies (ii). The proof of the
remaining implication can be found in the proof of [25, Lemma (3.5), pp. 142-143].



408 Dan Laksov and Anders Thorup

(4.9) Proposition. Assume that A is an integral domain and k is a field. De-
note by K the field of fractions of A. Then the following conditions are equivalent:

(i) For every finite dimensional k-linear subspace V of A, the induced map
Dy: A®,V —A[[u]] is injective.

(ii) For every finite dimensional k-linear subspace V of A, the induced map
Dy;: A®,V — A[[u]])/ (u?) is injective when i is sufficiently big.

(ili) The map Da: A®, A— Al[u]] is injective.

(iv) The map Dg: K®p K — K|[[u]], defined similarly using the extension of D
to K, s injective.
Moreover, the conditions imply that the extension of D to K has k as field of
derivation constants. Assume that D is iterative. Then conversely, if the extension
of D to K has k as field of derivation constants, then the above conditions hold.

Proof. Tt follows from Proposition (4.8) that (i) and (ii) are equivalent. The
equivalence of (i) and (iii) is immediate. Clearly, (iv) implies (iii). To prove the
converse, assume that (iii) holds. Let z be an element in the kernel of the map in (iv).
Then, since K is the field of fractions of A, there exists a non-zero element b of A
such that the product of 1®b and z is contained in K ®y A. Clearly, multiplication
by 1®b on the source of the map in (iv) commutes with multiplication by Db on the
target. Therefore, since multiplication by 1®b is an automorphism of K&y K, we
may assume that z belongs to K®; A. Then z belongs to the kernel of the restricted
map K®A—K[[u]]. The restricted map is injective, because the map of (iii) is
injective. Hence z is equal to zero. Thus (iv) holds. Hence the conditions (i)—(iv)
have been shown to be equivalent.

Assume now that the conditions hold. Denote by C the ring of derivation
constants for the extension of D to K. If a belongs to C, then the image of 1®a
under the map in (iv) is the constant power series a. Therefore, the image of K ®;C
under the map in (iv) is of dimension 1 over K. Since the map in (iv) is injective,
it follows that C' is of dimension 1 over k. Hence C'=k.

Assume finally that D is iterative and that the extension of D to K has k as
field of derivation constants. By the equivalence of the conditions of the lemma, it
suffices to prove for any finite dimensional k-linear subspace V' of K that the map
K@,V —K|[[u]] is injective. The latter assertion is equivalent to the following: If
f1, -, fn are linearly independent over k, then the power series D(f1), ..., D(f,,) are
linearly independent over K.

To prove the latter assertion we proceed by induction on n. Let fi, ..., fn41 be
linearly independent over k. Assume, by way of contradiction, that the power series
D(f1),.-.s D(fn+1) are linearly dependent over K. By induction, the n power series
D(f1),...,D(f,) are linearly independent over K. Therefore, there exists a linear
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relation of the form

(4.9.1) D(fn+1) =01 D(f1)+...+gnD(fn),

where g1, ..., g, are elements of K. Equating the constant terms in the latter relation
yields the equation

(4.9.2) frri=g1fi+. FGnfn.

Moreover, by Lemma (4.7), Equation (4.9.1) implies the following equations,
Di(g1)D(f1)+...+Di(9n)D(fr) =0 for all i >0.

By the induction hypothesis, the latter equations imply that D;(g;)=0 for i>0,
that is, the coefficients g; are derivation constants. Therefore, by hypothesis, the
coefficients g; are elements of k. Thus Equation (4.9.2) implies that the elements
fi, .-y fna1 are linearly k-independent, in contrast to the assumption.

Hence the Proposition has been proved.

(4.10) Note. It is apparent from the preceding result why the iterative deriva-
tions are so important. Only the restrictive hypothesis that the derivations are on
a field limits the usefulness of the results. As the next two result show we can, in
many useful situations, limit our attention to the case of fields.

(4.11) Theorem. Let A be a k-algebra, and D an iterative k-derivation on A.
Moreover, let V be a free k-submodule of A. Assume for every associated prime q
of A that the following two conditions hold:

(1) The intersection VNq is equal to pV,

(2) The extension of D to k(q), given in (4.3), has k(p) os field of derivation
constants,
where p:=kNq is the contraction of q to k. Then, the map of (4.2),

Dy,i: AV — Al[u]]/ ("),

is injective when i is sufficiently big. Moreover, if the field k(q) is of characteristic
zero for every associated prime q of A, then the map Dy, is injective when i>1k V.

Proof. The map Dy,; is a map of free A-modules. Hence, by (1.2)(2), Dy, is
injective if the map of fibers Dy ;(q) is injective for every associated prime q of A.
Let g be an associated prime of A, and denote by p:=qNk the contraction. It follows
from Lemma (4.3) that D extends uniquely to a derivation D(q) on &(q). Clearly,
the extension D(q) is iterative and &(p)-linear.
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Consider the fibers V(p):=V @i k(p) and A(p):=AQrk(p). Let

7(2): V(p) — (q)

be the k(p)-linear map defined as the composition of the map V(p)— A(p) and the
canonical map A(p)—k(q). Clearly, the map Dy ;(q) is equal to the map of (4.2)
obtained from the extended derivation D(q) and the map y(q) above. It follows
from Condition (1) of the theorem that the map 7(q) is injective. Moreover, by
Condition (2) of the theorem, the derivation D(q) has «(p) as field of derivation
constants. Therefore, the injectivity of Dy ;(q) when ¢ is sufficiently big is a conse-
quence of the last assertion of Lemma (4.9), applied to the derivation D(q) and the
subspace V (p) of k(q). Moreover, the last assertion of the theorem follows from the
part of Lemma (4.8) that asserts that (ii) implies (iii).

(4.12) Note. Clearly, Condition (1) of Theorem (4.11) holds for an associated
prime q if and only if the composite map v(q): V(p)— A(p) —«(q) (defined in the
proof of the theorem) is injective. In particular, Condition (1) holds if A is flat
over k and the fiber A(p) is an integral domain. Indeed, the contraction p is an
associated prime of k and q corresponds to an associated prime of the fiber A(p),
because A is flat over k (see [28, p. 58]). Hence the first map V' (p) — A(p) is injective
by (1.2)(1) and the second map is the inclusion of an integral domain in its field of
fractions. Thus the composite map ~y(q) is injective.

The above theorem has a wide variety of applications in geometry. In many
situations, Condition (2) is guaranteed by the geometry of the spaces involved.
However, for use in the next section we will only need the following more special
result.

(4.13) Proposition. Assume that A is an integral domain of dimension 1
and k is a field. Let m be a prime ideal of A. Assume that m is k-rational, that is,
a prime ideal such that the composition k—A— A/m is an isomorphism. Denote
by ar—a the resulting map A—k. Consider the composite map induced by the k-

derivation D: A— Al]],

D: A— Al[u]] = k[[u]],

where the second map is defined by reducing the coefficients modulo m. Assume that
there exists an element z in A such that D;(2)#0 for some i>0. Then:

(1) The map D is injective.

(2) For every finite dimensional k-linear subspace V' of A, the map of (4.2),

Dy,i: A®yV — A[[u]]/(u'),
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is split injective in a neighborhood of m when i is sufficiently big. In particular, the
map Dvy,; is injective when i is sufficiently big.

(3) The field k is the field of derivation constants for the extension of D to the
field of fractions of A.

(4) Assume moreover that D is iterative and k is of characteristic zero. Then
Dy, is injective when i>1k V.

Proof. The assertions (1), (2) and (4) are the contents of [25, Lemma (3.5),
p. 142]. By Proposition (4.9), the assertion (3) is a consequence of (2). Hence the
assertions of the lemma hold.

5. Gaps of Wronski systems of principal parts

For a linear system on a smooth family of curves there is a natural Wronski
system coming from the sheaves of principal parts. This particular Wronski system
was used to study Weierstrass points on a smooth curve in [23] and [24] and to
study Pliicker type formulas for families of curves in [25]. In this section we recall
the properties of the Wronski system associated to principal parts given in [25], and
show that the Weierstrass points that come from this Wronski system generalize
the classical concept of Weierstrass points. More importantly we shall show how
the results of the previous section can be used to analyze the key properties, of
the introduction, for the Wronski systems coming from principal parts of a smooth
family of curves with geometrically irreducible fibers.

(5.1) Setup. Assume that X is a smooth family of curves over a base scheme S,
that is, assume that there is given a smooth map f: X —S whose geometric fibers
are curves. Fix an invertible Ox-module £, a locally free Og module V, and an
Og-linear map,

(56.1.1) vV — f.L.
Consider the associated Wronski system, see [25, (2.2.1), p. 138],
Vx
(5.1.2) l NG
P s(L) —2>Pi (L),

Recall (cf. [25] (2.1)) that P% / 5(L) is the sheaf of i’th order principal parts, defined
as p«(Ona, ®¢* L) where p and ¢ are the two projections from X x X to X and A; is
the subscheme of X x X defined by the (i+1)’st power of the ideal Z of the diagonal.
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The restrictions of p and ¢ to the closed subscheme A, are topologically the
same map. Therefore, we can identify ch/s(ﬁ) and ¢.(Oa,®q*L) as abelian
sheaves. Hence, by adjunction, we obtain an Og-linear map, d’-: L—P% / s(£). For
L:=0x we obtain a sheaf of algebras, P} / 5:=P«(04,), and the adjunction map
¢': Ox —p«(Oa,) is an inclusion of algebras. Clearly, the map d%:=d,, is a map
of Og-algebras. From the above maps we define the map 6%:Ox—P% /s 88 the
difference 6% :=d% —t’%.

Consider on X x X the exact sequence,

(5.1.3) 0—7Z"—Oxxx —0a,_, —0.

The sequence remains exact when tensored by ¢*£, and from the long exact
sequence of higher direct images of p, we obtain an exact sequence,

(5.1.4) D«q" L — 77;(_/}9(5) — R'p,(T'®q* L) = R'p,.q¢* L—0,

which is exact to the right, because the restriction of p to the closed subscheme
A;_1 of X x X is a (topological) homeomorphism.

The base change map f* fo L—p.q* L is an isomorphism, because f is flat. The
vertical map v; in (5.1.2) is the composition of the first map of (5.1.4) and the map
*v: f*V— f* fL=p.q*L. The horizontal map in (5.1.2) is the canonical surjection
P;i-_/g(ﬁ)ﬁ??}_/%(ﬁ) It is well known, cf. [loc. cit.], that the canonical surjection has
as kernel the invertible sheaf (2%, )2 V®L. In particular, the sheaf Pg(‘/g(ﬁ) is
locally free of rank i. Hemnce, the maps in (5.1.2) define a Wronski system as in (2.1).
The wronskians of the system are maps of the form,

(5.1.5) wn \Vx = (05 PO g o

where r=rk v and ¢y, ..., g, is the increasing set of generic gaps that are less than or
equal to h, see (3.2). Denote by &;(L) the cokernel of the first map in (5.1.4). Then,
from the exact sequence (5.1.4), we obtain a commutative diagram with exact rows,

0 &(L) R'p,(T'®q* L) —> R'p.g*L —0

o LT

0—>&i-1(L)—— R'p (T '®¢*L) — Rlp,.g*L—0.

Note that the &;(L) are quotients of the cokernels &; of the maps v; of the
Wronski system (5.1.2). Clearly, if the map « of (5.1.1) is surjective, then &=E&;(L).
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(6.2) Note. From diagram (5.1.6) we can obtain an interpretation of gaps at a
point x in terms of the poles of meromorphic functions at x similar to that given on
Riemann surfaces. Indeed, assume in addition to the hypotheses of (5.1) that f is
proper and R!f.(L) is locally free. Let z be a point of X. Denote by Z, the fiber
product

Zy =X xgK(x).

Then Z, is a proper, smooth curve over k{z), with  as a canonical (z)-rational
point.

Since P;C_/ls is a locally free Ox-module, it follows that the module Ox y x /Z" is
flat over X. Hence, it follows from the exact sequence (5.1.3) that Z° is flat over X.
Thus the principle of base change {20, Theorem 12.11, p. 290] applies to the map
p: X x X =X and the module Z*®@L. Since the relative dimension is equal to 1, we
obtain isomorphisms,

Rlp* (Ii®q*[') (z) = Hl(Zaca (T®q*£)|zm)’

As noted above, the module Oxyx/Z is flat over X. Therefore, from the exact
sequence (5.1.3) we obtain by restricting to Z, the exact sequence

O——;I%z — 0z, -——)(’)Zz/.'[lzz — 0.

The quotient O /IZZE is supported at the point x, and at x the ideal I%w is equal
to m’, where m,, is the maximal ideal of Oz_ ., see [19, Corollaire (16.4.12), p. 22].

Since Z, is smooth, it follows that the ideal I%z defines the Cartier divisor iz,
that is, Tj =0z, (—ix). Hence we have that

(T'®q*L)| Z, = Lz, (—ix).

Moreover, R! f,L is locally free by assumption, and R'p.q*L=f*R! f.L by flat base
change. Therefore, we obtain from Diagram (5.1.6) a commutative diagram with
exact rows:

0——&(L)(x) ———— HY(Z;, Lz, (—iz)) —— HY(Z,, Lz, ) —0.

l l

O—>€Z_1(£)($) _>H1(Zm;£Zw ('—(Z—l).’L‘)) —>H1(Zw,ﬁzz) —(.

It follows from the latter diagram that the surjection,

(5.2.1) HYZ,,Lz (—iz))— HY(Z,, Lz, (—(i—1)x)),
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is an isomorphism if and only if the surjection,
&i(L)(x) = &1 (L) (),

is an isomorphism. As mentioned in (5.1}, if the map =y of (5.1.1) is surjective, then
&;(L) is equal to the cokernel &; of the map v; of the Wronski system (5.1.2). Hence
we have obtained the following result:

Proposition. Assume that the linear map v:V— f.L of (5.1.1) is surjective.
Then, for the associated Wronski system (5.1.2) of principal parts, the integer i is
a gap at z, if and only if the map (5.2.1) is an isomorphism.

As a consequence, our definition of gaps generalizes the classical definition.

(5.3) Definition. Consider the Wronski system (5.1.2). Denote by U the set of
points = of X for which the map v;(x) is injective when 7 is sufficiently big.
Moreover, denote for every s in S by v(s)’ the following x(s)-linear map,

(5.3.1) Y(8)': V(8) = (f L) (8) = foul(L]| Xs) = HY (X, L] X5),

induced by v and base-change. It follows from [25, Lemma (4.4), p. 145] that if
the linear map v is injective, then the map ~(s)’ of (5.3.1) is injective for every
associated point s of S.

The map v will be said to define a linear system on the family X/, if the
map v(s) is injective for all points s of S.

(5.4) Note. To explain the relation between the Wronski system (5.1.2) asso-
ciated to principal parts and the Wronski systems of the form (4.2.1) we choose an
open affine subset Speck of S and an open affine subset Spec A of f~! Speck such
that £ is trivial on Spec A and such that there exists an element z in A whose differ-
ential dz generate Qh/k (see [19,1V, 16.10.6 and 6.11] or [1, Lemma 5.6, p. 150]). We
let X =Spec A and (=64 z=d% 2—1% 2, where &%, d% and 1%, were defined in (5.1).
Recall from [25, (2.4), (2.5) and (3.4)], that P% /s is a free A-module with basis
1,¢,...,¢*. Hence we can define maps Dj;: A— A for j=0,1,2,... by the equation,

i f=Dof+D1f(+...4+D; fCE

Moreover, recall that the map D: A— A[[u]] defined by Df=3:2 D, fu’ is an it-
erative higher derivation. The Wronski system (5.1.2) becomes the Wronski sys-
tem (4.2.1) associated to D when we identify the A-module A[[u]]/(u?) with P}“/g
via the map that sends u to {. As a consequence of this identification the fol-
lowing fundamental result follows from Proposition (4.13) (see [25, Lemma (4.5),
pp. 145-146]):
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Proposition. In addition to the hypotheses of (5.1), assume that X/S has
geometrically irreducible fibers. Let s be a point of S. Assume that the map Y(s)
of (5.3.1) is injective. Then the fiber f~'s is contained in U. Moreover, if k(s) is
of characteristic 0 and & is the generic point of the fiber f~1s, then the map v;(§)
is injective when i>rk V.

From the latter result we obtain the following result that shows that the two
key properties of gaps referred to in the introduction hold for linear systems on a
smooth family with geometrically irreducible fibers:

(5.5) Theorem. In addition to the hypotheses of (5.1), assume that X/S has
geometrically irreducible fibers. Assume moreover that the linear map -y is injective.
Then:

(1) The map v; is injective for all sufficiently big i. In particular, the number
of generic gaps is equal to the rank of V, and the set U is equal to the open set
defined by any of the equivalent conditions of Proposition (2.5). Moreover, the
set U contains the fiber over every associated point of S.

(2) Assume that the characteristic is equal to zero at every associated point
of S. Then v; is injective for i>1kV. In particular, the sequence of generic gaps is
classical, that is, it is the sequence 1,2, ...,tk V.

(3) Assume that the map vy defines a linear system on X/S. Then U=X. In
particular, the number of gaps at any point of X is equal to the rank of V.

Proof. Let £ be an associated point of X. To prove the injectivity of v;, asserted
in (1) for 4 sufficiently big and in (2) for i>rk V, it suffices by Remark (1.2) to prove
that the map v;(£) is injective. Set s:=f£. Then s is an associated point of S and §
is the generic point of its fiber because f is flat (see [28, Corollary, p. 58]). It follows
from what we said in (5.3) that the map v(s)’ is injective. Therefore, the asserted
injectivity follows from the Proposition of Note (5.4).

By Proposition (2.5), the second assertion of (1) is a consequence of the first.
The last assertion of (1) follows from the Proposition of Note (5.4).

We proved above the injectivity asserted in (2). Clearly, the second assertion
of (2) is a consequence.

The first assertion of (3) follows immediately from the Proposition of Note (5.4).
The second assertion follows from (1) and Proposition (2.5).

Thus the theorem has been proved.

6. Wronski systems on Gorenstein curves

For families of curves with singular fibers the relative principal parts of Section 5
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are not locally free and therefore do not give Wronski systems as in (2.1). In
this section we shall show that for a single Gorenstein curve there is a natural
replacement of the principal parts, and we obtain natural Wronski systems. We take
here as a definition of a Gorenstein curve that the module of regular (meromorphic)
differentials is invertible. Our theory can be applied to families with Gorenstein
fibers that have a simultaneous resolution of singularities by a smooth family of
curves. However, for simplicity, we shall treat the case of a curve defined over a
perfect field only. The wronskians obtained from our Wronski systems are globally
defined, and they generalize to arbitrary characteristics the theory of R. Lax and
C. Widland [39] for Gorenstein curves in characteristic zero. A similar globalization
of the wronskians was obtained by L. Gatto [17] in characteristic zero.

(6.1) The results of Section 5 apply in particular to the case of a smooth curve Y
over a field k. So, if £ is an invertible module on Y, and V is a finite dimensional
k-subspace of H?(Y, L) there is a Wronski system,

Wy
(6.1.1) wl N§
Pyn(£) =Py (L),

The wronskians of the system are maps of the form,

(6.1.5) wp: /\ Vy — (Qb/k)®(gl+...+gr—r)®£®r 7

where r=rkv, and g, ..., g, is the increasing set of generic gaps that are less than
or equal to h. Note that the Proposition of (5.2) applies when Y is proper and the
linear system defined by V is complete, that is, when V=H°(Y, £). Moreover, when
Y is geometrically irreducible, theorem (5.5) applies; in particular, the number of
gaps at any point of Y is equal to the number of generic gaps.

Let K be the field of rational functions on Y. Let ¢ be a closed point of Y, and
let z be a rational function on Y such that the differential dz generates Q%, Ik at q;
for instance z could be a function of order 1 at g. Then dz trivializes Q%,/k in a
neighborhood of g. In such a neighborhood, the sheaf of algebras P} /k is free, with
a basis given by the powers 1,8z, (62)?, ..., (62)", where §2=6% 2 is defined in (5.4).

(6.2) Consider now an integral algebraic curve X defined over a perfect field k. Let
m: Y — X be the normalization. Then Y is smooth over k, and 7 is an isomorphism
outside the finitely many singular points of X. Let K be the common field of
rational functions of X and Y. Consider the vector spaces over K of meromorphic
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differentials 7}, /i and meromorphic jets (or principal parts) Py /k- The latter is of
dimension n+1 over K, generated as in (6.1) by the powers 1,6z, ..., (§2)".

As defined by Serre [37, p. 76], a meromorphic differential weQ}, / is said to
be regular at a closed point p in X, if

Z Res,(fw)=0 for all f€Ox,.
qET1p

The residue is that of Tate, see [1, p. 171]. The residue Res,(w) vanishes at all
closed points g of Y at which w is regular. In particular, if w is regular at all points
in the fiber m~!p of closed point p of X, then it is regular at p. Moreover, if w
is regular at p, then it is regular at all closed points in a neighborhood of p. We
denote by Qx the Ox-module of regular meromorphic differentials. Thus, over an
open subset U of X, the sections of Qx are the meromorphic differentials that are
regular at all closed points of U. Note that the module Q x contains the direct
image 7.(}y ; as a submodule.

(6.3) Definition. A non-zero function ¢ of K will be called a parameter on an
open subset U of X if ¢ is regular at all points of 71U and such that the differential
dt is a basis for Q}F_IU /k, @S an O,-1y-module. If p is a closed point of X, then
there exists a function ¢ which is a parameter on some open neighborhood of p in X.
Indeed, by the approximation lemma for valuations, there exists a function ¢t which
is of order 1 at all points ¢ in the fiber 7~!p. Then the differential dt generates the
stalk of Q3 /. @t all points g of n~1p. Therefore, the differential d¢ generates (2, Ik
in some open subset V of Y containing the fiber 7~ !p. Since the map m:Y —X
is closed, there is an open neighborhood U of p in X such that #—'UCV. Then,
clearly, ¢ is a parameter on U.

Now, let p be a closed point of X. Consider non-zero functions ¢ and g of K
such that ¢ is a parameter in a neighborhood of p and such that the meromorphic
differential dt/g is regular at p. Fix n and form the meromorphic jet in Pz Ik

(6.3.1) 6t/g,

where 6t=0%1t as defined in (5.1). A meromorphic jet in PR Ik will be called regular
at p, if it belongs to the Ox ,-subalgebra of P /k generated by all jets of the
form (6.3.1). Clearly, if a meromorphic jet is regular at a point p, then it is regular
at all points in a neighborhood of p. We denote by ’ﬁ}} the Ox-module of regular
(meromorphic) jets. Thus, over an open subset U of X, the sections of ﬁ}} are the
meromorphlc jets that are regular at all closed points of U. Obviously, the surJectlon
Pg =Py ! induces a surjection PX —>PX 1. By definition we have that ’PX Ox.

Assume from now that the Ox-module Qx of regular (meromorphic) differen-
tials is invertible.
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(6.4) Proposition. Let z be a parameter on an open subset U of X, and
let h be any non-zero function. Assume that the meromorphic differential dz/h is
a generator for the restriction to U of the Ox-module ﬁ}( of regular differentials.
Then the jets in P}é/k,

(6.4.1) 1,(62/h), ..., (52/R)",

form a free basis for the restriction of 15}5 to U. Moreover, if f is a function in
T(U,Ox), then the total differential d*f is reqular on U.

Proof. Since z is a parameter on U, the jets 1,6z, ..., (62)™ form a basis for
Pr-iyy» see (5.4). Consequently, the latter jets, and hence also the jets (6.4.1),
form a K-basis for P} Ik Thus we have to prove that, if a given meromorphic
jet is regular on U, resp. is of the form d"f, then, when expanded in terms of the
basis (6.4.1), the coefficients belong to I'(U, Ox).

The question is local on U. Therefore, we may assume that U=Spec A is affine.
Moreover, to prove the assertion for regular jets, it suffices to consider a jet of the
form (6.3.1), where ¢ is a parameter on U and dt/g is regular on U.

The preimage m~'U is equal to Spec B, where B is the integral closure of A
in K. We note first that h belongs to the conductor of B/A. Indeed, for any b€ B,
the differential bdz is regular on U. Hence there is an equation, bdz=adz/h for
some a€A. Thus hb=a€ A, and consequently h belongs to the conductor.

Consider first the jet 6t/g of (6.3.1). The differential d¢/g is assumed to be
regular on U. Hence there is an equation,

(6.4.2) dt/g=adz/h where a€ A.

As t is a parameter on U, the differential dt is a generator for the B-module 0} Jk"
It follows from Equation (6.4.2) that dz=h/(ga)dt. Hence the function h/(ga)
belongs to B. In particular, the function ~/g belongs to B.

Now, in P} /K We have an expansion,

(6.4.3) St =b162+ba(62)*+...+b,(62)",

where the coefficients b; belong to B (in the notion of (5.4) we have that b;=D;(t),
where the {D;} is the higher derivation associated to z). The coefficient b; is de-
termined by the equation df=b;dz, and hence it follows from (6.4.2) that b; =ga/h.
From the expansion (6.4.3) and the determination of b1, we obtain the expansion,

6t/g=a(bz/h)+(b2h?/g)(82/h) %+ ...+ (bh™ /g) (62/h)".
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The coefficient @ was an element of A. Moreover, the coefficient b;h’ /g for i>2 is
equal to h*~2hb;(h/g). As observed above, the function h/g belongs to B. There-
fore, the coefficient belongs to A, because h was in the conductor of B/A. Hence, in
the expansion of 6t/g in terms of the basis (6.4.1), all the coefficients belong to A.
Consider similarly the expansion of d"f. In PZ /K We have the expansion,

d*f = f4+b162+...4+bn(62),

where the coefficients b; belong to B. From the latter expansion we obtain the
expansion in the basis (6.4.1),

d*f = f+(hby)(62/h)+...+ (h™by) (62/h)™.

Since f is in A and h is in the conductor of B/A, the coefficients belong to A.
Therefore, the total differential d™f belongs to the A-algebra generated by éz/h. In
particular, d™f is regular on U.

Hence the proposition has been proved.

(6.5) The definitions and results above extend to the case of principal parts twisted
by a given invertible Ox-module L.

Let L denote the space of meromorphic sections of £. Then L is of dimension 1
over K, and Pg, (L) is the space of meromorphic sections of P / o (L)

Recall that if a section s of £ over U trivializes £ (as an Oy-module), then
the total differential d"s=d}s of (5.1) trivializes P ;. (L) as a Pp /- module. Con-
sequently, if a local section s of £ generates £ in a neighborhood of p, then every
meromorphic jet w in Py (L) is of the form ¢d"s, with a unique jet ¢ in Pg . Call
a meromorphic jet w of P} /k(L) reqular at the closed point p, if the corresponding
jet ¢ of PZ /k is regular at p. As d"(fs)=d"fd"s, it follows from the last part of
Proposition (6.4) that the notion of regularity is independent of the choice of s.

Denote by P%(L) the Ox-module of regular jets of Py /&(L)- Thus, over an open

subset U of X, the sections of 753‘{ (L) are the meromorphic jets that are regular at
all closed points of U.
Then, from Proposition (6.4) we obtain the following;:

(6.6) Corollary. The Ox-module ﬁ}‘{(ﬁ) is locally free of rank n+1, and
there are exact sequences,

0-08"QL —PL(L) = PY (L) —0.
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Moreover, the total differential d} induces a k-linear map of sheaves d™: L—»’ﬁ;} {L).

(6.7) Assume now that a finite dimensional k-subspace V of H%(X, L) is given.
Then we obtain Ox-linear maps v; fitting into commutative diagrams,

Vx

(6.7.1) l g
P (L) —=P3(L).

It follows from Corollary (6.6) that the system is a Wronski system. The wronskians
of the system are maps of the form,

Wh,: /\ Vx — E®r®§§(il+”'+"_r),

where r=rkvy and i4,...,%, is the increasing set of generic gaps that are less than
or equal to h.
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