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Weierstrass points and gap 
sequences for families of curves 

Dan Laksov(1) and Anders  Thorup(2)  

Abstract .  The theory of Weierstrass points and gap sequences for linear series on smooth 
curves is generalized to smooth families of curves with geometrically irreducible fibers, and over 
an arbitrary base scheme. 

O. I n t r o d u c t i o n  

We present a theory  of Weierstrass points and gap sequences for linear series on 

smooth  families of curves with geometrical ly irreducible fibers; the parameter  space 
is an arb i t rary  base scheme. The  theory  provides a flexible framework for s tudying  

the behavior  of Weierstrass points under  deformation of curves, generalizing the 

classical theory  of Weierstrass points on a single Riemann surface. 

The  work is a cont inuat ion and extension of the results in [25] where we stud- 
ied enumerat ive formulas for multiple points of linear systems on smooth  families 

of curves. Tha t  such an extension is na tura l  and interesting is indicated by the  

relations between multiple points  and gaps of linear systems on smooth  curves (see 

[36] and [24]). Compared  to  [25] the present work has several new features: 

First  of all, we introduce and develop a theory  of gaps and Weierstrass points. 

We work, as in [25], in great  generali ty with Wronski  systems on /~ noether ian  

scheme. For such systems we define gap sequences and Weierstrass points and show 

tha t  they  satisfy propert ies analogous to those of gaps and Weierstrass points  on 

smooth  curves. The  gaps associated with a linear sys tem on a smooth  curve have 
the following two key properties:  

(1) The  number  of gaps at  each point  is equal to  the number  of gaps at the 
generic point.  
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(2) The number of gaps at the generic point is equal to the dimension of the 
given linear system. 
Moreover, a Weierstrass point is characterized as a point where the gap sequence is 
different from the generic gap sequence. The main result (Corollary (3.3)) is that  
the Weierstrass points are the points of the zero scheme of the wronskians associated 
to the Wronski system. In particular, the Weierstrass points that  we define have 
the fundamental property of being the zeros of sections of locally free sheaves on 
the total space. 

When the scheme is the total space of a family of smooth curves and the 
Wronski system is obtained from the sheaves of principal parts our theory generalizes 
that  for smooth curves (see [34], [35], [30], [23], [24]). We even show (Note (5.2)) 
that,  when the family is proper, we can interpret gaps in terms of the existence of 
poles of meromorphic functions. 

Secondly, we extend, in Section 4, the theory of higher derivations in abstract 
algebra developed in [25], and we obtain further generalizations of the works [21], 
[34], [35] and [29]. In particular, we find in Theorem (4.11) a sufficient condition 
for the gaps associated to an iterative derivation to have the second key property 
above. Our results make it possible to give the exact relations between the local 
theory of Weierstrass points, based upon higher derivations and most commonly 
used in the literature, and the global approach of [23], [24], [25] and of the present 
work. In fact, the present work started as an at tempt  to clarify these relations. 

A third new feature of the present work is the refinement of Theorem (4.6) 
of [25] and the adaptation of that  result for use in our theory of gaps and Weierstrass 
points. For the Wronski systems obtained from linear systems on a smooth family of 
curves with geometrically irreducible fibers we establish in Theorem (5.5) both key 
properties of the gaps. We establish the key properties without using the Riemann- 
Roch Theorem for curves! The Riemann-Roch Theorem is an essential ingredient 
in all other treatments, limiting them to complete curves (see [18] for example). 

The final new feature of this work is its applicability to families with possibly 
singular fibers. In this direction we present in the last section for a Gorenstein 
curve the Wronski systems that  form the natural generalization of the systems of 
principal parts for a smooth curve. Our results generalize those of [27] to arbitrary 
characteristics and globalize the wronskian determinant used in their work. 

The main applications of our theory for smooth curves are to the universal 
families of curves over various moduli schemes. Such families contain interesting 
subsets defined by conditions of Weierstrass type. This is evidenced by a large 
number of works (see for instance [2], [3], [4], [6], [7], [8], [9], [22], [26], [32], [33]). In 
these works, the subsets are defined fiberwise, that is, as subsets of the individual 
members of the family. Also in the series of articles [10], [11], [12], [13], [14], [15], 
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containing many important results from the theory of curves, the central definition 

of limit series on curves is based upon a Pliicker formula (also called the Brill-Segre 

formula) on the individual members of the family. In this work we show how to 

define such sets globally as relative schemes over the moduli scheme, and even as 

zero schemes of sections of locally free sheaves. For families of hyperelliptic curves 

such a g]obal construction of Weierstrass schemes was given in [22]. 

We will express our thanks to S. L. Kleiman for his remarks that led to the 

present formulation of Theorem (5.5). 

1. P r e l i m i n a r i e s  

We collect, in this section, some of the fundamental properties of ranks of 
maps between sheaves that  are essential for the study of Wronski systems and their 
wronskians in the sequel. 

(1.1) Se tup .  We shall work with modules over a fixed (noetherian) scheme X. If 
J~ is a module and x is a point of X,  we denote by ~(x) the residue field at x and by 
~(x):=~| the fiber of 5 ~ at x. If v: 6 - ~  is a map of modules, we denote by 
v(x): G(x)--*~(x) the ~(x)-linear map induced on the fibers. Unless the contrary is 
stated explicitly, a module is assumed to be coherent and a locally free module is 
assumed to be of finite rank. 

(1.2) Remark. Let v: W--*P be a map of quasi coherent (_0x-modules. The 
following two results are well known, see for instance [25, Lemma (4.2), p. 144]: 

(1) I f W  is flat and v is injective, then the map v(~) is injective for all associated 
points ~ of X. 

(2) Assume that  ]iV and P are locally free (not necessarily of finite rank). Then 
v is injective if and only if the map v(~) is injective for all associated points ~ of X. 

Assume that  ]IV and 7 ~ are locally free. Then it follows from (2) that  if v is injective, 
then every exterior power Aiv is injective. The latter result can be shown to hold 
without the noetherian hypothesis, see [5, AIII.88], or [38, Lemma (1.4), p. 265]. 

(1.3) Definition. By definition, the rank of a map v: 14;---~ Q is the largest integer 
r such that  Arv#0.  

When the target Q is locally free, the map v will be said to be of generically 
constant rank if for every associated point ~ of X, the rank of v is equal to the rank 
of the map v(~). Note that  if X is integral, then every map into a locally free sheaf 
is of generically constant rank. 
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(1.4) L e m m a .  Let v: W--~ Q be a map of modules, and let x be a point in X .  
Assume that Q is locally free. Then the following inequality holds: 

(1.4.1) rkv  _> rk v(x). 

Moreover, the following two conditions are equivalent: 
(i) Equality holds in the above inequality. 

(ii) In a neighborhood of x, the cokernel of v is free and the image of v is free 
of rank equal to rk v. 

Proof. The inequality (1.4.1) holds trivially. The equivalence of the conditions 
is well known. To prove the equivalence, assume first tha t  (i) holds. Let r be the 
rank of v. To prove that  the cokernel of v is locally free, we may work locally, and 
assume that  Q is free. Moreover, covering ]/V with a free module, we may assume 
that  14; is free. Then v is represented by a matrix. By condition (i), there exists an 
r •  minor A of v, such tha t  A ( x ) ~ 0 .  Restricting the neighborhood of x we may 
assume tha t -A  is invertible. Denote by vo the submatr ix consisting of the first r 
columns of v. Without  loss of generality we may assume tha t  A is the determinant 
of the submatr ix  consisting of the first r rows in v0. Then, since A is invertible 
and At+ iv=0 ,  it follows from Cramer ' s  rule that  every column in v is a linear 

combination of the first r columns. In other words, there exists in ]/V a free rank-r  
submodule W0 which is mapped by v0 onto all of Im v. Thus the cokernel of v is 
equal to the cokernel of Vo. Again, since A is invertible, it follows by Cramer 's  rule 
that  the map v0 from W0 into Q has a retraction. Hence the cokernel of v0 is locally 
free and the image of v is free of rank r. Thus (ii) holds. Conversely, it is clear that  
(ii) implies (i). 

Hence the Lemma has been proved. 

Note. It  follows easily from Lemma (1.4) that  a map into a locally free sheaf 
is of generically constant rank if and only if the image of the map is locally free of 
constant rank on some open subset containing all associated points of X.  

(1.5) L e m m a .  Consider a commutative diagram, 

W 

where q is a surjection of locally free sheaves. Assume that the kernel of q is an 
invertible module 1~. Let x be a point of X .  Then the following inequalities hold: 

(1.5.1) rkv  _> r k u  _> rk v -  1, 

(1.5.2) rk v(x) _> rk u(x) _> rk v ( x ) - 1 .  
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Moreover, the following three conditions are equivalent: 
(i) The first inequality of (1.5.2) is strict. 
(ii) The map of fibers at x of the cokernels, Cokerv(x)-~Cokeru(x), induced 

by the diagram, is an isomorphism. 
(iii) Equality holds in the second inequality of (1.5.2). 

Proof. In the inequalities of (1.5.1) and of (1.5.2), the first inequality holds 
trivially, and the second follows from [25, Lemma (1.4), p. 134]. To prove the 
equivalence of the three conditions, consider the surjection Imv(x)--*Imu(x) in- 
duced by q(x). Denote by J the kernel of the surjection. Then J ~ 0  if and only if 
the first inequality of (1.5.2) is strict. Clearly, J fits into an exact sequence, 

0 > J ~ ]C(x) > Cokerv(x) ~ Cokeru(x) > 0. 

The term ]C(x) is one-dimensional over ~(x). Hence J r  if and only if the map 
of (ii) is an isomorphism. Therefore conditions (i) and (ii) are equivalent. The 
equivalence of conditions (i) and (iii) is immediate from the inequalities (1.5.2). 

We have thus proved the Lemma. 

2. G a p s  a n d  Weie r s t r a s s  po in t s  o f  W r o n s k i  s y s t e m s  

The central notion of this work is that  of a Wronski system. In this section we 
associate to any Wronski system the corresponding gap sequences and Weierstrass 
points and give their main properties. We note in (2.10) that  these properties are 
analogous to the corresponding properties for meromorphic functions on Riemann 
surfaces. 

(2.1) Se tup .  Fix a Wronski system as defined in [25], that  is, a sequence of 
surjections qi: Qi--~Qi_l for i=1,  2, ... of locally free sheaves Qi of rank i, together 
with a sequence of maps vi: W--+Qi such that,  for i=1,  2, ..., the following diagram 
is commutative: 

We denote by/ r  the kernel of the map qi and by gg the cokernel of the map vi. 
Then ~i  is locally free of rank 1. 

By Lemma (1.5), the following inequalities hold: 

(2.1.1) rkv~ > rk vi-1 _> rkv~-1.  
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Similarly, if x is a point of X, then the following inequalities hold: 

(2.1.2) rk vi (x) _> rk vi-1 (x) > rk vi (x) - 1, 

and, moreover, the following three conditions are equivalent: 
(i) The first inequality of (2.1.2) is strict. 
(ii) The map gi(x)--*Ci-l(x) induced by qi, vi and vi-1 is an isomorphism. 
(iii) Equality holds in the second inequality of (2.1.2). 

(2.2) Definition. An integer i > l  will be called a gap for the Wronski system 
at the point x if the three equivalent conditions of (2.1) hold. The s ' th  gap at x 
will be denoted g~(x). An integer i > l  will be called a generic gap for the system if 
rkv i>rkv i_ l .  Denote by gs the s ' th generic gap. 

Note that  if the vi's are of generically constant rank and ~ is an associated 
point of X, then i is a gap at ~ if and only if i is a generic gap. 

(2.3) L e m m a .  Let x be a point of X .  Consider a sequence 1, 2,..., h where h 
is a positive integer. Then the rank of Vh is equal to the number of generic gaps in 
the sequence. Similarly, the rank of vh(x) is equal to the number of gaps at x in the 
sequence. Moreover, for every integer s the following conditions are equivalent: 

(i) rkvh(x)>s ,  (ii) d i m g h ( x ) < h - s ,  (iii) h>g~(x). 

Proof. By (2.1.1), the following two inequalities hold: 

(2.3.1) 0 <_ rk v i - r k  vi-1 _< 1, 

and equality holds in the second inequality if and only if i is a generic gap. Clearly, 
the first assertion of the lemma follows upon addition of the inequalities (2.3.1) for 
i=1,  ..., h. 

The second assertion of the lemma follows by applying similarly the inequalities 
(2.1.2). 

The equivalence of the conditions (i) and (iii) follows from the second assertion 
of the lemma. That the conditions (i) and (ii) are equivalent follows from the 
equation rkvh(x)+dimSh(X)=h.  The latter equations hold because Qh is locally 
free of rank h. Thus the third assertion of the lemma has been proved. 

(2.4) P r o p o s i t i o n .  The number of generic gaps is finite and equal to the rank 
of vi for all sufficiently large i. Similarly, for any point x, the number of gaps at 
x is finite and equal to rk vi (x) for all sufficiently large i. Moreover, the number of 
gaps at x is at most equal to the number of generic gaps. Finally, the s'th gap at x 
is greater than or equal to the s'th generic gap, that is, 

gs(x)>_gs. 
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Proof. Clearly, the rank rkvi is bounded above by the largest integer t, such 
that  A t 1/Y~O. Hence it follows from the first assertion of Lemma (2.3) that  the 
number of generic gaps is finite and equal to rk vi for all sufficiently large i. Hence 
the first assertion holds. The proof of the second assertion is similar. 

Moreover, the third assertion follows from the first two assertions and the in- 
equality (1.4.1). Finally, to prove the last assertion, consider the sequence 1, 2, ..., h 
where h:=gs(x). By the choice of h, the sequence contains s gaps at x. Therefore, 
by Lemma (2.3) and the inequality (1.4.1), the sequence contains at least s generic 
gaps. In particular, the asserted inequality g8 < h  holds. 

(2.5) P r o p o s i t i o n .  (1) The following two conditions on points x of X are 
equivalent: 

(i) The number of gaps at x is equal to the number of generic gaps. 
(ii) For all sufficiently big i there exists a neighborhood of x over which the 

cokernel ~i is free and the image of vi is free of rank equal to rk vi. 
Denote by U the subset of points x where the two conditions are satisfied. Then U 
is an open subset of X .  Moreover, if i is sufficiently big, then over U the cokernel $i 
is locally flee and the image of vi is locally flee of rank equal to rk vi. 

(2) Assume that W is locally free of rank r. Then the following two conditions 
on points x of X are equivalent: 

(iii) The number of gaps at x is equal to r. 
(iv) The map vi (x) is injective for some value of i. 

Moreover, if there exists a point in X satisfying the latter conditions, then for every 
point x, the four conditions are equivalent and the number of generic gaps is equal 
to r. 

(3) Assume that )4; is locally free. I f  the map vi is injective for some value of i, 
then the four conditions are equivalent, and they hold for every associated point 
of X .  Conversely, if  condition (iv) holds for every associated point of X ,  then the 
map vi is injective when i is sufficiently big. 

Proof. (1) Denote by U~ the set of points x for which 

(2.5.1) rk v~ = rk vi (x). 

By Lemma (1.4), Ui is open and over Ui the cokernel Ci is locally free and the image 
of vi is locally free of rank equal to rk vi. Now, when i is sufficiently big, say for 
i~io,  the left hand side of (2.5.1) is constant and equal to the number of generic 
gaps by Proposition (2.4). Hence it follows from (2.1.2) and (1.4.1) that  UiC_Ui+l 
for i>_io. Let x be a point of X. By Proposition (2.4), (i) is satisfied if and only 
if x belongs to the union ~J~>~0 U~. By Lemma (1.4), (ii) is satisfied if and only if x 
belongs to Ui for all sufficiently big i. Therefore (i) and (ii) are equivalent, and U 
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is equal to the union Ui>_i0 Ui. In particular, U is open. Moreover, U is equal to Ui 
when i is sufficiently big, because X is noetherian. Therefore the last assertion 
of (1) holds. 

(2) The map vi(x) is a map of vector spaces, and its source has rank r. Clearly, 
if vi(x) is injective, then vj(x) is injective for all j>_i. Thus (iv) holds if and only 
if the rank of vi(x) is equal to r when i sufficiently big. Hence it follows from 
Proposition (2.4) that  (iii) and (iv) are equivalent. 

Assume that  vi(x) is injective for some point x. Then, clearly, the rank of vi 
is r. Consequently, by Proposition (2.4), the number of generic gaps is equal to r. 
Therefore, the conditions (iii) and (i) are equivalent for all points x. Hence, by (1), 
all four conditions are equivalent. 

(3) The map vi is a map of locally free sheaves. Therefore, by (1.2)(2), the 
map vi is injective if and only if the map vi(~) is injective for every associated 
point ~. The assertions of (3) follow easily. 

Thus the Proposition has been proved. 

(2.6) Remark. The main difference between the theory of gaps for smooth 
curves in any characteristic and for Riemann surfaces is that  the latter have generic 
gap sequence 1, 2, ..., r for any linear system of dimension r. It is therefore interest- 
ing to have criteria for when a gap sequence of a Wronski system is the sequence 
1,2, ..., r. 

Assume that  W is locally free of rank r. We shall say that  a gap sequence is 
classical if it is the sequence 1, 2, ..., r. Clearly, if the sequence of generic gaps is 
classical, then rkvi=i for i=0,  . . . ,r  and r k v i = r  for i>r. Conversely, if r k v r = r ,  
then it follows from the inequalities of (2.1.1) that  the sequence of generic gaps 
is classical. The condition r k v r = r  is satisfied if v~ is injective. Indeed, if v~ is 
injective, then the exterior power A~v~ is injective, cf. Remark (1.2). 

Similarly, it follows from the inequalities (2.1.2) that  the sequence of gaps at 
a point x is classical, if and only if the map vr(x) is injective. The latter condition 
holds for all associated points of X, if and only if v~ is injective, cf. Remark (1.2)(2). 
As a consequence, the map v~ is injective, if and only if the sequence of gaps at 
every associated point of X is classical. 

(2.7) Definition. A point x in X is called a Weierstrass point for the Wronski 
system if there are non-negative integers g such that rkvg>rkvg(x). Let x be a 
Weierstrass point, and let g be the smallest integer such that  rkvg>rkvg(x). Then 
rk v 9 is called the rank of the Weierstrass point. 

(2.8) L e m m a .  Let x be a point in X and g a positive integer. Assume that 
the following equation holds: 

rk vg-1 = rk vg-1 (x). 
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Then, rkvg>rkvg(X)  if  and only if  g is a generic gap and not a gap at x. 

Proof. The assertion follows easily from the inequalities (2.1.1), (2.1.2) and 
(1.4.1). 

(2.9) P r o p o s i t i o n .  Let x be a point of X .  Then x is a Weierstrass point 

i f  and only i f  the sequence of gaps at x is different from the sequence of generic 
gaps. Moreover, i f  x is a Weierstrass point, then the rank of x is equal to the 
smallest integer s such that the s 'th generic gap is not a gap at x. Finally, the set 

of Weierstrass points is a closed subset of X .  

Proof. Assume first that  x is a Weierstrass point. Let g be the smallest integer 
such that  rk vg >rk  vg (x). Then, clearly, rk vg-1 = rk  vg-1 (x). Therefore, by Lemma 
(2.8), the integer g is a generic gap and not a gap at x. 

Assume conversely that  the sequence of generic gaps is different from the se- 
quence of gaps. Then, since the number of gaps at x is at most equal to the 
number of generic gaps by Proposition (2.4), there are generic gaps that  are not 
gaps at x. Let g=g8 be the first generic gap which is not a gap at x. Then it follows 
from Lemma (2.8), by induction on i, that  r k v i = r k v i ( x )  for i=1,  . . . , g -1  and that  
rkvg>rkvg(X) .  In particular, x is a Weierstrass point. Moreover, we note that  by 
definition of the rank of a Weierstrass point, the rank of x is equal to rk vg. By 
Lemma (2.3), rkvg is equal to the number of generic gaps that  are at most equal 
to g, whence, the rank is equal to s. 

Thus the first two assertions of the Proposition has been proved. To prove the 
last assertion, consider the complement of the set of Weierstrass points. By the 
definition, the complement consists of the points x satisfying for all i the following 
condition, 

(2.9.1) rk vi = rk vi (x). 

Clearly, when i is sufficiently big, say for i>io,  the left hand side of (2.9.1) is 
constant. It follows from the inequality (1.4.1) and the first inequality in (2.1.2) 
that  the condition (2.9.1) holds for all i>_io if and only if it holds for io. Hence 
the complement of the set of Weierstrass points is equal to the set of points x such 
that  the condition (2.9.1) holds for i--0, ..., i0. It follows from Lemma (1.4) that  the 
condition (2.9.1) is an open condition. Therefore, the complement is open. Thus 
the last assertion of the Proposition holds. 

(2.10) Note. Proposition (2.9) shows that  the Weierstrass points are those with 
exceptional gap sequences. In the classical situation, a gap at a point x is defined 
as an integer n such that  there are no meromorphic functions with a pole of exactly 
order n at x and no other poles. As is well known, and shown using the wronskian 
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determinant, the gaps at almost all points are 1, 2, ...,g (where g is the genus of 
the curve), the remaining points being the Weierstrass points. It was therefore 
natural, as Schmidt did [35], to define the Weierstrass points of any non-singular 
curve as being the points with exceptional gap sequences, even when the general 
gap sequence is different from 1, 2, ..., g. Proposition (2.9) shows that  we could have 
used a similar definition here. It is however preferable to use our definition, because 
it relates the Weierstrass points to the ranks of maps of sheaves. One example 
that  illustrates this advantage is the inequalities of Proposition (2.4). The first 
one of these, for s = l ,  was observed by Schmidt [35] and he suggested that the 
remaining would hold. These were however first proved by Matzat [30]. From our 
point of view these inequalities simply reflect the upper semi-continuity of ranks 
of sheaves. Another example of the advantage of our definition is given by the 
assertions of Proposition (2.5). These assertions state that the two key properties 
of the introduction can be formulated in terms of rank conditions. 

In Section 5 we shall make frequent use of this interpretation of the key prop- 
erties to prove that  the most common Wronski systems have the properties. 

3. W r o n s k i a n s  

The main reason for introducing Wronski systems is that  they, in a natural way, 
give rise to certain maps called wronskians that  generalize the classical Wronski 
determinants. We shall in this section recall (from [25]) the main properties of the 
wronskians associated to a Wronski system and show that  the wronskians vanish 
exactly at the Weierstrass points defined in the previous section. 

(3.1) T h e o r e m .  Fix a Wronski system as in (2.1). Moreover, fix a sequence 

nl ,n2, . . ,  such that each ni is equal to 0 or 1. Set 

r i : = n l + . . . T n i  f o r i = l , 2 , . . .  . 

Assume for i=1 ,  2, ... that 

(3.1.1) rk vi <_ ri. 

Denote by il, i2, ... the increasing sequence of indices i for which n i = l .  Then: 

For every positive integer h there is a canonical map, 

rh 

(3.1.2) Wh: A ]/V ~ ]~il Q. . .Q]~ir  h . 

I f  one of the inequalities (3.1.1) for i=1,  ..., h is strict, then the map Wh is equal 

to zero. Assume moreover that every map vl,... ,Vh of the Wronski system is of 
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generically constant rank. Then conversely, i f  Wh is equal to zero, then one of the 

inequalities (3.1.1) for  i=1 ,  ..., h is strict. 

The formation of the maps Wh of (3.1.2) commutes with pull-back as follows: 

For any morphism of schemes f:  Xt - -~X,  the pull-back of the Wronski 

system (2.1) is a Wronski system on X p and f*wh is equal to the map Wh 

obtained from the pull-back of the system. 

Finally, assume for i = 1,..., h that the inclusion map ~i: ]Ci--* Qi has a contrac- 

tion ~i: Q i -~ )~ .  Then 
r 

W h = A ( ~ i l V i l , . . .  , ~ i r V i r ) ,  

where r:=rh and (Qilvil,...,~i,.vi~) is the map W--~I~ilO...G]~i ~ induced by the 

maps ~ij vi~ �9 

Proof. All the assertions of the Theorem are proved in Section 1 of [25]. 

(3.2) Definition. Fix a Wronski system as in (2.1). Define the wronskians of 
the system as the maps Wh of Theorem (3.1) corresponding to the sequence of ni's 

defined by the equations, 

rkvi  = n l + . . . + n i  f o r i = l , 2 , . . . .  

Clearly, n i = l  if and only if i is a generic gap of the Wronski system. Hence the 
sequence il,  i2, ... of Theorem (3.1) is the sequence gl,g2, ... of generic gaps of the 
Wronski system. Consequently, the h ' th  wronskian is a map, 

(3.2.1) 
r 

Wh : A ~/V-'+]i~gl (~'"Q]~g~' 

where r :=rk v h. Note that  the gj's in (3.2.1) are precisely the generic gaps less than 
or equal to h, cf. Lemma (2.3). 

It follows from the theorem that  if f :  Xt - -*X  is a morphism such that  every 
map f*vi  is of generically constant rank on XI - - in  particular, if X / is integral-- then 
f*wh=0  if and only if at least one of the following inequalities is strict: 

rk f* vi < rk vi f o r i = l , . . . , h .  

Thus we have partly obtained a functorial description of the zero-scheme Z(Wh) 
of the wronskian. In particular we have obtained the following description of the 
points of Z(Wh): 
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(3.3) C o r o l l a r y .  A point x of X belongs to the zero scheme Z(wh) of the 
wronskian Wh if and only if at least one of the inequalities rkvi(x)K_rkvi for 
i =  1,..., h is strict, that is, if and only if x is a Weierstrass point of rank at most 
equal to rk Vh. 

(3.4) Note. It follows from (3.3) that  the Weierstrass points of the Wronski sys- 
tem are exactly the union of the underlying sets of the schemes Z(w~) for i=1,  2, .... 

Assume that  every map v~ of the Wronski system is of genericMly constant 
rank. Then the gap sequence at any associated point ~ of X is equal to the generic 
gap sequence. Therefore, by Proposition (2.9), no associated point is a Weierstrass 
point. In particular, the zero schemes Z(Wh) of the wronskians are proper sub- 
schemes of X. 

4. G a p s  o f  W r o n s k i  s y s t e m s  o b t a i n e d  f r o m  d e r i v a t i o n s  

We shall extend the theory of higher derivations developed in [25]. In partic- 
ular we shall study the properties of the Wronski systems associated to a higher 
derivation. The results are central to our proof of the two key properties of gaps for 
the Wronski systems associated to principal parts on a smooth family of curves with 
geometrically reduced fibers. The local, algebraic, approach presented here repre- 
sents a generalization of the methods for function fields used by F. K. Schmidt [34] 
and [35], and continued by B. Matzat [30]. 

(4.1) S e tup .  Fix a (noetherian) ring k and a (noetherian) k-algebra A. Let D be a 
higher k-derivation in A. Recall, cf. [25, Section 3], or [29, Chapter 9, Theorem 27.2, 
p. 206], that  D can be defined as a family of k-linear maps Di: A-*A  satisfying the 
conditions, 

i 

D o ( f ) = f ,  D ~ ( f g ) = E D j ( f ) D i - j ( g )  f o r i = 0 , 1 , . . . ,  
j=O 

or, equivalently, as a map of k-algebras 

D: d --* A[[u]], 

whose degree zero part Do is the identity on A. The elements f in A such that  
Di(f)=O for i=l ,  2, ... will be called derivation constants. It is easily seen that the 
derivation constants form a k-subalgebra of A. 

As in [loc. cit], the higher derivation D=(D~} will be called iterative, if 

[i+J~ D DiDj=  k J J *+J for a l l i a n d j .  
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Clearly, if D is iterative, then i!Di=(D1) ~. In particular, over the field of rational 
numbers an iterative derivation D={D~} is completely determined by the (usual) 
derivation Di ,  and the ring of derivation constants is the kernel of D1. 

(4.2) Definition. Fix a finitely generated free k-module V, and a k-linear map 
7: V-+A. Denote by Dv:  AQV--*A[[u]] the A-linear map defined by Dv(a|  
aD(Tf).  Moreover, denote by 

Dv#: A| V -+ A[[u]]/ (u i) 

the composition of the map D v  and the projection A[[u]]--+A[[u]]/(ui). Clearly, the 
quotient A[[u]]/(u i) is a free A-module of rank i and the following diagrams are 
commutative: 

(4.2.1) 

A|  

Dv, i ] ~ ~ .  
A[[u]l/(u ~) ~ A[[u]]/(ui-1), 

where qi is the natural projection. Consequently, the corresponding diagrams of 
modules on Spec A form a Wronski system. The kernel of qi is the free A-module 
of rank 1 generated by the image of u i-1 in A[[u]]/(ui). Hence, the wronskians of 
the system are maps, 

(4.2.2) 

?- 

wh: A| A v -+ Kgl = Augl+ + r-r 

where r is the rank of Dv, h and gl, g2, ... is the increasing sequence of generic gaps 
of the system, see (3.2). 

(4.3) L e m m a .  The derivation D extends uniquely to any localization of A. 
Moreover, if q is an associated prime ideal of A, and ~(q):=Aq/qAq is the corre- 
sponding residue class field, then D extends uniquely to ~(q). 

Proof. The first assertion follows easily by the description of D as a map of 
k-algebras A-+ A[[u]]. 

Therefore, to prove the second assertion, we may assume that  A is a local ring 
with q as its maximal ideal. Then, clearly, it suffices to prove that  the composite 
map D: A--+A[[u]]--+A/q[[u]] vanishes on q. 

Since q is an associated prime we have that  q is the annihilator, q--Ann g, of an 
element g in A. Let I be the integer such that  all elements Di(g) are in qt, but not all 
are in qZ+l. Such an integer exists by Krull's intersection theorem, since Do(g)=g 
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is non-zero. Moreover, let i be the smallest index such that  Do(g), ..., Di-l(g) are 
in qZ+l, but Di(g)~ql+l. Assume now, by way of contradiction, that  there is an ele- 
ment f E q such that  D(f )r  Then one of the elements Dj f is outside q, and hence 
invertible. Let j be the smallest index such that  all elements Do(f), ..., D j - I ( f )  be- 
long to q, but Dj(f)  is invertible. Consider the coefficient 

Di+j (f)Do(g) +... + Dj (f)Di(g) +...+Do (f)Di+j (g) 

of u ~+j in the product D(f)D(g). The coefficient is equal to zero, because 
D(f)D(g)=D(fg)=D(O)=O. On the other hand, all the terms in the above sum 
are in qZ+l except the term Dj(f)Di(g) which is in qt\ql+l.  This is impossible, so 

we must have D(f)=O for all fEq .  
Thus the Lemma has been proved. 

(4.4) Definition. Let t be an independent variable over A[[u]], and denote by 
Dr: A-*A[[t]] the k-derivation defined by 

O O  

Dr(f) = E Di(f) t i. 
i=0  

Clearly, D induces a higher k-derivation Dc~ A[[t]]--*A[[t, u]] defined by 

55 D c~ fit i = D(fi)t  ~ = D j ( f i )  t in j .  
- -  i = 0  / = 0  j = 0  

On the other hand, a higher A-derivation Can: A[[t]]--~A[[t, u]] is defined by substi- 
tution, 

Can t i := L(t+u) i. 
\ i = 0  / i=0  

The derivation D is iterative if and only if the two composite (4.5) Lemma. 
maps, 

and 

A - ~  A[[t]] DC~176 A[[t, u]] 

A ~ A[[t]] Ca~ A[[t, u]], 

are equal. 

Proof. The proof is a simple computation. 

(4.6) Remark. Assume that  D is iterative. It is an easy consequence of Lem- 
ma (4.5) that  the unique extension of D to the residue class field ~(q) at an asso- 
ciated prime q, cf. (4.3), is again iterative. 
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(4.7) L e m m a .  Assume that D is iterative. Let f ,  f l ,  ..., f~, gl,...,g~ be ele- 
ments of A. Assume that the following equation of power series in A[[t]] holds: 

(4.7.1) Dr(f) = gl Dt(fl  ) +... + gnDt(fn). 

Then the following equations of power series hold: 

(4.7.2) O=Di(gl)Dt(fl)+...+Di(gn)Dt(f~) for all i>O. 

Proof. It follows from Equation (4.7.1) that  the following equation holds in the 
ring of power series A[[t, u]]: 

n n 

(4.7.3) E gjD(fj)(u+t) = E D(gj)D(fj)(u+t). 
j = l  j = l  

Indeed, evaluate Can and D c~ on the right hand side of Equation (4.7.1). By 
Lemma (4.5), De~ Hence it follows from Equation (4.7.1) that the 
results of the evaluations are equal. Clearly, evaluation of Can yields the left 
hand side of Equation (4.7.3). Evaluation of D c~ yields the right hand side of 
Equation (4.7.3), again because D ~~ D r = C a n  Dr. Thus Equation (4.7.3) holds. 

Substitute t~-*t-u in Equation (4.7.3) to obtain the following equation in 
A[[t, u]]: 

n 

(4.7.4) ~ gjDt( f  j) = E D(gj)Dt(f  j). 
j = l  j = l  

The asserted Equations (4.7.2) follow by equating the coefficients of u i for i > 0  in 
Equation (4.7.4). 

(4.8) P r o p o s i t i o n .  Assume that A is an integral domain and k is a field. Let 
V C A be a k-linear subspace of finite dimension. Then the following two conditions 
are equivalent: 

(i) The map Dv: A| V~A[[u]] is injective. 
(ii) The map Dy#: d| i) is injective when i is sufficiently big. 

Moreover, if D is iterative and k is of characteristic zero, then the above conditions 
are equivalent to the following: 

(iii) The map Dy#: A| i) is injective when i>rk V. 

Proof. Denote by K the field of fractions of A. Clearly, the map in (i) or (ii) 
is injective, if and only if the map defined similarly by replacing A by K and D by 
its extension to K is injective. Hence we may assume that A is a field. 

Clearly, (i) and (ii) are equivalent, and (iii) implies (ii). The proof of the 
remaining implication can be found in the proof of [25, Lemma (3.5), pp. 142 143]. 
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(4.9) P r o p o s i t i o n .  Assume that A is an integral domain and k is a field. De- 
note by K the field of fractions of A. Then the following conditions are equivalent: 

(i) For every finite dimensional k-linear subspace V of A, the induced map 
Dr: AQk V~A[[u]] is injective. 

(ii) For every finite dimensional k-linear subspace V of A, the induced map 
Dy#: A| i) is injective when i is sufficiently big. 

(iii) The map DA: A| A-~ A[[u]] is injective. 
(iv) The map OK: K | defined similarly using the extension of D 

to K,  is injective. 
Moreover, the conditions imply that the extension of D to K has k as field of 
derivation constants. Assume that D is iterative. Then conversely, if the extension 
of D to K has k as field of derivation constants, then the above conditions hold. 

Proof. It follows from Proposition (4.8) that  (i) and (ii) are equivalent. The 
equivalence of (i) and (iii) is immediate. Clearly, (iv) implies (iii). To prove the 
converse, assume that  (iii) holds. Let z be an element in the kernel of the map in (iv). 
Then, since K is the field of fractions of A, there exists a non-zero element b of A 
such that  the product of l |  and z is contained in KQkA.  Clearly, multiplication 
by 1@b on the source of the map in (iv) commutes with multiplication by Db on the 
target. Therefore, since multiplication by 1@b is an automorphism of K Q k K ,  we 
may assume that  z belongs to KQk A. Then z belongs to the kernel of the restricted 
map K| The restricted map is injective, because the map of (iii) is 
injective. Hence z is equal to zero. Thus (iv) holds. Hence the conditions (i) (iv) 
have been shown to be equivalent. 

Assume now that  the conditions hold. Denote by C the ring of derivation 
constants for the extension of D to K.  If a belongs to C, then the image of 1@a 
under the map in (iv) is the constant power series a. Therefore, the image of K|  C 
under the map in (iv) is of dimension 1 over K.  Since the map in (iv) is injective, 
it follows that C is of dimension 1 over k. Hence C=k. 

Assume finally that  D is iterative and that  the extension of D to K has k as 
field of derivation constants. By the equivalence of the conditions of the lemma, it 
suffices to prove for any finite dimensional k-linear subspace V of K that  the map 
KQkV--+K[[u]] is injective. The latter assertion is equivalent to the following: If 
fl , . . . ,  fn are linearly independent over k, then the power series D(f l ) ,  ..., D(fn) are 
linearly independent over K.  

To prove the latter assertion we proceed by induction on n. Let f l ,  ..., fn+l be 
linearly independent over k. Assume, by way of contradiction, that  the power series 
D(f l ) ,  ..., D(fn+l) are linearly dependent over K.  By induction, the n power series 
D( f l ) ,  ..., D(fn) are linearly independent over K. Therefore, there exists a linear 
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relation of the form 

(4.9.1) D(fn+l) =glD(f l )+. . .+gnD(f , ) ,  

where gl,... ,  gn are elements of K.  Equating the constant terms in the latter relation 
yields the equation 

(4.9.2) fn+l =gl f l  +... +g~f~. 

Moreover, by Lemma (4.7), Equation (4.9.1) implies the following equations, 

Di(gl)D(fl)+.. .+Di(gn)D(fn) = 0 for all i > 0. 

By the induction hypothesis, the latter equations imply that  Di(gj )=0 for i>0,  
that  is, the coefficients gj are derivation constants. Therefore, by hypothesis, the 
coefficients gj are elements of k. Thus Equation (4.9.2) implies that  the elements 
f l ,  ..., fn+l are linearly k-independent, in contrast to the assumption. 

Hence the Proposition has been proved. 

(4.10) Note. It is apparent from the preceding result why the iterative deriva- 
tions are so important. Only the restrictive hypothesis that  the derivations are on 
a field limits the usefulness of the results. As the next two result show we can, in 
many useful situations, limit our attention to the case of fields. 

(4.11) T h e o r e m .  Let A be a k-algebra, and D an iterative k-derivation on A. 
Moreover, let V be a free k-submodule of A. Assume for every associated prime q 
of A that the following two conditions hold: 

(1) The intersection VNq is equal to pV, 
(2) The extension of D to ~(q), given in (4.3), has ~(p) as field of derivation 

constants, 
where p:=kAq is the contraction of q to k. Then, the map of (4.2), 

Dy, i: A| V --+ A[[u]]/ (ui), 

is injective when i is sufficiently big. Moreover, if the field ~(q) is of characteristic 
zero for every associated prime q of A, then the map Dy, i is injective when i_>rk V. 

Proof. The map Dy, i is a map of free A-modules. Hence, by (1.2)(2), Dv, i is 
injective if the map of fibers Dy, i(q) is injective for every associated prime q of A. 
Let q be an associated prime of A, and denote by p :=qNk the contraction. It follows 
from Lemma (4.3) that  D extends uniquely to a derivation D(q) on ~(q). Clearly, 
the extension D(q) is iterative and ~(p)-linear. 
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Consider the fibers V(p):=V| ~(p) and A(p):=ANk ~(p). Let 

v(p) .(q) 

be the ~;(p)-linear map defined as the composition of the map V(p)--*A(p) and the 
canonical map A(p)--~;(q). Clearly, the map Dv, i(q) is equal to the map of (4.2) 
obtained from the extended derivation D(q) and the map ~/(q) above. It follows 
from Condition (1) of the theorem that  the map ?(q) is injective. Moreover, by 
Condition (2) of the theorem, the derivation D(q) has ~(p) as field of derivation 
constants. Therefore, the injeetivity of Dv, i(q) when i is sufficiently big is a conse- 
quence of the last assertion of Lemma (4.9), applied to the derivation D(q) and the 
subspace V(p) of ~;(q). Moreover, the last assertion of the theorem follows from the 
part of Lemma (4.8) that  asserts that  (ii) implies (iii). 

(4.12) Note. Clearly, Condition (1) of Theorem (4.11) holds for an associated 
prime q if and only if the composite map ~/(q): V(p)--*A(p)--~;(q) (defined in the 
proof of the theorem) is injective. In particular, Condition (1) holds if A is flat 
over k and the fiber A(p) is an integral domain. Indeed, the contraction p is an 
associated prime of k and q corresponds to an associated prime of the fiber A(p), 
because A is flat over k (see [28, p. 58]). Hence the first map V(p)--*A(p) is injective 
by (1.2)(1) and the second map is the inclusion of an integral domain in its field of 
fractions. Thus the composite map ~/(q) is injeetive. 

The above theorem has a wide variety of applications in geometry. In many 
situations, Condition (2) is guaranteed by the geometry of the spaces involved. 
However, for use in the next section we will only need the following more special 
result. 

(4.13) P ropos i t i on .  Assume that A is an integral domain of dimension 1 
and k is a field. Let ra be a prime ideal of A. Assume that m is k-rational, that is, 
a prime ideal such that the composition k--+A--+A/m is an isomorphism. Denote 
by a~-+5 the resulting map A--*k. Consider the composite map induced by the k- 

derivation D: A-+ A[[u]], 

D: A ~ A[[u]] -+ k[[u]], 

where the second map is defined by reducing the coefficients modulo m. Assume that 
there exists an element z in A such that Di(z)7s for some i>0.  Then: 

(1) The map D is injective. 
(2) For every finite dimensional k-linear subspace V of A, the map of (4.2), 

Dv, i: A|  V ~ A[[u]]/(ui), 
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is split injective in a neighborhood of m when i is sufficiently big. In particular, the 
map Dv, i is injective when i is sufficiently big. 

(3) The field k is the field of derivation constants for the extension of D to the 
field of fractions of A. 

(4) Assume moreover that D is iterative and k is of characteristic zero. Then 
Dv, i is injective when i>_rk V. 

Proof. The assertions (1), (2) and (4) are the contents of [25, Lemma (3.5), 
p. 142]. By Proposition (4.9), the assertion (3) is a consequence of (2). Hence the 
assertions of the lemma hold. 

5. G a p s  of  W r o n s k i  s y s t e m s  of  p r inc ipa l  p a r t s  

For a linear system on a smooth family of curves there is a natural Wronski 
system coming from the sheaves of principal parts. This particular Wronski system 
was used to study Weierstrass points on a smooth curve in [23] and [24] and to 
study Pliicker type formulas for families of curves in [25]. In this section we recall 
the properties of the Wronski system associated to principal parts given in [25], and 
show that  the Weierstrass points that  come from this Wronski system generMize 
the classical concept of Weierstrass points. More importantly we shall show how 
the results of the previous section can be used to anMyze the key properties, of 
the introduction, for the Wronski systems coming from principal parts of a smooth 
family of curves with geometrically irreducible fibers. 

(5.1) Se tup .  Assume that  X is a smooth family of curves over a base scheme S, 
that  is, assume that  there is given a smooth map f :  X---+S whose geometric fibers 
are curves. Fix an invertible (gx-module s a locally free (gs module ]3, and an 
(gs-linear map, 

(5.1.1) V: )2 ~ f*s 

Consider the associated Wronski system, see [25, (2.2.1), p. 138], 

Vx 

(5.1.2) v~ 1 ~ 1  
i--1 ql i--2 

) 

Recall (cf. [25] (2.1)) that  P~:/s(s is the sheaf of i ' th order principal parts, defined 
as p, ( (9~ |163 where p and q are the two projections from X x X to X and Ai is 
the subscheme of X • X defined by the ( i+ 1)'st power of the ideal Z of the diagonal. 
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The restrictions of p and q to the closed subscheme Ai are topologically the 
same map. Therefore, we can identify P~:/s(s  and q.((9A~|163 as abelian 

sheaves. Hence, by adjunction, we obtain an Os-linear map, d~: s163  For 

/::=(_9x we obtain a sheaf of algebras, P~:/s:=p.((gA~), and the adjunction map 

ti: Ox--*p.  ((gA~) is an inclusion of algebras. Clearly, the map d i " - d  ~ is a map X ' - -  Ox 
of Os-algebras. From the above maps we define the map 5~r Ox----~7'~x/s as the 
difference i .  i i 5 x .=d  x - t  x .  

Consider on X • X the exact sequence, 

(5.1.3) O--+ :I i --* OX xX ---+ OA~_~ "--~ 0. 

The sequence remains exact when tensored by q*s and from the long exact 
sequence of higher direct images of p. we obtain an exact sequence, 

(5.1.4) * i--1 p.q L----+'P~/s(C)--~ Rlp,(Zi|163 Rlp,  q*f~--+O, 

which is exact to the right, because the restriction of p to the closed subscheme 
Ai_l of X x X is a (topological) homeomorphism. 

The base change map f*f.s163 is an isomorphism, because f is flat. The 
vertical map v~ in (5.1.2) is the composition of the first map of (5.1.4) and the map 
f ' v :  f*];-* f* f*s163 The horizontal map in (5.1.2) is the canonical surjection 

i--1 i--2 --+P~:/s(s is well known, cf. [loc. cit.], that  the canonical surjection has P}~/s(s It 

as kernel the invertible sheaf ( ~ / s )  |174163 In particular, the i-1 sheaf Px/s(s  is 
locally free of rank i. Hence, the maps in (5.1.2) define a Wronski system as in (2.1). 
The wronskians of the system are maps of the form, 

(5.1.5) 
r 

{C)1 ~| ~ |  
Wh: A ~2X --+ [~X/S]  ~z)~ , 

where r = r k  Vh and gl,.. . ,  g,- is the increasing set of generic gaps that  are less than or 
equal to h, see (3.2). Denote by s163 the cokernel of the first map in (5.1.4). Then, 
from the exact sequence (5.1.4), we obtain a commutative diagram with exact rows, 

(5.1.6) 

o , , R p,q*Z. , o 

0 > g i - l ( C )  > R lp , ( :Z - i - l |  > R l p ,  q*/~ ) O. 

Note that the $i(s are quotients of the cokernels s of the maps vi of the 
Wronski system (5.1.2). Clearly, if the map 7 of (5.1.1) is surjective, then g i=gi (s  
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(5.2) Note. Prom diagram (5.1.6) we can obtain an interpretation of gaps at a 
point x in terms of the poles of meromorphic functions at x similar to that  given on 
Riemann surfaces. Indeed, assume in addition to the hypotheses of (5.1) that  f is 
proper and R l f . ( s  is locally free. Let x be a point of X. Denote by Z~ the fiber 
product 

Z~:=Xxs~(x). 

Then Zx is a proper, smooth curve over ~(x), with x as a canonical ~(x)-rational 
point. 

Since i-1 P x / s  is a locally free Ox-module,  it follows that  the module O x •  i is 

fiat over X. Hence, it follows from the exact sequence (5.1.3) that  Z i is fiat over X. 
Thus the principle of base change [20, Theorem 12.11, p. 290] applies to the map 
p: X x X - - * X  and the module Zi |  Since the relative dimension is equal to 1, we 
obtain isomorphisms, 

Rlp,(Z*|163 ~) HI (Zx ,  (Z~|163 

As noted above, the module O x x x / Z  i is flat over X. Therefore, from the exact 
sequence (5.1.3) we obtain by restricting to Zx the exact sequence 

O~ Iiz. ~Oz~ ~Oz~/:riz~ ~0.  

The quotient Oz~/Ziz~ is supported at the point x, and at x the ideal 27)~ is equal 
to m~, where m~ is the maximal ideal of O z  . . . .  see [19, Corollaire (16.4.12), p. 22]. 

Since Zx is smooth, it follows that  the ideal I )~  defines the Cartier divisor ix, 
that  is, Ziz~ = O z .  ( - i x ) .  Hence we have that  

(Z{| Zz~ (-ix). 

Moreover, R l f . s  is locally free by assumption, and R l p . q * E = f  * R 1 f . /2 by fiat base 
change. Therefore, we obtain from Diagram (5.1.6) a commutative diagram with 
exact rows: 

0 > g/(/:)(x) > H l ( Z x , E z ~ ( - i x ) )  > HI (Z~ ,Ez~)  > O. 

0 ~ g i - l (C) (x )  " H I ( Z x , C z ~ ( - ( i - 1 ) x ) )  , H I ( z x , C z ~ )  ~ O. 

It follows from the latter diagram that  the surjection, 

(5.2.1) H 1 (Zx, s ( - i x ) )  --* H 1 (Zx, s  ( - ( i - 1 ) x ) ) ,  
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is an isomorphism if and only if the surjection, 

Ei(/2)(x)-~ E~_l(/2)(x), 

is an isomorphism. As mentioned in (5.1), if the map 7 of (5.1.1) is surjective, then 
$~(/2) is equal to the eokernel $i of the map v~ of the Wronski system (5.1.2). Hence 
we have obtained the following result: 

P r o p o s i t i o n .  Assume that the linear map 7 : l ;~ f . / 2  of (5.1.1) is surjective. 
Then, for the associated Wronski system (5.1.2) of principal parts, the integer i is 
a gap at x, if and only if the map (5.2.1) is an isomorphism. 

As a consequence, our definition of gaps generalizes the classical definition. 

(5.3) Definition. Consider the Wronski system (5.1.2). Denote by U the set of 
points x of X for which the map vi(x) is injeetive when i is sufficiently big. 

Moreover, denote for every s in S by 7(s)' the following Jc(s)-linear map, 

(5.3.1) 7(s)': V(s) --* (f./2)(s) ~ s  (~2INs) = g~ 

induced by 7 and base-change. It follows from [25, Lemma (4.4), p. 145] that  if 
the linear map 7 is injective, then the map 7(s)' of (5.3.1) is injective for every 
associated point s of S. 

The map ~ will be said to define a linear system on the family X /S ,  if the 
map 7(s)' is injective for all points s of S. 

(5.4) Note. To explain the relation between the Wronski system (5.1.2) asso- 
ciated to principal parts and the Wronski systems of the form (4.2.1) we choose an 
open affine subset Spec k of S and an open affine subset Spec A of f - 1  Speek such 
that  12 is trivial on Spee A and such that  there exists an element z in A whose differ- 
ential dz generate ft~/k (see [19, IV, 16.10.6 and 6.11] or [1, Lemma 5.6, p. 150]). We 

let X=SpeeA and ~=5~xz=d~xz-~xz , where 5}~, d~ and t )  were defined in (5.1). 
Recall from [25, (2.4), (2.5) and (3.4)], that  P~x/s is a free A-module with basis 

1, ~, ..., ~i. Hence we can define maps Dj: A ~ A  for j = 0 ,  1, 2, ... by the equation, 

d)  f = Dof + D l f  ~ +... + Dgf r ~. 

D Moreover, recall that  the map D: A---~A[[u]] defined by f = ~ = 0  D~f u~ is an it- 
erative higher derivation. The Wronski system (5.1.2) becomes the Wronski sys- 

i--1 tern (4.2.1) associated to D when we identify the A-module A[[u]]/(u i) with Px / s  
via the map that  sends u to ~. As a consequence of this identification the fol- 
lowing fundamental result follows from Proposition (4.13) (see [25, Lemma (4.5), 
pp. 145-146]): 
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P r o p o s i t i o n .  In addition to the hypotheses of (5.1), assume that X / S  has 
geometrically irreducible fibers. Let s be a point of S. Assume that the map 7(s) ~ 
of (5.3.1) is injective. Then the fiber f - i s  is contained in U. Moreover, if  g(s) is 
of characteristic 0 and ~ is the generic point of the fiber f - i s ,  then the map vi(~) 
is injective when i_>rk Y. 

From the latter result we obtain the following result that  shows that  the two 
key properties of gaps referred to in the introduction hold for linear systems on a 
smooth family with geometrically irreducible fibers: 

(5.5) T h e o r e m .  In addition to the hypotheses of (5.1), assume that X / S  has 
geometrically irreducible fibers. Assume moreover that the linear map "/is injective. 
Then: 

(1) The map vi is injective for all sufficiently big i. In particular, the number 
of generic gaps is equal to the rank of 1?, and the set U is equal to the open set 
defined by any of the equivalent conditions of Proposition (2.5). Moreover, the 
set U contains the fiber over every associated point of S. 

(2) Assume that the characteristic is equal to zero at every associated point 
orS.  Then vi is injective for i>rkl3.  In particular, the sequence of generic gaps is 
classical, that is, it is the sequence 1, 2, ..., rkl?. 

(3) Assume that the map 7 defines a linear system on X / S .  Then U = X .  In 
particular, the number of gaps at any point of X is equal to the rank of Y. 

Proof. Let ~ be an associated point of X. To prove the injectivity of vi, asserted 
in (1) for i sufficiently big and in (2) for i_>rkl~, it suffices by Remark (1.2) to prove 
that  the map v~(~) is injective. Set s: = f ~ .  Then s is an associated point of S and 
is the generic point of its fiber because f is flat (see [28, Corollary, p. 58]). It follows 
from what we said in (5.3) that  the map V(s)' is injective. Therefore, the asserted 
injectivity follows from the Proposition of Note (5.4). 

By Proposition (2.5), the second assertion of (1) is a consequence of the first. 
The last assertion of (1) follows from the Proposition of Note (5.4). 

We proved above the injectivity asserted in (2). Clearly, the second assertion 
of (2) is a consequence. 

The first assertion of (3) follows immediately from the Proposition of Note (5.4). 
The second assertion follows from (1) and Proposition (2.5). 

Thus the theorem has been proved. 

6. W r o n s k i  s y s t e m s  on G o r e n s t e i n  curves  

For families of curves with singular fibers the relative principal parts of Section 5 
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are not locally free and therefore do not give Wronski systems as in (2.1). In 
this section we shall show that  for a single Gorenstein curve there is a natural  
replacement of the principal parts,  and we obtain natural  Wronski systems. We take 
here as a definition of a Gorenstein curve that  the module of regular (meromorphic) 
differentials is invertible. Our theory can be applied to families with Gorenstein 
fibers that  have a simultaneous resolution of singularities by a smooth family of 
curves. However, for simplicity, we shall t reat  the case of a curve defined over a 
perfect field only. The wronskians obtained from our Wronski systems are globally 
defined, and they generalize to arbi t rary characteristics the theory of R. Lax and 
C. Widland [39] for Gorenstein curves in characteristic zero. A similar globalization 
of the wronskians was obtained by L. Gat to  [17] in characteristic zero. 

(6.1) The results of Section 5 apply in particular to the case of a smooth curve Y 
over a field k. So, if s is an invertible module on Y, and V is a finite dimensional 
k-subspace of H ~ (Y, s  there is a Wronski system, 

(6.1.1) 

�89 

1 
~ i - -  1 (~]  ql ~Di--2 { ~  

Y /k~  / > " Y / k~  /" 

The wronskians of the system are maps of the form, 

(6.1.5) 
r 

A 
where r = r k  v h and gl, . . . ,  gr is the increasing set of generic gaps that  are less than 
or equal to h. Note that  the Proposition of (5.2) applies when Y is proper and the 
linear system defined by V is complete, tha t  is, when V=H~ s Moreover, when 
Y is geometrically irreducible, theorem (5.5) applies; in particular, the number of 
gaps at any point of Y is equal to the number of generic gaps. 

Let K be the field of rational functions on Y. Let q be a closed point of Y, and 
let z be a rational function on Y such that  the differential dz generates ~ / k  at q; 

for instance z could be a function of order 1 at q. Then dz trivializes ~ / k  in a 
neighborhood of q. In such a neighborhood, the sheaf of algebras T'~/k is free, with 

a basis given by the powers 1, 5z, (hz) 2, ..., (hz) n, where 5z=5~z is defined in (5.4). 

(6.2) Consider now an integral algebraic curve X defined over a perfect field k. Let 
~: Y ~ X  be the normalization. Then Y is smooth over k, and ~ is an isomorphism 
outside the finitely many  singular points of X.  Let K be the common field of 
rational functions of X and Y. Consider the vector spaces over K of meromorphic 
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differentials ~ / k  and meromorphic jets (or principal parts) P~/k" The latter is of 
dimension n §  over K,  generated as in (6.1) by the powers 1,hz, ..., (hz) n. 

As defined by Serre [37, p. 76], a meromorphic differential w E ~ : / k  is said to 
be regular at a closed point p in X, if 

E Resq(fw)=O for all fEOz,p. 
qC~-lp 

The residue is that  of Tare, see [1, p. 171]. The residue Resq(w) vanishes at all 
closed points q of Y at which w is regular. In particular, if w is regular at all points 
in the fiber ~r-lp of closed point p of X, then it is regular at p. Moreover, if w 
is regular at p, then it is regular at all closed points in a neighborhood of p. We 
denote by ~ z  the (gx-module of regular meromorphic differentials. Thus, over an 
open subset U of X, the sections of ~ x  are the meromorphic differentials that  are 
regular at all closed points of U. Note that  the module ~ z  contains the direct 
image 7r. Y/k as a submodule. 

(6.3) Definition. A non-zero function t of K will be called a parameter on an 
open subset U of X if t is regular at all points of 7r-IU and such that  the differential 

1 dt is a basis for ~t_lu/k as an O~-lv-module.  If p is a closed point of X, then 
there exists a function t which is a parameter on some open neighborhood of p in X. 
Indeed, by the approximation lemma for valuations, there exists a function t which 
is of order 1 at all points q in the fiber 7r-lp. Then the differential dt generates the 
stalk of ~ / k  at all points q of ~ - lp .  Therefore, the differential dt generates ~tl/k 

in some open subset V of Y containing the fiber ~ - lp .  Since the map ~: Y--*X 
is closed, there is an open neighborhood U of p in X such that  ~-IUC_V. Then, 
clearly, t is a parameter on U. 

Now, let p be a closed point of X. Consider non-zero functions t and g of K 
such that  t is a parameter in a neighborhood of p and such that  the meromorphic 
differential dt/g is regular at p. Fix n and form the meromorphic jet in P~/k: 
(6.3.1) St~g, 
where 5t=5~t as defined in (5.1). A meromorphic jet in P~:/k will be called regular 
at p, if it belongs to the OX,p-subMgebra of P~:/k generated by all jets of the 

form (6.3.1). Clearly, if a meromorphic jet is regular at a point p, then it is regular 
at all points in a neighborhood of p. We denote by 73~ the Ox-module  of regular 

(meromorphic) jets. Thus, over an open subset U of X, the sections of P ~  are the 
meromorphic jets that  are regular at all closed points of U. Obviously, the surjection 

__+ p n - 1  P~:/k K/k induces a surjection ~,n z,,~-i ~/~ ~ ~ x  . By definition we have that  7 3o  = (gx. 

Assume from now that  the Ox-module  ~ x  of regular (meromorphic) differen- 
tials is invertible. 
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(6.4) P r o p o s i t i o n .  Let z be a parameter on an open subset U of X,  and 
let h be any non-zero function. Assume that the meromorphic differential dz/h is 
a generator for the restriction to U of the Ox-module f~l x of regular differentials. 
Then the jets in P~/k, 

(6.4.1) 1, (Sz/h), ..., (Sz/h) n, 

form a free basis for the restriction of P~ to U. Moreover, if f is a function in 
F(U, Ox), then the total differential dnf is regular on U. 

Pro@ Since z is a parameter on U, the jets 1, 5z, ..., (Sz) n form a basis for 
P~_lU/k, see (5.4). Consequently, the latter jets, and hence also the jets (6.4.1), 
form a K-basis for P~:/k" Thus we have to prove that,  if a given meromorphic 
jet is regular on U, resp. is of the form d'~f, then, when expanded in terms of the 
basis (6.4.1), the coefficients belong to F(U, Ox). 

The question is local on U. Therefore, we may assume that  U=Spee  A is affine. 
Moreover, to prove the assertion for regular jets, it suffices to consider a jet of the 
form (6.3.1), where t is a parameter on U and dt/g is regular on U. 

The preimage 7r-lU is equal to SpecB, where B is the integral closure of A 
in K.  We note first that  h belongs to the conductor of B/A.  Indeed, for any bEB, 
the differential bdz is regular on U. Hence there is an equation, bdz=adz/h for 
some aEA. Thus hb=aEA, and consequently h belongs to the conductor. 

Consider first the jet  5t/g of (6.3.1). The differential dt/g is assumed to be 
regular on U. Hence there is an equation, 

(6.4.2) dt/g = adz/h where a C A. 

As t is a parameter on U, the differential dt is a generator for the B-module f~ /k"  

It follows from Equation (6.4.2) that  dz=h/(ga) dt. Hence the function h/(ga) 
belongs to B. In particular, the function h/g belongs to B. 

Now, in P~/k we have an expansion, 

(6.4.3) 5t = blSz+b2 (Sz) 2 +...  + b~ (Sz) n, 

where the coefficients bi belong to B (in the notion of (5.4) we have that bi=Di(t), 
where the {Di} is the higher derivation associated to z). The coefficient bl is de- 
termined by the equation dt=bldz, and hence it follows from (6.4.2) that b l=ga /h .  
From the expansion (6.4.3) and the determination of bl, we obtain the expansion, 

5t//9 = a(Sz//h)§ (b2h2/g)(Sz/h) 2 +... + (bnhn/g)(Sz//h) n. 
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The coefficient a was an element of A. Moreover, the coefficient bih~/g for i > 2  is 
equal to h~-2hb~(h/g). As observed above, the function h/g belongs to B. There- 
fore, the coefficient belongs to A, because h was in the conductor of B/A. Hence, in 
the expansion of 5t/g in terms of the basis (6.4.1), all the coefficients belong to A. 

Consider similarly the expansion of dnf. In P~/k we have the expansion, 

dnf = f +blhz+...+bn(~Z) n, 

where the coefficients bi belong to B. From the latter expansion we obtain the 
expansion in the basis (6.4.1), 

dnf = f + (hbl)(hz/h) +... + (h~b~)(hz/h)% 

Since f is 
Therefore, 
particular, 

Hence 

in A and h is in the conductor of B/A, the coefficients belong to A. 
the total differential dnf belongs to the A-algebra generated by 5z/h. In 
d~f is regular on U. 

the proposition has been proved. 

(6.5) The definitions and results above extend to the case of principal parts twisted 
by a given invertible (gx-module/2.  

Let L denote the space of meromorphic sections of/2. Then L is of dimension 1 
over K,  and P~/k (L) is the space of meromorphic sections of P~/k (Z:). 

Recall that  if a section s of s over U trivializes/2 (as an (_gu-module), then 
the total differential dns=d~s of (5.1) trivializes P~/k(s as a P~/k-module. Con- 
sequently, if a local section s of/2 generates s in a neighborhood of p, then every 
meromorphic jet co in P~:/k(L) is of the form ~d'~s, with a unique jet  ~ in P~/k" Call 

a meromorphic jet w of P~/k(L) regular at the closed point p, if the corresponding 
jet ~ of P~/k is regular at p. As dn(fs)=dnfdns, it follows from the last part of 

Proposition (6.4) that  the notion of regularity is independent of the choice of s. 
Denote by ~ ( Z : )  the Ox-module  of regular jets of P~/k(L). Thus, over an open 

subset U of X, the sections of ~ ( 1 2 )  are the meromorphic jets that  are regular at 
all closed points of U. 

Then, from Proposition (6.4) we obtain the following: 

(6.6) C o r o l l a r y .  The (gx-module ~ ( s  is locally free of rank n + l ,  and 
there are exact sequences, 

N ~ n  Nn --n-- 1 
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Moreover, the total differential d~ induces a k-linear map of sheaves d~: s 1 6 3  

(6 .7)  Assume now tha t  a finite dimensional k-subspace V of H ~  s  is given. 

Then  we obtain  Oz - l i nea r  maps  vi fitting into commuta t ive  diagrams, 

(6.7.1) 

Vx 

1 
Ni--1 ~i--2 

It  follows from Corol lary (6.6) tha t  the sys tem is a Wronski  system. The  wronskians 

of the sys tem are maps  of the form, 

wh:/~ Vx --~ s174 | 

where r=rkvh  and i l ,  ...,i.,. is the increasing set of generic gaps tha t  are less t han  

or equal to h. 
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