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Extremal rational elliptic surfaces 
in characteristic p. II: Surfaces 

with three or fewer singular fibres 

William E. Lang 

I n t r o d u c t i o n  

In this paper, we complete the classification of extremal rational elliptic surfaces 

in characteristic p, begun in [3]. 

In [4], Miranda and Persson classified all rational elliptic surfaces over the 

complex numbers such that the Mordell-Weil group of the generic fibre is finite. 

They called these surfaces extremal rational elliptic surfaces. They found 16 families 

of such surfaces. All but one of these families have only one member, and the 

exceptional family depends on one parameter. 

In our first paper on extremal rational elliptic surfaces in characteristic p, we 

classified those where the singular fibres are semi-stable. These are the character- 

istic p analogues of the surfaces studied by Beauville in [i], and we called them 

Beauville surfaces. 

In this paper, we classify all other extremal rational elliptic surfaces. The clas- 

sification is identical to the classification in characteristic zero in all characteristics 

except two and three. (There is one exceptional case in characteristic five.) The 

classification in characteristics two and three looks quite different. This is due to 

the presence of a wild ramification term in the formula of Neron-Og~Shararevich, 

which appears only in these characteristics. 

Here is a plan of the paper. In Section i, we give the preliminary results 

on extremal rational elliptic surfaces that we need. (Almost all of these results 

appeared in [3].) In Section 2A, we classify all possible singular fibres on rational 

elliptic surfaces with section in characteristic two, taking into account the extra 

term in the Neron-Ogg-Shararevich formula. It is hoped that this list may be 

useful for other purposes. In Section 2B, we use the results of Section 2A (together 



424 William E. Lang 

with the material  of Section 1) to classify extremal rational elliptic surfaces in 
characteristic two. Sections 3A and 3B carry out the same program in characteristic 
three. Section 4 carries out the classification in all characteristics not equal to two 
or three. 

I would like to repeat  my thanks to those mentioned in Part  I: R. Miranda, 
T. Ekedahl, D. Laksov, R. Speiser, B. Harbourne, K. Ribet,  and J. Roberts. I would 
also like to thank Brigham Young University for additional financial support.  

1. Pre l iminar i e s  

Most of this section is repeated from [3]. 

Definition. (Miranda-Persson) Let f :  X---~C be an elliptic surface with a sec- 
tion over C. We will say that  X is an extremal elliptic surface if the rank o(X) 
of the Neron-Severi group is equal to h 1,1 (X) and if the rank of the Mordell-Weil 
group of the generic fibre (we will denote this group by MW(Xg))  is zero. 

If  f :  X--~C is an elliptic surface with a section over an algebraically closed 
field of characteristic p, the definition of extremal remains the same except that  we 
replace the condition ~-----h 1'1 by the condition Q=B2. 

We will assume that  all elliptic surfaces are relatively minimal and have a 
section. 

Definition. A Beauville surface is an extremal rational elliptic surface such that  
all singular fibres are semi-stable. 

Let f :  X--*C be an elliptic surface over an algebraically closed field k. Follow- 
ing [4], we assign three numerical invariants to each singular fibre F of X.  The first 
is 5F, the order of vanishing of the discriminant A of the Weierstrass equation for 
the point of the base under F.  The second is rE, which is the number of components 
of F which do not meet the zero section. Finally, we consider the lattice in NS(X)  
of rank rF spanned by the components of fibres not meeting the zero section, and 

we let dF be the discriminant of this lattice. (If rF~-O, we adopt the convention 

tha t  d F = l . )  

L e m m a  1.1. If  X is an extremal rational elliptic surface, then YI dF is a 
perfect square, and the order of the Mordell Well group of the generic fibre is the 
square root of I] dR. 

Proof. See [4], Corollary 2.6. 
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L e m m a  1.2. Let F be a singular fibre on an extremal rational elliptic surface. 
Then 5 F - - r F = l  if F is a fibre of multiplicative type, and 5 F - - r F = 2 §  fF,  where 
fF>_O if F is a fibre of additive type. Moreover, f F = 0  unless the characteristic is 
two or three. 

Proof. This is a consequence of the formula of Neron-Og~Shararevich.  See [5] 
or [6, p. 361]. 

Now suppose f :X - -+P 1 is an extremal rational elliptic surface. Since X is 
rational, ~ 5F=12, and since X is extremal, ~ r F = 8 .  Therefore ~ ( h F - - r F ) = 4 .  
Using Lemma 1.2, we obtain 

L e m m a  1.3. Any extremal rational elliptic surface has 4 or fewer singular 
fbres. The surface has 4 singular fibres if and only if it is a Beauville surface. 

We classified Beauville surfaces in [3]. Therefore we need only deal with surfaces 
with three or fewer singular fibres in this paper. 

2. C h a r a c t e r i s t i c  tw o  

2A. Class i f i ca t ion  o f  s ingu la r  f ibres  o f  a d d i t i v e  t y p e  o n  r a t i o n a l  e l l ip t ic  
su r faces  in c h a r a c t e r i s t i c  two  

Throughout  this section, we will assume f :  X--~P 1 is a rational elliptic surface 
with section over an algebraically closed field of characteristic two. 

We begin by listing the possible types of singular fibres of additive type that  can 
appear on a rational elliptic surface in characteristic two. We put the Weierstrass 
equation for each type into a normal form, and compute A, hE, and the Kodaira 
type of each fibre. The Kodaira type determines rE. 

The proof is a straightforward exercise in applying Tate's algorithm for deter- 
mining the type of a singular fibre in an elliptic pencil [7]. We start  by writing the 
Weierstrass equation for our surface 

y2 + a l x y + a 3 y  = x 3 +aax 2 +a4x +a6, 

where the ai are polynomials in t of degree <i .  We locate our singular fibre of 
additive type at t=0 .  We may change coordinates so that  t l a 3 ,  a4 ,  and a6. We may 
now write the equation in the form 

y2 +alxy+tc2y  = x 3 ~-a2 x2  +atc3x+tch. 

Then since our fibre is of additive type, t lal. We have two possibilities: 
(1) a150,  in which case we may scale and assume al =t;  
(2) al =0. If al =0,  the j-invariant of the surface is identically zero. 
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We will handle these possibilities separately. Also, by making a substitution y=y+ 
kx, we may assume t[a2 also. Now we simply work through the algorithm. The 
calculations are straightforward, and will not be given in detail. Notations such as 
ai, ci, di, etc. represent polynomials in t of degree _<1. 

Case 1A 

Case 1B 

Case 1C 

Case 2A 

Case 2B 

Case 3 

Case 4A 

Case 4B 

y2 +txy+tc2y=x3 +tclx2 +tc3x+tcs, t~c5, t~c2, 
A=t4(t3c5+t3c2c3+t3clc~ +t2c2)+tac~ +t6c 3, 
5=4, r=0  Type II. 

y2 +txy+t2dly=x 3 +tclx 2 +tc3x+tc5, t~c5, t~c3, 
A=t4(t3c5+t4dlc3+t5cld2+t2c 2) +tSdl+t4 9dl ,3 
5=6, r=0  Type II. 

{ y2+txy+t2dly=xU+tclx2+t2e2x+tc5, t~c5, 
A=t4(t3c5+t5dlc2+t5cld~ +tnc~) +t s dl +t 4 9 d1,3 
5=7, r=0  Type II. 

y2 +txy+tc2y=x3 +tclx2 +tc3x +t2 c4, tXc3, t~c2, 
A=t4(t4c4+t3c2c3+t3clc2u 22 4 4  6 3 +t  c3)+t c2+t c2, 
5=4, r = l  Type III. 

y2 _{_txy+t2dly=x3 +tclx 2 +tc3x_{_t2c4, t~C3 ' 

A=t4(t4c4+tadlc3+t5cld2 +t2c2)+tSd4 +t9d 3, 
5=6, r = l  Type III. 

y2+txy+tc2y=x3+tclx2+t2d2x+t2c4, t~c2, 
4 4 4 3 2 4 2  4 4  6 3  A = t  (t c4+t c2d2+t cxc2+t d2)+t c2+t c2, 

5=4, r=2  Type IV. 

l y2 +txy+t2cly=x 3 +tdlx 2 +t2d2x+t2c4. 
By substituting y=y+kt, x=x+It, this becomes 

y2 +txy+t2cly=x 3+tdlx 2 +t3elx+t3c3, t~c3, t~cl, 
/k = t  4 (t5c3 -}-t6 el el + t5 dl c 2 -}- t6 e 2) + tS c 4 -}-t9c31, 
5=8, r=4  Type I~). 

{ y2+txy+t3coy=x3+tdlx2+t3elx+t3c3, t~c3, 
A=t4(t5c3+tTcoel 7 6 2 12 4 12 3 +t  dlco+t el)+t co+t c o, 

5=9, r=4  Type I~. 



Case 5A 

Case 5B 

Case 5C 

Case 5D 

Case 6 

Case 7 

Case 8 

Extremal rational elliptic surfaces in characteristic p. II 

y2+txy+t2cly=x3+tdlx2+taelx+t4c2, t~dl, t~cl, 
A=tn(t6c2+t6clel+t5dlc~ 6 2 s 4 9 3 + t  e l ) + t  cl +t cl, 
5=8, r = 5  Type I~. 

y2 +txy+t3coy=x 3 +tdlx 2 _~_t3elx_~_t4c2. 

Replace y by y+kt 2. For suitable k, we have 

y2 +txy+t3coy=x 3 +tdlx 2 +t3elx+t5cl, t~dl, t~el. 
A=t4(tTcl+tTcoel+t7c~dl + t  6 e l ) +  t 2 12 CO_~_ t 4 12 CO ,3 

5=10, r = 6  Type I~. 

l y2 +txy+t3coy=x 3 +tdlx 2 +t4eox+t5el. 

Replace x by x+kt 2. For suitable k, we have 

y2 +txy+t3coy=x 3 +tdlx 2 +t4eox+t6do, t~dl, t~co. 
A=t4(tSdo+t8coeo+t7 dlc~ +tSe~)+t12c4 +t12c 3, 

5=11, r = 7  Type I~. 

y2 +txy=x 3 +tdlx 2 +t4eox+t6eo. 

Replace y by y+kt 3. For suitable k, we have 

y2 +txy=x 3 +tdl x 2 +t%ox, t~dl, t~eo. 
A=t12e3  

5=12, r = 8  Type I~. 

y2+txy+t2cly=x3+t2dox2+t3elx+t4c2, t~cl, 
A=t4(t6c2+t6Clel+t6doc2 6 2 8 4 9 3 +t el)+t Cl-t-t Cl, 
5=8, r = 6  Type IV*. 

y2 +txy+t3coy=x 3 +t2dox 2 +t3elx+t4c2" 

Replace y by y+kt 2. For suitable k, we have 

y2 +txy+t3coy=x 3 +t2dox 2 +t3elx+t5 fl ' t~el. 
A=t4(t7fl +t7coel+tSc2do+t6e2 )-.12 4 - - - 1 2  3 -p~ C0-t-l: C0~ 

5=10, r = 7  Type III*. 

l y2+txy+t3coy=x3+t2dox2+t4eox+t5el, t~el, 
/' =t 4(t7ex +tScoco +tS4do +t84)+t12c 4+t124, 
5=11, r = 8  Type II*. 

427 
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Cases 1-8 exhaust all possibilities with a150. In cases 9-16, we will have al =0, 
which forces j = 0. 

y2 +tc2y=xa +tclx2 +tc3x+tcs, t~cs, t~c2, 
Case 9A A=t4c 4, 

5=4, r=0  Type II. 

Case 9B 

y2+t2dly=x3+tclx2+tc3x+tc5, t~c5, t~dl, 
A=tSdl 4, 

5=8, r=0  Type II. 

Case 9C 

y2 +t3coy=x3 +tclx2 +tc3x+tcs, t~c5, t{co, 
A=t12c 4, 

5=12, r=0  Type II. 

Case 10A 

{ y2+tc2y=xa+tclx2+tc3x+t2c4, t{c3, t~c2, 
A=t4c 4, 
5=4, r = l  Type III. 

Case 10B 

y2+t2dxy=x3+tclx2+tc3x+t2c4, t~c3, t~dl, 
A=tSd 4, 

5=8, r = l  Type III. 

Case 10C 

{ y2+t3doy=x3+tclx2+tc3x+t2c4~ t~c3, t~do, 
A=p2d~, 

5=12, r = l  Type III. 

Case 11 

y2+tc2y=x3+tclx2+t2d2x+t2c4, t~c2, 
A=t4c 4, 
5=4, r=2  Type IV. 

Case 12A 

y2 + t2 dly=x 3 + tcl x 2 _t_ t2 d2x + t2 c4" 
We may change coordinates so this becomes 

y2 +t2cly=x 3 +tdlx 2 +t3clx+t3c3, t~c3, t~cl, 
A=t8cl  4, 

5=8, r = 4  Type I~. 



Case 12B 

Case 13A 

Case 13B 

Case 13C 

Case 14 

Case 15 

Case 16 

t~xtremal rationM elliptic surfaces in characteristic p. II 

y2+t3eoy=x3A-tdlx2A-t3ClxA-t3e3, t{c3, t{co, 
/k~_t12c 4, 

5=12, r = 4  Type I~. 

y2+t2cly=x3+tdlx2+t3elx+t4d2, t~dl, t~cl, 
A=tSc 4, 

5=8, r=5  Type I~. 

y2+t3coy=x3+tdlx2+t3elx+tad2, t~dl, t~co. 
Replace y by y+kt 2. For suitable k, we obtain 

y2 +t3coy=x3 +tdlx2 +t3elx +t5 fl, t~el, t~co, 
A=t12c 4. 

5=12, r=6  Type I~. 

y2 +t3coy=x 3 +tdlx 2 +t4dox+t5el. 

Replace x by x+kt 2. For suitable k, we obtain 

y2 +t3coy=x 3 +tdlx 2 +t4dox+t6eo, t~dl, t~co. 
A=tl2c 4, 

5=12, r=7  Type I~. 

y2+t2cly=x3+t2dox2+t3elx+t4d2, t~cl, 
A=tSc 4, 

5=8, r=6  Type IV*. 

y2 +t3coy=x 3 +t2dox 2 +t3elx+t4d2. 

Replace y by y+kt 2. For suitable k, we obtain 

y2 +t3coy=x 3 +t2dox 2 +t3elx+t5dl, t~el, t~co, 
A=tl2c 4, 

5=12, r = 7  Type III*. 

y2+t3coy=x3+t2dox2+t4eox+t5dl, t~dl, t~co, 
A=t12c4 

5=12, r=8  Type II*. 

429 
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We now make a table of the possibilities obtained. 

5 r 5 - r  

Case 1A 4 0 4 

Case 1B 6 0 6 

Case 1C 7 0 7 

Case 2A 4 1 3 

Case 2B 6 1 5 

Case 3 4 2 2 

Case 4A 8 4 4 

Case 4B 9 4 5 

Case 5A 8 5 3 

Case 5B 10 6 4 

Case 5C 11 7 4 

Case 5D 12 8 4 

Case 6 8 6 2 
Case 7 10 7 3 

Case 8 11 8 3 

In cases 9-16, the j-invariant is identically zero 

Case 9A 4 0 4 

Case 9B 8 0 8 

Case 9C 12 0 12 
Case 10A 4 1 3 

Case 10B 8 1 7 

Case 10C 12 1 11 

Case 11 4 2 2 

Case 12A 8 4 4 
Case 12B 12 4 8 

Case 13A 8 5 3 

Case 13B 12 6 6 

Case 13C 12 7 5 

Case 14 8 6 2 

Case 15 12 7 5 

Case 16 12 8 4 

We now list the possibilities for extremal rational elliptic surfaces permitted 

by the table. Recall from Section 1 that ~ 5 F = 1 2 ,  ~ r F = 8 ,  ~(SF- - rF)=4 .  Also, 
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since cases 9-16 have j identically zero, we cannot have fibres from cases 9-16 

appearing with either a fibre of multiplicative type or with a fibre from cases 1-8. 
Possibilities with one singular fibre 

I Case 5D, 
II  Case 16. 

Possibilities with two singular fibres 

I I I  Case 2A, Is, 
IV Case 5A, I4, 

V Case 7, I2, 
VI Case 8, I1, 
VII  Case 11, Case 14. 

Possibilities with three singular fibres 

VII I  Case 3, I2, I6, 
IX Case 6, I1, I3. 

The possibility of Case 3 and Case 6 appearing together is excluded, since both 
of these require al  5 0  and that  al have a zero below the fibre in question. Since al  
has degree _<1, it has at most one zero. 

2B.  E x i s t e n c e  a n d  u n i q u e n e s s  o f  s u r f a c e s  w i t h  p r e s c r i b e d  f ib re  t y p e s  

In this section we will show that  surfaces with fibres of each type listed at the 
end of Section 2A exist. We will examine the uniqueness of each type. 

Before beginning our case-by-case analysis, we remark tha t  in the cases where j 
is not identically zero, the Weierstrass equation may be writ ten in the form 

y2 + a l x y + a 3 y  : x 3 ~-a2x 2 ~-a4x +a6. 

By appropriate changes of variable, this can be put  into the following form. 

y2 §  ~y = x 3 §  2 §  

where A and # are constants. We refer to this as the Ap-form of the Weierstrass 
equation. For the A#-form, 

A = t4(t2a6 +tArt +A2a2 +#2)  +A4 ~_ A3t3. 

Case I. This surface has one singular fibre, which we locate at the origin. Put t ing 
the equation into Ap-form, we must have A = p = 0 ,  a6=k t  6, k a constant. Our 

equation becomes 
y2 + t x y  = x 3 - ~ a 2 x  2 ~-kt 6. 
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By making a substitution of the form y=y+(a t+b)x ,  we may assume a2=dt, d a 
constant. We now have 

y2 + txy = x 3 + dtx 2 + kt 6. 

We cannot have d=0,  since if d=0,  the Weierstrass equation would not be minimal. 

We may scale x ,y ,  and t so that d = l .  The equation is now 

y2 +txy  = x 3 +tx  2 + kt 6. 

Then A = k t  12, so we cannot have k=0.  Computing, we find j = l / k ,  so different 

choices of k lead to non-isomorphic surfaces. Thus, the surfaces in Case I form a 
l-parameter family. 

Case II. Our equation is 

y2 + t3 coy = x 3 + t2 dox 2 + t4 eox + t5 dl" 

Scaling, we may assume c0=1. A substitution of the form y = y + k t x  allows us to 
assume do=0. We now have 

y2 +t3y = x 3 +t4eox+tSdl. 

We can force eo=0 by a substitution of the form x = x + k t  2, y=y+It ,  12=k. This 
gives 

y2 +t3y = x 3 +tSdl.  

Finally, by making a substitution y = y + k t  3, we may assume dl=d, a constant. 
Clearly d~0,  and we can scale so that d = l .  The final equation is 

y2 +t3y=x3  +t5, 

and this surface is unique. 

Case III. In this case, we locate the fibre of type 2A at t = 0  and the fibre of type 

Is at t=oc .  This forces A = c t  4, c a constant. Writing the Weierstrass equation in 
A#-form, we see A=a6=0.  The equation becomes 

y2 +txy  = x 3 +a2x 2 + ttx. 

By replacing y by y+ax+btx ,  we may assume a2=dt, d a constant. Now we run 

through 'Fate's algorithm to determine if we have a fibre of the desired type. For 
this, make a substitution x=x+c ,  c2=p. Our equation becomes 

y2 +txy+c ty  = x 3 + (c+dt)x 2 +dtc 2. 
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Note that if c=0,  A = 0 .  So c~0.  To have a fibre of the desired type at the origin, 

we must have d=0.  Our equation becomes 

y2+txy+cty=x3+cx2,  c~O. 

Scaling x, y, and t, we may force c=1.  The equation becomes 

y2+txy+ty = X3-~-X 2, 

and our surface is unique. 

Case IV. We locate the fibre of type 5A at t = 0  and the fibre of type I4 at t=ec .  
We must have A = k t  s, k a constant. Writing the Weierstrass equation in A#-form, 

we see A = # = 0 ,  a6=ct 2, c a non-zero constant. As in the preceding case, we may 

assume a2=dt. The equation becomes 

y2 +txy = x 3 +dtx 2 +ct 2. 

Substitute y=y+et,  e2=c. We get 

y2 +txy = x 3+dtx 2 +et2x, e ~ O. 

In order to have a fibre of type 5A at t=0 ,  Tate's algorithm tells us the cubic 
polynomial z3+dz2+ez must have a double root. This forces d=0.  By scaling, we 

may assume e=  1. This gives the equation 

y2 +txy = x 3 +t2x. 

This surface is unique. 

Case V. We locate the fibre of type 7 at t = 0  and the fibre of type I2 at t=ec .  
This gives A = k t  1~ k a constant. Using the ),p-form, this leads to the equation 

y2 +txy = x 3 + d t x  2 -~-ct 4. 

Tate's algorithm tells us that  d=0.  Scaling, we may assume c = l .  Our equation 

becomes 
y2 +txy = x 3 + t  4. 

This surface is unique. 

Case VI. This is similar to the preceding case. The equation works out to be 

y2 +txy = x 3 + t  5. 
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This surface is unique. 

Case VII. We locate the fibre of type 14 at 0, and the fibre of type 11 at oc. Our 

equation has the form 

y2+t2cly=x3+t2dox2-4-t3elx+t4d2, t~cl. 

Since the singular fibres are at 0 and ~ ,  cl must be a non-zero constant, and by 

scaling, we may assume c1=1. By suitable changes of coordinates, we may reduce 

this to 
y2+t2y = x3+t3ex+t5dl.  

Let u = l / t .  Then at cr our equation becomes 

y2 + uy = x 3 + uex + ud. 

To have a fibre of type 11, Tate's algorithm tells us d = e = 0 .  Our final equation is 

y2 + t2 y ~_ x 3. 

This surface is unique. 

Case VIII. We locate the fibre of type 3 at t=0 ,  the fibre of type I2 at t = l ,  and 
the fibre of type I6 at t = ~ .  This means that A=ct4+ct  6, c a non-zero constant. 

Writing the Weierstrass equation in Ate-form gives us A=0, te2=C, a 6 = c .  As before, 

we may assume a2=dt. Our equation becomes 

y2 +txy  = x 3 +dtx 2 +tex+c. 

Make a substitution x = x + e ,  e2=te. We get 

y2 + txy+ety  = x 3+ (e+dt)x 2 + tex +c+dte. 

Now substitute y = y + f ,  f2=c.  Get 

y2 + txy+e ty  = x 3-~- (e+dt)x 2 + f t x  + (e f  +ed)t. 

In order to have a fibre as in Case 3, we must have ef+ed=O, which forces f=d ,  
since e#0.  Our equation now becomes 

y2 +txy+e ty  = x 3 + (e+ f t ) x  2 + f t x .  
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Continuing with Tate's algorithm, we find that  e 3 + f 2 = 0 .  But e2=#,  #2=c,  f2=c. 
This forces f = # ,  e2=f, so e3+e4=0.  Since e#0 ,  e = f = l .  Our equation is now 

y2 +txy +ty = x 3 + (1 + t )x  2 +tx. 

Substituting y=y+x,  we get 

y2 + txy + ty = x 3. 

This surface is unique. 

Case IX. We locate the fibre of type 6 at 0, the fibre of type I1 at 1, and the 
fibre of type I3 at oc. This gives A=ctS+ct 9, c a non-zero constant. Writing the 
Weierstrass equation in )~#-form we get, 

y2 +txy = x a +dtx 2 +c(t 2 +t3). 

Make a substitution of the form y=y+et,  e 2 =c to get 

y2 + txy = x 3 + dtx 2 + et2 x + ct 3. 

In order to have a fibre of the desired type at the origin, the polynomial z3+dz2+ 
ez+c must have a triple root. This forces e=d 2, c=d a. Since e2=c, we find d4=d 3. 

Since c r  we see d e 0 ,  so d=c=e=l.  The equation is now 

Substituting x = x + t  gives 

This surface is unique. 

y2 +txy = x3 +tx2 +t2 x +t 3. 

y2 +txy+t2y = x 3 .  

To summarize, we have found nine types of extremal rational elliptic surfaces 
with three or fewer singular fibres. There is a unique surface of each type except 
for Type I, where there is a l-parameter family of surfaces. 

We list the Weierstrass equations and Kodaira fibre types in each case, for the 
convenience of the reader. 

I y2+txy=x3+tx2+kt6, k~O I~, 
II y2 +t3y_x  3 ~_t5 II*, 

III y2+txy+ty=x3+x2 III, Is, 
IV y2+txy=x3+t2x I~, I4, 
V y2+txy=x3+t4 III*, I2, 
VI y2+txy=x3+t5 II*, I1, 
VII y2+t2y=x3 IV, IV*, 

VIII y2+txy+ty=x3 IV, I2, I6, 
IX y2+txy+t2y=x3 IV*, I1, I3. 
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3. C h a r a c t e r i s t i c  t h r e e  

3A.  Class i f i ca t ion  o f  s ingu lar  fibres o f  a d d i t i v e  t y p e  o n  ra t iona l  e l l ipt ic  
surfaces  in charac ter i s t i c  t h r e e  

Throughout this section, we assume f :  X--*P 1 is a rational elliptic surface with 
section over an algebraically closed field of characteristic three. 

We repeat the program of the previous section. We start  by listing the possible 
types of singular fibres of additive type that  can appear on a rational elliptic surface 
in characteristic three. 

We begin by writing the Weierstrass equation 

y2 = x3 ~_a2x2 +a4x  +a6, 

where the ai are polynomials in t of degree _<i. We locate our singular fibre of 
additive type at t=0 .  We may change coordinates so that  t[a3, a4 and a6. The 
equation now becomes 

y2 = x 3 + tcl x 2 + tc3x + tcs. 

We find it more convenient to work with - A  instead of A in characteristic three. 

Case 1A 

y2=x3-4-tcl x2 A-tc3x A-tcs, t~cs, t ~c3, 
2 2  2 2 2  3 3  - A = t  cl(t c l c s - t  c3)+t  c 3, 

5=3,  r = 0  Type II. 

Case 1B 

y2 = x  3 +tclx  2 +t2c2x+tc5, t~c5, t~cl, 

_A=t2c2( t2c lc5  4 2 6 3 --t C2)+t c2, 

5=4,  r = 0  Type II. 

Case 1C 

y2=x3 +t2cox2 +t2c2x+tc5, t~c5, t~c2, 

- -A- - - - t 4c  2 (t3C0C5 --t4c 2) A-t6C23 ~ 

5=6, r = 0  Type II. 

Case 1D 

y2 =x3 +t2cox2 +t3clx+tc5, t~cs, t~co, 

-A=t4c2(t3coc5-t6c2)§ 3, 

5=7, r = 0  Type II. 

Case 1E 

y2=x3+t3clx+tcs ,  t~c5, t~cl, 
- -A=t9c  3, 

5=9,  r = 0  Type II. 



Case 1F 

Case 2 

Case 3A 

Case 3B 

Case 3C 

Case 3D 

Case 3E 

Case 4A 

Case 4B 
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{ y2=x3 +t4cox+tc5, t~c5, t~co, 
--A=t12c 3 ' 
5=12, r = 0  Type II. 

y2=x3+tClX2+tcax+t2c4, t~c3, 
--A =t2c12 (t3c1 e4 --t2C 2) ~- t3c3 3 , 

5=3, r = l  Type III. 

y2=x3 +tClX2 +t2C2X +t2c4, t~e4, t~Cl, 
--A--~t2C2(t3ClC4 -- t4C2)-]-t6C 3 , 

5=5, r = 2  Type IV. 

y2 =x3 +t2cox2 +t2c2x+t2c4, t~c4, t~c2 
--A =tac 2 (t4c0c4 - -  t4c~) +t6c 3, 

5=6, r = 2  Type IV. 

y2=x3 +t2cox2 +taclx +t2c4, t~e4, tJfeo, 
-A=t%~(t%oc4-t%~) +t% a, 
5=8, r = 2  Type IV. 

{ y2=x3+t3ClX+t2C4, t~c4, t~Cl, 
--A=t9c31~ 
5=9, r = 2  Type IV. 

y2=xa +t4cox +t2c4 ' tJ(c4, tJ(co, 
-A=tlUc a, 
5=12, r = 2  Type IV. 

y2 =x3 + tc lx  2 +t2c2x+tac3. 
Assume t~cl. Then we can make a substitution 

x=x+kt+lt 2 and put the equation into the form 

y2 = X  3 +tClX2 +t4Cox+t3c3, t~Cl ' t~c3. 
-A=t2c~(t4clc3-tScg)+t12c~, 
6=6, r = 4  Type I~. 

{ 2=x3-i-t2cOx2 +t2c2x-]-t3c3, t~c2, 

5=6, r = 4  Type I~. 
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Case 5A 

Case 5B 

Case 5C 

Case 5D 

Case 6A 

Case 6B 

Case 6C 

Case 7 

Case 8A 

Wil l iam E. L a n g  

l y2=x3+tclx2+t%ox+t%2, t~Cl, tJ(c2, 
_A=t2c~(t%lc2 s 2 12 3 - t  Co)+t Co, 
6=7, r=5  Type I~. 

y2 =x  3 +tclx 2 +t4cox +t5dl, t~cl, t~dl, 
- A=t2 c21( t6 Cl dl - tS c2) + p2 c 3, 

5=8, r=6  Type I~. 

y2=xa +tclx2 +tncox+t6do, t'~cl, t~do, 
--A=t2e 2 (t7cldo - t8c 2) +t12c 3, 

5=9, r = 7  Type I~. 

y2 =x3 +tclx2 +t%ox, t{cl, t{Co, 
- -  - i0  2 2 - - - 1 2  3 

5=10, r=8  Type I~. 

y2 = x  3 _~_ t2 CoX2 +t3clx_}_t3c3" 

Make a substitution of the form x=x+k t  
and put the equation into the form 

y2_~X 3 +t2cox2 +t3clx+t4c2, t~c2, t~cl. 

-- A = t 4 c2 ( t6 CoC2 -- t6 C~ ) + t9 c 3 , 

5=9, r=6  Type IV*. 

y2=xa+t2cox2+t4dox+t4c2, t~c2, t~co. 
- A =t4 c~ (t6c0c2 - tS d~) + t12 d 3, 

5=10, r=6  Type IV*. 

y2=x3+t4dox+t%2, t~c2, t~do. 

-A=P2d~, 

5=12, r=6  Type IV*. 

y2=x3+t2cox2+t3clx+t5dl, t~cl. 

5=9, r=7  Type III*. 

I y2 =x 3 +t2cox 2 +tndox+t5dl, t~dl, t~co. 
-A=t4c~(t7codl -tSd~) +p2d3, 

5=11, r=8  Type II*. 
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Case 8B 

We list the possibilities 

y2 = x  3 +t4dox+tSdl, t~dl, t~do. 
-/k=~12d3 ' 

5=12, r = 8  Type II*. 

obtained in a table. 

r 5 - r  
Case 1A 3 0 3 
Case 1B 4 0 4 

Case 1C 6 0 6 

Case 1D 7 0 7 
Case 1E 9 0 9 

Case 1F 12 0 12 

Case 2 3 1 2 

Case 3A 5 2 3 
Case 3B 6 2 4 

Case 3C 8 2 6 

Case 3D 9 2 7 

Case 3E 12 2 10 

Case 4A 6 4 2 

Case 4B 6 4 2 

Case 5A 7 5 2 

Case 5B 8 6 2 

Case 5C 9 7 2 

Case 5D 10 8 2 

Case 6A 9 6 3 

Case 6B 10 6 4 

Case 6C 12 6 6 

Case 7 9 7 2 

Case 8A 11 8 3 

Case 8B 12 8 4 

We now list the possibilities for extremal rational elliptic surfaces permitted by 

this table and the results of Section 1. 

Possibilities with one singular fibre 

I Case 8B. 

Possibilities with two singular fibres 

II Case 1A, I9, 

III  Case 6A, I3, 

IV Case 8A, Ii, 
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V Case 2, Case 7, 
VI Case 4A, Case 4A, 
VII Case 4A, Case 4B, 
VIII Case 4B, Case 4B. 

Possibilities with three singular fibres 

IX Case 2, 11, Is, 
X Case 2, I3, I6, 
XI Case 4A, I3, I3, 
XII  Case 4B, I3, I3, 
XI I I  Case 5A, I1, I4, 

XIV Case 5B, I2, I2, 
XV Case 5D, I1, I1, 
XVI Case 7, I1, I2. 

3B.  E x i s t e n c e  a n d  u n i q u e n e s s  o f  s u r f a c e s  w i t h  p r e s c r i b e d  f ib re  t y p e s  

We now examine each of the above possibilities separately to determine whether 
a surface of the given type exists. In each case where it does exist (except for 
Case VI), we will show that  it is unique. 

Case I. We want the fibre at t = 0  to be as in Case 8B. This gives us a Weierstrass 

equation 
y2 =x3+tadox+t5dl, do 50.  

By scaling, we may assume do= l .  Making a substitution of the form x=x+kt  2, we 
may reduce the equation to 

y2 = x3+t4x+t5e, 

where e is a non-zero constant. Finally, by scaling x,y, and t, we may force e = l .  
Thus, the surface exists and is unique. The Weierstrass equation is 

y2 = x3+t4x+t 5. 

Case II. We assume the fibre of type 1A is at 0, and that  the fibre of type I9 is 
at oc. The Weierstrass equation has the form 

y2=x3+tclx2+tc3x+tcs, t~cs, t~c3. 

We know -A=t2c2(t2clcs-t2c])+t3c 3, and we want - A = c t  3, c a constant. Now 

if cl =0,  then - A = t 3 c  3, so we must have c3=d, d a non-zero constant, and we may 
assume d = l .  The equation now becomes 

y2 = x3 + tx + tc5" 
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Making  a s u b s t i t u t i o n  of the  t y p e  x = x +  kt 2, we m a y  assume deg c5_< 4. But  t hen  

we find t h a t  the  fibre at  oo is of add i t ive  type ,  which is not  wha t  we want .  So we 

cannot  have cl = 0 .  We now break  the  p roof  into subcases.  

Subcase  A. tic1. We now have 

y2=x3+t2cox2+tc3x+tc5,  co#O, t~c5, t~c3. 

We m a y  assume c0=1.  Mak ing  a subs t i t u t i on  of the  form x = x + k t + l t  2, we m a y  

assume c3=a+bt. Comput ing ,  we find 

- A  = t7c5 -t6(a2 + 2abt +b2t2)+a3t3 +b6t 6. 

Scaling, we m a y  assume a = l .  Then  our  r equ i rement  t h a t  - A = c t  3 forces b = l  and  

- A = t 3 - 2 t T - t s + t T c s .  This  forces c 5 = t + 2 .  Thus ,  in th is  subcase,  we have the  

unique poss ib i l i ty  
y2 = X 3 +t2X 2 +t ( t+  1)x+t(t+2).  

Subcase  B. tJ(cl. We m a y  locate  t he  zero of Cl a t  t = - 1 ,  and  then  scale so t h a t  

we have 
y2 = x 3 +t( t  + 1)x 2 +tc3x +tc5. 

By subs t i t u t i ng  x = x + k t + l t  2, we m a y  assume c3=a+bt 3. Comput ing ,  we find 

- - A  = t 7 +t4c5 + t  3 +b3t  1 2 - t  4 (a 2 +2a2t+a2t 2 +2abt 3 

+abt4 + 2abt5 +b2t2 + 2b2tT +b2tS). 

This  forces cs=a2+2a2t+a2t2+ct3+dt4+et 5 wi th  

c = 2a 2 + 2ab, 

d = a 2 +ab, 

e = 2a 2 +2ab. 

Set t ing  the  P ~  and  p 2  t e rms  to  0, we get  

2a 2 + 2ab = O, 

a 2 +ab = 0, 

2a 2 +2ab+b 3 = O. 

This  forces a = b = 0 .  Since t~c3, th is  is impossible .  Hence no surface exists  under  

th is  subcase.  Hence the  surface in Case I I  exis ts  and  is unique,  wi th  Weie r s t r a s s  

equa t ion  
y2 = X 3 _t_t2X2 +t( t  + 1)x +t( t  + 2). 
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Case III. We assume the fibre of type 6A is at 0, and the fibre of type 13 is at o<~. 

The Weierstrass equation is 

y2=X3~-t2CoX2~-t3ClX~-t4C2, t~C2, t~C1. 

As in the  previous  case, c0#0 ,  so we m a y  assume c0=1 .  By  mak ing  a subs t i t u t ion  

of the  form x = x + k t  2, we m a y  assume cl=e, a non-zero  cons tan t .  Our  equa t ion  is 

now 
y2 = X 3 + t 2 x  2 + t 3 e x  +t4c2" 

Comput ing ,  we find - A = t l ~ 1 7 6  2 + t g e  3. Since we want  - A = c t  9, we mus t  have 

c2=e 2. By scaling, we m a y  assume e = l .  Therefore  the  surface 

y2 = x 3 + t 2 x  2 +t3x+t 4 

is the  unique surface in Case III .  

Case IV. We loca te  the  fibre of t y p e  8A at  0, the  fibre of t ype  I1 a t  ~ .  Our  

equa t ion  becomes  

y2=x3+t2cox2+t4dox+t5dl, t~dl, t~co. 

By scaling, we m a y  assume c0=1.  Subs t i t u t i ng  x = x + k t  2 allows us to  assume 

do=0 .  Then  - A = t n d l .  We must  have dl=e, e a non-zero  cons tant .  Scaling, we 

m a y  assume e =  1. So the  unique surface in th is  case is 

y2 = x 3 ~_t2x 2 ~_t5. 

Case V. We loca te  t he  Case 7 fibre at  0 and  the  Case 2 fibre at  cr In  order  to  

have this  conf igurat ion,  we mus t  have a 2 = 0 .  Our  equa t ion  is 

y2 = x  3+t3clx+t5dl, t~cl. 

In  order  to have a Case 2 fibre at  cr we mus t  have cl = e ,  a non-zero cons tant .  We 

m a y  assume e = l .  We m a y  make  a subs t i t u t i on  of the  form x=xA-kt 2 to  get  d l=f ,  
a cons tant .  Let  u=t  -1. T h e n  at  c~, our  equa t ion  becomes  

y2 = x3+ux+ fu.  

In  o rder  to  have a Case 2 fibre at  c~, we mus t  have f = 0 .  Thus,  the  surface exists  

and  is unique.  T h e  Weie rs t rass  equa t ion  is 

y2 = X 3 + t3x .  
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Case VI. We want fibres of type 4A at both 0 and oc. Our equation is 

y2 = x 3 + tcl  x 2 + t4 cox A_ t3 c3" 

In order to have additive reduction at both 0 and cxD, we must have c1 = constant. 

Since we want fibres of type 4A, we must have c l#0 ,  so we may assume c l = l .  
Calculating, we find 

-- A = t2 ( t4 c3 -- tS c2) + t12 c 3. 

Since we want - A = k t  6, k a non-zero constant, this forces c0=0, c3 a non-zero 

constant. We get a l-parameter family of surfaces in this case. The equation is 

y2 = x 3 + t x 2 + k t  3, k a n o n - z e r o  c o n s t a n t .  

Case VII. This case does not exist, since we see by examining the forms of the 

equations that we cannot have fibres of types 4A and 4B together. 

Case VIII. We want fibres of type 4B at both 0 and cr This forces the equation 

into the form 
y2 =x3q_t2c2xq_t3c3, t~c2. 

We have - A = t 6 c  3, so we must have c2=e, a non-zero constant. We may assume 

e = l .  Looking at cxD, we ~nd c 3 = f ,  a constant. The equation is now 

y2 = x 3 A_t2xA_ f t3 .  

By making a substitution of the form x = x + k t ,  we may force f = 0 .  This surface 
exists and is unique. It has equation 

y2 = x 3 +t2x. 

Case IX. We claim that this surface does not exist. For if it did, the Mordell-Weil 

group of the generic fibre would have order 4. It cannot be Z/2 x Z/2, for if it were, 

all the roots of the cubic on the right-hand side of the Weierstrass equation would 

be in kit], and therefore A would be a square in k[t], contradicting the requirement 

that A have a simple zero. So the Mordell-Weil group must be Z/4. So the j -  
map for our surface must factor through the j -map X I ( 4 ) - * P  1, where Xl(4) is the 

modular curve. But looking at ~ ,  we see the j -map for our surface has degree 9, 

while the j -map for X1 (4) has degree 6. So this surface does not exist, as claimed. 

Case X. We locate the fibre as in Case 2 at t=0 .  The Weierstrass equation is of 

the form 
y2 = x3A_tc lx2A_tc3x+t2c4 ' t~c3. 
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Subcase  A. tic1. In th is  subcase,  we m a y  assume our  equa t ion  is of the  form 

y2 = x 3 §  2 +tc3x+t2ca. 

Since the  M o r d e l l - W e i l  group is of o rder  6, we have a 2- tors ion point .  This  means  

the  cubic  in x on the  r i gh t -hand  side of the  Weie r s t r a s s  equa t ion  has  a root  in k[t]. 
I t  is easy  to  see t h a t  th is  root  has  degree < 2  in t and  no cons tan t  t e rm.  Hence we 

m a y  make  a subs t i t u t i on  x=x+k t§  2 and  pu t  the  equa t ion  in the  form 

y2 = x 3 § § 

Now -A=t6c2+t3c 3. If  we locate  the  I6 fibre a t  ~c, t hen  - A  mus t  have the  

form - A = t 3 ( A §  3. Wri te  c3=a+bt§247 3, ar and  compute .  We find 

b=c=d=O, and  we can  scale so t h a t  a = l .  Thus,  we have a unique  surface in th is  

subcase ,  wi th  equa t ion  
y2 = X 3 §  2 § 

Subcase  B. t~cl. We locate  the  I6 fibre at  oc, and  the  zero of Cl a t  t = - l .  
Scaling, we m a y  assume the  Weiers t rass  equa t ion  has  the  form 

y2 =x3§ t~c3. 

Making  a subs t i t u t i on  x=x+kt+I t  2, we m a y  assume c3=a+bt 3. Then  

--A = t5(t + l)3c4-t4(t + l)2(a§ +t3(a+bt3) 3. 

We want  th is  to  be  of the  form - A = A t  3 +Bt 6. Cons ider ing  the  t 4 t e rm,  this  forces 

a=O, which is impossible .  So there  is no surface in th is  subcase.  

Hence the  unique  surface in Case X has the  equa t ion  

y2 = x3§247 

Case XI. In  th is  case, we want  a fibre of t y p e  4A at  0, a fibre of t y p e  I3 at  ~ ,  and  

one o the r  s ingular  fibre of t ype  I3. We wr i te  the  Weie r s t r a s s  equa t ion  in the  form 

y2 =x3§247247 ' t~cl. 

Since the  Morde l l -We i l  group is of o rder  6, we can e l imina te  c3 as in the  preceding 

ease to  get 

y2 = x 3 § tCl X 2 § t2 r 
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Locate the zero of cl at t = - i  and scale to get 

y2 = x3+t(t+l)x2+t2c2x. 

Then - - A = t  6 (c 3 -  ( t+  1)2c~). We want the term in parentheses to be a perfect cube, 

which forces c2 = d(t + 1) 2. Then - A = (d 3 - d 2)t 6 (t + 1)6, which is inconsistent with 

having a I3 fibre at ~ .  Hence, this surface does not exist. 

Case XII. We want a fibre of type 4B at 0, a fibre of type [3 at a<), and one other 
singular fibre of type I3. The equation has the form 

y2 =x3+t2CoX2+t2c2x+t3c3 ' t~c2. 

Since we want fibres of multiplicative type, we cannot have co =0, so we may assume 

c0=1. Since we have a 2-torsion point, we may put the equation in the form 

y2 = x 3 ~ _ t 2  x 2 +t2c2x. 

Then -A=-tSc2+t6c3. Since t{c2, we get a non-zero t s term. Since - A  must be 

a perfect cube, we see this surface does not exist. 

Case XIII. We have a fibre of type 5A at t=0,  and fibres of types I1 and I4. The 

order of the Mordell-Weil group is 4. Since A has a simple zero, it cannot be a 

square, and hence the 2-torsion points cannot all be rational over k(t). Hence the 

Mordell-Weil group is Z/4. Since the degree of the j -map is 6 for both our surface 
and the elliptic modular surface E1 (4), this surface must be E1 (4) and so is unique. 

One computes easily that the Weierstrass equation is 

y2 = x3 +t(t + l)x2 +t2x. 

Case XIV. We want a fibre of type 5B at t=0 ,  a fibre of type I2 at ~ ,  and another 
singular fibre of type I2. We may assume our equation is 

y2 =x3+t(t+l)x2+t4cox+t5dl, t~dl. 

Write dl =A+Bt,  and compute - A .  We find B = c  02 _ co3, A=2c 2, and - A = 2 c 2 t 8  • 

(t2+(co+2)t+l). We want (t2+(co+2)t+l) to be a perfect square, which forces 

co=0 or Co=-1 .  If co=0, then A = 0 ,  so c 0 = - 1 .  This surface is unique, with 
equation 

y2 = x 3 + t(t + 1)x 2 - t4x +t 5 (2t +2). 
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Case XV. We want a fibre of type 5D at 0, a fibre of type Ii at ~, and another 

fibre of type 11. The equation is 

y2=x3+tclx2+t4cox, t~cl, t~co. 

As before, we m a y  assume c l = t + l .  Comput ing ,  we find -A=P~ 
We want  the  t 12 t e r m  to be  zero, which forces c2-c3=0, c o = l .  Hence we have the  

unique surface 
y2 = x 3 +t(t + 1)x 2 +t4x. 

Case XVI.  This  t ime,  we have a fibre as in Case 7 at  t = 0 ,  a fibre of type  I2 at  
t = o c ,  and  a fibre of type  I1. The  equat ion  is 

y2 =x3+t2cox2+t3clx+t5dl, t~cl. 

Since we have fibres of mult ipl icat ive type,  co 50 ,  and we m a y  assume co = 1. Make 
a subs t i tu t ion  of the form x=x+kt  2 to get cl =e ,  a non-zero constant .  Scaling, we 
m a y  assume e = l .  Then  -A=t4(tTdl- t6)+t  9, so in order to have a fibre of type  I2 

at  cx~, we must  have dl =0 .  Hence this surface is unique, wi th  equat ion 

y2 = x 3 + t 2 x  2 +t3x. 

To summar ize ,  we list the  ex t remal  ra t ional  elliptic surfaces found, together  
wi th  the  Weierstrass  equations,  and the  types  of singular fibres. The  number ing  
does not  correspond to the  number ing  above. 

I y2 : X  3 +t4x+t 5 II*, 

I I  y2=x3+t2x2+t(t+l)x+t(t+2) II,  19, 
I I I  y2 = x  3 + t 2 x  2 +t3x+t 4 IV*, I3, 
IV y2 = x  3 + t 2 x  2 + t  5 II*, I1, 

v y2=x3+t3x III*,  I I I ,  
v I  y2=x3 +tx2 +kt3, k#O I~, I~, 
VI bis y2=x3+t2x I~, I~, 
VI I  y2=x3+t2x2+tx I I I ,  I3, I6, 

V I I I  y2=x3+t(t+l)x2+t2x I~, I1, I4, 
IX y2=x3+t(t+l)x2-tnx+t5(2t+2) I~, I2, I2, 
X y2=x3+t(t+l)x2+t4x I~, I1, I1, 
XI  y2=x3+t2x2+t3x III*,  I1, I2. 

4. All characterist ics  r 3 

T h e o r e m  4.1.  The classification of extremal rational elliptic surfaces with 
three or fewer singular fibres over an algebraically closed field of characteristic p > 5  
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is identical to the classification of such surfaces in characteristic zero. The classi- 
fication of such surfaces in characteristic five is identical to the above except that 
there exists a unique surface with three singular fibres of type II, I5, I5. 

Proof. We merely sketch the proof of this theorem, which is essentially a 
straightforward application of the techniques of Miranda-Persson.  First, we note 
that  Table 1.1 of [4] is valid in characteristic p, p # 2 ,  3. Next, we consider all the 
types of surfaces permit ted by the results of Section 1. For each type, we work out 
the degree of the j - m a p  and the ramification over 0 and c~. Then we apply the Hur- 
witz genus formula, and find tha t  the possibilities excluded in [4] are also excluded 
in our case. The reader will check tha t  in each case, no problems are caused by wild 
ramification or inseparability of the j - m a p  except in one case in characteristic 5. 

This exceptional case is the one where we have singular fibres of type II, I5, I5. 
In this case, the j - m a p  has degree 10, and using the Hurwitz formula, we see that  
this can only exist in characteristic five, with the j - m a p  inseparable. 

Let us assume that  we have such a surface with the fibre of type II  at t=0 .  The 
Weierstrass equation has the form y2 = x  3 +a4x-t-a6, with the ai polynomials in t of 
degree < 1. Since the j - m a p  is inseparable, all multiplicities of zeroes of j must be 
divisible by 5. Hence by Table 1.1 of [4], we see tha t  t4]a4, and we may scale so that  
a4=t 4. Also, from the same table, tin6. Computing, we see - A / 1 6 = 4 t 1 2 + 2 7 a  2. 
We want A to have a zero of order 5 at c~ and one zero of order 5 at finite distance, 
and we want the j - m a p  to be inseparable. This forces a6=-at+bt 6. Plugging this 
into A, and setting the t 12 te rm to 0, we get b=v/-3. Making j inseparable forces 
a=2x/3 .  So our surface is unique, with equation 

y2 = x 3 +t4x_}_2v/-~t + V~t6. 

To eliminate the square roots, make a substi tution x = v ~ x ,  y=33/ay. Our equation 
becomes 

y2 ~ x 3 ~_2t4xW4t_+_2t 6. 

The existence and uniqueness of the remaining cases can be deduced exactly 
as in [4], and the Weierstrass equations are the same as those listed there. This 
completes our sketch of the proof of Theorem 4.1. 
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