The distribution of square-full integers

H.-Q. Liu

1. Introduction

A positive integer n is called to be square-full, if $p \mid n$ implies that $p^{2} \mid n$, here p denotes prime numbers. Let $Q(x)$ be the number of square-full numbers not exceeding x, and

$$
\Delta(x):=Q(x)-\frac{\zeta(3 / 2)}{\zeta(3)} x^{1 / 2}-\frac{\zeta(2 / 3)}{\zeta(2)} x^{1 / 3}
$$

The best unconditional upper bound estimate is given in [6], that is,

$$
\Delta(x)=O\left(x^{1 / 6} \exp \left(-A(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right)\right.
$$

where A is a positive number. The above estimate cannot be improved unconditional due to our current knowledge concerning the zero-free region of the zeta-function. Assuming the Riemann hypothesis, richer information for $\Delta(x)$ has been given in [6], in which it was shown that

$$
\begin{equation*}
\Delta(x)=O\left(x^{(1-\varphi) /(7-12 \varphi)} \exp \left(A(\log x)(\log \log x)^{-1}\right)\right) \tag{*}
\end{equation*}
$$

here φ is a number such that

$$
\sum_{a^{2} b^{3} \leq x} 1=\zeta\left(\frac{3}{2}\right) x^{1 / 2}+\zeta\left(\frac{2}{3}\right) x^{1 / 3}+O\left(x^{\varphi}\right) .
$$

What is the most optimal value of φ one can expect? It is known that (cf. (8) of Schmidt [5], or cf. [6])

$$
\begin{align*}
\sum_{x \geq a^{2} b^{3}} 1=\zeta\left(\frac{3}{2}\right) x^{1 / 2}+\zeta\left(\frac{2}{3}\right) x^{1 / 3} & -\sum_{n \leq x^{1 / 5}} \psi\left(\left(\frac{x}{n^{3}}\right)^{1 / 2}\right) \\
& -\sum_{n \leq x^{1 / 5}} \psi\left(\left(\frac{x}{n^{2}}\right)^{1 / 3}\right)+O(1) \tag{1}
\end{align*}
$$

where $\psi(t)=t-[t]-\frac{1}{2}$ for a real number t. Thus from $\S 4$ of [3], we see that (\#) holds for $\varphi=14 / 107+\varepsilon$, where ε is a sufficiently small positive number. Here $14 / 107=0.1308 \ldots$, and, in view of recent work of Huxley [2], it can be reduced quite satisfactory. But, unless the so-called exponent pair conjecture is true, namely, $\left(\varepsilon, \frac{1}{2}+\varepsilon\right)$ is an exponent pair for all sufficiently small number $\varepsilon \geq 0$, in which case we can take $\varphi=0.1+\varepsilon$ in (\#), we can not prove that $\Delta(x)=O\left(x^{9 / 58+\varepsilon}\right)$ in (*). But in this paper we can really prove the following.

Theorem. Assuming the Riemann hypothesis, then

$$
\Delta(x)=O\left(x^{9 / 58+\varepsilon}\right)
$$

for any $\varepsilon>0$.

2. Reduction

Taking an idea from Montgomery-Vaughan [4], we first give a reduction of our problem. Throughout the arguments we assume the Riemann hypothesis for the zeta-function.

Lemma 1. Let $Y=$ integer $+\frac{1}{2}, x^{2 / 15+\varepsilon} \leq Y \leq x^{1 / 6-\varepsilon}$, then

$$
\Delta(x)=S_{1}+S_{2}+O\left(x^{1 / 2+\varepsilon_{Y}^{-5 / 2}}+Y\right)
$$

where

$$
\begin{aligned}
& -S_{1}=\sum_{m^{6} n^{5} \leq x, m \leq Y} \mu(m) \psi\left(\left(\frac{x}{m^{6} n^{3}}\right)^{1 / 2}\right), \\
& -S_{2}=\sum_{m^{6} n^{5} \leq x, m \leq Y} \mu(m) \psi\left(\left(\frac{x}{m^{6} n^{2}}\right)^{1 / 3}\right),
\end{aligned}
$$

$\mu(\cdot)$ is the Möbius function.
Proof. Let $Y_{1}=x Y^{-6}$, it is obvious that

$$
\begin{aligned}
& Q(x)=\sum_{a^{2} b^{3} m^{6} \leq x} \mu(m)=\sum_{1}+\sum_{2}-\sum_{3} \\
& \sum_{1}=\sum_{n \leq Y_{1}} \tau(n) \sum_{m \leq\left(x n^{-1}\right)^{1 / 6}} \mu(m), \quad \tau(n)=\sum_{a^{2} b^{3}=n} 1, \\
& \sum_{2}= \sum_{m \leq Y} \mu(m) \sum_{n \leq x m^{-6}} \tau(n) \\
& \sum_{3}=\left(\sum_{n \leq Y_{1}} \tau(n)\right)\left(\sum_{m \leq Y} \mu(m)\right) .
\end{aligned}
$$

From (1) we have

$$
\sum_{2}=\zeta\left(\frac{3}{2}\right) x^{1 / 2}\left(\sum_{m \leq Y} \frac{\mu(m)}{m^{3}}\right)+\zeta\left(\frac{2}{3}\right) x^{1 / 3}\left(\sum_{m \leq Y} \frac{\mu(m)}{m^{2}}\right)+S_{1}+S_{2}+O(Y)
$$

which, in conjunction with the facts

$$
\sum_{m \leq Y} \frac{\mu(m)}{m^{3}}=\frac{1}{\zeta(3)}+O\left(Y^{-5 / 2+\varepsilon}\right) \quad \text { and } \quad \sum_{m \leq Y} \frac{\mu(m)}{m^{2}}=\frac{1}{\zeta(2)}+O\left(Y^{-3 / 2+\varepsilon}\right)
$$

(both follow from partial summations and the estimate $\sum_{m \leq Z} \mu(m) \ll Z^{1 / 2+\varepsilon}$ for $Z>0$-a consequence of the Riemann hypothesis), gives

$$
\sum_{2}=\frac{\zeta(3 / 2)}{\zeta(3)} x^{1 / 2}+\frac{\zeta(2 / 3)}{\zeta(2)} x^{1 / 3}+S_{1}+S_{2}+O\left(x^{1 / 2+\varepsilon} Y^{-5 / 2}+Y\right)
$$

Similarly we get $\sum_{1}, \sum_{3}=O\left(x^{1 / 2+\varepsilon} Y^{-5 / 2}\right)$. Lemma 1 then follows.

3. Proof of our Theorem

Now we choose $\theta=9 / 58, Y=x^{\left(1-2^{\theta}\right) / 5}$ in Lemma 1. It suffices to estimate S_{1} and S_{2}. We consider subsums of the form $S_{1}(M)$ and $S_{2}(M)$, where, for $M \leq Y$,

$$
-S_{1}(M)=\sum_{m^{6} n^{5} \leq x, m \sim M, m \leq Y} \mu(m) \psi\left(\left(\frac{x}{m^{6} n^{3}}\right)^{1 / 2}\right)
$$

and

$$
-S_{2}(M)=\sum_{m^{6} n^{5} \leq x, m \sim M, m \leq Y} \mu(m) \psi\left(\left(\frac{x}{m^{6} n^{3}}\right)^{1 / 3}\right)
$$

and $m \sim M$ means $M<m \leq 2 M$. Denote $X=x m^{-6}$, then from $\S 4$ of [3] we get the estimates

$$
\begin{aligned}
& \sum_{n \leq x^{1 / 5}} \psi\left(\left(\frac{x}{n^{3}}\right)^{1 / 2}\right) \ll x^{14 / 107+\varepsilon}, \\
& \sum_{n \leq x^{1 / 5}} \psi\left(\left(\frac{x}{n^{2}}\right)^{1 / 3}\right) \ll x^{7 / 55+\varepsilon}
\end{aligned}
$$

thus we have

Lemma 2.

$$
S_{1}(M)=O\left(\left(x^{14} M^{23}\right)^{1 / 107} x^{\varepsilon}\right), \quad S_{2}(M)=O\left(\left(x^{7} M^{13}\right)^{1 / 55} x^{\varepsilon}\right)
$$

From Lemma 2 we deduce that, for $M \leq x^{0.098}, S_{1}(M), S_{2}(M)=O\left(x^{9 / 58}\right)$. We thus can assume $M>x^{0.098}$, and we give a further splitting of the summation range by considering

$$
\begin{aligned}
& -S_{1}(M, N)=\sum_{m^{6} n^{5} \leq x, m \sim M, n \sim N, m \leq Y} \mu(m) \psi\left(\left(\frac{x}{m^{6} n^{3}}\right)^{1 / 2}\right), \\
& -S_{2}(M, N)=\sum_{m^{6} n^{5} \leq x, m \sim M, n \sim N, m \leq Y} \mu(m) \psi\left(\left(\frac{x}{m^{6} n^{2}}\right)^{1 / 3}\right),
\end{aligned}
$$

here N is such that $M^{6} N^{5} \leq x$ and $M N>x^{\theta}$. By an argument using the Fourier expansion of the function $\psi(\cdot)$ (cf. [4]), we get, with $H=M N x^{-\theta}$, the following estimate

$$
\begin{gathered}
S_{i}(M, N) \ll \sum_{h=1}^{\infty} \min \left(\frac{1}{h}, \frac{H}{h^{2}}\right)\left|L_{i}(M, N)\right|+x^{\theta} \log x, \quad i=1,2, \\
L_{1}(M, N)=\sum_{(m, n) \in D} \mu(m) e\left(h x^{1 / 2} m^{-3} n^{-3 / 2}\right), \\
L_{2}(M, N)=\sum_{(m, n) \in D} \mu(m) e\left(h x^{1 / 3} m^{-2} n^{-2 / 3}\right), \\
D=\left\{(m, n) \mid m \sim M, n \sim N, m^{6} n^{5} \leq x, m \leq Y\right\} .
\end{gathered}
$$

To estimate $L_{i}(M, N)$ we appeal to the next lemmas.
Lemma 3. Let $M \leq N<N_{1} \leq M_{1}, a_{n}$ be complex numbers. Then

$$
\left|\sum_{N<n \leq N_{1}} a_{n}\right| \leq \int_{-\infty}^{\infty} K(t)\left|\sum_{M<m \leq M_{1}} a_{m} e(t m)\right| d t
$$

with $K(t)=\min \left(M_{1}-M+1,(\pi|t|)^{-1},(\pi t)^{-2}\right)$ and

$$
\int_{-\infty}^{\infty} K(t) d t \ll 3 \log \left(2+M_{1}-M\right)
$$

Lemma 4. Let

$$
\omega_{\phi \psi}(X, Y)=\sum_{r} \sum_{s} \phi_{r} \psi_{s} e\left(x_{r} y_{s}\right)
$$

where $X=\left(x_{r}\right), Y=\left(y_{s}\right)$ are finite sequences of real numbers with

$$
\left|x_{r}\right| \leq P, \quad\left|y_{s}\right| \leq Q
$$

and ϕ_{r}, ψ_{s} are complex numbers. Then

$$
\left|\omega_{\phi \psi}(X, Y)\right|^{2} \leq 20(1+P Q) \omega_{\phi}(X, Q) \omega_{\psi}(Y, P)
$$

with

$$
\omega_{\phi}(X, Q)=\sum_{\left|x_{r}-x_{r^{\prime}}\right| \leq Q^{-1}}\left|\phi_{r} \phi_{r^{\prime}}\right|,
$$

and $\omega_{\psi}(Y, P)$ being defined similarly.
Lemmas 3 and 4 are Lemma 2.2 and Lemma 2.4 (with $k=1$) respectively, of [1]. Using Lemma 3 to separate variables, we get

$$
\begin{equation*}
(\log x)^{-1} L_{1}(M, N) \ll \sum_{m \sim M}\left|\sum_{n \sim N} e(t n) e\left(h x^{1 / 2} m^{-3} n^{-3 / 2}\right)\right|, \tag{2}
\end{equation*}
$$

where t is a real number (independent of m and n). By Lemma 4 we derive that

$$
\begin{equation*}
(\log x)^{-2} L_{1}^{2}(M, N) \ll h x^{1 / 2} M^{-3} N^{-3 / 2} A_{1} A_{2} \tag{3}
\end{equation*}
$$

here A_{1} is the number of lattice points (m, m_{1}) such that

$$
\left|m^{-3}-m_{1}^{-3}\right| \ll N^{3 / 2}\left(h x^{1 / 2}\right)^{-1}
$$

hence $A_{1} \ll M\left(1+M^{4} N^{3 / 2}\left(h x^{1 / 2}\right)^{-1}\right)$; and A_{2} is the number of lattice points (n, n_{1}) such that

$$
\left|n^{-3 / 2}-n_{1}^{-3 / 2}\right| \ll M^{3}\left(h x^{1 / 2}\right)^{-1}
$$

hence $A_{2} \ll N\left(1+N^{5 / 2} M^{3}\left(h x^{1 / 2}\right)^{-1}\right) \ll N$. Thus from (3) we obtain the estimate

$$
\begin{equation*}
S_{1}(M, N) \ll\left(\sqrt[4]{x^{1-2 \theta} M^{-2} N}+M N^{1 / 2}+x^{\theta}\right) x^{\varepsilon / 2} \tag{4}
\end{equation*}
$$

By an argument analogous to that of (2) and (3), we can get

$$
\begin{equation*}
S_{2}(M, N) \ll\left(\sqrt[6]{x^{1-2 \theta} N^{4}}+M N^{1 / 2}+x^{\theta}\right) x^{\varepsilon / 2} \tag{5}
\end{equation*}
$$

Now we have

$$
\begin{gathered}
M N^{1 / 2} \leq M^{4 / 10}\left(M^{6} N^{5}\right)^{1 / 10} \ll Y^{4 / 10} x^{1 / 10}=x^{\theta}, \\
\sqrt[4]{x^{1-2 \theta} M^{-2} N} \ll \sqrt[4]{x^{1-2 \theta} M^{-1}} \ll x^{\theta} \\
\sqrt[6]{x^{1-3 \theta} N^{4}} \ll\left(x^{1-3 \theta} x^{4 / 11}\right)^{1 / 6} \ll x^{\theta}
\end{gathered}
$$

in view of the facts that $M>x^{0.098}$ and $M^{6} N^{5} \leq x$ (which also imply that $M \geq N$ and $N \leq x^{1 / 11}$). Our theorem follows from the above estimates in view of (4) and (5).

Remark 1. Clearly the limit value of the exponent can be expected from Lemma 1 to be $1 / 7+\varepsilon=0.14285 \ldots+\varepsilon$, while $9 / 58=0.15517 \ldots$.

Remark 2. It is of interest whether our result can be improved by invoking the decomposition of the Möbius function, as was carried out in [4].

References

1. Bombieri, E. and Iwaniec, H., On the order of $\zeta\left(\frac{1}{2}+i t\right)$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986), 449-472.
2. Huxley, M. N., Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301.
3. Liv, H.-Q., The number of square-full numbers in an interval, Acta Arith. 64 (1993), 129-149.
4. Montgomery, H. L. and Vaughan, R. C., The distribution of squarefree numbers, in Recent Progress in Analytic Number Theory, vol. 1 (Halberstam, H. and Hooley, C., eds.), pp. 247-256, Academic Press, London, 1981.
5. Schmidt, P. G., Zur Anzahl Abelscher Gruppen gegebener Ordnung, J. Reine Angew. Math. 229 (1968), 34-43.
6. Suryanarayana, D. and Sitaramachandra, R., The distribution of square-full integers, Ark. Mat. 11 (1973), 195-201.
H.-Q. Liu

206-10, Bao Guo St.
Harbin, 150066
P.R. China

