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The distribution of square-full integers 
H.-Q. Liu 

1. I n t r o d u c t i o n  

A positive integer n is called to be square-full, if pin implies that p2 in , here p 
denotes prime numbers. Let Q(x) be the number of square-full numbers not ex- 
ceeding x, and 

A(x) := Q(x)- ~(3/2) xl/2 ~(2/3) xl/3" 
~(3) ~(2) 

The best unconditional upper bound estimate is given in [6], that  is, 

A(x) = O(x 1/6 exp(-A( log  x)3/5 (log log x)-1/5), 

where A is a positive number. The above estimate cannot be improved unconditional 
due to our current knowledge concerning the zero-free region of the zeta-function. 
Assuming the Riemann hypothesis, richer information for A (x) has been given in [6], 
in which it was shown that 

(,) A(x) = O(x (1-~)/(7-12~) exp(A(log x)(log log x) - l ) ) ,  

here go is a number such that 

(•) E 1=~(3)xl/2+~(2) xl/3+O(x~)" 
a2b3<x 

What  is the most optimal value of ~ one can expect? It is known that (cf. (8) of 
Schmidt [5], or cf. [6]) 

((  x Z l=r162 ~ ~z /  / 
x~a2b 3 n < x l / 5  

(1) (x hl'h -_<~1/5r ] + O ( 1 ) ,  
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where r  ~1 for a real number t. Thus from w of [3], we see that (#) 
holds for ~=14/107+c,  where ~ is a sufficiently small positive number. Here 
14/107=0.1308 ..., and, in view of recent work of Huxley [2], it can be reduced quite 
satisfactory. But, unless the so-called exponent pair conjecture is true, namely, 
(~, �89 is an exponent pair for all sufficiently small number c_>0, in which case 
we can take ~=0 .1+r  in (•), we can not prove that  A(x)=O(x 9/5s+~) in (*). But 
in this paper we can really prove the following. 

T h e o r e m .  Assuming the Riemann hypothesis, then 

A(x)=O(x9/~s+~) 

for any c > O. 

2. R e d u c t i o n  

Taking an idea from Montgomery Vaughan [4], we first give a reduction of our 
problem. Throughout the arguments we assume the Riemann hypothesis for the 
zeta-function. 

L e m m a  1. Let Y= integer +�89 x2/15+~ <Y <x 1/6-~, then 
-5/2 

A(x)=SI+S2+O(x 1/2+~Y +Y), 

where 

-Sx = ~ ,(.~)r 
m6n 5 ~_x, m ~ Y  

-s2= Z "('~)r 
rn6n5~_x, m~_Y 

it(') is the M5bius function. 

Proof. Let Y1 =xY -6, it is obvious that  

Q(x): E i t (m) :E+E-E,  
a2bam6~_x 1 2 3 

E = E 7(n) E it(m), T ( n ) :  E 1, 
1 n~_Y1 m ~ ( x n  1)1/6 a2b3=n 

E = E it(m) E 
2 m ~ Y  n~_x~rt - 6  
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From (1) we have 

\ 2 ] _ m 3  "m<_Y '171'2 ) 

which, in conjunction with the facts 

.~_<vE p(m)m 3 _ r #_O(y_Sj2+,) and m_<YE p(m)_~_7 r b-O(y-312+*) 

(both follow from partial summations and the estimate ~m<Z l t ( m )  <<Z1/2+~ for 

Z> 0--a consequence of the Riemann hypothesis), gives 

_ r  x~/2 + ( ( 2 / 3 )  xl/3_S - S  "0  Ixl/2+~Y-5/2 +Y) 
2 ~ ( 3 )  r  -1- 1 T  2-1- I 

Similarly we get El, ~-~.3=O(xl/2+sY-5/s) �9 Lemma 1 then follows. 

3. P roof  of our  Theo rem 

Now we choose 0=9/58, Y=x  (1-2~ in Lemma 1. It suffices to estimate S1 
and $2. We consider subsums of the form SI(M) and S2(M), where, for M<Y,  

-S I (M)  = E #(m)r 
rn6n 5 <x, m ~ M ,  m<_Y 

and 
f (  x 

-S2(M) = E #(m)~ \ t,m~n~na # ] 
m6n5<x, m ~ M ,  m < Y  

and m ~ M  means M<m<2M. Denote X=xm -6, then from w of [3] we get the 
estimates 

(( x r \ ~ )  ) <<x14/1~ 
n<a:ll5 (f• 
}2 r kn2) ) <<xTJ55+~, 

n<_zl/~ 

thus we have 
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L e m m a  2. 

SI(M) = O((x14M23)l/l~ S2(M) -- O((xTM13)l/55x~). 

From Lemma 2 we deduce that, for M < x  ~176 SI(M), S2(M)=O(x9/58). We 
thus can assume M>x ~176 and we give a further splitting of the summation range 
by considering 

- z l  (M, N) = , (m) r  
~6nh<x, m~M,  n~N,  m ~ Y  

-S2(M,N) = E #(m)r 
m6nh<x, m~M,  n~N, m<_Y 

here N is such that M6Nh<x and MN>x e. By an argument using the Fourier 
expansion of the function r (cf. [4]), we get, with H=MNx -~ the following 
estimate 

(lh,~hH)]L~(M,N)]+x01og x, i=1,2, Si (M, N) << E min 
h : l  

LI(M,N)= E #(m)e(hxl/2m-an-3/2), 
(m,n)CD 

L2(M,N)= E #(m)e(hxX/3m-2n-2/3)' 
(~,n)~D 

D= {(m,n) [m~ M,n~ N, m6n 5 < x,m < Y}. 

To estimate L~(M, N) we appeal to the next lemmas. 

L e m m a  3. Let M<N<N1 <_M1, an be complex numbers. Then 

<~< an <-~_ ~K(t)  E a~e(tm) dt, 
N _N1 --oo ~M<m<_M1 

with K(t)=min(M1-M+I, (Trlt]) -1, (Trt) -2) and 

/_ ~K(t)  << log(2+M1-M).  dt 3 
O 0  
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L e m m a  4. Let 

Y): Z CrCse(xrys), 
?" 8 

where X=(xr) ,  Y=(y~) are finite sequences of real numbers with 

Ix l<_p, lysl_<Q 

and Cr, Cs are complex numbers. Then 

Iwr162 Y)I 2 _< 20(I + PQ)wr Q)wr P), 

I~-~,I_<Q -1 

and we(Y, P) being defined similarly. 

Lemmas 3 and 4 are Lemma 2.2 and Lemma 2.4 (with k= l )  respectively, of [1]. 
Using Lemma 3 to separate variables, we get 

(2) (l~ E E e(tn)e(hxl/2m-3n-3/2)' 
m ~ M  n ~ N  

where t is a real number (independent of m and n). By Lemma 4 we derive that 

(3) (log x)-2L2(M, N) << hxl/2M-3N-a/2A1A2, 

here A1 is the number of lattice points (m, ml) such that 

I m-3 -m131 << N3/2(hxU2) -1, 

hence AI <<M(I+M4N3/2(hxl/2)-I); and A2 is the number of lattice points (n, hi) 
such that 

In-3/2 _n~3/21 << M3(hxl/2) -1, 

hence A2<<N(I+Nh/2M3(hxl/2)-I)<<N. Thus from (3) we obtain the estimate 

(4) $1 (M,N) << (~/xl-2eM-2N + MN 1/2 +x~ ~/2. 

By an argument analogous to that of (2) and (3), we can get 

(5) S2(M, N)<< (~/xl-2~ 4 + MN 1/2 +x~ ~/2. 

with 
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Now we have 

M N U 2  <_ M4/10 (M6N 5) 1/10 << y4/lOxl/ lo = x o, 

~ /x l -2OM-2N << ~/xl-2OM -1 <<x O, 

~ /x l -3~  4 << (xl-3~ x4/11)l/6 << x O, 

in view of the facts tha t  M > x ~176 and M6NS<_ x (which also imply that  M_> N and 

N<_xl/11). Our theorem follows from the above estimates in view of (4) and (5). 

Remark 1. Clearly the limit value of the exponent can be expected from 
Lemma i to be 1 /7+e=0.14285 . . .+e, while 9/58=0.15517 .... 

Remark 2. It  is of interest whether our result can be improved by invoking the 
decomposition of the MSbius function, as was carried out in [4]. 
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