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Characterization of removable sets 
in strongly pseudoconvex boundaries 

Guido Lupacciolu 

I .  I n t r o d u c t i o n  

Let M be a complex-analytic manifold(1) of complex dimension n>2 .  

Given an open domain D c c M ,  a proper closed subset K of the boundary 
bD of D is called removable in case b D \ K  is CLsmooth  and every continuous CR- 
function f on b D \ K  has a continuous extension F to D \ K  which is holomorphic 
on D. 

A general account of the subject of removable sets is given in [19], where one 
can also find most of the related references. 

One main result in this area is the following characterization of removable sets 
in the two-dimensional case (see [19; II.10]): 

T h e o r e m  0. Let M be a Stein manifold of dimension two and D c c M  a C 2- 
bounded strongly pseudoconvex domain such that D is O(M)-convex. Then for a 
proper closed subset K of bD the following two conditions are equivalent: 

(a) K is removable; 
(b) K is (9(M)-convex. 

This connection, in dimension two, between removability and O(M)-convexi ty  
is of considerable interest, and has been recently used by Forstneri~ and Stout [6] 
to exhibit some new instances of polynomially convex sets in C 2. 

On the other hand, Theorem 0 does not hold for general n ~ 2  (it being only 
true, for n ~ 3 ,  tha t  (b)~(a))  and a result of this kind valid for n ~ 2  seems to be 
still unknown, due perhaps to the fact that  the known proof of Theorem 0 depends 
on a version of a theorem of Stodkowski [18; Theorem 2.1] on two-dimensional 

(1) Throughout the paper manifolds are assumed to be connected and with countable topo- 
logy. 
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pseudoconvex domains (see also [16]), of which no suitable extensions to higher 
dimensions have presented themselves so far.(2) 

This paper  is devoted to fill this gap by providing a characterization of remov- 
able sets parallel to that  of Theorem 0, valid for general n>_2. In fact we shall prove 
here the following theorem: 

T h e o r e m  1. Let M be a Stein manifold of dimension n>2 and D c c M  a 
C2-bounded strongly pseudoconvex domain such that D is (9(M)-convex. Then for 
a proper closed subset K of bD the following two conditions are equivalent: 

(A) K is removable; 
(B) The restriction map zo'n-2(M)--~z~'n-2(K) has dense image, moreover 

g o , ~ - l ( K ) = 0 .  

Remarks. 1.1. In condition (B) it is assumed that  Z o ' ~ - 2 ( K )  is equipped 
with the s tandard locally convex inductive limit topology derived from the in- 
ductive system of the Fr~chet-Schwartz spaces Z~ 'n-2(U) ,  as U ranges through 
a fundamental  system of open neighbourhoods of K in M. Since the canoni- 
cal projections zo 'n-2(M)-~H~'n-2(M) and zo'n-2(K)-"~HO'n-2(t() are surjec- 

tive topological homomorphisms,  hence continuous and open maps, it follows that  
the restriction map Zo'n-2(M)--+zo'n-2(K) has dense image if and only if the 

same is true of the induced map H~'~-2(M)--~H~"~-2(K). Therefore for n>_3, 
since M being Stein implies that  H o ' ~ - 2 ( M ) = 0 ,  condition (B) amounts to having 

~ H ~ ' n - 2 ( K ) = 0  and H ~ ' ~ - I ( K ) = 0 ,  where the suffix a means the associated sep- 

arated space, i.e. the quotient space by the closure of zero. Furthermore, as the 
Dolbeault isomorphisms are topological isomorphisms (see [2, or 3]), condition (B) 
can also be translated in terms of Cech cohomology, by saying that  the restriction 
map H ~ - 2 ( M ;  ~ ) - - - * H ~ - 2 ( K ;  ~ )  has dense image and H ~ - I ( K ;  ~ ) = 0 ,  where 

~ denotes the sheaf of germs of holomorphic n-forms on M. 

1.2. Since M is Stein, it is possible to find finitely many functions f l ,  ..., 
f~ E dO (M), (r ~ 2 n +  1) whose differentials generate the holomorphic cotangent space 
of M at every point. It  follows tha t  an exact sequence 0--~T~--~(9~--~--~0 holds 
on M,  with 7~ being a locally free sheaf of O-modules on M of rank r -  1, and hence 
isomorphisms of sheaves ( 9 ~ T ~ |  n and ( ~ ) ~ H o m o ( 7 ~ ,  ~ ) |  hold on M. 
Moreover, since K is compact,  if S is a coherent analytic sheaf on M, it is known 

that  a Runge open set O c c M  containing K and a positive integer s can be found, 

(2) A generalization of Slodkowski's theorem to the context of a Stein manifold of any di- 
mension n>2 can be found in [14], but it is one which does not serve the purpose of finding a 
n-dimensional generalization of Theorem 0. 
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such that  an exact sequence 0 ~--~$--~0 holds on O. Using these facts one can check 
that  condition (B) is also equivalent to either of the following two conditions: 

(B1) The restriction map Hn-2(M;O)-~H'~-2(K;O) has dense image and 
H n - I ( K ;  (.9) ~-0; 

(B2) For every coherent analytic sheaf, $, on M, the restriction map 
Hn-2(M; $) --~H~-2(K; S) has dense image and H~-I(K;  S)=0 .  

In particular, going back to differential forms, one infers that,  since M is Stein, 
condition (B) is equivalent to the parallel condition in which (n, n -2 ) - fo rms  and 
(n, n -  1)-forms are replaced by (0, n -2 ) - fo rms  and (0, n -  1)-forms, respectively. 
The reason why we have stated the condition in terms of (n ,n -2 ) - fo rms  and 
(n, n -1) - forms ,  rather than in terms of (0, n -2 ) - fo rms  and (0, n -1) - forms ,  is that  
doing so makes the condition still sufficient for removability in a more general setting 
where the ambient manifold is no longer Stein (see Section V below). 

1.3. A quite general situation in which condition (B) holds is when K is ( n - 2 ) -  
convex in M in the following sense (see [11, 13]): given arbitrarily an open neigh- 
bourhood U of K in M, one can find a g ~  strongly (n-2)-plur isubharmonic proper 
function u: M--*R such that  KC{zEM:u(z)<O}CCU. For n > 3  we do not know 
if the converse is true too, i.e. if condition (B) implies that  K is (n -2) -convex  
in M. On the contrary, for n = 2  this is the case, as follows from the fact that  a 
compact subset K of a two-dimensional Stein manifold, such that  Hi(K; (9)=0, 
is holomorphically convex, in the sense that the evaluation map K--+sp(O(K)) is 
bijective (see [5] and [10], taking into account also the fact that  the vanishing of 
H2(K; O) is automatic(3)). 

In view of the preceding remarks it is plain that  for n = 2  condition (B) means 
exactly that  K should be O(M)-convex, and hence for n=2 Theorem i reduces to 
Theorem 0. 

On the other hand for n ~ 3  the following improvement of Theorem 1 is valid: 

C o r o l l a r y  1. For n>_3 Theorem i is true for every g2-bounded strongly pseu- 
doconvex domain D c c M ,  i.e. without the assumption that D should be O(M)- 
convex. Moreover conditions ( A ) and ( B) are also equivalent to the following further 
condition: 

H ~  =0 .  

(3) Indeed, as every non-compact n-dimensional complex-analytic manifold X is (n-1)- 
complete (see [7]) and so Ha(x; S)=0, for every coherent analytic sheaf, $, on X, if KCX is any 
compact set, an inductive limit consideration gives at once that H n (K; S):0. 
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We shall also establish in this paper  another result, in the spirit of Theorem 1, 

to the effect of characterizing the removable singularities of a suitable subclass of 
CR-functions. 

Given D and K as at the beginning, call K weakly removable in case the 
following holds: if f is a continuous CR-function on b D \ K  that  satisfies the moment  
condition 

r 
(I.4) / fee = 0, 

./5 D\K 

for every C ~ c%closed (n, n - 1 ) - f o r m ,  w, defined on a neighbourhood of D and such 
that  (supp(w))AK is empty, then f has a continuous extension F to D \ K  which is 
holomorphie on D. 

Clearly, if K is removable, it is weakly removable too; however the converse 
s tatement  is false. Indeed, by [15; Theorem 2], if D c c C  ~ is a C2-bounded domain, 
a sufficient condition in order that  a proper closed subset K of bD may be weakly 
removable is that  the (2n-2)-dimensional  Hausdorff measure of K should be zero; 
however it is easy to exhibit examples showing tha t  the same condition is not 
sufficient for K to be removable. 

The characterization of weakly removable sets is as follows: 

T h e o r e m  2. Let M be a Stein manifold of dimension n>_2 and D c c M  a C 2- 
bounded strongly pseudoconvex domain. Then for a proper closed subset K of bD 
the following two conditions are equivalent: 

(a) K is weakly removable; 
(/3) Ho'n-I(K)=O. 

Note that ,  in view of the remarks after the s ta tement  of Theorem 1, condi- 
tion (/3) is equivalent to having H ~-1 (K; (_9)=0 and also to having Hn-l (K;  S ) = 0  

for every coherent analytic sheaf, $,  on M; moreover Theorem 2 implies the follow- 
ing new result in dimension two: 

C o r o l l a r y  2. Let M be a Stein manifold of dimension two and D c c M  a C 2- 
bounded strongly pseudoconvex domain. Then for a proper closed subset K of bD 
the following two conditions are equivalent: 

(a) K is weakly removable; 

(/3) K is holomorphically convex.(4) 

(4) I am  indeb ted  to E. M. Chirka who drew m y  a t t en t i on  to a slip in m y  original formula t ion  

of th is  corollary. 
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The known proof of Theorem 0 is function-theoretic in nature; on the contrary 
the proofs of Theorem 1 and of Theorem 2 presented here are mainly based on 
cohomological methods. 

We shall expose first the proof of Theorem 2 and then those of Theorem 1 and 
of Corollary 1. 

Later we shall state and prove two further theorems, to the effect of extend- 
ing the validity of the implication ( B ) ~  (A) of Theorem 1 and of the implication 
(~) ~ (c~) of Theorem 2 to more general settings. 

II. P r o o f  o f  T h e o r e m  2 

Consider the cohomology space H ~  endowed with the standard topol- 
ogy. We shall prove that  conditions (~) and (/3) are both equivalent to the following 
topological condition: 

(V) The space Ho'I(M\K) is separated, i.e. the zero element is closed in it. 

We first prove that  (/3),~:~(7). By the refined version [3; VII.4.1] of the Serre 
duality theorem, (7) is equivalent to the condition that  the cohomology space with 
compact supports Hn(M\K;  Yt n) should be separated. Now, since M is Stein, it is 
known that  H~-I(M; ~tn)=0 and H~(M; ~t ~) is separated (see [3; VII.4.4]); hence 
the exact sequence with compact supports 

...--+O----'>Hn-l(I(;~ n) ~--~H~(M\K;~ n) i-~ H~(M; ~ n) --*0 

implies at once, by the continuity of the map i .  induced by inclusion, that  if 03) 
holds, Hg(M\K;  ~n)is separated. Conversely, if H2(M\K;  f~n)is separated, then, 
by [3; VII.4.1] again, i .  turns out to coincide, up to topological isomorphisms, 
with the transpose of the restriction map e: O(M)----~O(M\K). The latter map is 
bijective, by the connectedness of M \ K  and the Hartogs theorem, and consequently 
it is a topological isomorphism, since the source space and the target space are 
Fr@chet (see [8; p.162]). It follows that  i .  is a topological isomorphism too, which 
implies that  H ~ - I ( K ;  f tn)=0. Thus the equivalence (/3)r is proved. 

The proof that  (a)~=~ (7) requires more effort. 
If X is any complex-analytic manifold of dimension n, we denote, as usual, by 

:D/(X) the double complex of currents on X, endowed with the standard Fr6chet- 
Schwartz topology. Then the cohomology bigraded space Hs(X) can be regarded, 
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as a topological vector space, as the O-cohomology space derived from the complex 
v'(x). 

In particular throughout the continuation we shall regard Ha'I(M\K) as the 

space //0 '1 (~D' (M \ K)). 
We shall need the following fact: 

II .1.  Let TEI)'P'q(x) (O<_p, q<_n); then the following two properties are equiv- 
alent: 

(i) T(w)=0 for every C ~ O-closed (n-p,n-q)-form, w, on X with compact 
support; 

(ii) 0 T = 0  and the class of T in H~'q(X) is in the closure of zero. 

Indeed (II.1) amounts to saying that  the left kernel of the bilinear map 

H~'q(x) • H~-P'~-q(Ac(X) ) -+ C 

induced by the natural pairing <T, w>=T(w) of a current and a compactly sup- 
ported form coincides with the closure of zero in H~'q(x). This follows from the 
version [3; VII.4.2] of the Serre duality theorem. 

Now let us consider the family of all the closed subsets of M \ K  which are 
relatively compact in M. This is a paracompactifying family in M \ K  (see [4]) 
and we denote it by ~). Let 7)~(M\K) denote the subcomplex of I ) ' (M\K) of 
the currents on M \ K  whose supports belong to ~, and consider the 0-cohomology 
space Ho '1(/)~ ( M \ K ) ) .  We shall use the following fact: 

�9 0 ,1  t 0 , I  II .2.  The linear map**:H a (D~(M\K))-+H a (M\K)  induced by inclusion 
is injective. 

As a matter of fact, consider the short exact sequence 

7)'(M\K) 
0--+I)~(M\K)--~D'(M\K) 2+ D~(M\K)  -+0 

and the induced long sequence of 0-cohomology 

0 0  t i O-+Zj (I)r --+ Z~176 Z~ .o,o l" I ) ' (M\K)  "~ 

) i .  01  --+H a' (M\K)---+ .... 

The regularity theorem for c~, the connectedness of M \ K  and the Hartogs theorem 
imply that Zo'~ and Zo'~ Moreover 
by the same reasons one has 

o,o( ~D'(M\ K) ~ O(M)+7~~176 K) 
Zb \ 7 ) ~ ( M \ K ) ]  = D~~176 



Characterization of removable sets in strongly pseudoconvex boundaries 461 

Indeed, if Te'D'~176 and OTET)'~,I(M\K), it follows that  there exists 
f E O (M) such that  T -  f E ~)~ 0,0 (M \ K).  Therefore in the preceding 0-cohomology 
sequence the projection 7~ is bijective, which implies the validity of (II.2). 

Next we prove the implication ( 7 ) o  (a). Thus consider a CR-function f on 
bD\K that  satisfies the moment condition (I.4). Hence we have in particular 
fbD fw=O for every C ~ 0-closed (n ,n -1 ) - fo rm,  w, on M \ K  with compact sup- 
port. 

Since bD is strictly Levi-convex, the local extension property of CR-functions 
is valid at each point of bD; therefore it is possible to define a C ~ function ] :  D--*C 
with the following property: for each point z E bD \ K there exists an open neighbour- 
hood J of z in M \ K  such t h a t / I D n J  is holomorphic and has continuous boundary 
values f on bDOJ. Then consider the C ~ 0-closed (0, 1)-form ~ on M\K,  supported 
in ~, given by 

~7=Of onD, ~/=Oon (M\K)\D,  

and let TvE:D~c~ denote the current defined by 7. For every w as above 
one has 

/. /o-- /,o T, (w) = flaw = O fAT = fw = 0; 
\K 

hence, by (II.1) and the assumption that  (7) holds, the class of Tv in Ho'I(M\K) is 

the zero class. Then, by (II.2), also the class of T v in Ha ' I ( ~ ~  is the zero 

class and therefore there exists a distribution UET)~~176 such that  OU=T v. 
Now, since Tv=0  on a neighbourhood of (M\K)\D,  the regularity theorem 

for 0 implies that  U coincides, on a neighbourhood of (M\K)\D,  with a holomor- 
phic function; moreover, since supp(U)E~ and M \ D  is connected, it follows that  
this holomorphic function is null. Therefore 

F:]-Ul. 

is the required holomorphic extension of f to D, which concludes the proof that  

There remains to prove that  ( a ) ~  (~/). Indeed we shall prove the equivalent 
fact that ,  if (7) is not valid, then (c~) is not valid as well. 

Thus assume that  (7) is not valid. It follows, in view of (II.1), that  there 
exists a 0-closed current TE:D '~ (M\K) which is not 0-exact, but satisfies T(w)=0 
for every C ~ 0-closed ( n , n - 1 ) - f o r m  w on M \ K  with compact support. Let K ~  
denote the O(D)-hull of K.  Since D is strongly pseudoconvex, we have KD\KcD; 
moreover we can, by pushing bD away from D with a small perturbation that  leaves 
K fixed pointwise, obtain a pseudoconvex domain A c c M  such that  Dc_A and 
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bDNbA=K. Since KD is a Stein compactum, arguing as above in the proof that  
(~)~(V) ,  with KD in place of K,  gives that the space H ~  is separated. 

It follows in the first place, as Ho'I(M\K) is assumed not to be separated, that  

t ~ D \ K  is non-empty, and then, by (II.1) applied to M \ h ' D ,  that  the restriction 
of the current T to M \ K  D projects into the zero class of H ~  i.e. there 

exists a distribution VET~'~176 such that  

T:OV onM\K D. 

On the other hand, since A is pseudoconvex and so Ho ' I (A)=0 ,  there exists also a 

distribution WCT) '~176 such that  

T = 0W on A. 

It follows that  there exists a holomorphic function / E  O(A\KD) such that  

V - W = f  o n / X \ g  D. 

Since T is not cS-exact in M\K, no holomorphic extension of f to A may exist. 
Therefore, if we prove that  f satisfies the moment condition (I.4), we shall get the 
desired conclusion that  (a) is not valid. 

Thus consider a C ~ cg-closed (n, n - 1 ) - f o r m  co defined on a neighbourhood of 
D, such that  supp(co)NK=0. Since D is a Stein compactum, we can find a Stein 
open neighbourhood NccM of D and a C~(n,  n - 2 ) - f o r m  on N,  r with c9r 
on N. Then, if h: M ~ R  is a Coo cutoff function, h = l  outside of a neighbourhood 
N'ccN of K that  does not meet supp(w) and h = 0  on a smaller neighbourhood 

of K,  on N we have co=hco=hOr162162 and hence fbD fco=fbD fCAOh. 
Therefore it suffices to prove that  fbD fco=0 in the case that  co be a C~ cg-closed 
(n, n - 1 ) - f o r m  on the whole M, with compact support disjoint with K.  

Let X: M--+R be a CO~ function such that  X = I  on a neighbourhood of M\D 
and supp(x)Nsupp(co)Nh" D =0. Then we have 

J A \ K  D 

= I V -  w] (0x Aco) = - f (xco)  - w(axAco). 

On the other hand, since A is pseudoconvex, we can find a goo (n, n -2 ) - fo rm  v 
on A such that  w=Ov on A, and hence W(OxAw)=W(-O(OXAv))=T(OxAv). It 
follows that  

D 
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and since Xw+OxAv is a C ~ 0-closed (n, n -1 ) - fo rm on M with compact support 
disjoint with K,  by the assumption on T we conclude that  fbD fw=O. 

The proof of Theorem 2 is then completed. 

II.3. Remark. The proofs given above that  (/3)r and that  (II.2) holds have 
depended on the fact that  the compact set K was a proper closed subset of bD only 
in that this implied the connectedness of M\K. Hence it is true, more generally, 
that  every co-connected compact subset of a Stein manifold of dimension n>_2 has 
the properties that  (/3)r and that  (II.2) holds. 

I I I .  P r o o f  of  T h e o r e m  1 

We need to consider again the paracompactifying family �9 in M \ K  of all the 
closed subsets of M \ K  which are relatively compact in M. In fact we shall prove 
that  conditions (A) and (B) are both equivalent to the following algebraic condition: 

(C) H~(M\K; O) = O. 

We refer to [4] for basic information on sheaf cohomology with general families 
of supports. We recall that,  by the generalized version [17; Theorem 1] of the 
Dolbeault theorem, there is an algebraic isomorphism 

H~ ( M \ K ;  O) TM H ~ ( ~  ( M \ K ) ) .  

We shall use another formulation of (C), which requires us to consider the sheaf 
cohomology space H~(M; O) with supports in K,  i.e. whose family of supports is 
that  of all the closed subsets of K.  We recall that  in general, given a topological 
space X, a sheaf .4 of Abelian groups on X and a closed set Y c X ,  the cohomology 
H~ (X;A) with supports in Y is algebraically isomorphic to the relative cohomology 
H*(X, X\Y;.4) (see [4; II.12]). 

Now, there is an exact cohomology sequence 

..._~H~(M;O)~H~(M\K;O) ~ 2 J 2 --~ HK(M; O) O) -+ ..., 

and since M is Stein and n>_2, H~c(M; O)=0; therefore we see that  (C) is equivalent 
to 

(C)' The linear map j: H~(M; O)-*H2(M; O) induced by inclusion of sup- 
ports is injective. 

We shall first prove that  (B)r To this end we shall apply the relative 
duality theorem of Serre type [3; VII.4.15]. We state, for the convenience of the 
reader, the version of that  theorem sufficient for our purposes. 
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I I I .1 .  Let X be a complex-analytic manifold of dimension n> l, Y c X  a com- 
pact set and p,q integers such that O<_p,q<n. Then the spaces H~(X; f~q) and 
Hn-p(Y;~ n-q) have natural topologies such that the associated separated spaces 
are in topological duality, that is 

~HP (X; f~q) -~ Horn Cont(~H~-P(Y; ~n-q), C). 

Moreover H~ (X; ~q) is separated if and only if H ~-p+I (Y; ~n-q) is separated. 

Note that  the topology of H~-P(Y; ~t n-q) is the locally convex inductive limit 
topology derived from the inductive system formed by the spaces Hn-p(u; ~n-q), 
as U ranges through a fundamental system of open neighbourhoods of Y; whereas 
the topology of HP(X; 12q) coincides up to isomorphism with that  of the p-dimen- 
sional cohomology space derived from the Fr~chet-Schwartz complex {C q'~, d (~) }rcz 
defined as cq'~=Aq'r(X)eAq'r-l(Z\Y) and d(r)(w, O)=(Ow, w[x\y-O0), for every 
(w,O)EC q,~. In particular one has that  the linear map HP(x;~q)--+HP(X;~ q) 
induced by inclusion of supports is a continuous map. Indeed this map can be viewed 
as that  induced at the cohomology level by the linear map C q,p ---*Aq,P(X) such that  
(w, 0)HXw+OXAO , where X: X ~ R  be any compactly supported C ~ function with 
X= 1 on a neighbourhood of Y. 

We shall also need the following fact: 

I I I .2 .  The cohomology space H~:(M; O)=0.  

This follows from the connectedness of M \ K  and the Hartogs theorem, using the 
exact sequence of relative cohomology 

0 --* O(M) ~ O(M\K)  --* H I (M;  O) -+ H 1 (M; O) : 0 --~ . . . .  

Now, to prove that  (B)r let us first consider the case n k 3 .  In this 
case (B) is equivalent to having O=~H~-U(K;f~'~)=H n-1 (K;fl~) ,  and, since 
H2~(M; O)=0,  (C)' is equivalent to having H2(M; O)=0 .  Then, if (B) is valid, 
it follows at once from (III.1) that ~H~(M; O ) = 0  and that  H~(M; O) is sepa- 
rated, which means that  (C)' is valid. Conversely, if (C)'  is valid, first it follows 
from (III.1) that  ~Hn-2(K; ~ ) = 0  and H ~ - I ( K ;  f ~ )  is separated, and then it fol- 
lows from (III.2) and (III.1) that  Hn-l(K;~n)=o; hence (B) is valid. Thus the 
equivalence (B)r is proved for n k 3 .  

Next let us consider the case n=2 .  By (III.1) and the absolute Serre duality 
theorem, there is a commutative diagram 

o)  

Hom Cont(a (/f), C) o* > I-Iota Cont(a (M), C) 
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in which Cj is the linear map induced by j: H~:(M; O)---*H2c(M; (9) and the projec- 
tions onto the associated separated spaces, and Q* is the transpose of the restriction 
map 0 :~ t2(M)~f l2(K) .  Then, if (B) is valid, i.e. K is O(M)-convex, we have that 
Q* is injective and H I ( K ;  f12)=0. The latter fact implies, in view of (III.1), that 
H2(M; O) is separated and, since M is Stein, H2(M; O) is separated too; therefore 
r Moreover, since 6" is injective, so too is j ,  and hence we see that  (B)~(C)'. 

Conversely, assume that (C) ~ is valid. In the first place it follows, since j 
is continuous and HI(M; O) is separated, that  H~(M; O) is separated too, and 
then, by the above commutative diagram, that 0* is injective. The latter fact 
implies that 0(~2(M)) is a dense subspace of fl2(K). Indeed, since the space 
fl2(K) is locally convex, if Q(fl2(M)) were not dense in fl2(K), there would ex- 
ist a convex open and non-empty subset U of Yt2(K) not meeting 0(~2(M)) and 
then, by a version of the Hahn-Banach theorem (see [8; p.54]), one could find 
an x ' eHomCont ( f l2 (K) ,  C) such that Ker(x')DO(~2(M)) and x ' # 0  on U, hence 
Q*(x')=0, with x' being not identically null on ~2(K). Moreover the separation 
of H~(M; O) also implies, by (III.1), that of H I ( K ;  ~t 2) and then, by (III.1) and 
(III.2), it follows that H I (K; Q2)=0. Hence (B) is valid. 

The proof that (B)r (C) is then completed. 
Now we prove that ( C ) ~  (A). As it is already known that ( C ) ~  (B), and triv- 

ially (B) implies condition (fl) of Theorem 2, if we just prove that (C) also implies 
that  every continuous CR-function f on bD\K satisfies the moment condition (I.4), 
the conclusion will be a straightforward consequence of the implication (fl) ~ (a) of 
Theorem 2. Thus assume that (C) is valid. Arguing as in the proof of Theorem 2, it 
suffices to show that fbD f~d~-O for each C ~ 0-closed (n ,n -1 ) - fo rm on M, w, with 
compact support disjoint with K. As a matter  of fact, the current on M\K given 
by a~---~fb D fa, for each compactly supported C ~ (n, n-1) - form,  a, on M\K, is 
0-closed, since f is a CR-function, and is obviously supported in @; hence, by the 
assumption that (C) holds, it is the cg-differential of a distribution UE~)'~~ 
Therefore we have 

~b fw = 0U(w) = - U ( 0 w )  = - U ( 0 )  = 0, 
D 

and we conclude that ( C ) ~  (A). 
Finally we prove that ( A ) ~  (C). Thus assume that (A) is valid. Let K denote 

the O(M)-hull  of K. The hypotheses on D imply that K = K D = O ( D ) - h u l l  of K 
and KNbD=K; moreover, since (A) holds, bD\K is connected, which implies that 
D \ K  is connected too (see [1, or 13]). Therefore we can, by pushing bD away from 
D with a small perturbation leaving K fixed pointwise, obtain a pseudoconvex 
domain A c c M  with D C A ,  bDr-lbA=K and with A\_~ being connected. Now, 
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as (A) is valid, the restriction map O(A) - -~O(A\K)  is surjective, and hence, since 
A is pseudoconvex, the exact sequence of relative cohomology 

0 -~ O(A)  -~ 0 ( ~ \ ~ : )  -~ H k ~ ( A ;  O) - -  H I ( / ' ;  O )  = 0 -~  ... 

implies that H k n  A (A; O)=0.  As a consequence, by applying also the exact sequence 

of relative cohomology with supports in 

-+ Hk(M; o) Hko A o) H (M, A; o)-+ Hk(M; o) , 

we infer that the canonical linear map Hk(M, A; O)-+H2(M; O) is injective. On 

the other hand there is an algebraic isomorphism H~(M; ~ 2 O) Hk(M, O) in- 
duced by inclusion of supports (see [4; II.12.1]), and, since -~ is an O(M)-convex 
Stein compactum, arguing as above, in the proof that  (B)~(C) t for n=2,  gives 
that  the canonical linear map H~(M;O)-+H2(M; O) is injective. Therefore we 
conclude that  (C) t is valid. 

The proof of Theorem 1 is then completed. 

Remarks. III.3. The proof given above that  (B)r (C) has depended on the fact 
that  the compact set K was a proper closed subset of bD only in that  this implied the 
connectedness of M\K. Hence it is true, more generally, that  every co-connected 
compact subset of a Stein manifold of dimension n ~ 2  has the property that ( B ) ~  
(C). In particular a co-connected compact subset K of a two-dimensional Stein 
manifold M is an O(M)-eonvex Stein compactum if and only if H~(M\K; O)=0.  

III.4. An alternative route to the conclusion that  ( A ) ~  (C), whose basic idea 
has been kindly communicated to the author by E. L. Stout, is as follows. 

O~e has to prove that,  on the assumption that  (A) holds, if a is any C ~176 cg- 
closed (0, 1)-form on M\K, supported in ~, there exists a function gEC~(M\K) 
with Og=a. Let A be as above and denote by (I)(D) the family of supports in 
M \ D  of all the closed subsets of M \ D  whose closure in M is compact, so that 
4~(D)=(I)N(M\D). Now, since A is pseudoconvex, there exists f iEC~176 with 
~)fl=oe on A. On the other hand, since D is an O(M)-convex Stein compactum, 
by the preceding remark one has that  H~,(D)(M\D; O)=0;  hence there exists also 

f2 EC~(~) (M\D)  with 0f2 = a  on M \ D .  Then f 2 -  f l  is a holomorphic function on 

A \ D  and, since bD\K is strictly Levi-convex, it extends to an fcO(A\D). The 
latter function in turn extends, by hypothesis, to an F c O ( A ) ,  and hence a function 
gEC~(M\K), such that  E)g=a, as is required, can be defined by 

g= fl+F on A, g= f2 on M\D. 
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IV. P r o o f  of  Corol lary 1 

We have seen that  conditions (A) and (B) of Theorem 1 are both equivalent to 
condition (C)' and that  for n > 3  the latter reduces to having H2(M; (.9)=0. But 
since M is Stein, we get from the exact sequence of relative cohomology 

... --+ H ~ (M; (.9) = 0 --+ H 1 (M\K; O) --+ H 2 (M; O) --+ H 2 (M; O) = 0 --* ... 

that  there is an algebraic isomorphism HI(M\K; O)~H~:(M; 0). Therefore, by 
the Dolbeault isomorphism too, it follows that  for n_>3 and D being O(M)-convex 
conditions (A) and (B) are equivalent to having H~'I(M\K)=O. 

Now suppose that  D c c M  be any C2-bounded strongly pseudoeonvex do- 
main, with D nonnecessarily being O(M)-convex. Anyhow, due to the strict Levi- 
convexity of bD, there exists a Stein open neighbourhood M'  of D, such that  D is 
O(M')-convex, and hence the above implies that for n>3 ,  if K is a proper closed 
subset of bD, then condition (A) is valid if and only if H~ 

On the other hand we have M'\K=(M\K)NM' and (M\K)UM'=M, and 
since M and M '  are Stein, we get from the Mayer Vietoris sequence 

"" "-"> ~cSt-T0'l (M) . . . . .  0--+ H~174 ') --+ H~ Ho2(M ) 0--+ 

that there is an algebraic isomorphism Ho '1 ( M \ K )  TM g ~  -'1 (M ! \ / ( ) .  Therefore for 

n_>3 condition (A) is equivalent to having H~ O)=0,  and con- 

sequently is also equivalent to condition (C), no matter  whether /0 be or not be 
O(M)-eonvex. 

Finally, since in the proof of Theorem 1 the equivalence (B)r (C) has been 
established without using the assumption that  D was O(M)-convex, we conclude 
that for n > 3 the equivalences (A) r (B) r '1 ( M \  K)  = 0 are valid apart from that  
assumption. 

IV.1. Remark. We have already pointed out in Remark III.3 that  the equiv- 
alence (B)r is valid for every co-connected compact subset K of a Stein 
manifold M of dimension n>2 .  The same is true of the equivalence (B)r162 
H~ in the case that  n>3 .  

V. Suff ic ient  c o n d i t i o n s  fo r  r e m o v a b i l i t y  a n d  w e a k  r e m o v a b i l i t y  

In Theorems i and 2 the hypotheses that  M be Stein and D be strongly pseudo- 
convex are needed to prove the implications (A)=~ (B) and (a)=~ (/3). However such 
hypotheses are unnecessarily restrictive for the purpose of proving only sufficient 
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conditions of removability and weak removability. Indeed in this Section we want 
to show that,  for the validity of the converse implications (B)=~ (A) and ( f l )~  (a), 
the contexts of Theorem 1 and of Theorem 2 can be replaced by considerably wider 
contexts. 

In the first place we can establish the following generalization of the implication 
( B ) ~ ( A )  of Theorem 1: 

T h e o r e m  3. Let M be a non-compact complex-analytic manifold of dimen- 
sion n>2, such that Hie(M; O)=0.  Let D c c M  be an open domain and K c b D  a 
compact set, such that b D \ K  is Cl-smooth. Assume that the following condition 
holds: 
(*) There is a compact set E c M  such that D A E = K ,  M \ ( D U E )  is connected, 

the restriction map Z~'n-2(M)---~Zo'~-2(E) has dense image, and, moreover, 

that Ho 'n-1 (E)=0. 
Then K is removable. 

Proof. This theorem can be derived from our previous result [11; Theorem 1.1], 
which provides a fruitful generalization of the so called Hartogs Bochner theorem. 
The version of the result sufficient for the purpose can be stated as follows: 

V . I .  Let X be a non-compact complex-analytic manifold of dimension n>_2 
and let �9 be a paracompactifying family of closed subsets of X ,  not the one of all 
closed subsets of X .  Assume that H~(X; (9)=0. Then, if D c X  is an open domain 
such that D E ~, and bD is connected and C 1-smooth, it follows that every continuous 
CR-function on bD extends to a continuous function on D which is holomorphic 
on D. 

We point out that  what is really needed for the proof of (V.1) is the connected- 
hess of X \ D ,  rather than of bD, and hence (V.1) remains true under such weaker 
assumption. 

We shall prove Theorem 3 by applying (V.1) to the case where X = M \ E  and 
is the family of all the closed subsets of M \ E  which are relatively compact in M. 
Thus what we have to show is that, if (*) holds, the following two conditions are 
satisfied: 

(1) M \ E  is connected; 
(2) H I ( M \ E ;  (9)=0. 

-~-~'n-l(E)=O, (111.1) implies that ~H 1 (M" (9)=0 Now, since H~-I (E;~) - -__o  E~ , 
too; moreover, since Hn(E;~n)=o (see I, footnote 3), (III.1) also implies that  
HI(M; (9) is separated. Therefore HI(M; O)=0, which, in view of the exact se- 
quence of relative cohomology 

0 ---* (9(M) ~ (9(M\E)  ---+ HI(M;  O) --~ ..., 
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implies at once the validity of (1). Next, to prove (2), we argue essentially as in 
Section III for the proof that  (B)~(C) when n=2.  By (III.1) and the absolute 
Serre duality theorem there is a commutative diagram 

> ~  ,(9) 

l 
HomCont( 'H -2(E; an), C) Co); Hom Cont( ,H _2(M; f n), C) 

in which ~ is the linear map induced by inclusion of supports and projections 
onto the associated separated spaces and (~Q)* is the transpose of the linear map 
~: ~Hn-2(M; ~)- -*~Hn-2(E;  ~'~) induced by restriction and projections onto the 
associated separated spaces. Since the restriction map Z$ '~-2 (M)---+Zo"~-2(E)is 
assumed to have dense image, it is plain the same is true of the induced map 
~: ~H~-2(M; ~t~)--*~H~-2(E; gt~), and hence, by the Hahn-Banach theorem (see 
[8, p.54]), (~)* is injective. It follows that  ~j is injective too. On the other hand, 
since H ~ - I ( E ; ~ ) = 0 ,  (III.1) implies that  H~(M; (9) is separated, and therefore 
~ j=so j ,  with s: HI(M; (9) ---~H2c (M; (9) being the canonical projection; hence j is 
injective. Finally we apply the exact sequence 

...___,HI(M;(9)____~H~(M\E;(9)___+H2(M;(9) ___,J Ha2 (M; (9) --~ ... ; 

since, by assumption, Hi(M; (9)=0, and it has been shown that  j is injective, the 
validity of (2) follows. 

The theorem is proved. 

V.2. Remark. We could have already resorted to (V.1) previously for the proof 
of the implication (B)~(A)  of Theorem 1; however we have wanted to show an 
alternative route to the same conclusion based on Theorem 2. 

Next we prove the following generalization of the implication (~) ~ (a) of The- 
orem 2: 

T h e o r e m  4. Let M be an arbitrary non-compact complex-analytic manifold 
of dimension n> 2. Let D c  c M  be an open domain and K cbD a compact set, such 
that bD\ K is C 1-smooth. Assume that the following condition holds: 

(**) There is a compact set E c M  such that DNE=K and Ho'~-I(E)=O. 
Then K is weakly removable. 

We point out that  neither bD nor bD\K are assumed to be connected. Thus the 
theorem is a wide generalization of the result of Weinstock [20] that  characterizes 
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the boundary values of functions holomorphic on bounded domains of C ~ with 
nonnecessarily connected boundaries. It also includes [15; Theorem 2] as a particular 
case, since it has been proved that,  if K c C  n is a compact set whose (2n -2 ) -  
dimensional Hausdorff measure vanishes, then H ~ ' ~ - I ( K ) = 0  (see [12]). 

Proof. It is no loss of generality to assume that  there be no connected compo- 
nents of M \  (DUE) with compact closure in M. Indeed, if such components existed, 
Ci, iEZ, say, we could pick points PicCi, iEZ, and replace M by M\{P i} i~z  as 
the ambient manifold. 

Let us consider again the paracompactifying family �9 in M \ E  of all the closed 
subsets of M \ E  which are relatively compact in M. We need to consider also the 
family of all the subsets of M \ E  which are closed in M, i.e. of all the closed subsets 
of M \ E  each of which lies outside of a neighbourhood, in M, of E. We denote 
the latter family by ~. It is also a paracompactifying family in M\E and it is 

the dual family of (I), in the sense that a closed subset C of M\E belongs to 

if and only if CNS is compact for each SC(I) (see [2]). Then consider the double 

complexes Ar and Z)~(M\E) of C a differential forms on M\E supported 

in �9 and of currents on M\E supported in ~, respectively. Ar can be 

made into a topological vector space as the locally convex inductive limit of the 

Fr6chet-Schwartz subspaces AG(M)cA(M) of the C a forms on M whose supports 

are contained in G, as G ranges through a countable family of members of �9 whose 

complements in M form a fundamental sequence of open neighbourhoods of E. It 

turns out that Ae (M\E), with this topology, is a bigraded space of type (s and 

the strong dual of a Fr6chet-Schwartz space (see [8]). On the other hand it can be 

checked, by a reasoning analogous to that in the proof of [17; Proposition 4], that 

there is a canonical bijective linear map 

L: ID~(M\E) --* Hom Cont(Ar C), 

defined by THLT,  LT(W)=T(w); hence one may consider T)'~(MhE) as a bigraded 
space of Fr@chet-Schwartz type, with the topology induced by L. Then, arguing as 
in [3; VIII, one can establish a duality theorem of Serre type to the effect that,  for 
all integers p, q with O<_p, q<_n, L induces a topological isomorphism 

o-gp,q {,r~t ~- o- n--p n--q <.~r  -~ Horn Cont( H~ ' (Ar  C)), 

and that  H~'q(7)'~(M\E)) is separated if and only if so is Ho-P'n-q+I(Ar 
It follows that  the left kernel of the canonical bilinear map 

KI-P ~q { q'~! 115 ~ r  • Ho-P'~-q(A,~(M\E)) ~ C 

coincides with the closure of zero in H~'q(7)~(M\E)); therefore the following rela- 

tive version of (II.1) is valid: 
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V.3.  Let TET)'P~'q(M\E) (O<p,q<_n); then the following two properties are 
equivalent: 

(i) T (w)=0  for every Coo O-closed (n-p, n-q)-form, w, on M \ E  with support 
in ~; 

(ii) 0 T = 0  and the class ofT in H~'q(7)~(M\E)) is in the closure of zero. 

This is true for every compact subset E of M, i.e. apart from the assumption 
that  Ho 'n-1 (E)--O; whereas such assumption implies in addition the following fact: 

/4 ~ (~D~ ( M\  E) ) is separated. V.4.  The space ~0 

As a matter  of fact, from the exact sequence of relative 0-cohomology 

...-~ Ho,~- I  (E) --+ Ho'n(A~(M\E)) --+ H~'n(M) ~ ... 

we infer, also in view of Section I, footnote 3, that  H~'n(Av(M\E))=O, which, by 
the above, implies (V.4). 

That  being stated, let there be given a continuous CR-function f on bD\K 
that  satisfies the moment condition (I.4). Consider the current on M \ K  given by 
a~fb  D fa, for each Coo (n, n -1 ) - fo rm,  a, on M \ K  with (supp(a))NK=O, and let 

T denote its restriction to M\E. Then supp(T)cbD\K, hence TE~)'~ 
moreover T (w)=0  for every for every C ~ 0-closed (n, n -1 ) - fo rm,  w, on M \ E  with 
support in ~; therefore, on account of (V.3) and (V.4), T it is the 0-differential of a 
distribution UE~)'~~ Now, since supp(T)cbD\K, the regularity theorem 
for 0 implies that  there exist holomorphic functions FEO(D), F'EO(M\(DuE)) 
such that  UID=F and UIM\(DUE)=F'; moreover, since supp(U)E~ and no con- 
nected components of M\(DUE), being not relatively compact in M, can be the 
interior of a me mber of O, it follows that  F~=0. Finally there remains to prove 
that F extends continuously to D\K with boundary values f on bD\K. This is an 
entirely local matter,  which can be settled as in [9; Lemma 5.4]. 

The theorem is proved. 

Remarks. V.5. We have outlined a direct proof of (V.3), along the lines of [17] 
and [3; VII], for the convenience of the reader. Alternatively one can derive (V.3) 
from the duality results of [2] relative to dual families of supports. The required con- 
dition which allows one to do so (see [2; pp. 188-189]) is fulfilled, since, if M* = M U  
{oo} is the one-point compactification of M and u: M* --~ [0, 1] is a Uryshon function 
with E={PEM* :u (P)=0} ,  { o o } = { P E M *  : u ( P ) = l } ,  then it follows that  ~ = { C c  
M\E:C is closed and supc u < l }  and q2={CcM\E:C is closed and infc  u>0}.  

V.6. Indeed the above procedure to prove Theorem 4, based on the dual ram- 
ilies of supports (I/ and �9 in M\E,  could also have been used before to prove the 
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implication (/~) ~ (c~) of Theorem 2. However the hypothesis of Theorem 2 that the 

ambient manifold is Stein has made it possible to avoid such procedure and invoke 

instead the more familiar duality theorems with usual supports. 

V.7. Finally we wish to point out that  Theorem 3 and Theorem 4 can be refined 

in the following way: if bD is smooth of class g ' ,  ( l ~ v ~ )  and the CR-function 

f is of class g~ (O<u<v),  then the extension F is of class g~ on D \ K .  Such a 
refinement is a local matter, which can be treated as in [9; Theorem 5.2]. Moreover, 

if bD is smooth of class g ~ ,  it is also possible to establish versions of Theorem 3 

and Theorem 4 for a CR-distribution t on b D \ K  (in the case of Theorem 4 t has 

to verify the moment condition t (w)=0 for every w as in Section I). 
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