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Quadrature surfaces as free boundaries 

Henrik Shahgholian(1) 

A b s t r a c t .  Th i s  paper  deals  wi th  a free b o u n d a r y  prob lem connec ted  wi th  t he  concept  

"quad ra tu r e  surface".  Let  f t C R  n be a b o u n d e d  doma in  wi th  a C 2 b o u n d a r y  a n d / t  a m e a s u r e  

compac t ly  suppor t ed  in ft. T h e n  we say Oft is a q u a d r a t u r e  surface wi th  respect  to  p if t he  

following overde te rmined  C auchy  p rob lem has  a solution.  

A u = - - #  in [2, u = O a n d  - - 0 U = - l o n 0 f t .  
Ou 

Apply ing  simple techniques ,  we derive basic inequal i t ies  and  show un i fo rm b o u n d e d n e s s  for the  set  

of  solut ions.  Dis tance  e s t ima te s  as well as un iqueness  resul ts  are  ob ta ined  in special  cases, e.g. we 

show t h a t  if Oft and  cgD are two q u a d r a t u r e  surfaces for a fixed measu re  # and  ft is convex, t h e n  

D E f t .  T h e  ma in  observat ion,  however,  is t h a t  if Oft is a q u a d r a t u r e  surface for/~_>0 and  xCOf t ,  

t h e n  t he  inward no rma l  ray to 0gt at  x in tersects  t he  convex hull  of supp  #. We also s t u d y  relat ions 

be tween  q u a d r a t u r e  surfaces and  q u a d r a t u r e  domains .  D is said to be  a q u a d r a t u r e  doma in  wi th  

respect  to a measu re  t~ if the re  is a solut ion to t he  following overde te rmined  Cauchy  problem: 

h u - - - - 1 - #  in D,  and  u = l V u l - - - - 0 o n 0 D .  

Finally,  we apply  our  resul ts  to a p rob lem of e lectrochemical  machin ing .  

O. P r e l i m i n a r i e s  

Consider a bounded domain ft in R n (n_>2) with regular boundary and a signed 
measure p, compactly supported in fl. Then it is known that  there is a measure 
#~ (balayage measure), carried by the surface Oft and having the same potential  as 
# outside ~. In this paper  we are interested in domains ft such tha t  for a (fixed) 
measure p in ft the balayage measure p~ coincides with the surface measure dE 

(1) T h e  a u t h o r  is gra teful  to Professor  H. S. Shapiro for valuable  suggest ions .  He also t h a n k s  

Professor  B. Gus t a f s son  for his cons t ruc t ive  cri t icism, which  led to improvemen t  of some technical  

details .  
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Since # and #~ generate the same potential off ~ we obtain, by classical ap- 
proximation technique, 

(0-1) / h(x) dE = (h,#} Vh E H(~), 
go 

where H ( ~ )  denotes the set of functions harmonic on a neighbourhood of ~. For 
convenience, from now on we say that  0~  is a quadrature surface with respect to p 
and write O~EQS(#) if (0-1) is satisfied. We will also assume that  0~  (considered 
as QS) is C 2. Our first task, then, will be to transfer (0-1) to an elliptic problem; 
and one easily obtains the following (Theorem 1.1): 

O~EQS(#) if and only if there is a solution to the following overdetermined 
Cauchy problem: 

Ou 
(0-2) A u = - p i n ~ ,  u = 0 a n d  0 T -  l o n 0 ~ .  

Here - (+) indicates the limit from the interior (exterior) and y is the outward 
normal vector to 0~. It is much easier to handle problem (0-2) because of the 
machinery of elliptic partial differential equation. 

The paper is divided into 5 sections. In Section 1 we transfer (0-1) to (0-2) 
and vice versa, and give some examples. Section 2 takes care of basic properties. 
Here we observe that  bounded elements in QS(p) are uniformly bounded, and if 
in addition # is positive we obtain an upper bound for diam(~t) in terms of ]]#I] 
(see definition below) and diam(supp#).  For any measure d#=fdx, where dx is 
the Lebesgue measure and f is assumed to be bounded we show that  MS>2(n-1), 
where (5=diam(smallest ball containing supp p) and M>_f. The latter is especially 
useful in proving non-existence of QS, e.g. if #=fdx, f_< 1 and supp f c B ( 0 ,  n - 1 ) ,  
then QS(p) is empty. Section 2 is concluded with a result concerning the uniqueness 
problem: we show that  if O~EQS(#) for i=1,  2 and ftl is convex then ~2C~1; it 
also follows that if ~tln~t2 is convex then ~tl=~t2. 

Section 3 is mainly devoted to one theorem (Theorem 3.4) and its corollaries. 
The theorem says that if #_>0 and xEO~t\W ( W =  convex hull of supp #), then the 
inward normal ray to 0~  at x meets W. A geometric consequence of this is that  
if supp p is contained in a hyperplane then ~t is symmetric with respect to that  
hyperplane; consequently if # is a constant multiple of the Dirac measure, then 
is a ball. 

In Section 4 we show some connections between quadrature surfaces and quad- 
rature domains. The main theorem here is that if ~ is convex and O~EQS(p) and 
D is a quadrature domain for p (see definition below), then sup dist(x, ~) <2, where 
sup is taken over OD. 
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Section 5 is an application of Section 3 to problems of potential  flow in elec- 
trochemical machining. 

Let us now introduce some basic notations and definitions which are frequently 
used in this paper. QS(#) and H ( ~ )  were defined earlier. ~ will always denote a 
bounded domain in R ~ with a C 2 boundary. The solution of (0-2), when it exists, 
will be called the associated potential (AP) of 0~t (with respect to p). We also extend 
the associated potential  u of a quadrature surface 0gt to R ~ by defining it to be zero 
outside ~. For a measure # with compact support  we define/2 to be the Newtonian 
potential of p with the normalization A / 5 = - #  (in the sense of distributions) and 
G# stands for the Green potential  of p with respect to ~,  i.e. Gp(x )= f  G(x, y) dp, 
where G is the Green function of Yt; we also define II#ll=f dl#l, 6=diam(smal les t  
ball containing supp #) and 5x denotes Dirac measure with support  at x. B(x, r) 
means the n-dimensional open ball with center x and radius r; S(x, r)=OB(x, r). 
By ]0f~] we mean the (n-1)-d imensional  Lebesgue measure of 0gt, An=IS(0 ,  1)1 , 
c~=l / ( (n-2)A~)  (n~3)  and c2=1/27r. For a domain D in R n, ED or dED means 
the surface element of OD, CH(D) denotes the convex hull of D and we say T (a 
hyperplane) is a supporting plane to D at xEOD if it intersects D and a closed 
half-space of T contains D; points in the set D N T  are called contact points. We 
also define D to be a quadrature domain (QD) for # (compactly supported measure 
in D) and write D E QD(#), if supp # c D  and there is a solution v to the following 
overdetermined Cauchy problem: 

A v =  1 - #  in D, v = l V v l = O o n O D .  

The solution v is called the modified Schwarz potential (MSP) for f~ with respect 
to #. We extend v to be zero in Rn\f~.  We will also refer to the boundary point 
version of Hopf 's  max imum principle ([17; p. 65]) as the boundary point lemma. 

Let us state this. 

B o u n d a r y  p o i n t  l e m m a .  Let f~ be a domain with C 2 boundary and xCO~t. 
Suppose u is a non-constant subharmonic function in ~, continuous at x and satis- 
ties u(x) = s u p a  u. Then the outer normal derivative of u at x, if it exists, satisfies 

> 0. 

Remark. Throughout  this paper  we assume tha t  all domains have a C 2 bound- 
ary. When taking the (normal) derivative of a function (generally the AP) on the 
boundary we mean the limit from the interior of the domain. This assumption 
makes it clear tha t  the AP will always be C 1 in the interior of the domain up to 

the boundary. 
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1. T h e  A P  a n d  some  e x a m p l e s  

Let us first establish the existence of the AP for a QS and vice versa. 

T h e o r e m  1.1. Let s u p p # c f t .  Then Of~cQS(p) if and only if there exists an 
associated potential u of Oft with respect to #. 

Proof. Let OftEQS(p) and recall that  

= foa K(x, y) dr,(x), 

where K is the Newtonian kernel with the normalization mentioned in the prelimi- 
naries. For yERn\ft, set hy(x)=K(x, y). Then hy is harmonic in ft (as a function 
of x) and by the assumption 

E(y) = f hy dr, = (G,  P / =  (K(., y), p} = ~(y), (1-1) 
Jo 

for y E R ~ \ ~ .  Thus, by the continuity of the single-layer potential, this is true also 
for yean\ f t .  Define now u(x)=ft(x)-Ea(x) for l e a .  Then Au=-# (in the sense 
of distributions) and u = 0  in R n \ a  by (1-1). 
R n \ s u p p #  and u = 0  in R n \ f t ,  we obtain 

Since t2 is C 1 (even harmonic) in 

Ou Ou Ou OEa OEa 
(1-2) 0u-  - 0v-  0u+ - 0u+ 0u-  - - -  1; 

/ o a h d E = f o a ( / 2 0 - - ~ -  0v-0/2 h) dE=(#,h). 

The last equality follows from [13; see the assertion in Theorem 4.2]. [] 

Remark. From now on we will leave the minus sign out when expressing the 
normal derivative (see (1-2)), but we still mean the limit from the interior. 

the last equality follows by [12; p. 164]. This proves the only if part of the theorem. 
Conversely, let u be the AP of Oft with corresponding distribution t~ and take 

hEH(~). Then 

/o \ bT:.- 0 . -  

Since h and (u-/5) are harmonic in ft we obtain, by applying the Green's identity, 
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C o r o l l a r y  1.2. Let O~cQS(#).  Then u (the AP) is the Green potential of 
it with respect to ~; if in addition it is absolutely continuous with bounded density 
function then u is continuous. 

Proof. Let Git be the Green potential of it with respect to ~ then u -  Git is zero 
on 0 ~  and harmonic in ~2, therefore identically zero in gt. For the second s ta tement  

see [9; Theorem 6.22]. [] 

It  is not too easy to give explicit examples of QSs, where both the measure and 
the surface are explicitly given, but there are some rather  trivial ones. However, 
any analytic closed surface is a quadrature surface for some unknown measure. The 
converse is also true if we have an a priori regularity of the surface (see [2]). But  

this is not true in general. 
Let us assume n_>3. Then the simplest example of a QS is the sphere S(x ~ R) 

whose associated potential  u is 

) u = ~  ix_x01n_ 2 1 , 

and the corresponding measure is AnRn-15xo. To give another example consider 

the mass AN uniformly distributed on the unit sphere and denote it by it. Set now 
it~=Qit where l < Q < 2  is fixed and define Fr=S(O,r)US(O, rl) where 0 < r < l  and 
r~ - l+r~- l=r l+r=Q.  Then F~EQS(ite) and the corresponding AP is 

1 ( r  ~-1 
L0-~-rl), r < Ixl ~ 1, 

\ix-F= 
Ur(X) 

/ 

1 (rn-l-ao ) 
2----g\ ~ +rl , l< l<<r~ .  

Remark. A rather  interesting generalization of QSs is to let the normal deriva- 
tive of the AP on the boundary be a function g continuous on R n or what amounts 

to the same th ing - - to  consider weighted QS with weight g. An example in this case 
is the ellipsoidal conductor; we leave the details of this to the interested reader to 
work out, (see [12; pp. 188-191 and 195]). However, the quadrature formula in the 

case n = 3  is as follows. 

ghdE= 22ala2a32 2 f h f  dxl dx2, V h E H ( E )  
E v/(al--a3)(a2--a 2) JEo 

where 

E={ 22 } 2 2 2  x j /a j  < 1 , Eo = {X l / (a l -%)+x2 / (a2 -a3 )  < 1}, 

4",~-- i/2 
f = ( l - x ~ / ( a ~ - a ~ )  ~ ~ ~ - ~ / ~  IX-" - x 2 / ( a 2 - a 3 ) )  and g =  ~ 21 Xj ~a j )  �9 
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2. B a s i c  p r o p e r t i e s  o f  QS a n d  t h e  A P  

The first question to discuss in this section is the uniform boundedness, i.e. 
whether, given #, bounded surfaces in QS(#)  are uniformly bounded or not? This 

question, in the context of QDs, was posed, for the first time, by M. Sakai [18] and 
he proved uniform boundedness for quadrature domains. There are other proofs 
for QDs, one due to B. Gustafsson [6] and another due to the author [21]; here we 

answer this question in the affirmative for QSs. 
The following lemma will frequently be used in this section. 

L e m m a  2.1. Let O~EQS(#)  and u denote the A P  of Of L Let D be a convex 

domain containing s u p p #  and such that D \ D  is not empty. Then 

s u p u >  sup d(x)=:do,  and ~ ( x ~  
OD x E O ~  ( /  M 

where d (x )=dis t (x ,D) ,  u is a normal vector to any supporting plane to D at x ~ 

which points away from D, and x ~ is a point on OD where u attains its maximum 

value on OD. 

Proof. Let zEO~ and yEOD be two points such that  do=]z-y] .  We may, by 
rotation and translation, assume y is the origin and z= ( z l ,  0 I) where zl=do and 0 I 
is the origin in R n-1. Set v = u + x l  in f Y = { x C ~ : X l > 0 } .  Then v is harmonic in 
YY and consequently it at tains its maximum value in ~P at some xlE 0fY. We claim 
now xICO~l\O~. This together with the fact that  u is harmonic in ~ \ D  implies 

u(x O) = sup u ___ u(xl), 
OD 

where x ~ is a point corresponding to the maximum value of u on OD. Then, since 

u=O on 0~,  we obtain 

sup u > u(x') = sup(u-~-Xl) > zl = d0. 
OD O ~  I 

This proves the first s tatement  (modulo the claim). The second statement  will then 
follow by replacing D by any half-space whose boundary is a supporting plane to D 
at x ~ and then applying the boundary point l emma to the function u + d  in ~ \ D ,  
where d, now, is the distance function to this support ing plane. 

Now to complete the proof let us assume, in order to reach a contradiction, that  
the maximum value of v is at tained on Off. Then, since u = 0  on 0~,  this maximum 
value is at tained at z; moreover the outward normal direction to g~ at z is the xl 

direction. Thus, by the boundary point lemma, 

Ov Ou ( z ) + l  = - 1 + 1  =0 .  ~ (z)= 

Hence a contradiction. Thus the lemma is proved. [] 
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T h e o r e m  2.2. Bounded domains in QS(#) are uniformly bounded. 

Proof. Let O~EQS(#). Consider first the case n=2.  By the definition, i.e. 
(0-1), we have 10ft] = (1, #), which implies that  the length of the curve 0~ is a fixed 
constant, independent of ~. Thus ~ is contained in a fixed ball of diameter (1, #)/2. 
Let now n>3.  Then fix a ball B containing supp# and let OftEQS(#) with ~ \ B  
not empty. By Lemma 2.1 

sup dist(x, B) < sup u. 
O~t O B 

Therefore it suffices to prove supo B u is uniformly bounded. By the proof of Theo- 
rem 1.1 u = / 5 - E  where ~,>0 on R ~ if n~3 .  Hence 

sup u < sup/5 = constant (independent of ~), 
O B  O B  

which gives the desired result. [] 

Let now O~eQS(#), where #_>0 and recall that  I[~ii=fdJt~i=fdt~=iO~i, 5 
=diam(smallest ball containing supp#) and c~=l / (n -2)A~.  Then, by direct cal- 
culation, we can obtain a distance estimate of Oft to the convex hull of supp # in 
terms of ]lPl]. 

T h e o r e m  2.3. Let n>_3 and O~EQS(p), where # is a positive measure and 
define Do to be the convex hull of supp p. Then 

d0~max(5 ,  inf fl(a)) 
0<c~<l 

where ( l - a ) / 3  ~-1 (a)=-r tl~til ( O~2-n --22--n) and do =suPxeaa dist (x, Do). 

Proof. To prove the theorem suppose do>5. Then we show d0</3(a) for aE  
(0, 1). Define D(=D~)  to be 

D = {x E R~:  dist(x, Do) < ado}, 

where 0 < a < l .  We first estimate u(x) on OD by applying Theorem 1.1. Hence 

(2-1) sup u ~ s u p / 5 -  inf E~. 
f l N O D  O D  ~ n O D  

Since Ea is harmonic in ~ it attains its minimum value in ~ on the boundary. Thus 

inf E~ > inf E~ = inf/5, 
~ n O D  - -  Of f  Of f  
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where in the equality we have used the assumption t h a t / ~ = ~  in R n \ ~ ,  i.e. 0gtE 
QS(p). Thus a further reduction of (2-1), which is 

(2-2) sup u < sup/~- inf  ft. 
OD - -  OD O~t 

Now it is very easy to estimate the right side of the above inequality. The first 
term is 

ft(x) ~_ CnIIPII(oLdo) 2-n Vx �9 OD. 

The second term, since d 0 > ~  can be estimated from below as 

( 1 ~ n-2 
D(x) k c,~llvll \~ET7  ) k enll~ll(2do) 2-n Vx �9 Oa. 

Putting this into (2-2) we obtain 

(2-3) sup u(x) ~ r II#lld~-n(a 2 - n -  22-n). 
x c O D  

Now by Lemma 2.1 

(1 -a )d0  < sup u(x) 
x c O D  

which together with (2-3) results in 

d~-i  < cnllpll (O12--n_22--n), 
- 1 - a  

for all aE(0~ 1). This completes the proof. [] 

Remark. For n = 2  the result is slightly different. Since IOgtl=ll#l[, we have 
1 # d0_< ~ II II. Similar calculations as in Theorem 2.3 show that  

II ll 
/3 ~-1 (a) - 2~r(1-a) (log 2 - log  a), 

for any a, 0 < a < l .  We leave the details to the interested reader. 
Our next result concerns diameter estimate of supp #, when # is an absolutely 

continuous measure with bounded density function for which QS(#) is not empty. 
To be more precise: 
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T h e o r e m  2.4. Let d # = f  dx where f is a bounded function with compact 
support and dx denotes the Lebesgue measure. Assume QS(#) is not empty, set 
M = s u p  f and recall that 5=diam(smallest ball containing supp #). Then 

M~ > 2 ( n -  1). 

Proof. Suppose the conclusion in the theorem does not hold. So let M h ~  
2 ( n - l )  and define x ~ to be the center of the smallest ball containing supp#.  Set 
now v ( x ) = u ( x ) + l x - x ~  where u is the AP of 0gt. Then by the assumption (i.e. 
M h < 2 ( n - 1 ) )  v is subharmonic in ~. Hence v attains its maximum value on the 
boundary, and consequently, since u is zero there, at point(s) with largest distance 
to x ~ Let x J be a point with this property, then the outward normal derivative of 
Ix-x~ at x ~ is 1. Now by the boundary point lemma 

OV(x') = - 1 + 1  =0 ,  
0 <  0y 

a contradiction. Thus the theorem is proved. [] 

Theorem 2.4 shows that  QS(#) may be empty. As an example let # be a 
positive measure bounded by one and supp#CB(0 ,  n - l ) ,  then QS(#) is empty. 

T h e o r e m  2.5. With the same assumptions as in Theorem 2.4 the following 
statements are true 

(1) Mro>n,  
(2) M53>r2(n-3) ,  (n>4) ,  
(3) (M6)3>n2(n-3) ,  (n_>4), 

where 6 and M are as in Theorem 2.4 and ro=supx~on [x -x~  where x ~ is the 
center of the smallest ball containing supp p. 

Proof. The proof is similar to that  of Theorem 2.4, with the only difference 
that  we set 

Ix-x~ 2 
V ~ U ~ -  - - ,  

2r0 

in the first case and 

V ~ U  
I x - x O  I ' 

in the second case. (3) follows by combining (1) and (2). [] 

As we mentioned earlier, at the end of Section 1, QSs are not necessarily unique. 
It is, however, known that  if the boundary of two convex domains (not necessary 
C 2) generate the same exterior potential then they are identical (see [11; p. 62]). 
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This will of course imply that  if ~1 and ~t2 are convex domains and their boundaries 
are in QS(#) for a fixed #, then they are identical. We will here improve this result 
in a certain direction; but  unfortunately we have to assume tha t  the boundaries 
are 6 2 . 

T h e o r e m  2.6. Let O~jEQS(p) for j=1,2  and assume ~1 is convex. Then 

Proof. Suppose ~2 \~1  is non-empty. Recalling that  u2 = 0  outside ~2 we obtain 
A u 2 = E n  2 - #  in ~1 and moreover 

(2-4) supu2 > 0; 

the latter follows by Lemma 2.1. Define now u=u2-u l  in ~tl. Then u, being 
subharmonic in ~1, at tains its maximum value on ~1 at x ~ E0~tl. Moreover x ~ E~2; 
else 

0 = u ( x ~  sup u ( x ) =  sup u2(x), 
XEC~I X E0~'~I 

which contradicts (2-4). Now applying the boundary point lemma (this can be done 
since u is analytic in ~1 near x ~ and it is continuous at x ~ we obtain 

~ u  0 )>0. 

Hence 

%-~u2 (x~ > - 1 ,  

which contradicts Lemma 2.1. Thus the theorem is proved. [] 

T h e o r e m  2.7. Let O~jEQS(#) for j = 1 , 2  and suppose ~1N~2 i8 convex. 
Then ~1=~t2. 

The proof of this theorem is much the same as that  of Theorem 2.6 and therefore 
omitted. 

3. S y m m e t r y  p r i n c i p l e  a n d  QS 

Our aim here is to investigate QSs from a geometric point of view. For this 
we apply the symmetry  principle, due originally to Alexandroff ([10; Ch. 7]), to our 
problem. We begin by introducing some notations. 

Let a be a unit vector in R n and define Tt (=Tt  ~) to be the hyperplane a.x=t. 
Now consider a bounded domain ~ in R n, with C 2 boundary. Then for large t T tN~ 
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is empty and Tt moves continuously as we decrease t in direction - a  toward ~ until 

it intersects ~ at some point(s) (we refer to this point(s) as contact point(s)). If  
we continue this moving process even after Tt hits ~, we see that  for every t there 
corresponds a cap ~tt(=~)={xE~2:a.x>t},  which has been cut off from ~ by Tt. 

In doing so we have produced a cap which has interesting properties when 
reflected in T a" t ,  we denote the reflected cap by Ref(~t )  ( R e f ( ~ ) ) .  Let now t o =  
sup{ t :T tN~O},  then for t<to and near to it is true that  Ref(~tt)C~t and as t 
decreases one of the following is obtained: 

(1) Tt reaches a position where it is orthogonal to 0 ~  at some point on 0~,  
(2) Ref(~t )  becomes internally tangent to 0 ~  at some point not on Tt. 

The first result to be obtained is tha t  situation (2) above cannot arise for QSs of 
positive measure as long as Tt does not hit the convex hull of supp p. Then, by [20], 
it follows that  neither is situation (1) possible for QSs of positive measure if Tt does 
not hit the convex hull of supp #. This implies huge restrictions on the shape of a 
QS when the corresponding measure is positive. 

For convenience we will adopt the following notations and definitions. As before 
# will stand for a measure and throughout this section we assume it to be positive 
(#>0) .  We denote the convex hull of s u p p #  by W (=W~) and x t will mean the 

reflection of x in Tt for a fixed direction a. A cap ~tl  obtained by this technique 
will be called an optimal cap if 

tl = sup{t:Tt is orthogonal to 0 ~  at some point}. 

In this notation we have assumed that the direction a is known and fixed. We also 

assume that the restriction of the AP u to ft has a C 2 extension to a neighborhood 

of 0~2. 

Remark. This moving plane technique has also been used in [4] and [16]. 

L e m m a  3.1. Let O~EQS(p) and tl be as above for a fixed direction. Then 

Ref(~t)  c ~, V t e  ( t l , t0)  

provided f~t N W =O. 

Proof. Suppose the conclusion in the lemma does not hold and set 

t '  = sup{t:  Ref(~t) \~ ~ 0}. 

Then the reflected cap for t=t' is in ~ and its boundary is internMly tangent to 0 ~  
at some point x~ Now define ~ to be the reflection o f u  in Tt, i.e. ~t(x)=u(xt'). 
Then u - ~  is superharmonic in Ref(~t , )  and nonnegative on 0(Ref(~tt,)). Hence 
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either u - ~  (which gives the result) or ( u - ~ ) > 0  on Ref(~t , )  and it at tains its 
minimum value at points on the boundary where it is zero, and particularly at x ~ 
Now by the boundary point lemma 

Ou o O5 o 
O> ~--~ ( x ) - ~ - ~ ( x  ) = - 1 + 1 = 0 ,  

where ~ is the outward normal to ~ at x ~ Thus a contradiction is obtained and 
the lemma is proven. [] 

L e m m a  3.2. Let O ~ e Q S ( # ) .  Then situation (1), above, cannot arise as long 
as ~ t n W = ~ .  

Proof. See [20; pp. 307 309]. Observe that  the proof presented in [20] is of 
local character and there will be no obstacle to apply it to our problem. [] 

L e m m a  3.3. Let O~EQS(#)  and ~ be a cap for an arbitrarily fixed direc- 
tion a. Then 

a.Vu(x) < O, Vx ~ ~ ' \ 0~ ,  

provided ~I N W=O. 

Proof. The proof is similar to that  of Lemma 3.1 and therefore omitted. [] 

T h e o r e m  3.4. Let O~EQS(#)  where #>_0. Then for any x ~  the 
inward normal ray to O~ at x ~ meets W .  

Proof. Let x ~  and suppose the inward normal ray 1 at x ~ does not 
meet W. Now there exists a hyperplane T containing 1 such that  WNT=O.  The 
plane T is orthogonal to 0 ~  at x ~ and it cuts off ~t a cap which we denote by ~1. It  

is obvious that  we can assume ~tl to be an optimal cap with respect to the direction 
a, where a is the normal vector to the plane T pointing away from W, otherwise we 
move the plane in direction a until such a position is obtained; but this contradicts 
Lemma 3.2. Thus the theorem follows. [] 

Remark. Similar results have been obtained for QDs (see [8]). 

C o r o l l a r y  3.5. Let O~cQS(# ) .  Then any cap ~t ~ of ~ which does not con- 
tain W has the property that O~nO~ ~ is a graph, and consequently ~ is simply 
connected. 

Proof. By Lemma 3 . 3 0 u / O a < O  in any such cap, which implies the desired 
result. [] 
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C o r o l l a r y  3.6. Let xEOf~\W and K ~ : = { z E R n : ( z - x , y - x ) ~ O  VyEW}. 

Then K x N ( ~ U W ) = 0 .  

Proof. Let z E Kx. Then by the definition z ~ W. So suppose z E ~. Then the 
hyperplane T through (x+z)/2 and orthogonal to z - x  cuts off ~ a cap ft ~ where 
~-TMW=0. Now reflecting ~t ~ in T we obtain that  the reflection of z is the point x 
which is not in ~. This contradicts Lemma 3.1. Thus the corollary is proved. [] 

C o r o l l a r y  3.7 (To Lemma 3.1 and 3.2). Let O~EQS(#) and suppose there is 
a hyperplane T containing supp p. Then ~ is symmetric with respect to T. 

C o r o l l a r y  3.8. Let OftEQS(#) and suppose #=Chx (c>0).  Then O~ is a 
sphere centered at x and with radius r (c=Anrn-1). 

Remark. There is also another simple proof of Corollary 3.8 due to the au- 

thor [22]. 

4. QS in c o m p a r i s o n  w i t h  Q D  

In this section we show that  if OflEQS(#) is convex and DEQD(#') where 
d # ' - d # = f d x ,  s u p p # ' c ~  and f ~ l ,  then Dc~'={x:d is t (x ,~)<2} .  For this we 
need the following lemma which is essentially due to L. A. Caffarelli [3]. 

L e m m a  4.1. Let DEQD(# ~) and ~ be a convex domain containing suppp  ~. 

Then 
. 1  2 supv_> sup �89 ~))2 =. ~d0, 

O~ x E O D  

where v is the MSP of D. 

Proof. Let yEO~ and zEOD be two points such that  do=iz -y  I. We may, 
by rotation and translation, assume that  y is the origin and z=(zl ,  if). Now set 
D'={xED:x l  >0} and let {z j} be a sequence in D converging to z and satisfying 
v(z j) >0. (The existence of such points follows from the fact that  v is subharmonic 
near the boundary and hence by the sub-mean value theorem fB v>O where B is 
any small ball with center at the boundary.) Define now 

w(x) = v ( x ) - v ( z J ) - � 8 9  2 in D',  

and observe that  w(zY)=0. Then w, being harmonic in D ~, attains its positive 
maximum on the boundary of D ~. Since w < 0  on OD the maximum value is attained 
at Xl=0 and it is positive. Now letting zJ-*z we obtain 

1 2 1 2 supv > sup v > ~ Z  1 = ~d0, 
0 ~  x 1 : 0  
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where the first inequality is a consequence of the maximum principle, applied to v 
in D \ ~ .  Thus the lemma is proved. [] 

T h e o r e m  4.2. Let OftEQS(#) with ~ convex. Let moreover DEQD(#'), 
where supp#~C~ and # ~ - # = f  dx with f<_l. Then 

do := sup dist(x, ft) _~ 2. 
xEOD 

Proof. By assuming the contrary we reach a contradiction. So let do >2 and 
define u to be the AP of 0ft and v the MSP of D. Then, by Lemma 4.1, it follows 
that  

1 2 (4-1) supv ~ ~d 0 > do. 
0~2 

The latter follows from the assumption that  do > 2. Since ft is convex, the function 
v+d is subharmonic in D\f~,  where d(x)=dist(x, ft). Therefore the maximum value 
of this function is attained at x ~  and by (4-1) x~ Moreover, by the 
boundary point lemma, 

Ov o 
(4-2) ( x )  > 1, 

where ~ is the inward normal to ft. Our aim now is to prove the inequality opposite 
to (4-2). Recall v = 0  outside D. Then v - u  is subharmonic in gt and therefore the 
maximum is attained at x ~ Now by the boundary point lemma we obtain 

Ov o (x o) 
) <  v v  = 1. 

Since this contradicts (4-2) we conclude that the theorem is true. [] 

5. Applicat ions to potential  flow 

In this section we apply results from Section 3 to the following free boundary 
problem: 

Let D be a bounded domain in R ~. Find another domain ~ containing D and 
a continuous function u satisfying 

A n = 0  in f t \ D ,  

u = 0 on 0ft (free boundary),  

Ou 
-0 - -~=1  o n 0 f t ,  

u = l  on D, 
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where y is the outward normal to 0f~ and it is assumed that  0f~ is real analytic. This 
problem arises in the modeling of potential flow in the process of electrochemical 
machining for shaping hard metals. For its physical background we refer to [15]. 
This free boundary problem has been subject to intensive studies, and the interested 
reader can consult [1], [2] and the references therein. 

In order to apply the results obtained earlier, especially in Section 3, we transfer 
this free boundary to a QS. 

L e m m a  5.1. h>O be continuous in U (open set) and subharmonic in U~ 

{h>0}. Then h is subharmonic in U. 

We omit the simple proof of this lemma. 

T h e o r e m  5.2. Let u and ~ be a solution to the free boundary problem men- 

tioned above and D the given domain. Then Of~EQS(#) where # = - A u > 0 .  

Proof. By the strong maximum principle l - u > 0  in ~ \ D  and vanishes identi- 
cally on D. Hence, by Lemma 5.1 

0 < A ( 1 - u )  = - A u  = # ,  

in the sense of distributions. Now Theorem 1.1 gives that O~EQS(#) .  [] 

Considering the free boundary (above) as a QS we can apply results from 
Section 3 to obtain: 

T h e o r e m  5.3. Let f~, D and u be as in Theorem 5.2 and set D I = C H ( D ) .  

Then the following is true. 
(1) For any xCOf~\D ~ the inward normal ray to O~ at x meets D ~. 
(2) Let T be any supporting plane to D ~ and ~ be the cap cut off by T and 

such that D'N~I-=O. Then Of~ NOf~ is a graph. 
(3) Let xEO~ and K x = { z E R n : ( z - x , y - x ) < _ O ,  VyED'}. Then KxA(~tUD') 

~ .  

(4) IVul-~O in f~\D'.  
(5) IVul>l  on OD provided D = D ' .  

Proof. (1) follows from Theorem 3.4, (2) follows from Corollary 3.5, (3) follows 
from Corollary 3.6, (4) follows from Lemma 3.3 and (5) follows from Lemma 2.1. [] 

Concluding remarks 

To the author's best knowledge QSs (at least for n>3) ,  unlike their counter- 
parts QDs, have not been the subject of investigations. It depends partly on the 
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discontinuity of the normal derivative of the single layer potential  at the boundary 

points and part ly on the lack of an established theory, as in the case of volume po- 
tentials, for the single layer potentials. Another basic problem is the applicability of 
variational inequalities to this kind of problems, which, for the moment,  seems to be 
unfeasible. This, on the contrary, has very successfully been applied to the domain 
problems QD and both  existence and uniqueness results have been obtained for a 
wide class of measures (see [19], [6]). However an approach based on minimization 
is possible where the minimizing functional is 

f IVul 2-2#u+;~{u>o}. 

Here we need to assume that  # is a bounded function with compact support.  This 
is the subject of a forthcoming paper by the author and B. Gustafsson. A third 
obstacle is that  it is not clear apriori that  Oft, considered as a QS, is C2; so definition 

(0-2) does not make sense in general. Observe, to overcome this difficulty, that  if 
Oft is C 1 then Ou 

o u  - IVul on 0f~, 

where u is the AP and u the outward normal to Oft. It seems that  if we replace the 
third condition in (0-2) by Ivul=l, then there is no need to presume any regularity 
for the surface. The very first problem emerging now, is to prove regularity of the 
surface in order to use definition (0-2), which seems to be the simplest one to work 
with. Observe also that  if we assume that  Oft is C 1 and tha t  the solution u (to (0-2)) 
has a C 2 extension to a neighbourhood of Oft, then it follows by ([14; Theorem 2]) 
that  Oft is real analytic. 

As to the closing, we want to mention that  in R 2 QSs have been studied by 

B. Gustafsson [7] and H. Shapiro and C. Ullemar [23]. The technique employed 
by these authors is purely complex analytic and by no means applicable to R n for 
n > 3 .  
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