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Subharmonic functions of 
completely regular growth in a cone 

Yang Xing 

1. I n t r o d u c t i o n  

We shall consider domains F in the unit sphere $1 C R "~, satisfying the following 
conditions: 

(a) The boundary OF is twice smooth; 
(b) The normalized solutions Cj, corresponding to the eigenvalues Aj with 

0 < ; h  <)~2_<..., of the boundary value problem 

r lot= 0, 
where A* is the spherical part of the Laplace operator A, are twice continuously 
differentiable functions on the closure of F, and the inward normal derivative 0r ~On 
is strictly positive on the boundary OF; 

(c) There exists a point x.  eS1 such that,  if K r is the cone { x c R  "~ ;x/Ix ] CF}, 
then the closure of the translated cone Kr+lx.  is contained in K r, for every />0 .  

Denote by B(x0, r) the open ball in R "~ with center at xo and radius r, B r =  
B(0, r) and Sr=OB(O,r). Given such a domain F and the cone K=K r spanned 
by F, we shall use the notations Kr=KV~Br, Krl,~2 = K A { r l  < Ix[ <r2}, Fr=KASr 
and F~,~ 2 =OKAOKrl,r2. Notice that  if the function r is homogeneously extended 

k=E to the cone K,  then the functions Ixl I r with 2k~=-m+2iv/(m-2)2+4A1, 
are harmonic in K and vanish on 0K\{0}.  

By SH(K, 6), Q>0, we denote all subharmonic functions u in K satisfying the 
condition 

h 

M~(t) 
lim sup < oo, 

t--*c~ t O 

where 
A 

M~(t) = sup {u(x)} and 
xEFt  

(I)u (t) = ~F r (X)lU(tX)I dS1 (x). 
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Here dS1 denotes the element of (m-1) -d imens iona l  Euclidean volume on the unit 

sphere. 
Recall tha t  a set E c R  m is said to be a C ~ - L s e t  if it can be covered by balls 

B (xy, r j) such tha t  the relation 

lim 1 t-,~ t--~-~ E r? -1=0 
[xjl<t 

holds. Following RashkovskiY and Ronkin, see [4], we introduce the concept of 
completely regular growth for subharmonic functions in the cone K.  

Definition. A function uESH(K, Q) is said to be of completely regular growth 
(CRG) in the closed cone K if there exists a C ~ - L s e t  E c K  such that  

lim 

xq~E 

where the indicator function 

lu(x)-h* (x)l/Ixl ~ = O, 

h~ (x) = lim sup lira sup ut (y) with ut (y) = u ( t y ) / t  Q. 
y - - *  x t--+ c~z 

A function uESH(K, Q) is said to be CRG in the open cone K if it is CRG in 

every closed cone K r '  spanned by F~CF. 

Remark. Unlike in the case of functions defined in the whole space, we cannot 
cancel the integral O~(t) in the definition of the class SH(K, Q). Otherwise the 
indicator functions may be identical to infinity. Such an example is given by the 

function u~ in the half plane Xl>0. 
It  is known, see [3], tha t  for any function uESH(K, Q) there exists a real 

measure uu on the boundary OK, which is the boundary  value of u in the following 
sense: 

For any continuous function r on OK with suppr the relation 

lim / ~b(x)u(x+lx.)d~r(x)=fo r 
l~+O JOK K 

holds, where de  denotes the (m-1) -d imens iona l  Euclidean volume element on OK. 
By means of the weak boundary value, Ronkin discussed the relation between CRG 
functions in an open cone K and in a closed cone K,  and obtained the following 
result, see [5, Theorem 4.4.6]. 
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T h e o r e m  A. In order that a function u E S H ( K ,  6) be C R G  in K ,  it is suffi- 
cient and, under the additional assumption supxcr ]h*(x)I<cc also necessary, that 

u be C R G  in K and that 

1 dl-  I=0, (,4) lira te+m_l - ~h* 

where ]~u--~hS] denotes the total variation of the measure ~u--~hS. 

The proof of Theorem A was rather long, and an integral representation for 
subharmonic functions of finite order was used, see [6]. In his book [5, p. 240] Ronkin 
conjectured that  the assumption on boundedness of the indicator h* is unnecessary, 
and his opinion was based on the following theorem. 

T h e o r e m  B [4, Theorem 2]. I f  u E S H ( K ,  6) is C R G  in the closed cone K 
and can be extended to some large cone K ~ = K  r' spanned by F/DDF as a function 

in S H ( K  ~, ~), then u satisfies Condition A.  

However, Theorem B does not seem to give any indication as to whether or not 
the assumption on boundedness of the indicator is superfluous, because we have the 
following improvement. 

T h e o r e m  1. Suppose that u c S H ( K ,  6) is C R G  in the open cone K and can be 
extended to be a function in S H (  K ~, 6) for some cone K ~ = K  r' spanned by F/DDF. 

Then u satisfies Condition A.  

We have not been able to prove Ronkin's conjecture, but we have found slightly 
weaker sufficient conditions. First, by the positive homogeneity, it is clear that  the 
boundedness of h~ implies 

l-h: l(E) _< sup ]h* (x)[ da(E)  
xEF 

for any subset EcF0,1 .  The following result is therefore slightly stronger than the 
necessary part in Theorem A, and requires a different method of proof. 

T h e o r e m  2. Suppose that u E S H ( K ,  6) is C R G  in K and that there exists a 

positive constant c such that I'h* I(E)<-cda(E) for all subsets E in Fo,1. Then u 
satisfies Condition .4. 

On the other hand, since the functions ut with t > l  are uniformly bounded 
from above in F, the boundedness of h* also implies that  there exists a positive 
constant c such that  

ut(x) < h*(x)+c 

for all xCF. This inequality is in fact enough to ensure Condition .4.. 
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m 
T h e o r e m  3. Suppose that uESH(K,  6) is CRG in K and that there exists 

c>O, such that 
ut(x) < h~(x)+c  

for all xEF and sufficiently large t. Then u satisfies condition A. 

In our opinion, for subharmonic functions, the hypothesis in Theorem 3 is more 
natural than the necessary part in Theorem A. For some functions, such inequalities 
follow for instance from the Hartogs lemma, see [2, Theorem 1.31]. The proof of 
Theorem 3 is essentially parallel to the proof of Theorem 2 given below, and will 
therefore be omitted. 

Acknowledgements. I would like to express my gratitude to my advisor Mikael 
Passare for his discussions and suggestions. I am also grateful to Professors 
Lawrence Gruman's and Lev Isaakovich Ronkin's fruitful discussions. 

2. P r o o f s  o f  T h e o r e m s  1 a n d  2 

Proof of Theorem 1. As it is mentioned in [4], under the assumption of Theo- 
rem 1, the weak boundary values ~ and ~h~ are equal to u and h* respectively on 
0K\{0} .  Hence Condition A takes the form 

(1) lim 1 Jfr t--.~ to+ m-1 lu(x)-h*(x)l da(x)=0.  
1 , t  

To obtain (1) we first show the equality 

f 
(2) lim ] ]ut(x)-h*(x)l da(x) = O. 

1~'---+0~ J r  1 / 2 , 1  

It is enough to show that  for any sequence t j--* ~ there exists a subsequence such 
that  the equality (2) holds for such a subsequence. To do this, we choose a domain 
D such that  F1/2,1 c c D c c K ' .  It follows from Theorem 4.1.9 in [1] that  the family 
{ut~} is relatively compact in L~oc(D ). So there exists a subsequence t j k - - ~  such 
that  utjk converges to some subharmonic function g in L~oc(D ). Since u is CRG 
in K,  ut converges to h* in the distribution sense, see [5, Theorem 4.4.3]. By 
Theorem 4.1.9 in [1] we then have that  ut converges to h* in L~oc(K), and hence 
g=h* in DNK.  This implies that h*da=g&r on OKNDDF1/2,1. Now for xED, 
using Riesz's theorem, we write 

utjk (x) = - / D  G(x, y) d#~j k (y)+~k(x) 
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and 

g(x) = a (x ,  y) d#g(y)+~2(x), 

where Ok and q~ are the smallest harmonic majorants  of uq~ and g in D respectively, 

and G is the Green function of D. Since uqk converges to g in Lloc(D), it follows that  
Ok converges uniformly to ~ in F1/2,1 and d#~,r k converges to d#g as a distribution 

in D. Therefore, dp~,j k converges to dpg in the weak topology of measures in D. 

On the other hand, we have that  

rl/2,1 G(x, y) dot(x) 

is a continuous function of y in D and vanishes on the boundary OD. So 

lim f (uqk (x)-h*(x)) da(x) = lim f (uqk (x)-g(x)) da(x) 
k-.~ Jrl/2,1 k ~  Jrl/2,1 

- - l i m  /D(dpg(y)-d#u,~k (y)) /r G(x,y)da(x) 
k --'~00 1 / 2 , 1  

+ lira / (Ok(x)-O(x))da(x)=O. 
k--->~ JF 1/2,1 

Hence, using the same method as in the proof of Lemma 2.1.4 in [5], we obtain 

lutjk d (x) =0, lira 
k--+C~ 1/2,1 

and this completes the proof of equality (2). 

We now know that for any c>0 there exists a constant t0>l such that 

fr lu(x)-h*(x)l da(x) < st e+m-1 for t >_ to. 
t /2 , t  

So we have 

fir 'u(x)-h* (x)[ d~(x) <- ~r ,u(x)-h* (x), da(x) 
l,t 1 , t  0 

[ ( l n ( t / t o ) ) / I n  21+1 

+ ~ fr lu(x)-h*(x)l da(x) 
k= l 2k-- l to ,2k t 0 

[(In(t/to))/In 2]+1 
= o(t0-t-m--1)~-s E (2kt0)co+m--1 

k=l 

= o(t ~ + e O ( t e + ' ~ - l ) ,  as t --* ce. 

This implies Condition ,4, and hence the proof is complete. 

To prove Theorem 2 we need the following lemma for CRG functions in the 
open cone K ,  see [5, Theorem 4.4.5]. 
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Lemma.  Suppose that uESH(K, Q) is CRG in the open cone K. Then we 
have 

( 1 0r d~u~(X)) 
Kll<3 r r On 

/.( l 
r r dph.(X) 0,~ On ' 

3 

for any function CEC(K3), where #g denotes the Laplacian O~l Ag, the constant 
0m=(rn-2)  fSl dS1 for m>2 and 02=27r. 

Actually, in [5] this result was obtained for the functions @ in C(K1), but by 
homogeneity it is equivalent to take @ in C(K3). 

Proof of Theorem 2. Using the same argument as in the above proof, we only 
need to show that for any sequence tj--400 there exists a subsequence ty k --~oc, such 
that 

(3) lim to+,~_ 1 dl,u--Uh. I = O. 
k - - ~  Jk tjk/2,tjk 

For simplicity, we consider the whole family t>O. 
Since u is CRG in K, there exists a C~-Lse t  E c K  such that 

(4) lira lu(x)-hS(x)l/lxlo=o. 
ixl--,o~ 
x~E 

Hence, using the definition of the weak boundary value, we can write 

lim 
t--*ccto~-m-• t/2,t 

< lim sup lim sup 1 f r  lu(x+lx,)-h•(x+lx,)l d~(x) 
- -  t--*cc 1--*+O t o + m - 1  t/2,t 

i r a  <limsuplimsup '7~ 1 lu(x-~lx*)ld(T(x) 
( 5 )  - t ~  z - ~ + 0  t o *  - 

+limsuplimsup 1 s Ih;(x+lx,)l d~(x) 
t--~o~ 1--*+O to+m--1 t 

+lim sup lim sup 1 f r  lu(x+lx,)-h*~(x+Ix,)J &(x)  
t-~oc 1--*+O to+m--1 t / 2 , t \ A t  

d--e--_f I + I I + I I I  ' 
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where At={xEFt/2,t;x+lx. EE, for some O<I<I}COK. 
It  follows from (4) that  III=O. Since E is a c ~ - l - s e t ,  there exist balls 

B(xj, r j )CR m such that  EC[.Jj B(xy,rj) and 

(6) lim 1 r ~ _  1 
t--*oo t -~-~--1 E = O. 

Ixjl<t 

We denote Btj={x~Ft/~,t;x+Ix,~B(xj, rj), for some 0 < / < 1 } .  Then 

At C [.J Bey 
Ixjl<2t 

for large enough t. 
We now define a projection P: K--+OK as follows. For all xCK, we claim tha t  

the intersection OKN(x+Rx,) consists of exactly one point. Then we let P(x) be 
this point. To justify this claim, suppose that  a, bcOKN ( x + R x , ) .  Then a-b=l x,, 
for some constant l, and we can assume l>0.  But since K+Ix ,  CK for every l>0,  

we o b t a i n / = 0  and hence a=b. 
Since OF is compact,  there exists a positive constant c, independent of j and t, 

such that  ]~tj cP(B(xj ,  rj)NK)cB'(x}, crj), where Br(x'j, crj) denotes the inter- 

section c3KAB(x~j, crj) and xtj=P(xj). It  follows that  

(7) ArC 0 B'(x~J 'crj) 
I xj I<St 

for large enough t. Furthermore, since OF is smooth, we can also find another 
constant c '>0 ,  such that  da (B'(x}, crj))<c'r~ -1 for all j .  

Now we estimate II. For large enough t we have 

~ [~ Ih~ (x +ix, )1 ~(x) _< i E  t~<~ ~/~ ~ ~ ~.,(~;,~)Ih~ (x +ix. )1 ~(x) 

(8) def 
= E Dtjl. 

I xJ I < a t  

Suppose tha t  h*(x+lx.)<_alxl e for all 0 < / < 1  and xEK\B1. Take a continuous 

function r on OK such that  0 < r  on OK, supp r cFt/3,2t and r in Ft/2,t. 
Then for each j ,  by the definition of Vh~, we have 

Dtj,<_ f~ (ate-h:(x+Ix,))d~(x)+ f ated~(x) 
t /2, t  Ft /2 , t  

<_ [ r da(x)+at e da(rt/2,t) (9) 
J I "  t,/3,2t 

' /~ ~/)l(x)(a2et e da(x)-dVh. (x))+at e d~(rt/2,t), as 1--+ + 0 .  
r 
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So for any fixed t>2 ,  the integrals Dtjl are uniformly bounded for small enough l, 
and all j .  Hence the Fatou lemma implies that 

(10) l imsup E Dtjl< E limsupDtjl. 
l--++0 IxJl<2t ixjl<2 t l--~+O 

Choose again a continuous function r on OK satisfying the conditions: 0 ~ r  
on OK, supp r C B'(x}, 2cry) and r  in B' (x}, crj). In analogy with (9), we get 

lim sup Dtfl < (a2~ ~ da-  Vh~ ) (Ft/3,2t N B'(x}, 2cry)) 
l--*+0 

(11) +a2~t ~ da(Ft/2,tNB'(x}, crj)) 

II/h~ l(~Ft/3,2t FIB' (x~, 2crj ) ) q- a2a+lt ~ do'CFt/3,2t A B '  (x~, 2crj) ) 

for each j .  Together with (8) and (10), we have 

limsupt__.+0 to+.~-i 1 /A~ Ih*(x+Ix*)l da(x) 

1 
(12) - t o + m _  1 ~ I.h~l(rt/~,2tnB'(x'j,2crj)) 

I~jl<2t (1 ) +o ~ Z ~ ?  -1 , a s t ~ .  
Ixjl<t 

Since lUh. l(E)<cl da(E) for any subset Ecro,~, and h* is positively homogeneous 
of degree ~, we obtain 

1 ( t_~__ 1 ) to+m_ ~ ~ I.h~l(F,/3,2tnB'(x},2cr~))=O ~ r ?  -1  , as t --+cx:). 
Ixj]<2t Ix~l<2t 

It then follows from (6) and (12) that II=O. 

(13) 

Next we want to show I = 0 .  Repeating the above process, we have 

limsup 1 /A lu(x+Ix*)] da(x) 
l--*+O ~-bm-- i t 

l imsup to+m-1 �9 nB'(x' cro~ 
l-++O xj]<2t t/2,t ~ j, j ,  

1 
-t.+m-1 ~ I.~l(r~/3,~tnB'(x},2crj))+o(1) 

Ixjl<2t 
de f 1 

E Gtj+o(1), as t---+c% tQ+m-1 
I xJl<2t 
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and we can also choose, for any e>O, a sequence tk--*oc such that 

(14) 
1 ( 1 ) r , e 

m-1 E da+ lYh~l (rt~/4,3t~nB(xj,3crj))<~ 
tk [xj[<2t~ ~-~ 

Clearly, for each k we have 

(15) 

1 
t~+m-1 E 

Ixjl<2tk 

for all k. 

[x~l<2tk \ t k '  ~ ) )  

_<~-~ E [llutkl(F1/3'2CIBt(x~ 2 c r j ) )  

i=1 Ixjl<2tl \ ti ' ti " 

But in view of the lemma, all terms in the sum (15) are uniformly upper bounded 
for large enough k, and so the Fatou lemma implies that 

1 E Gtkj (16) limsup t~+m_ 1 
k--+oo ixjl<2tk ( ( x , ) )  p 3 2crj 

-< E l imsupl .~k[  Pl/a,2nB ~ '  t~ " 
i=1 [x~l<2t ~ k--+~ 

If we can show that there exists a constant c2 >0 such that for each i and j we have 

F1/a,2nB' ~Z, ti ) )  (17) l i m s u p , v ~ k , (  (::. 2crj)~ 

~c2(dff-~-ll~h*l)( FI/4'3NBr ti ' x(3Cl' j))  

it then follows from (14) and (15) that  

limsup E c2 . 
k--*cc ix j l<2t k 

This implies I=0 ,  and hence the equality (3) holds. 
Now we need to show (17). Let ca be a positive constant such that ur(x)<ca 

for all xEK4 and r_>l. So c3 da-u~r and ca dff--Ph~, are positive measures in r0,a. 
We choose a domain GcB3-B1/4 and a continuous function r in K3 satisfying 
the following conditions: 

(i) F1/3,2 n B' (xlj/ti, 2crj/ti) C ON F0,3 C F1/4,3 n B' (x~ Iti, 3crj Iti); 
(ii) fGnKa r (X) d/~h* (x)<da(Flla,aNB'(x}/ti, 3crj/ti)); 
(iii) 0_<r in K3, and r  in F1/3,2NB'(x}/ti, 2crj/ti); 
(iv) suppr 
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Hence we have 

(18) 

i (r l /3,2nB ,{x}  2crj 
ti \ 

Avc3do.(F1/3,2~Bt(Xlj 2crj~ \ ' I ]" 

Since the function r is homogeneous in K and 0r is a positive continuous 
function on OF, there exists a constant c4>0 such that  the integral in (18) can be 
estimated by 
(19) 

/~  ~____ Or j 3 c r j ~  c4da(GNF~ r -~n  - t i '  ti /I/I 
CIF0,3 

/U ( 10r " 
+c4 ~b3(x) r dpu~k (x ) 0.~ On VIK3 

Since u is CRG in K,  it follows from the lemma that,  when k--*oo, the last integral 
tends to 
(20) 

/GVIK ( l Or176 F1/n'3AB'x(3crj~ 3 ~3(x) r dlth*(X) 0 m On (-~i ' ti /Ill 
( 1 0r  " q- sup [Z/h . I (F1/n,3A~ , ( ?  3 c r j ~ .  

Vnro,3 an \ ]]  

So (17) follows from (18)-(20), and therefore (3) holds. Hence we complete the 
proof of Theorem 2. 
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