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Homogeneous Fourier multipliers
of Marcinkiewicz type

Anthony Carbery and Andreas Seeger(!)

1 Introduction

Let me L°(R?) be homogeneous of degree zero Then m is almost everywhere
determined by h4(§1)=m(é1,%1) For k€Z let Ir=[2"%"1, 2 *u[-27F, —2-*-1]
and let hy and h_ satisfy the condition

ds\/T
(11) sup (/ |sh§t(s)|'—) <oo
kezZ\J1, s

Rubio de Francia posed the question whether a condition like (1 1) is sufficient to
prove that m is a Fourier multiplier of LP(R?), 1<p<oco An application of the
Marcinkiewicz multiplier theorem with L2 Sobolev hypotheses (cf (1 3) and (1 5)
below) and interpolation arguments already show that the answer is yes, provided
r>2 Recently, Duoandikoetxea and Moyua [15] have shown that the same con
clusion can be reached if r=2 On the other hand, since characteristic functions
of halfspaces are Fourier multipliers of L?, 1<p<o0, a simple averaging argument
shows that the condition h'€ L' implies LP-boundedness for 1<p<oco Our first
theorem shows that the weaker assumption (1 1) with »=1 implies boundedness in
LP(R?), for 1<p<oo

Theorem 11 Suppose that hy and h_ satisfy the hypotheses of the Marcin
kiewicz multiplier theorem on the real line, that is

(12) sup / \dhs(s)| < A
k€EZ J I,

(*) The second author was supported in part by a grant from the National Science Foundation
(USA)
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for Iy=[2"%"127F|y[-2~F —2-%=1] Let meL>°(R?) be homogeneous of degree
zero, such that for £, €R, m(éy,1)=h4(&1) and m(é&,—-1)=h_(&1) Thenm is a
Fourier multiplier of LP(R?), 1<p<oo, with norm <CA

One can obtain a stronger result for fixed p>1 using the space V? of functions
of bounded g¢-variation Given an interval I on the real line a function h belongs to
V4(I) if for each partition {zg<z1< <zn} of I the sum Zf,v__J |h(zy)—h(zy—1)|7
is bounded and the upper bound of such sums is finite We denote by |h||%,
the least upper bound Then the following result is an immediate consequence of
Theorem 1 1 and the interpolation argument in [8]

Corollary 12 Let m, hy and I; be as above and suppose that

NPt lloo+sup Jlht lve(ry) < o0

Then m is a Fourier multiplier of LP(R2), if |1/p—1|<1/2¢

A slightly weaker result can be formulated in terms of Sobolev spaces Let
B be an even C* function on the real line, supported in (%,%)U(—%,——%) and
positive in (1/v/2, v2)U(=v2, —1//2); we shall assume that 3, ., 8%(2*s)=1 for
s#0 Let LZ(R?) denote the standard Sobolev space with norm ||hl| e =[|F~1[(1+
1€2)2/2h}|l, Then LI(R)CV, if a>1/q and therefore we obtain

Corollary 13 Let meL*®(R?) be homogeneous of degree zero and hy (&)=
m(&1,+1) Suppose that ¢>1 and that

1
(13) sup ||Bh+(t)lLym) <00, a>-
teR q

Then m is a Fourier multiplier of LP(R?) if |1/p—1|<1/2q

We now compare these results with more standard multiparameter versions of
the Hérmander-Marcinkiewicz multiplier theorem In order to formulate them let

Dgg = F(1+]¢2)*/*Fg)

and, for 1<g<oo, let HZ(R"™) be the multiparameter Sobolev space of all func-
tions g, such that

lollna@mny:==IDT DrgllLegn) <oo

Let 3 be as above and denote by B(;) a copy of 3 as a function of the §;-variable
Then if g>2 the condition

1
(14) sup [|By® ®Bagymts , ,ta )lngme <00, a>-
te(Ry )4 q
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implies that m is a Fourier multiplier of L? for |1 /p— % ‘ <1/q For q=2 the proof of
this result is a variant of Stein’s proof of the Hormander multiplier theorem (see [25,
Ch IV]) and the general case follows by an interpolation argument as in [9] If we
apply this result to homogeneous multipliers and set

(15) m(¢', £1)=g+(¢'), €& eR*?

we obtain by a straightforward computation

Corollary 14 Suppose that r>2,
(16)
1
DI'p] DI g+t , St ,>=,
te(;‘g’d_ln 1D} Dii[Bny® ®Bu-ng+lts , ,ta-1 )] ”Lr(nd-l) <00, 7>
and that the condition analogous to (1 6) holds for all permutations of the variables

(81, ,84-1) Letm be homogeneous of degree zero and related to g4 by (15) Then
m is a Fourier multiplier of LP(R?) if |1/p—1|<1/r

In two dimensions Corollary 14 says that if a>1/q, ¢>1, and Bg+(t )€
H24(R), uniformly in ¢>0, then m is a Fourier multiplier of L? if |1/p—-§—|<1/2q
Corollary 1 3 is stronger since a compactly supported function in H29(R) belongs
to Hi(R)

We are now going to discuss variants of Theorem 11 in higher dimensions
First if g3 €HL(R%1), @>1/q and if g+ are compactly supported in [%,2]‘1—l
then the homogeneous extension m is a Fourier multiplier of LP(R?) if |1/p—1|<
1/2q In fact by a simple averaging argument one sees that the condition g4 € M.
implies that m is an L! multiplier and the general case follows by interpolation
We remark that if a<|2/p—1| the condition g+ €HZ (any g) does not imply that
m is a Fourier multiplier of LP? Relevant counterexamples have been pointed out
by Lépez-Melero [22] and Christ [7)

Perhaps surprisingly, the situation in higher dimensions changes if one imposes
dilation invariant conditions as in Theorem 11 One might want to just replace
hypothesis (1 2) by the hypotheses of the Marcinkiewicz multiplier theorem in R4-1
([25, p 108]) However this assumption is not sufficient to deduce that m is a Fourier
multiplier of L? for any p#2 (see Section 3 for the counterexample involving the
Kakeya set) However, we do have

Theorem 15 Let meL®(R?), d>2, be homogeneous of degree zero and
let g+ be as in (1 5) Suppose that ¢>2, and

1
17 sup  [1B1)® ®Ba-1ng£lts , ta-1 )ng@e—ry)<oo, a>-
te(Ry )31 q
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Then m is a Fourier multiplier of L?(R?) if |1/p~1|<1/2¢
Interpolating Theorem 1 5 with Corollary 1 4 (with p close to 1) yields

Corollary 16 Let meL>®(R%), d>2, be homogeneous of degree zero and
let g4 be as in (15) Suppose that 1<p<§ and

te(;lil;d_lupfpg DI 1 [By® ®Ba-ng+ltr » ta-1 )]"Lz(nd—x)<oos

1 2
> 2 a>5—1

and that the analogous conditions obtained by permuting the (s1, ,S4—1) variables
hold Then m is a Fourier multiplier of LP(R%)

In particular if sup,;er, ye-1 |B1)® ®Bu-ng+(ts , ,ta-1 iz me-1)<oo
and 1<p<§ then m is a Fourier multiplier of L? provided that a>2/p—1 This
result is essentially sharp: in Section 3 we show that in order for

sup  [IB)® ®Bu-19x(tr , ta-1 lngme-1y<oo
te(Ry )t

to imply that m is a Fourier multiplier of L we must necessarily have a>2/p— % +
1/qif 1<p<3 and a>1/q if $<p<2

In order to prove more refined results on LP(R¢), d>3, p close to 1, we shall
use multiparameter Calder6n-Zygmund theory It turns out that it is useful (and
easier) to first prove a result for the multiparameter Hardy space HP(R%), 0<p<1
The Hardy space H? is defined in terms of square-functions invariant under the mul-
tiparameter family of dilations §;z=(t1z1, ,t4z4), t€(R4)? Again we formulate
the multiplier result using localized multiparameter Sobolev spaces invariant under
multiparameter dilations In order to include a sharp result also for p<1 we want to
admit values of ¢<1 in (12) To make this possible the definition of HZ has to be
modified We may always assume that 3 above is such that ) _, B%(27s)=1 for
870 Let ¢,=F%(27" )if r>1and Ypo=1-3 0% For n=(n1, ,n4-1), n:>0,
i=1, ,d—1set Yn(&1, ,€a—1)=]12; ¥n(&) The decomposition

9= Y. Pnxg

n€(Ng)4-1

is referred to as the inhomogeneous Littlewood—Paley decomposition of R4~! Then

1/2
( E 92(n1+ +n¢_1)a|$n*g|2)

n€(Ng)d-1

(19) Ngllrg (ma-1y =
Lq(Rd—l)
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for 1<g< 00, and for ¢<1 we define HZ(R?1) as the space of tempered distributions
for which the quasinorm on the right hand side of (1 9) is finite In this paper we
shall always have a>1/q; in this case HZ is embedded in L* This and other
properties of the spaces HJ may be proved by obvious modifications of the one
parameter case; for the latter we refer to [27]

Theorem 17 Let meL®(R?) be homogeneous of degree zero and related
to g+ as in (15) Suppose that 0<r<1 and

2
(110) sup  [|1By® ®Bu-1y9+(tr , ,taor Mugme-1y<oo, a>=-1
te(Ry )41 T

Moreover, if d>3, suppose that

(111)
sup ”Df"yD"zy Dg_z [ﬂ(l) ® ®ﬂ(d—1)g:l: (tl y ld-1 )] ”LZ(Rd—l) <o,
te(Ry )42
11
72773
and that the analogous conditions obtained by permuting the (s1, ,S4—1) variables
hold Then m is a Fourier multiplier of the multiparameter Hardy space HP(R%),

r<p<oo

Note that in two dimensions Theorem 17 is a natural extension of Corol
lary 14 to HP-spaces in product domains The examples in Section 3 show that
in higher dimensions additional assumptions such as (1 11) are necessary When
d>3, Theorem 1 7 with r=1 serves as a substitute for Theorem 1 1 Notice that if
r=1 condition (1 10) involves mixed derivatives in L' of order d—1+¢, and condi
tion (1 11) involves derivatives in L? up to order (d—1+¢)/2 In comparison the
hypotheses in Corollaries 1 3 and 1 6 involve L? derivatives up to order (d+¢)/2 if
pisclose tol As a consequence we obtain the following analogue of Corollary 1 4,
formulated in terms of the standard oneparameter Sobolev space Lg

Corollary 18 Let meL>®(R?) be homogeneous of degree zero and related
to g+ by (15) Suppose that ¢>1 and that
d—-1

sup  1B1)® ®Ba-19£(t1 , ,ta-1 )rgma-r) <oo, a>—=
te(Ry )42 q

Then m is a Fourier multiplier of LP(R?) if |1/p—1|<1/2¢

The counterexamples in [22], [7] show that the statement of the Corollary is
false in the range |1/p—%|>1/2¢ However in view of Theorems 15 and 17 one
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expects the following sharper result Namely suppose that for some g€(1,2]
1
(112) sup  1B1y® ®Bu-1g+(ts » Hta—1 )lrgme-1)<oo, a>-,
te(Ry )4t q

and in dimension d>3 suppose that
(113)

sup “DIIID‘ZY Dg—Z [ﬂ(l)® ®ﬂ(d—1)g:l:(t1 y sld-1 )]”LZ(Rd—-l) <00,
te(Ry )41

1 1

>z, a>=
1>5 @>0

as well as the analogous conditions obtained by permuting the (s, ,S8q—1) vari-
ables Then m should be a Fourier multiplier of L?(R9) if |1/p—%|<1/2q In
order to prove this one is tempted to use analytic interpolation and interpolate
between the L estimate of Theorem 1 7, for po close to 1, and the L4/3-estimate
of Theorem 15 One would have to find the intermediate spaces for intersections
of L? and L7 Sobolev spaces However the intersection of the intermediate spaces
does not need to be contained in the intermediate space of the intersections (for
related counterexamples see [26]) It is actually possible to prove the result for
|1/p—3|<1/2q (assuming (112), (1 13)) by another approach One has to use a
general theorem for analytic families of operators acting on various kinds of atoms
the proof of which relies heavily on multiparameter Calderén-Zygmund theory We
do not include the technical proof here but refer the reader to [5]

The paper is organized as follows: In Section 2 we prove Theorem 11 using
weighted norm inequalities and variants of the maximal operator with respect to
lacunary directions Examples demonstrating the sharpness of our results in higher
dimensions are discussed in Section 3 The proof of Theorem 1 5 is in Section 4; it
relies on weighted norm inequalities which involve variants of the Kakeya maximal
function In Section 5 we prove the Hardy space estimates of Theorem 1 7

As a convention we shall refer to the quasi-norms in H? and HZ as “norms”
although for p<1 these spaces are not normed spaces By M,, 1<p<oo, we denote
the standard space of Fourier multipliers of L? It will always be assumed that
the even function B€CS® defined above satisfies 3, o5 [3(2%5)]*=1 for s#£0 If
ac{l, ,d}andk, k in R® then we shall use the notation ks_fc if k,-sl?:,- for all i€a
Similarly define k>k etc C will always be an abstract constant which may assume
different values in different lines

2 LP-estimates in the plane

In the proof of Theorem 1 1 there is no loss of generality in assuming that m
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is supported in the quadrant where &; >0 and £,>0 By a limiting argument as in
Stein’s book [25, p 109), it suffices to prove the theorem under the formally stronger
assumption

{Allootsup [ IW(s)| ds < A
k€Z J Iy

Let B be the smooth bump function defined in the introduction (supported in
i[%,g]) Let yeC*(R?\{0}) be homogeneous of degree 1 such that (¢)=1 if
|§1/§2|€[§,%] (in particular on the support of 3®() and such that y(£)=0 if
l61/621¢ (3,4) Set

hse(§) =71(ER(27761/€2)

Then we may split
m=_ [Bepmi(2" 2% ),

kez?

where

£1/62
@1 m() =BlE)BE) ko (E1/62) = BENB(E) /0 By 1, (5) ds
and h,, is supported in (%,4), for all x€Z Also set

TeF (€) = |B®@Bmi) (2% &1, 2%62)) f(€)

Then by standard multiparameter Littlewood—Paley theory and duality, to establish
Theorem 1 1 for p€[2, po), po <00, it suffices to obtain an inequality

22) / T f2w < CA2 / | P90

for a certain operator w— 9w which is bounded on L(R?) for (po/2)'<g<oo By
our assumption on h,

23) sup / K. ()] ds < C A
x€Z

We denote by L the standard Littlewood—Paley operator, such that

Lef(€)=B(26:)B(2%&)f ()
and define the operator Si; by

f6), if2%&/€a>s, £12>0, £>0,
0, otherwise

510~
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Then from (2 1) we see that

8 .
T f(z)= //s LrSky—ky o f (@), _k,(5) ds
1
Then, if w>0 is a weight we apply the Cauchy—Schwarz inequality to obtain

(24) / ITe f (z)Pw(z) do < CA / / LSkt o (2) 1R, i, (5)] ds w(z) dz

Let M(;), M(s) be the Hardy-Littlewood maximal functions with respect to the
coordinate directions and let M, ; be the Hardy-Littlewood maximal function
with respect to the direction perpendicular to {£;2*£;/&;=s}, ie in the direction
(1,—27%*s) Then using weighted norm inequalities for singular integral operators
due to Cérdoba and Fefferman ([13], see also [18]) we see that the expression on the
right hand side of (2 4) is dominated by

8
CaA [ 110" Mon Mo [ / (i ™)/, () ds] (2) da,

where a>1 Now the proof of (2 2) is completed by the following
Proposition 21 Let, for a>1,

M o(x) = sup / (Mie 50®)M%(2)| A (s)| ds
x€Z J1I

where I= [%,8] and

sup /|/\x(s)|ds§B<oo
»€Z JI

Then My is bounded on LP(R?), a<p<oo, with norm <Cp oB

Proof Since
ma(w) < Bl—l/a[ml(wa)]l/a

it suffices to prove that 9, is bounded on L?, 1<p<oo with norm Cp,B If a>1
then 9, will be bounded on L?, p>a, with norm SC;;ZB

We follow arguments by Nagel, Stein and Wainger [23] as modified by Christ
(see [2]) Let ¢: R—R be smooth, even, nonnegative, with ¢(0)>0 such that @ has

compact support in [—, 5] Let

Y(&1,&2) = P& +&2)
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and define for »xcZ o
PL w(€) =241, 82 76)B(€)

It suffices to show that for 1<p<oo, N being an arbitrary positive integer

25) |

sup / sup | PL,w| [Xc(s)| ds
—N<x<N JI leZ

< CpB"W"m
?

where C), is independent of N Then an application of the monotone convergence
theorem allows to pass to the limit We note that for fixed » and 1<p<oo

(26) u [ sup 1Ll an(o)l ds
I leZ

<0 [ [supiPhuo]| Inn(s) ds < CoBlctl
p I1'lez p

by the LP estimate for the one dimensijonal Hardy-Littlewood maximal function
M;. s This means that we know a priori that the left hand side of (2 5) is bounded
by BCy(N)||fllp (with Cp(N)<C,N) and it remains to be shown that Cp(NN) can
be chosen independently of N In what follows we define C,(N) to be the best
constant in (2 5)

We first consider the case 2<p<oo Since the L®-estimate is trivial it suffices
to prove the L? inequality We smoothly split 4 into two parts, =4+ with 3!
supported in the unit ball and %° supported in the cone {&;[& +&|/1€1<3} We
correspondingly define the operators P12 and P} Note that there is the pointwise
inequality

(27) |Ppsw ()| < CM1yMgw(x)
which implies

(28) SCpBlwlp, 1<p<Loo

14

sup / sup |Ppyw| [ Mc(s)| ds
» JI leZ

Concerning P4? we have
|Pw(z)| < ClMy Mpyw(z) + M, sw(z)]
and therefore

<Gy OB”‘“’"p

p

(29) ” [ sup 1Ll (o) ds
I leZ
for 1<p<oo Note that

w0(2l ,821_” )a__:x( ,2—,{ ),‘/)0(21 ,szl—x )a,
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where  is smooth, homogeneous of degree zero, identically 1 on {; |&1+&2]/|€] <4}
and zero on {¢;|€;+&2|/|£|>8} Define the standard angular Littlewood—Paley op-
erator R, by

R1(€) =x(&r,277€) f(€)
Then
(2 10) Pow=P.OR, w

and, as a consequence of multiparameter Littlewood-Paley theory and the Marcin-
kiewicz multiplier theorem,

(;IRxfl"’)l/z

(2 11) l

<Clfllp, 1<p<oo
P
Now by (2 10)

(212) sup
»€Z

2\1/2
<(Z[[ spirratnmionas )

k3

[ sup [P10u| | A(s)| ds
I leZ

and using (2 9) we see that the square of the L?-norm of the right hand side equals

2 :Sg[/l|'fgg |Pf;3Rxw[|l2|,\x(3)| dsr

<CB?Y " ||Rwl3 < C'B?|lw|3

/ sup | PLOR ][ Ar(s)| ds
I leZ

We have proved

(213)

sup [ [ sup IP,‘;SwHAx(s)lds]
»€ZJI l€Z

SCB"‘U"p, 2<p<®
r

By (2 8) and (2 13) we see that
Cp(N)<C, 2<p<co
We now assume 1<p<2 and begin with the observation that for any sequence

{wsi} of weights we have
(2 14)
p\l/p 1/p
) (Zper)
>

[+

n

, l<p<oo
P

/ sup | PL0w, [ Ar(s)] ds
I leZ

SCpOB
p
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This is immediate from (29) Next positivity of P}, implies that

<

4

sup / sup | PL el Ac(s)] ds
I 1

»

sup | sup|PL, sup ] [c(s) s
»x JI 1 4

(215) »

< BCp(N)“sup (W “
»x r
by the definition of Cp,(N) From (2 15) and (2 8) it follows that for 1<p<oo

(2 16)

sup / sup | PL0w, || A\e(s)| ds
»cZ JI l€Z

<c, 1BC,,(N)Hsglyﬂw»f”“,
14

Now if we interpolate (2 14) with (2 16) we obtain for p<q<oo

(217) y
q) T

Using (2 12), (2 17) and (2 11) we obtain for 1<p<2

»€EZ
a\1/2
< sup | PO R, w|| . (s)| ds )
p_“<§ LGPI s | As(s)] ]

(Simet)

< Cp3BC(N)' 2wl

/ sup | P10uwsc| | Aoc(s) | ds
I leZ ‘ _

< Cp 2BCp(N)1_p/q
P

(Zx: |(‘J,‘Iq)llq

r

sup
x€Z

/ sup |PL0w| [Ae(s)| ds
I leZ

P

218
19 < Cp2BCy(N)1 P/

4

Finally it follows from (2 8) and (2 18) that
Cp(N) < [C;"‘Cp 3Cp(N)1_p/2]

which implies that Cp(IN) is bounded by a constant depending only on p but not
on N This finishes the proof of the proposition 0O

3 Examples in higher dimensions

We show in this section that Theorem 1 1 and Corollary 1 4 have no immediate
analogue in terms of localized multiparameter Sobolev spaces in higher dimensions
Our examples imply the sharpness of Theorems 15 and 17

Let LP(L?) be the space of functions f on Re=R% @R% such that

p/2 1/p
llfﬂu(m)=( / [ lf(x',x"nﬁdx"] d:z:’) <oo
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For a bounded function m on R? we denote by [/m|ja, the operator norm of the

convolution operator T defined by Tf=mf and by |jm|| M, the norm of T as a
bounded operator on LP(L?) By a theorem of Herz and Riviére [19]

(B1) lmllas, . < Cllmia,
for 1<p<oo We shall use the following

Lemma 31 Let {m,.} be a sequence of bounded functions in R% Let x€
C*(R?) be supported in {£";1<|¢"|<2} and equal to 1 if 1—e<[¢”|<1+€ for
some €>0 Let

m(€,€") =Y x(27E" ym..(£))
and define T, by f,}(&)=m,,(§) f(€) Then for 1<p<oo we have the inequality

| (2}{: |Txfx|2)1/2 (gifm)l/z

Proof Let Bo€C™ be supported in {£"”:1-e<|¢”|<1+¢} such that

< Cpllmli g, (rey

Lr(R%1) Lr(R%1)

BoliL2(rezy =1
Let
(&', 3") = 2%% £,(2") Fis, [Bo (277 ))(z")
then by an application of Plancherel’s theorem in the second variable it follows that

(; lgxﬁ)m @uxﬁ)m

Next let L, denote convolution in R* with F3,[60(2™* )] By Littlewood-Paley
theory we have for 1<p<oo

1/2
Z L;cg.. (Z |gx|2)

(32) = (2m)~h/2

LP(R4) LP(R41)

(33) <G,

Lr(R%)

Lr(R4)
Now

(Z ITxfxl2)1/2

(; / 1Bo(2-67¢") 23T, fx|2d§”)l/2

i ) 1/2
Z I«FRd [mycFRa [LxLxgx]]l

(lein{oe]

Lr(R%1) - I Le(R41)

= (27T)d1/2

Lr(L?)

2\1/2
— (27r)d1/2 )

Lo(z?)
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where the last identity holds in view of the support properties of fp By Littlewood—
Paley theory
2)1 /2

|(Sofeert e[
»x 7 Lr(L?)
fgi [m.’FRa [Z LJgJ]]
3
> Lig;
[ Lr(L2)
9 1/2
(ZL%'I )
j Lp(L?)
1/2
(Z |ij2)
J

<G,

LP(L?)

< Cpllmlin,

< Cyllml|as,

=Cpllmllas, (2m)~4/2 0

LP(R%)

We now show that the restriction ¢>2 (corresponding to §§p§4) in Theo
rem 1 5 is necessary In what follows we denote by LP(L?) the space of functions in

R3 with
p/2 1/p
| fllLe(L2y = (// [/ |f(l‘1,$2,$3)|2d$2] dxldms) <00

and correspondingly define Mp,
Fix N>>0 and let

N
(34) gn(s1,52) =Y n(N(s1—00))X(27%52);
=2
where
2N
(35) e =14+—,
x

and n€C™ is nonnegative, equal to 1in [—1, 1] and supported in [~1,1] Similarly
X is as in Lemma 3 1, supported in £(3,2) and equal to 1 in +(1/v/2,v/2) Then

(36) sup |18y ®@B2)gn(s1 »s2 g ray <CN*V/4
81 s3>0
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Lemma 3 2 Let m(n) be the homogeneous extension of gy defined in (3 4),
(35) There is a positive constant ¢ such that

cNY2-2P 4<p<oo,

37 m >
67 L S N

A comparison of (3 6) and (3 7) shows that in the case p>4 the condition

sup [|Ba)®B2)9+(s1 ,82 )ngme) <oo

81 82>0

does not imply me M, for the homogeneous extension m if a<3+1/q—2/p (it does
not even imply me M) Similar statements follow by duality for 1< p<§ This
yields the sharpness of Theorem 15 By interpolation an improvement of the H?
estimates would lead to an improvement of the L? estimates and this implies the
sharpness of Theorem 1 7

Proof of Lemma 32 Let $,€CS° be supported in (2,3) and equal to 1 in
%,%) Let x be as in Lemma 3 1 supported in {|§2|e(§,g)} and equal to 1 in
|2l€ (35 35)} Let

M (€1,€3) = B(E3)N(4N (€1/€3~xc))

and

N
pwy (€)= (275 &)mu (61, &)

=2

In view of the properties of 1, x, X and the Marcinkiewicz multiplier theorem

Ny, SCollmmyliv,,, 1<p<oo

Now assume 4<p<oo Let
R..= {(-’ﬂl, 73); |21 — e z3| < 1073N, |, 21 — 23| < 10‘3}

For £ €supp m,., £€ R, we have |z1£; +2383|<m/4 and therefore

2

/mx(il,53)6i(1151+1353)d§1d§3

/mx(ﬁl, &3) cos(z181 +x3és)dlydés| >N~
for some fixed positive constant ¢ Let

R, ={(21,23); 107 N/2 < |71 — a3 S 107N, 1074/2 < ooy — 23| < 1074},
R, ={(z1, z3); |z1— s3] 107N, Jasezy —23| < 10"4}



Homogeneous Fourier multipliers of Marcinkiewicz type 59

and let x, be the characteristic function of ﬁ,, Then

F Y Um.Fxx]>c, z€R:

By Lemma 3 1
N 1/2 N 1/2
(Z |Frs [m,,]-‘sz,,]lz) < Cpllsy My (Z IXx|2>
=2 Lr(R?) x=2 Lr(R2)

Now one verifies that

1/2
|(= beal?) | v
1 b4
In view of the overlap of the rectangles R% we have for some small constant c; >0,
and for |z|<c; N and for |z|<cN we have

1/
(Z If‘llmxfxx](m)P) ZzN”z(lHﬂvl)‘l/2

and consequently

\ (= |f~1[mxfxx]|2)l/2

;4
This implies the assertion [

{Nl/z if p>4,
» L NY2(logN)Y/* ifp=4

Next we consider the class of homogeneous functions m in R® with the property
that the restrictions hy to the hyperplanes {¢; {3==1} satisfy the hypotheses of the
Marcinkiewicz multiplier theorem in the plane; that is

lA]lco < A,

2’7'-(81,82) ds; <A,
1

ds
6h

—(Sla 82)

(932

sup sup/
J1€N s2 JI;

(38) sup sup /
I;

F2€N s

sup //
j€N2 Ij XIj2

where I, etc isasin (11) We show that (3 8) is not sufficient to guarantee me M,
for any p#2 The argument here follows Fefferman’s solution [16] of the multiplier
problem for the ball (see also [14], [21])

d32 S Aa

8h

L <
G105, (81,82)|ds1dsz < A,
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Let a={a,. } be an arbitrary sequence of numbers in [1,2) and let m,, be defined
in the first quadrant such that
1, 1 Sé‘l/&i <,
(39) s, )=
0, a,<&i/83<2

Let
ma=Y _ B(276/Es)m (61, &)

Suppose the assumptions (3 8) imply me M, for some p#2 Then a limiting ar
gument as in [25, p 109] would imply that m, is an L? multiplier with norm
independent of the choice of {a, }rez and by (3 1) a corresponding statement on
LP(L?) would follow However we have

Lemma 33 The inequality

|F = maF flllez2y < CllfllLe(z2)

does not hold independently of a if p#2

For example if we take for a an enumeration of the rationals in {1,2) then
Mg €My, if and only if p=2

Proof Arguing as above the assumption m, €M, implies a vector valued esti
mate for directional Hilbert transforms, namely

(S, sl (S 1)

where H,, is the Hilbert transform in the direction (1,—a,) But as in [16] the
existence of the Kakeya set prohibits such inequalities for p#2 (unless further re
strictions on the family of directions (1, —a,.) are made) 0O

LP(R?) Lo(R2)

4 Weighted norm inequalities in higher dimensions

We deduce Theorem 1 3 from a weighted norm inequality; the procedure is
analogous to Stein’s proof of the Hérmander multiplier theorem (see [25, Ch IV])
Here, however, the positive operator which controls the problem is not the Hardy—
Littlewood maximal operator but a multiple iteration of variants of Kakeya type
maximal operators The main step of the argument is contained in Lemma 4 7; one
proves a weighted inequality for a variant of Cérdoba’s sectorial square-function
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For i=1, ,d-1 let RSZ,.") be the family of all rectangles with the dimensions
1x 2™ centered at the origin in the z; — x4 plane and let ﬁﬁf,.“) be the family of all
parallelograms of the form {(z;, z4); (2¥:z;, 2%4z,4) € Ry} where Ry E’R,ﬁf‘.d) and k;, kg
are integers Let

Mr(:; d)w(:l:l, ,.’L'd)

1
sup ‘R—/lw(-’ﬂl, yTim1,Ti—Yiy Tily »Td—1,Td—Yd)| dys dya
rer Bl Jr

M,(: 9 is a variant of the Kakeya maximal function, invariant under the dilations
(zi,xq)— (2% z;,2F2z4) The proof of the L? estimate in [10] can be easily modified
to yield

IME Dw|lz < Cryflwlla;

for a more singular variant see also [11]
Next, for n={(n1, ,ng4—1) define

— d-1d d—2d d
M"—M"(ld—-ll )OMT(ld—z o OM'I(& )

and, for NeN, let MY =M, oM, be the N fold application of the operator M,
Finally, if M(;) denotes the Hardy-Littlewood maximal operator with respect to the
variable z; let .

My =Muye Mgy My oMuye M)

Theorem 41 Let 'y>% and suppose that

(41) sup  [IBy® ®Ba-n9x(ts , ,ta-1 )llwz@me-1) < By <o
te R+)d_1

Let m be the homogeneous extension of g+ and define T by TF ©)=m(&)f(€&) Let
0<e<y—3, let N(€) be the smallest positive integer >3+2/¢ and define M, by

Mew= Y 27t +nas) NG,
neNg!

Then for s>1
(42) [ Ir1@Pu@ ds<C. .8, [ @@ s

Proof of Theorem 15 Since the operator w— (M. (Jw|®))'/* is bounded on
L9, ¢>2s/(1—¢), the weighted norm inequality (4 2) and duality imply under the
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assumption (4 1) that T is bounded on L?, for 2<p<4 The general result of The
orem 15 follows then by interpolation, using the technique in [9] O

Before we prove Theorem 4 1 we recall a few facts about vector-valued weighted
norm inequalities First if H;, Hy are Hilbert spaces and K is a convolution kernel
in R, with values in the space B(H;, Hz) of bounded operators, then K is called a
regular singular integral operator if

|ﬁ(£)|B(H1 Hj) _<.Ca
IK(@) |, 1) <Clz| ™,
|K(z—y)~K(2) |8 ) <Cll|zI7%,  |z|>2ly|>0;

here 0<§<1 is fixed By a vector valued version of a theorem of Cérdoba and
Fefferman ([13], see also [18, Ch IV 3]) there is an inequality

43 I @@ d<Cop [11@), (M) () dz

where 1<p<oo, 0>1

Littlewood-Paley functions can be associated with regular singular integral
operators Let S€C§°(1,2) then it is straightforward to check that the operator
{frtrez—Y FLB(2%| |)Ff] is a B(I%,R)-valued regular singular integral oper-
ator Likewise the adjoint operator f—{F~1[8(2%| |)Ff]}xez is a B(R,(?)-valued
regular singular integral operator Here {2 may refer to a space of sequences with
values in a Hilbert space

Next let k€Z? and denote by L be the standard Littlewood-Paley operator
with multiplier H?___l B(2%1&|) Then a repeated application of (4 3) yields

Lemma 4 2 For 1<p<oo, s>1 we have the inequalities

> Lifw

kezd

p/2
/(Z IL’,ka) w(m)divSCsp/V(m)lp(M(w o Ma)[w’])/*(z) de

keZd

/

P p/2
w(:c)da:SCsp/<Z Ifk(z:)lz) (M(l)o oM(d)[ws])l/s(a:) dz,

kEZs

We need also the following pointwise estimate concerning a square-function
involving translates of a fixed Schwartz-function It implies L? boundedness for
p>2, a result which is due to Carleson A proof of the pointwise estimate can be
found in [24], see also [12], [18]
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Lemma 4 3 Let 7 be a Schwartz function in R® and let AcGL(d,R) Then

|f(z—Aty)?

(44) STIF A -R)FAEI<CN L

kezd

dy

Proof of Theorem 41

There is no loss of generality in assuming that m is supported in {¢;&;>0,
i=1, ,d} Setting

d
(45) ¢(©)=]]8(&)

i=1

we decompose
m(&) = Z 'rn'k:(2k'l £1) ) 2kd£d)
kezd
where

mi (&) = d(€)gr(€1/€ay 1 €a—1/Ea)

and g has compact support in (%,2)"!_1 Note that gr=gr if ki—ka=ki—k},

i=1, ,d—1 We introduce a further decomposition using the dyadic smooth cutoff
functions ¥p=1%n, ® ®vn,_, (cf the second definition of the space HZ in the
introduction) We decompose

46) mi(©)= Y $OgrUn€/bs Lar/t)= Y. HEOmMLE)

n€(Ng)d—? n€(Ng)d-1
We may write
(47) 9 *¥%n = g7 +¥n
where e
9% =gk *¥n

and 1'/;,,=1an® ®12;nd_1 is similarly defined as v, (say, with 17;,1‘ supported in
+[2m=2 27+2] equal to 1 in supp v¥n,) Let us note in passing that in view of the
support properties of the Fourier transform of gf we have the following version of
Sobolev’s imbedding theorem

(48)

sup  |lgk( ;8441 ,Sd—l)"Lr(Rdx)502(""1“+ +""")/p||9?||u(nd—1),
Sdy+1  8d-1
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see the argument in [27, p 1§]
Let T}} be defined by

49) TPF(E) = [¢mpl(2R &, ,2%€0)f(€)

Let 0<e’<¢, say €'=¢/2 An application of Lemma 4 2 shows that it suffices
to prove the inequality

(4100 3O / \T7 Lo f () () dz

kezd
1
< CN2(n1+ +ng-1)(1/24€ )"g;ctuz /|ka(x)‘2MN (:I:) dz, N> 2+_
keZd

In order to avoid complicated notation we shall assume d=3 in what follows This
case is entirely typical of the general situation in higher dimensions
In order to use the homogeneity of the multipliers we have to introduce finer
decompositions of g¥ For vy=2m—3 2m-341  9m+3 and pp=2m2~3 gn2-34 1
, 27213 Jet

(411) —(uul,u Y=(2"™14,27"2y)
and
= 2 _ —m-1 1 | g-n— —ng-1 ,2 | g~ng—1
L=I xI7, ={u, —27™7 1y}, +27™ Yx[u2 —27271 42 4277271
Furthermore let

2n1+8
=R\ |J I, =R\[{-27m7}8427™m"1],
V1=2"‘1—3
2n2+3
=R\ |J I =R\[j-27 8+2 ™!
V2=2"2_3
Setting
o () = / o7 (w)m (5 1) du,
gl (s)= / gL (s—u)do,
(412)

o2 (s) = / gk(um(s—u) du,

a@=/ -
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we split
grats  gmps pra4 -
(413) o= Y. Y To+ > Toi+ Y, TR+’
vy =213 yy=2n2-3 vy =213 vp=2"23
where
T, 1(6) = g5, (257261 /63, 25262 /£3)p(291 61,2265, 2%565) f (£),
@ 14) @(&) =gy (297881 /65,257 F3 4y 1£3) (25 €1, 27265, 25285) (€),
Tp 2 £(6) = g2 (2570081 /65, 2% 245 £5) p(2% €1, 226, 2% £3) f (€),
TP O7(€) = ap(2 061 /s, 25506 /60) (2961, 25265, 2505) £(€)
We set
b, = sup lgn ()],
bpy= sup |gk(u)l,
(415) u€l} xeI?

2
b= sup  |gk(u),
ueltxIZ,

br= sup |gk(u)|

u€elt xeI2?

Since the Fourier transform of g7 is supported in [—2m1+3, 271+3] x [gn2+3 gna+3]
suitable variants of the Plancherel-Polya theorem (see [27, p 19]) and the Sobolev
embedding theorem imply

on1+3 gn2+3 1/r
(416) ( > > [bzur) <Camtmalrign) - 0<r<oo

vy =271~3 pp=2n2-3

with the appropriate interpretation for r=00; moreover we have

on1+3 1/r
( >, [, ') <C2™/"sup [lg7( , s2)l|L-(r)
32

vy =271-3

(417) <Cormtn/r)gry . gy

and a similar statement with the s; and s; variables interchanged Also by (4 8) b7
is bounded by C2(m+na)/r||gnil,
We need pointwise estimates for the convolution kernels K» K*! K"? K 9 0

1 9 0 kv kgt Prkug?
of the operators T(,, Ty, , Ty, -, Ty, respectively
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Lemma 44 Let e,=(ul ,v2,,1), el ;=(ul,0,1) and 2 ,=(0,uZ,,1) Let

Wiy (z) =2""""2(1+[{e,, 2)[) N (1427 |21 |) N (1+27"2|z,)) 7,
Wy (2) =27 (1+((el,, o)) N (1427 |z, )~V (1+]z2]) 7,
Wi % (z)=2""2(1+(e2,, 2)|) "N (1+]z1|) =N (1427 |za)) N,
Wi %(z) = U+|z1]) N (L+]22)) "N (1+|2al)
Let

U, n(z)=2"R"*"Rs W (27F1g) 2 Fag,, 27 R0 5)

and similarly define U,’:ui N U,?Vz ~ Ul N Then

|07 KF, (2)] S Cynbp, 2~ im—kem—kswsyn | (z),
| & K;:ut (z)l < C'bez,,ll g—n2Ng—kini—kav2—kavs U’f:u: N(I)’
IalKL‘.Z (.'l:)] < C7Nb:u22 g—mNo—kim1—kay2—ks7s U,':l: N(x)’

|6;’K,': O(z)| < C’YNb;:2—n1N2-ﬂ2N2-k1'h—kz‘rz—ks‘vsU’:'g(z)

(418)

Proof First consider K7, Using the homogeneity of the multiplier and the
decay properties of 1,, we see that

419) [ofoln (e, o™ [ote) [ o (E-u, &) i

M)bﬂ 2N1 ny 2Nz na
M A+2mie /G —ul, DM (1+27]6/&—u2, )M

S C(NI,N2’ N31

Using integration by parts we obtain
ok1tkatks IKLEV(2’¢1 z1, 2’621:2, 9ks z3)|

SCNM/[/ ]3(1+2"‘|€1/€3—U.1,,I)_M(1+2"2|€2/€3—uﬁzl)_Mdfznﬁn’WfN(x)
1/22
<CNW)y(2)

In view of the compact support of ¢ we get the same estimates for the derivatives
of the left hand side and the desired estimates for K7, and its derivatives follow

The estimate for K’ % has nothing to do with homogeneity: By the decay
properties of v, we have

1832 03 0 (8)| < Cow 2™ 47N (1[5 )~ (14 s2]) ™Y
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and hence
|02 622072 [$(€) R (61/8s, €2/3)]| < Con2~(PrtmaIN

The desired estimate for K ® follows by integration by parts In the proof of the
estimate for K} ' we replace (4 19) by

|6 852 (b, Ve) ™ [9(€) g (€1/6s, ea/EB)|

< C(INy, Na, Na, M)BL,
0 Nar Noy VO o om e e —ul

2N1n1 2(N2+N3—M)ﬂz

and argue as above O

In what follows we shall denote by J a function which is similar to 3 but
equals 1 on the support of 8 Next let xeC§°(R) be supported in (-2, 2) such
that ) o x*( —»)=1 Again let XeC§° be defined similarly to x but equal to 1
on the support of x We define the operator A}, by

An, F(6) = x(2™ (25 &1 —ul, 25383))x (27 (28262 02, 25563)) 3% (2 &) £ (6)

Lemma 4 5 There is a weighted norm inequality
(4 20)

[ 3 1T L4 £ (@) Peo(z) da < O3+ g3 / 3147, Lo f @) Maly) dy
k kv
Proof Set Sp,,=TRA%, Sp. =T A%, Sp2 =To2Ap, and Sp°=
TP °A7, Then

6 T = [ St O Shh + Y SR, S8 A Las
v I 23 2
Let Hp,,, H,':u:‘l, H ,':ui , and H}.? be the convolution kernels of the operators ST, "

S;‘VLI, S;‘Viz and Sp.°, respectively Fix N (say equal to 100) and let UZ,=UZ, 100
etc The proof of Lemma 4 4 shows that
3
HE, (z)|<C kp Uz (x),
e < C =P (T = o)
b'n 1
H" 1 <C 2—n2N kuy Ur
| kv (Z’)l =N (1+|p1—-1/112) ku(x)a
n 2

b
2 —nz2N kuz n
H" <C malN_____"H2 U
I kuyg(z)l— N2 (1|| . V2I2) kv(z)7

|Hp(2)] < Cn2~™ N2~ Ny R (z)
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We observe that ||{U} ||; <C is bounded uniformly in v, n, k Therefore

Z Zs;c‘upAguzkf(x)
lbg.| n /2

SC;; (1+|p1 — 1) (1 +|p2 —v2f)? (./ U,w(:z:—z)dz)

1/2

x ( [ 14 £016)PUR @) dy)
1o,

<o(3 2 T =P+
1/2

x (Z [ 14805 6)PUE ) dy)
1/2 1

<o(3 I |AZ, L f W)PUR, (z—9)dy
(Z . ) (Z / n Ly f@)PUL )

1/2
scz"ﬁ"zng:uz(z / |Azyckf(y)|2Uzu(x-y>dy) ,

2)1/2

/2

where for the last inequality we have used (4 16) Using also (4 17) we derive the
same inequality for the other three remaining terms in (4 21) and obtain
(422)

1/2 1/2
(Z IT:Z‘Ekf(z)l"’) s02<"*+"2>/2||gzu2( [T e wruse-y dy)
k kv

Finally there is the pointwise estimate

(423) sup Uk, *|wl(z) < CMypw(z)

and (4 22) and (4 23) imply (420) O

Proposition 4 6 There is the weighted norm inequality
@2) 3 [ fe)Pula)ds
kv

<Ox 2472 Y [ (@) P Miew(o)do, No>2+1/¢
k
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Proof It is convenient to introduce a decomposition in the £3-variable which
will give the factor of 22¢'("1+72) We define for (A1, A2) €Z? operators V¥ by

VETTO) = X325 =2M M35 -2 X) f(€)

Observe that A}, is a sum of no more then O(2° ("1#"2)) gperators V** AP, where

2™€ ;€ (35,20) and 2™2¢ A3€(5%,20) Therefore it suffices to show that for those

A the inequality

1

20?

%) ¥ / VEE AP, fu(@)Pw(z) do
kv

<O, Y [ Inle)PMeala) dz, No>2+1/,
k

holds In order to show (4 25) we first prove an inequality for an analogous problem
in two dimensions

Lemma 47 Let 61 and let m,u,p be integers such that m>0, 2~™pue
2%, 20) and 2-™6pc (%,20) Let B, Cz,"a be the operators acting on functions in
R? defined by
Bpj(6) =x(@™ (6 -2 u2)) F(£),
Cref(6) =x*(2™(&~2"™"0) f(¢)

Let I<max{1,mé} Then

) / B C f (@) Pw(x) ds < C S / |BrCm £ () PME Puo(z) da
u u

Proof Let

Ruo={& 11 —2""pba| <27™FY; g, —27 g <2711},
Rue={&160-27mubs| <2743 )6 —27 o <2714}
Let £'€R, , and suppose that |u—p/|<27*2 Let a,—p =(27™(u—'),0) Then

&¢—a,_, €R,, Thus
Ry oCau—p +Ryy

Define

e —

Il F(O) =X (C1—27" (u—p) 27" ut2)) X (2™ (£2—27™0)) £ (€)
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and define 5‘;"5 similarly as C7* (with x replaced by X) Then

Bupe

Y IBrCri@)P<c Y. Y ICr BT Cro B ()
n [T

An integration by parts argument shows that the convolution kernel of 5:,"‘53,’[‘ is
bounded by Cp times

m amé
(+2m|(z, e ))V (1+2m0)(z, e))Y

¥
w;TN (z)=

if e,=(1,-27™p), e5 =(2"™u, 1) and if 2‘"‘;@'1 Now the argument which led to
(4 22) and Lemma 4 3 show that for fixed u/

3 / |G BT, 8 Bt f (1) Pus(z) da
lp—u 11

<oy 3O / [Tt O B f(2) Pums0 s o] (2) do
le—up |<l

<Cn [ ICT°BR ! f(z)? sup w,'I‘,_f il x|wl(z) dz
Ju—n'|<i

The asserted inequality is an immediate consequence (O

‘We now conclude the proof of Proposition 4 6 First, since the maximal oper
ator M,‘,} ?) is invariant under two-parameter dilations there is a scaled variant of
Lemma 47 Also we can apply Lemma 4 7 twice, in the ;1 —z3 and in the zo—z3
plane; the same applies to the scaled variant We obtain the inequality

> [V A @ Pole)de<C Y [ VE AL (@) P Muio(a) do
kv

kv

if I=(l1,13) and {;<n;€’, I3<nye’ We iterate and apply this inequality N times;
here N<1+41/¢’ The result is an estimate of the left hand side of (4 25) by an
expression involving a scaled versnon of the square-function in Lemma 4 3 (with
A=diag(2*:,2*2)) Namely if I",WA is defined by

;w,\f(E) H[X2 (270 (25263 — 270N X (20 (256 — 270 w)) £ (€)

i=1
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we obtain the inequality
) / Vi A7, fu@)Pw(z)dz<Cn 3 / T2 fi(@) P MY w(z) de,
kv kv

N>1+42,
£

from which (4 25) follows by an application of Lemma 43 O

The asserted weighted norm inequality (4 10) now follows by an application of
Lemma 4 5 and Proposition 4 6 This concludes the proof of Theorem 4 1

Remark The weighted inequality in Proposition 3 6 implies

1/2
(Z |A::uckf|2)
kv

with C,=0(A/*) as e—0, some A>1 The geometrical arguments by Cérdoba [12]
show that in fact C.=0(e™*) for some a>0 It would be interesting to find positive
operators N, being uniformly bounded on L? such that

< G20t | 4
4

S [ 145, Lef @)l do < O 22 [ 15N, u)(e)de
kv

An analogous problem is to find weighted norm inequalities for radial multipliers
and associated maximal functions in R2, with a positive operator A In this context
weighted inequalities with a nonpositive A have been proved in [1]

5 HP-estimates

The purpose of this section is to prove Theorem 17 The proof relies on a
result on multiparameter Calderén-Zygmund theory obtained by the authors in [4]
(extending earlier results by Journé [20] and Fefferman [17]) There it is shown for
a large class of singular integral operators T' that the boundedness of T on certain
scalar and vector-valued rectangle atoms implies the boundedness on HP

To be precise let R be an interval in R? (ie a rectangle parallel to the coor-
dinate axes), and let ) be a nonnegative integer In what follows, Q will always
be >[1/p—1] (the largest integer <1/p—1) Then a is called a (p, @, R) rectangle
atom if a is supported in R, if

/ la(z)[?dz < |R[1=2/7
R
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and if for m=1, ,d
/ a(xh 1 Tmy Tm+1s ,.’L‘d)l‘? 3):,'1" dxl dxm =07 T, »Tm =07 ’ Q
m

for almost all (41, ,z4); furthermore assume that the analogous cancellation
properties hold for all permutations of the variables =, ,zq4

Now let R=R%“@R%, and let I be an interval in R®* Then we need the
notion of an L2(R%)-valued (p,Q, I) rectangle atom This is simply a function a
supported on I xR% such that

// ]a(x',x")lzdx”dx' < |I|1—2/p

and such that for m=1, ,d;

T T —_
/ a(T1, 1 TmyTmils sTdr+1, HT)T] Tyl dEy dTm =0,
m
T, sTm= 0, ’ Q

for almost all (Zm+1, ,Zaq); furthermore assume that the analogous cancellation
properties hold for all permutations of the variables z;, ,zq4,

Now let T: C°(R?) — (C§°(R%))’ be an operator with Schwartz kernel K, with
the property that K(z,y) is locally integrable in {(z,y);z:#yi,i=1, ,d} Let ®
be a smooth bump function on R supported in [1,4] such that 3 ;2 ®(27!s)=1
for s#£0 For l=(l;, ,la,), 1<d;<d, define the operator T* by

dy
7'1(0)= [ K(a) [] 2@ 41w 6) dy
i=1

Theorem 5 1 [4] Let 0<p<1, s>d(d+1)/2 and Q>[1/p—1], M>2 Suppose
that

(1) T is bounded on L?2(R?) with operator norm <A

(2) For all dy€{1, ,d—1}, for all L€Z*, for all intervals I in R® with
sidelengths 251, 241 for all L>(R%%) valued (p,Q,I) rectangle atoms a and
for all l=(ll, ,ldl), ;i>1,i=1, ,dy

d; —s/p
(5 1) HTL+la'"LP(Rdl L2(Rd2)) S A(Z lz)

i=1

(3) The condition analogous to (5 1) is valid for every permutation of the vari
ables 1, ,zq
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(4) For all L€Z?, for all intervals R in R? with sidelengths 2L, ,2L4, for
all (p, Q, R) rectangle atoms a and for all l=(l;, ,lg), ;>1,i=1, ,d-1

d ~s/p
(52) "TLHa“LP(Rd) <A (Z li)

=1

Then T extends to a bounded operator from the multiparameter Hardy space HP(R%)
to LP(R?) and the operator norm is bounded by CA Here C depends only on p, d
and s If T is translation invariant then T is bounded on HP(R?)

We now consider convolution operators T' given by Fourier multipliers m via
TF (€)=m(€)f(£) For k€Z® let T} be the operator with Fourier multiplier
m(€) Hf;l B(2%¢;) Variants of the standard Marcinkiewicz multiplier theorem on
HP-spaces follow from Theorem 5 1 and

Proposition 5 2 Suppose that 0<p<1, a>1/ —% and let Q, £ be such that
Q2=(1/p-1] and 0<2e<min{a—1/p+31,Q—-1/p+2,1}

(1) Suppose that 1<d1<d-1 and
(53)

sup sup 1B1)® ®Baymlts » sty s€at1, &a)llrz@ma) <oo
te(Ry)% (4,41 Ea)ERI"D

Then for all LEZ®, for all intervals I in R with sidelengths 211, 2L for all
L2(R4%) valued (p, Q,I) rectangle atoms a, for alll=(1;, ,lg,), ;>1,i=1, ,d;
and for all keZH

dy
(54) H(T) Hall Lomes z2(re-aryy <CAJJ27=CHED

i=1

(2) The inequality analogous to (54) holds for every permutation of the vari
ables z1, ,zq
(3) Suppose that

(5 5) sup [1B)® ®B@m(tr , ,ta Nrzmey<oo
te(Ry )¢

Then for all LEZ?, for all intervals R in RY with sidelengths 251, 254, for all
(p, @, R) rectangle atoms a, for alll=(ly, ,l3), l;>1, i=1, ,d, for all keZ®

d
(56) I(Te)+all porey < CA T 2 Hk:D

=1
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If (55) is valid then m is bounded and (53) and the analogous conditions
obtained by permuting variables are also satisfied In particular (55) implies that
T is bounded on the multiparameter Hardy space H?(R%) and the operator norm is
bounded by CA

Proposition 5 2 is proved by standard arguments, see for example the proof
of {4, Proposition 5 1] The last conclusion of Proposition 5 2 follows of course by
Theorem 51 The reader should note that the multipliers in Theorem 1 7 generally
do not satisfy the assumption (5 §), even in the two-dimensional case

Proof of Theorem 17 We may clearly assume that p<1 Again since charac-
teristic functions of half spaces with boundaries parallel to the coordinate axes are
Fourier multipliers of multiparameter Hardy spaces there is no loss of generality in
assuming that m is supported in {¢;£;>0,i=1, ,d} We use the notation intro-
duced in the proof of Theorem 41 Let T} be as in (49) and set T"=), .. Tp
We shall show that T™ is bounded on HP(R?) with operator norm bounded by

(67)  Ce sup lgLllzomasy2™F e CPD(1pny 4 fng )t/
kezd

Since

z Sup "g;:“Lp(Rd_l)2(nl+ +nd~1)(2/p_1) (1+n1+ +nd_1)(3+d)/p
ne(No)d-1 KEZ*

<C sup ||gflwz  if &>2/p-1
kezd

the conclusion of Theorem 1 7 follows

We have to verify the hypotheses (5 1) and (5 2) of Theorem 5 1 for the oper-
ator 7" The mixed norm inequalities are a straightforward consequence of Propo-
sition 5 2 In order to see this let

Fr(§)=h(&1/&a, ,€a-1/8a)
where h is compactly supported in [1, 2]“1_1 Then for >0 one has the inequalities
(58) sup 1By® ®B@yFu( ,&a)llnz me-1y < Cllhllra me-1y
and
(59) S?IP 18)® ®BayFul€rs lrzma-)
Allrz gy, ifd=2,

<C "han(Rd-x)+Supsl Z;; "'Dg D?_I'Dia'pg_!_l Dda_lh(sl, )||L2(Rd—2),
ifd>3
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It is straightforward to verify (5 8) and (5 9) if « is a nonnegative even integer and
the general case follows by analytic interpolation Note also that by a version of
Sobolev’s imbedding theorem Hp(R*~1)CHZ(R*?) if p<2 and f>a+(1/p—1)
Using this and (5 8), (5 9) we see that (5 3) is verified for the case dj=d—1 The
other cases follow similarly An application of Proposition 5 2 implies (5 2)

The main work in the proof consists in the verification of (5 1) Assume that a
is a (p, @, R) rectangle atom and R is an interval of dimensions 2t x  x2L¢ Then
we shall prove that

d
(510) (T *allp < C2tmt *na-IN [T ot Labligp)io, N>2(%—%)

i=1
for some >0 and also

(511) @ E el < G2l 4na-0@/e-ljigry,

We shall use (5 11) only if max;{k;—L;}, max;{l;}<Cp(1+3; n;) where Cj is a
large fixed constant while (5 10) is a remainder estimate In fact applying the
Sobolev inequality (4 8) with dy =0 we see that (5 10) and (5 11) imply

Z (T,:L)L-l-la
kezd p
d
< O’( Z g(ri+ +na_1)(Np+1) H 9—ep(li+|ki—Lil) gzl
max{|k;—Li| i=1 d}> i=1

e (2N+2/p)(r1t+ +na-1)

+ >
ma.x{lki—L,-I i=1 d}<
e~ 1@N+2/p)(ni+ +na—i)

+ + d 1/
ijn{z(m na-1)(2~p). 9(n1+ +"d—1)(Np+1)H2_Ep(li lki_Ld)}”Q;:"p) p
y P
i=1
(na+ +ng-1)(2/p-1) (1+"'1+ +nd_1)(s+d)/p

<C2
- (h+ +la)*/»

lgkllp

and it follows that T™ is bounded on H? with norm not exceeding (5 7)
The verification of (5 10) is easy Simply observe that

Iag [¢(£)’mk n(g)” < 072n1'11+ +ng—_1v4-1 (2111'14 + +2na-17d)

and an application of Proposition 5 2 yields (5 10)
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We now verify (5 11) and assume for convenience d=3 We show that (using
the notation introduced in (4 15))

(512) I(T%,) ¥ all, < CbR, 2+ W/p=Djjgny,
(513) (T3 ) all, < O, 20 /P~ D=l g7 )|,
(514) I(Tn2) Hall, < Cnbp 227 Noma W=Dy gry)
(5 15) (T3 ©) Hall, < Cnbp2=mHnaN|igry),

Using (4 16) and (4 17) with r=p we see that (5 11) follows from (5 12-15) We
shall only verify (5 12); the remaining cases are similar or simpler

We divide the rectangle R (which has dimensions 2&* x2L2x2l3) into
[13_, max{1,2%~*} congruent intervals R¥ of dimensions

min{27?, 251} x min{2%2, 2%2} x min {22, 2%s}
and centers y;, Let be af =axge and let
Rt = {2 284472 <oy — ()i S 204442,i=1,2,3)

Then it is easy to check that if yesupp af, :ce’R{;‘H then for U}, y asin Lemma 4 4

Up, n(E—y)=UR, n(z—yk)

and therefore by Lemma 4 4
(5 16)

1/p
I ,:;<1>L+z)*aupso(2u(me)*azug)
7

e, (X [|f U,:zN<x—y)|¢>L+,(z—y>na;:(y)ldy]pdz)l/p

< CNz(ﬂ1+"2)(1/P“I) b;:ll (Z /RL-H 9—(ni+na+ki+kz+ks)(p—1) [U’?IIN (x_y;cl.)]de
u #

/p

1l
8 [/ Iaﬁ(y)ldy2(’°1+’°2+’“8)(1/p—1)] )

Using Holder’s inequality we see that

3 1/p
(517) 2r+LlatLs)(1/p-1) (Z H[min{l, 2(ki=L:)(1-p)}] llaf:ll'f)

g i=1
< 02+ L2+ La)1/p=1) g}l < C|R|V?P~?|jall, < C'
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We perform the linear volume preserving change of variables
(v1,v2,v3) = (1, T2, 2k1‘k3u,1,1:1:1 +2k2_k3u,2,2x2 +z3)

and see that for N>1/p

[ e U, o) do

c 2—k1—n1 2—k2—ﬂ2 2_k3
<
- / (|27 1=y |JNP (1+[2-k2—n2yy [)NP (14|27 ks wg|)NP

Therefore if k; — L; <0, i=1, 2, 3, the desired estimate (5 12) follows from (5 16) and
(6517)

In all other cases we use similar arguments together with the cancellation prop-
erties of the atom For example assume ky <L;, k2<Lq, k3<L3 Since

dv<C'

' / / aj; (y1, Y2, ¥3)y1 y5? dyrdy, =0

for almost all y3 for 0<r;, 7o <Q we see, using Taylor’s formula, that

1(1-s)@ Q+1
(Ki‘uq’L+z)*aZ($1,x2ax3)=/o (1Qs!) /(3%)

X (K, ®1+1) (21— Y1, T2~ Y2, T3 —(yg )a+5((k)3—3)) (453 —ys) ¥ ak (y) dy ds

and using Leibniz’ rule and Lemma 4 4 we see that

‘(K;:VQL-H) *a‘l:(xla Z2, 3;3)'
< CoLa(@+1) max{z—ka(Q+1), 2—(L3+13)(Q+1)}Ul:5y N(-’E—yi‘)bzu |a£"1

Similar considerations in the other cases (where we use that aj has cancellation
in the y; variable whenever k;>L;) lead to

3
I(KE, @z41)+allp < Oy [ [Imin{1, (27H 425~k )} 9+

i=1
(n1+na2+k1+ka+k 1 /7
7 n n: —
xbky(X#: [y 2o -DIOT, (a-)P dalef )
As above it is easy to check that for N>1/p
—(nitna+ky+ka+ks)(p-1)[rrn PTAN T
L (VR na—s)P do

< Cmin{l, 2L‘+ll—k1_"l} min{l, 2L2+lz—kz—ng} min{l, 2L3+13—k3}
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Therefore
(K%, @rL+1)*allp

3
< 02(n1+nz)(1/p—l)bzu H[min{l, 2(L,~+l.-—k-)/p} min{l, (2—1-’ +2Li—ki)Q+1}]

i=1

1/p
x 2(k1+ka+k3)(1/p—-1) (Z lla‘ill’{)
I

< Co(m+na)(1/p-1)pn o(Li+La+Ls)(1/p-1)

3 1/p
x (Z ot 2 T] min1, 2(,,.._k..)(1,,,-1)}],,>
M

i=1
< C2m+na)(t/p=lpn | pii/p=1jiq||,
< Cotm ) (1/p=1pn

This proves (5 12) and concludes the proof of Theorem 17 O
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