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Homogeneous Fourier multipliers 
of Marcinkiewicz type 

Anthony Carbery and Andreas Seeger(1) 

1 Introduction 

Let raEL~176 homogeneous of degreezero Then m is almost everywhere 
determined by h+(~1)=m(~l,-}-1) For k E Z  let Ik=[2-k-l ,2-k]U[--2 -k, --2 -k- l ]  
and let h+ and h_ satisfy the condition 

(1 1) 
kEZ \JIk  

Rubio de Francia posed the question whether a condition like (1 1) is sufficient to 
prove that m is a Fourier multiplier of LP(R2), l < p < c o  An application of the 
Mareinkiewicz multiplier theorem with L 2 Sobolev hypotheses (cf (1 3) and (1 5) 
below) and interpolation arguments already show that the answer is yes, provided 
r>2  Recently, Duoandikoetxea and Moyua [15] have shown that the same con 
clusion can be reached if r=2 On the other hand, since characteristic functions 
of halfspaces are Fourier multipliers o f /F ,  l<p<c~ ,  a simple averaging argument 
shows that the condition h~EL 1 implies /2-boundedness for l < p < o o  Our first 
theorem shows that the weaker assumption (1 1) with r = l  implies boundedness in 
LP(R2), for l < p < o o  

T h e o r e m  1 1 Suppose that h+ and h_ satisfy the hypotheses of the Marein 
kiewicz multiplier theorem on the real line, that is 

(1 2) supf  Idh• <.4 
kEZ J Ik 

(I) The second author was supported in part by a grant from the National Science Foundation 
(USA) 
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for Ik=[2-k-l ,2-k]u[--2 -k,  --2 -k- t ]  Let meLoo(R 2) be homogeneous of degree 
zero, such that for ~IER, m(~l, 1)=h+(~l) and m(~l , -1)=h-(~1)  Then m is a 
Fourier multiplier of IF(R2), l<p<oo ,  w/th norm <CA 

One can obtain a stronger result for fixed p > l  using the space V q of functions 
of bounded q-variation Given an interval I on the real line a function h belongs to 

N ya(I)  if for each partition {x0<xl<  <XN} of I the sum ~-].v=l Ih(x~)-h(xv-1)l q 
is bounded and the upper bound of such sums is finite We denote by [[hll~q 
the least upper bound Then the following result is an immediate consequence of 
Theorem 1 1 and the interpolation argument in [8] 

Corol lary  1 2 Let m, h+ and Ik be as above and suppose that 

Hh• IIh• < oo 
k 

Then m is a Fourier multiplier of Lv(R2), if  I1 /p-  11<l/2q 

A slightly weaker result can be formulated in terms of Sobolev spaces Let 
8 8 5 fl be an even C ~ function on the real line, supported in (5, g ) U ( - ~ , - ~ )  and 

positive in (1/v~, v ~ ) U ( - V ~ , - 1 / v ~ ) ;  we shall assume that ~'~-~ez fl2(2ks) =1 for 
s r  Let L~(R a) denote the standard Sobolev space with norm HhHLz = H~ r - I  [(1+ 
]~12)a/2~t]llq Then L~(R)cVq if a > l / q  and therefore we obtain 

Corol lary  1 3 Let mGLoo(R 2) be homogeneous of degree zero and h4-(~l)= 
m(~l, + l )  Suppose that q > l  and that 

1 
(1 3) sup H ~ h 4 - ( t  )llLqa(R) < 0 0 ,  O l >  -- 

ten4 q 

Then m is a Fourier multiplier of LV(R 2) if  I1 /p-  1[< 1/2q 

We now compare these results with more standard multiparameter versions of 
the Hhrmander-Marcinkiewicz multiplier theorem In order to formulate them let 

~ g  = y-'[(l+l~j12)a/23:g] 

and, for l<q<oo ,  let ~/~(R") be the multiparameter Sobolev space of all func- 
tions g, such that 

I}gllu (R-) := ling   911L,(rt-) < cr 

Let/~ be as above and denote by/~(0 a copy of/~ as a function of the ~i-variable 
Then if q>2 the condition 

1 
(1 4) sup I1 <1)| | , , td  

te(R+)~ q 
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implies that m is a Fourier multiplier o f / 2  for [ l / p - � 89  1/q For q=2 the proof of 
this result is a variant of Stein's proof of the HSrmander multiplier theorem (see [25, 
Ch IV]) and the general case follows by an interpolation argument as in [9] If we 
apply this result to homogeneous multipliers and set 

(1 5) m(~',=l=l)=g+(~'), ~ ' E R  d-1 

we obtain by a straightforward computation 

Corol lary  1 4 Suppose that r >2, 
(1 6) 

v]'_a[,oo)| , )]IlL-m,,-=) <oo, 

and that the condition analogous to (1 6) holds for all permutations of the variables 
(Sl, ,Sd-1) Le tm be homogeneous of degree zero and related to g+ by (1 5) Then 
m i8 a Fou ler  71"$~t~plier o I L P ( R  d) if  I1/p-�89 

In two dimensions Corollary 1 4 says that if a>l /q ,  q>>_l, and 1~g+(t )E 
7-/~q(R), uniformly in t>0, then m is a Fourier multiplier o f / 2  if I1/p-�89 
Corollary 1 3 is stronger since a compactly supported function in H2q(R) belongs 
to Ha(R) 

We are now going to discuss variants of Theorem 1 1 in higher dimensions 
[! 21 d-1 First if g+e?/q~(Rd-1), a > l / q  and if g+ are compactly supported in t2, J 

then the homogeneous extension m is a Fourier multiplier of s  d) if [1/p-�89 
1/2q In fact by a simple averaging argument one sees that the condition g+ E?/11+e 
implies that m is an L 1 multiplier and the general case follows by interpolation 
We remark that if a < [ 2 / p - l [  the condition g+eT~ (any q) does not imply that 
m is a Fourier multiplier of s Relevant counterexamples have been pointed out 
by LSpez-Melero [22] and Christ [7] 

Perhaps surprisingly, the situation in higher dimensions changes if one imposes 
dilation invariant conditions as in Theorem 1 1 One might want to just replace 
hypothesis (1 2) by the hypotheses of the Marcinkiewicz multiplier theorem in R d-1 
([25, p 108]) However this assumption is not sufficient to deduce that m is a Fourier 
multiplier of I_2 for any p~2 (see Section 3 for the counterexample involving the 
Kakeya set) However, we do have 

T h e o r e m  1 5 Let mEL~176 d>_2, 
let g+ be as in (1 5) Suppose that q>2, and 

(1 7) sup II~(1)~ @~(d-1)g+(tl , 

be homogeneous of degree zero and 

1 
,td-i 

q 
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Then a Fouler multiplier of iZ I /p-�89 <1/2q 
Interpolating Theorem 1 5 with Corollary 1 4 (with p close to 1) yields 

Let mEL~176 d>_2, be homogeneous of degree zero and Corol lary  1 6 
let g• be as in (1 5) Suppose that l < p <  4 and 

sup I[~T~2 ~ T)~_1[/~(1)| | ,td-1 
re(R+) d-~ 

)] < oo, 

1 2 
7 >  ~, c ~ > - - 1  

P 

and that the analogous conditions obtained by permuting the (sl, ,8d_1) variables 
hold Then m is a Fourier multiplier of T_P(R d) 

In particular if suPtE(R+)d-I II~(1)@ | , , t d - 1  )H'H~(Ra-I)<OO 
and l < p < ~  then m is a Fourier multiplier of L p provided that a > 2 / p - 1  This 
result is essentially sharp: in Section 3 we show that in order for 

sup II&l)| ~f~(d-1)g:l:( t l  , , t d -1  )ll.~(a~-,)<~ 
te(R+)~-I 

to imply that m is a Fourier multiplier o f / 2  we must necessarily have ~ > 2 / p - ~  + 
1/q if l < p < ~  and a> l /q  if ~ <p<2 

In order to prove more refined results on/2(lqtd), d_>3, p close to 1, we shall 
use multiparameter Calder6n-Zygmund theory It turns out that it is useful (and 
easier) to first prove a result for the multiparameter Hardy space Hn(Rd), 0 < p < l  
The Hardy space H v is defined in terms of square-functions invariant under the mul- 
tiparameter family of dilations 6tx=(tlXl, ,tdXd), te(R,+) d Again we formulate 
the multiplier result using localized multiparameter Sobolev spaces invariant under 
multiparameter dilations In order to include a sharp result also for p< 1 we want to 
admit values of q < l  in (1 2) To make this possible the definition of T/qa has to be 
modified 
s#o 
i--1, 

We may always assume that f~ above is such that ~-~rez/32(2-rs) =1 for 
Let r ) i f r > l  and r For n=(nl,  ,n4-1), ni>_O, 
, d - 1  set r d-1 , ~d-1)=rli=l r (~i) The decomposition 

g - - ~ r  
hE(No) d-1 

is referred to as the inhomogeneous Littlewood-Paley decomposition of R d-1 

I1( ,1 , . , ,  (1 9) llglln~(R.-,) ~ 2 2("1+ +""-')~lr 2) [[ 
hE( d-1 / ][Lq(R d - l )  

Then 
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for 1 <q<oo, and for q < l  we define ~-/q (R d-l) as the space of tempered distributions 
for which the quasinorm on the right hand side of (1 9) is finite In this paper we 
shall always have a>l/q;  in this case ?-/q is embedded in L ~176 This and other 
properties of the spaces ~q  may be proved by obvious modifications of the one 
parameter case; for the latter we refer to [27] 

Theo rem 1 7 Let mEL~176 be homogeneous of degree zero and related 
to g• as in (1 5) Suppose that 0<r_<l and 

(1 10) sup  IIf~(1)@ ~]~(d-1)g•  , ,td-1 
te(R+) a-~ 

Moreover, if d>_3, suppose that 

(1 11) 

te(R+ )a-~ 

)[l~(Ra-') <CX), a>2--1 
r 

.td_l )]ll.(Ra-.)<oo. 
1 1 ,y> . . . .  
r 2 

and that the analogous conditions obtained by permuting the (sl, ,8d-1) variables 
hold Then m is a Fourier multiplier of the multiparameter Hardy space HV(Ra), 
r~_p<oo 

Note that in two dimensions Theorem 1 7 is a natural extension of Corol 
lary 1 4 to HP-spaces in product domains The examples in Section 3 show that 
in higher dimensions additional assumptions such as (1 11) are necessary When 
d_>3, Theorem 1 7 with r = l  serves as a substitute for Theorem 1 1 Notice that if 
r = l  condition (1 10) involves mixed derivatives in L 1 of order d - l -be ,  and condi 
tion (1 11) involves derivatives in L 2 up to order (d- l -be) /2  In comparison the 
hypotheses in Corollaries 1 3 and 1 6 involve L 2 derivatives up to order (d-be)/2 if 
p is close to 1 As a consequence we obtain the following analogue of Corollary 1 4, 
formulated in terms of the standard oneparameter Sobolev space Lq~ 

Corol lary  1 8 Let mEL~176 be homogeneous of degree zero and related 
to g• by (1 5) Suppose that q> l  and that 

d - 1  
sup [[f~(1)@ ~(d-1)g•  , ,td-1 )[]L%(Ra-1) <C~, 0z> - -  

te(a+)a-1 q 

Then m is a Fourier multiplier of IF (R u) if I1 /p-  �89 1/2q 

The counterexamples in [22], [7] show that the statement of the Corollary is 
false in the range I1/P-�89 However in view of Theorems 1 5 and 1 7 one 
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expects the following sharper result 

(1 12) sup IIj3(1)| |177 , 
t e ( ~ )  d-~ 

and in dimension d~_3 suppose that 

(i 13) 

Namely suppose that for some qE(1, 2] 

1 
,td-~ )IIn~(R,'-,)<CO, C~>--, q 

|177 , ,td-1 )] oo, 

1 1 
7 > ~ ,  c , > -  

q 

as well as the analogous conditions obtained by permuting the (sl, , sd-1) vari- 
ables Then m should be a Fourier multiplier o f / F ( R  d) if [1/P-�89 In 
order to prove this one is tempted to use analytic interpolation and interpolate 
between the L TM estimate of Theorem 1 7, for P0 close to 1, and the La/3-estimate 
of Theorem 1 5 One would have to find the intermediate spaces for intersections 
of L 2 and L q Sobolev spaces However the intersection of the intermediate spaces 
does not need to be contained in the intermediate space of the intersections (for 
related counterexamples see [26]) It is actually possible to prove the result for 
ll/P--�89 (assl, ming (i 12), (I 13)) by another approach One has to use a 
general theorem for analytic families of operators acting on various kinds of atoms 
the proof of which relies heavily on multiparameter Calder6n-Zygmund theory We 
do not include the technical proof here but refer the reader to [5] 

The paper is organi~.ed as follows: In Section 2 we prove Theorem 1 1 using 
weighted norm inequalities and variants of the maximal operator with respect to 
lacunary directions Examples demonstrating the sharpness of our results in higher 
dimensions are discussed in Section 3 The proof of Theorem 1 5 is in Section 4; it 
relies on weighted norm inequalities which involve variants of the Kakeya maximal 
function In Section 5 we prove the Hardy space estimates of Theorem 1 7 

As a convention we shall refer to the quasi-norms in H p and T/~ as "norms" 
although for p < l  these spaces are not normed spaces By M v, l<p<oo, we denote 
the standard space of Fourier multipliers of I_2 It will always be assumed that 
the even function f lEC~ defined above satisfies Z:,,ezLG(2"s)]2=l for s#0  If 
aE{1, , d} and k, k in R a then we shall use the notation k<k  if ki_<ki for all l ea  
Similarly define k>/r etc C will always be an abstract constant which may assume 
different values in different lines 

2 LP-est imates  in th e  p lane  

In the proof of Theorem 1 1 there is no loss of generality in asslmling that m 
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is supported in the quadrant where ~1 >0 and ~2 >0 By a limiting argument as in 
Stein's book [25, p 109], it suffices to prove the theorem under the formally stronger 
assumption 

Ilhlloo+sup / Ih'(s)l ds < A 
kEZ J Ik 

Let /3 be the smooth bump function defined in the introduction (supported in 
:t=[~,-~]) Let ~feC~176 be homogeneous of degree 1 such that  ~(~)=1 if 
]~1/~2[e [25 64] (in particular on the support of fl| and such that ~(~)=0 if 
1~1/~2[ ~ (1,4) Set 

Then we may split 

where 

m =  ~ [Z@Zm~](2 kl ,2 ~2 ), 
k E Z  2 

(2 i) mk(~) = ~(~)~(e2)hk,-~ (el/~2) = ~(e~)~(~) ~j0 ~ / ~  h',l-k~(~)ds 

and h~ ~ s u p p o ~  ~ (�88 for ~ ~ z  A~o set 

~(e) = [~| 

Then by standard multiparameter Littlewood-Paley theory and duality, to establish 
Theorem 1 1 for pE[2,p0), p0<oo, it suffices to obtain an inequality 

(22) / [Tkf[2w ~ CA2 / [fl2~J~w 

for a certain operator w~-,~ftw which is bounded on Lq(R 2) for (po/2)'<q<_oo By 
our assumption on h, 

3) sup /Ih~(s)l ds <_ CA (2 

We denote by L:k the standard Littlewood-Paley operator, such that  

s =Z(2 k'~l)z(2 ~2~2)](0 

and define the operator Sk8 by 

](~), if 2"~1/~2 > s, ~1 _> 0, ~2 _> 0, 
S,,sf(~) = 0, otherwise 
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Then from (2 1) we see that 

Tkf(x) = ~.kSk~-k2 sf(x)h'k,_k2 (S) ds 
/s 

Then, if w>0 is a weight we apply the Cauchy-Schwarz inequality to obtain 

Let M0) , M(2) be the Hardy-Littlewood maximal functions with respect to the 
coordinate directions and let Mx s be the Hardy-Littlewood maximal function 
with respect to the direction perpendicular to {~; 2"~x/~2=s}, i e in the direction 
(1,-2-~'s)  Then using weighted norm inequalities for singular integral operators 
due to CSrdoba and Fefferman ([13], see also [18]) we see that the expression on the 
right hand side of (2 4) is dominated by 

8 
Wa 1/a ! CaA / 'f (x)]2M(1)M(2) [~I/8(Mkx-k, s ) [hkl-~, (s)[ ds] (x) dx, 

where a > l  Now the proof of (2 2) is completed by the following 

Propos i t ion  2 1 Let, for a> l, 

ffYtaw(x) = sup [ (M,, s,~)~"'~(x)l)~,,(s)l ds 
~EZ JI 

and 

sup ] I~(s)l ds < B < oo 
~ E z  J l  

Then ~Ota is bounded on Lv(R2), c~<p<c~, with norm <Cp ~B 

Proof Since 
~(o~) <_ BX-1/~[~(w')]~/~ 

it suffices to prove that ~ 1  is bounded o n / 2 ,  l < p < c ~  with norm CpB If a > l  
1/a then 9Jta will be bounded on I2, p > a ,  with norm <C~/aB 

We follow arguments by Nagel, Stein and Wainger [23] as modified by Christ 
(see [2]) Let ~: R--*R be smooth, even, nonnegative, with ~(0)>0 such that ~ has 

1 1 compact support in [ - ~ ,  ~6] Let 

r ~2) = r +~) 
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and define for x E Z 

It suffices to show that for l<p<cx~, N being an arbitrary positive integer 

(2 5) sup [ sup IP~wl IA~(s)l ds < CpBl[w[[p, 
--N<~e<N JI IEZ P 

where Cp is independent of N Then an apphcation of the monotone convergence 
theorem allows to pass to the limit We note that for fixed x and l < p < o o  

C,,BII, II,, 

by the /F  estimate for the one dimensional Hardy-Littlewood maximal function 
Mk s This means that we know a priori that the left hand side of (2 5) is bounded 
by BCp(N)I[f[[ p (with Cp(N)<_C~N) and it remains to be shown that Cp(N) can 
be chosen independently of N In what follows we define Cv(N ) to be the best 
constant in (2 5) 

We first consider the case 2_<p<oo Since the L~176 is trivial it suffices 
to prove the L 2 inequality We smoothly split r into two parts, r 1 6 2 1 6 2  with r 
supported in the unit ball and r supported in the cone {~; [~1+~21/[~[<�89 We 
correspondingly define the operators p~,o and pz,1 Note that there is the pointwise 
inequality 

(2 7) 

which implies 

(28) s sup[P~sw [ <CpBl[wl[p, 1 <p_<oo 
IEZ 

Concerning pl,0 we have 

IP~~ < C[M0)M(2)w(x) + M.. sW(X)] 

and therefore 

(2 9) 

for l<p_<c~ Note that 

r176 , s2 l - "  

I fI  l,O d8 sup IP~;. wI IA,,(s)l <_ Cp oBHwHp 
IEZ P 

) w = X ( ,  2 -x  )r176 21 ,s2 l-'~ )w, 
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where X is smooth, homogeneous of degree zero, identically 1 on {~; ]~1 +521/151 <4} 
and zero on {~; I~1 +~21/1~1 >8} Define the standard angular Littlewood-Paley op- 
erator R,, by 

ff:-~f(O = x(6,2-"~)/(0 

Then 

(2 10) h i .0  ..l.o n 
F ~ s  tM = Z ~ s  Z~xW 

and, as a consequence of multiparameter Littlewood-Paley theory and the Marcin- 
kiewicz multiplier theorem, 

Now by (2 10) 

~212) ~zSUp {/~ su,,: ,~o~,,~(s), ~,<_ (~ [/~ sup,~z ,~:R~,,~),  ~sl~:j J 

and using (2 9) we see that the square of the L2-norm of the right hand side equals 

s~ uplPS~ 2 -< ~ Lj.,,-,,zez 2 j 

< CB 2 ~ IIRk'..,'ll~ < C'B~IIwII~ 

We have proved 

I [/, ]~ (2 13) sup suple~%ll~,,(s)lds <CBII,.,.,IIp, 2 < p < c r  
~EZ /EZ p 

By (2 S) and (2 13) we see that 

cp(g)<c, 2<p<co 

We now assume l < p < 2  and begin with the observation that for any sequence 
{wk} of weights we have 
(2 14) 

v\l/Pll 0B} \l/v 
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This is immediate from (2 9) Next positivity of P~8 implies that 

(2 15) [sup f / sup  ,P~w,,H)~,(s), dsl[p_< sup f1 sup P ~  [sup ]w~,,] ,A,,(s), ds][p 

by the definition of Cp(N) From (2 15) and (2 8) it follows that for l<p_<oo 

(2 16) sup ~ sup ,P~/~ dsll< C, 1BC,(N)llsup[,w,,t]ll" 
xEZ lEZ p 

Now if we interpolate (2 14) with (2 16) we obtain for p<q<<_ov 
(2 17) 

q !/q \l/qll 

Using (2 12), (2 17) and (2 11) we obtain for l<p_<2 

suP flSUp,P~l~ [ < (~-~[sup,P~~ 1/2 I 
~:EZ IEZ p -- \"~" LlEZ p 

\ I / 2  
(218)  < C p 2 B C p ( N ) I _ p / 2 ] ( ~ I R ~ o j l 2  ) p 

<_ Cp 3BCp( N) l-p~2 IIwllp 

Finally it follows from (2 8) and (2 18) that 

CAN) < [Cf 3CAN) 1- n] 

which implies that Cp(N) is bounded by a constant depending only on p but not 
on N This finishes the proof of the proposition [] 

3 Examples in higher dimensions 

We show in this section that Theorem 1 1 and Corollary 1 4 have no immediate 
analogue in terms of localized multiparameter Sobolev spaces in higher dimensions 
Our examples imply the sharpness of Theorems 1 5 and 1 7 

Let s 2) be the space of functions f on I:td=R dl ~gR d2 such that 
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For a bounded function m on R d we denote by ]ImliMp the operator norm of the 

convolution operator T defined by T' f=m] and by IlmllMp2 the norm of T as a 
bounded operator on LP(L 2) By a theorem of Herz and Rivibre [19] 

(3 I) llmll~.. -< Cll~ll~ 
for l<_p_<c~ We shall use the following 

L e m m a  3 1 Let {m,,} be a sequence of bounded functions in R dl Let XE 
C~176 ~2) be supported in {~"; �89 and equal to 1 if I-6_<W'I_<I§ for 
some ~>0 Let 

m(~', ~") = ~ X(2-6W')m~(~ ') 

and define T~ by T~(~)=m~,(~)/(~)  Then/or l < p < o o  we have the inequality 
2\~/2 2\1/2 

Let 

Proof Let floEC c~ be supported in ( ~ " : l - e < l ~ " l < l + e  } such that  

g tX l X"~ 23x~ t X ' ~ - I  xl, , ) =  Jx~, ) R~,~v~2 -6X r~^c )](~") 

then by an application of Plancherel's theorem in the second variable it follows that 

i12 \~12 fl 

Next let L~ denote convolution in R d2 with ~'R~ 2 [/~0(2 -~  )] By Littlewood-Paley 
theory we have for l < p < o o  

(3 3) I I ~  L,,g,~ LP(R~) _~ Cp (~  ]gxl2)l/21lLP(R~) 

Now 

2xl/2 \1/211 
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where the last identity holds in view of the support properties of ~0 
Paley theory 

By Littlewood- 

where 

(3 5) 

N 

(3 a) g~(~,, ~:) = ~ v ( N ( ~ - . ~ ) ) ~ ( 2 - ~ ) ;  

[] 

We now show that the restriction q>2 (corresponding to ] < p < 4 )  in Theo 
rein 1 5 is necessary In what follows we denote by LP(L 2) the space of functions in 
R 3 with 

(iS[i, )"" IIfIIL"(L:) = f ( x l ,  x2, zz)12dx2 dxld.T3 < O0 

and correspondingly define Mp2 
Fix N>>0 and let 

2N 
c~,, = 1 + - - ,  

x 

1 1 and ~?EC ~176 is nonnegative, equal to 1 in [-~,  ~] and supported in [ 1 ,  1] Similarly 
is as in Lemma 3 1, supported in +(�89 and equal to 1 in +(1/x/2, v~) Then 

(3 6) sup lifo) @~(2)gN(81  , 82 )l[~(P,.~) ~ CNa-1/q 
81 82>0 

57 

_< CpllmlIMp2 ~Ljgj  
j LP(L2) 

i 2 \1 /2  

1/2 

\ j / L (RI) 
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L e m m a  3 2 Let re(N) be the homogeneous extension of gN defined in (3 4), 
(3 5) There is a positive constant c such that 

cN /2-2/p, 4<p<oo, 
(3 7) IIm(N)IIM~ >- c(logN) 1/4, p=4 

A comparison of (3 6) and (3 7) shows that in the case p>4  the condition 

sup 11#(~)|177 , s 2  )l]~$m:) < o ~  
s l  s 2 > 0  

does not imply mE Mp for the homogeneous extension rn if a < �89 + 1/q-2/p (it does 
not even imply mEMp2) Similar statements follow by duality for l < p < ~  This 
yields the sharpness of Theorem 1 5 By interpolation an improvement of the H p 
estimates would lead to an improvement of the L p estimates and this implies the 
sharpness of Theorem 1 7 

Proof of Lemma 32 Let /31eC~ ~ be supported in (-34,-~) and equal to 1 in 
(7, 9) Let X be as in Lemma 3 1 supported in {I~21E( 4, 6) } and equal to 1 in 

{l~21e(~0, ~)} Let 

and 
N 

#(N) (~) = E X(2-6"~2)m'r ~3) 
J r  

In view of the properties of ~/, X, X and the Marcinkiewicz multiplier theorem 

Now assume 4<p<oo  Let 

Rx--  {(Xl, x3); IXl-~xx31 _< 10-3N, I~..xi-x31 <_ 10 -3} 

For {Esupp rex, xER~, we have [xl~l+x3~31<_;r/4 and therefore 

}/ m~t(~l,~3)ei(xl~l+Z3~3)d~ld~3 >_ [/ m;r +X3~3)d~ld~3I >_cN-1 
for some fixed positive constant c Let 

R~ = {(xl, x3); 10-4N/2 < Ix1-~x3[  < 10 -4y ,  10-V~' < I~x~-x31  < 10-4}, 

n;. = {(x~, ~3); I x 1 - ~ 3 1  <_ 10 -4N, }~.~xl-x31 <_ 10 -4 } 
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and let Xx be the characteristic function of R~ Then 

~-l[m~,~X,,]>c', xeR* 

By Lemma 3 1 

/ N \ 1 / 2  ii N \ 1 / 2  ii 

Now one verifies that 

In view of the overlap of the rectangles R* we have for some small constant Cl >0, 
and for ]x]<_clN and for [x]<_cN we have 

( ~  I.T-I [m,,.TX,,](x)I2)I/2 ~ N1/2(I +[x,)-I/2 

and consequently 

I.~ -I  [m,,~'Xx] 12 if p > 4, p'~ N1/2(logN) 1/4 if p = 4  

This implies the assertion [] 

Next we consider the class of homogeneous functions m in R 3 with the property 
that the restrictions h+ to the hyperplanes {~; ~3 =+1} satisfy the hypotheses of the 
Marcinkiewicz multiplier theorem in the plane; that is 

HhHoo < A, 

sup sup sl, s2) dsl < A, 
j I E N  s2 1 

(3 8) sup sup sl, s2) ds2 < A, 
j2EN Sl 2 

sup "-[[ 02h s2) 
jeN2 J JI~i xl~2 ~ ( S l ,  dslds2 < A, 

where Ijl etc is as in (1 1) We show that (3 8) is not sufficient to guarantee meMp, 
for any p r  The argument here follows Fefferman's solution [16] of the multiplier 
problem for the ball (see also [14], [21]) 
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Let a=(a~,} be an arbitrary sequence of numbers in [1, 2) and let m,, be defined 
in the first quadrant such that 

1, l_<~l/~3_<ax, 
(39) m~(~l'~3) = 0, o~g < ~1/~3 < 2 

Let 
2" ma--~( ~2/~3)77~x (~1, ~3) 

Suppose the assumptions (3 8) imply mEMp for some p~2  Then a limiting ar 
gument as in [25, p 109] would imply that ma is an /-2 multiplier with norm 
independent of the choice of (a,~}kez and by (3 1) a corresponding statement on 
/F(L 2) would follow However we have 

L e m m a  3 3 The inequality 

- 1  [m , ,~ f ]  [[L,,CL '~) _< CIIfIIL~CL~) 

does not hold independently of a if p~ 2 

For example if we take for a an enumeration of the rationals in [1, 2) then 
maEMp2 if and only if p=2  

Proof Arguing as above the assumption ma E Mp implies a vector valued esti 
mate for directional Hilbert transforms, namely 

f 2\1/2,, 

where H,, is the Hilbert transform in the direction (1 , -a , , )  But as in [16] the 
existence of the Kakeya set prohibits such inequalities for p~2  (unless further re 
strictions on the family of directions (1, - a x )  are made) [] 

4 Weighted  norm inequal i t ies  in higher d imens ions  

We deduce Theorem 1 3 from a weighted norm inequality; the procedure is 
analogous to Stein's proof of the HSrmander multiplier theorem (see [25, Ch IV]) 
Here, however, the positive operator which controls the problem is not the Hardy- 
Littlewood maximal operator but a multiple iteration of variants of Kakeya type 
maximal operators The main step of the argument is contained in Lemma 4 7; one 
proves a weighted inequality for a variant of CSrdoba's sectorial square-function 
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For i=1, , d - 1  let 7~, d) be the family of all rectangles with the dimensions 
l x 2  n~, centered at the origin in the xi--Xd plane and let 7 ~  d) be the family of all 
parallelograms of the form { ( xi , X d ) ; ( 2kl xi, 2kd x d ) eR0} where Ro E ~ a) and ki , kd 
are integers Let 

,xd) 

---- s u p  ]O')(Xl, , Xi--1, x i - -Y i ,  Xi+l, , Xd--1, Xd--Yd)[ dyi dyd 

Ms( i d) is a variant of the Kakeya maximal function, invariant under the dilations 
(xi, Xd)~-* (2 k' xi, 2kdxd) The proof of the L 2 estimate in [10] can be easily modified 
to yield 

JIM (', d)wn2 -< c~,llwII2; 

for a more singular variant see also [11] 
Next, for n=(nl ,  , rid-l) define 

Ads = M  (d-1 d)oM(d-2 d)o oM(1 d) 
- ' - S d _  I - - - r i d _ 2  - - - S l  

and, for N E N ,  let AdN=Adno oAds be the N fold application of the operator Ads 
Finally, if M(i) denotes the Hardy-Littlewood maximal operator with respect to the 
variable xi let 

7"7~N o M .  = M(I) o M(d) OM5o M( )o o M(d) 

1 and suppose that T h e o r e m  4 1 Let 7> 

(4 1) sup I]fl(1)| | , ,td-1 )][~g(Rd-')__<B~ <OO 
re(R+) a-1 

Let m be the homogeneous extension of g+ and define T by T'-f(~)=m(r Let 
O < e < 7 - � 8 9  let N(e) be the smallest positive integer > 3 + 2 / e  and define ORe by 

grew= Z 2-e(n~+-{-Sd-1)j~N(e) ~ s  0.) 

hEN0 d-1 

Then for s > 1 

(4 2) [Tf(x)[2w(x) dx <_ Ce sBx f ]f(x)[2(~Yt~[w~])l/~dx 

Proof of Theorem 1 5 Since the operator w~-*(~OIe([w[S))W 8 is bounded on 
L a, q>2s/ (1-r  the weighted norm inequality (4 2) and duality imply under the 
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assumption (4 1) that T is bounded on I2,  for 2 < p < 4  The general result of The 
orem 1 5 follows then by interpolation, using the technique in [9] [] 

Before we prove Theorem 4 1 we recall a few facts about vector-valued weighted 
norm inequalities First if H1, / /2  are Hilbert spaces and/C is a convolution kernel 
in R,  with values in the space 13(H1,//2) of bounded operators, then/C is called a 
regular singular integral operator if 

I~(~)ls<~l H2)<C., 
IK:(x)IB<~, H~) --< Clx1-1, 

I~:(~--Y)--~(x)IB<H~ m) ~ CiYl~l~i -~-6, Ixl>21y[>O; 

here 0<6<1  is fixed By a vector valued version of a theorem of Cdrdoba and 
Fefferman ([13], see also [18, Ch IV 3]) there is an inequality 

(43) /l~.,f(x)IPH2cd(x)dx<Cap/If(x)IPH1(M(IwI~))I/a(x)dx 
where l<p<oo ,  a > l  

Littlewood-Paley functions can be associated with regular singular integral 
operators Let jSEC~~189 then it is straightforward to check that the operator 
{f,,},,ez~_+>-~-l[~(2~, [ [)jrf] is a B(/2,R)-valued regular singular integral oper- 
ator Likewise the adjoint operator f~_~{~--1[~(2,, I i)~-f]},,e z is a B(R,/2)-valued 
regular singular integral operator Here 12 may refer to a space of sequences with 
values in a Hilbert space 

Next let k E Z  d and denote by s be the standard Littlewood-Paley operator 
d with multiplier l-li=l ;8( 2k' l~i]) Then a repeated application of (4 3) yields 

Lenuna  .4 2 For l<p<oo ,  s > l  we have the inequalities 

I kq~Z a P J" / 2 \P /2  

( ~ [s 2) w(x)dx<C.p I/(x)i'(M(1)o oM(a)[wsl)l/8(x)dx 
x k E Z d  / 

We need also the following pointwise estimate concerning a square-function 
involving translates of a fixed Schwartz-function ~/ It implies I2  boundedness for 
p>2,  a result which is due to Carleson A proof of the pointwise estimate can be 
found in [24], see also [12], [18] 
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L e m m a  4 3 Let rl be a Schwartz function in R d and let AEGL(d, R) Then 

f tf(x-Aty)]2 dy (4 4) E ]~'-I[~?(A -k)'~f](x)]I2 <- CN (1+iy0N 
k E Z  d 

P r o o f  of  T h e o r e m  4 1 

There is no loss of generality in assuming that m is supported in {~;~i>0, 
i=l,  ,d} Setting 

d 

(4 ~) r162 = II Z(r 
i = l  

we decompose 

where 

m(~)= ~ m~(2k,~l, ,2k~d) 
kEZ d 

mk (~) = r (~1/~d, , ~d- 1/~d) 
(_1 2 ~d-1 __ t t and gk has compact support in ~2, / Note that gk=gk if ki-kd--ki-kd,  

i= 1, , d - 1  We introduce a further decomposition using the dyadic smooth cutoff 
functions Cn=r | | (cf the second definition of the space 7-/q in the 
introduction) We decompose 

(46) m~ff)= ~]  r162 ,r162 ~ r 
nE(No)  d-1 hE(No)  d-1 

We may write 

A A 

(4 7) gk*r ---- g~*r 

where 

g~ =gk*Cn 
and Cn=r | |162 is similarly defined as ~bn (say, with Cn~ supported in 
+[2 n~-2, 2n~+2], equal to 1 in supp r Let us note in passing that in view of the 
support properties of the Fourier transform of g~ we have the following version of 
Sobolev's imbedding theorem 
(4 8) 

sup llg~( ,8di+1, ,$d-1)HL"(R~I) ~-~ c2(~'d1"[-1-~ +nd-~)/Pllg~i[n.(R~-~), 
8 d 1 + 1  $ d - - 1  
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see the argument in [27, p 18] 
Let T~ be defined by 

(4 9) T~kf(~ ) . k~ ~--  ----[r ~1, ,2kd~d)](~) 

Let 0<~r say ~'=~/2 An application of Lemma 4 2 shows that it suffices 
to prove the inequality 

(4 10) ~ /IT~ks dx 
kEZ d 

kqZ d 

In order to avoid complicated notation we shall assume d=3 in what follows This 
case is entirely typical of the general situation in higher dimensions 

In order to use the homogeneity of the multipliers we have to introduce finer 
decompositions of g~ For U l = 2 n ' - 3 , 2 n ' - 3 ~ - l ,  ,2 " '+a and I ) 2 = 2 n 2 - 3 , 2 n 2 - 3 + l ,  

,2 "2+3 let 

( 4  11) u~ = (u~,, u~)  = ( 2 - " '  u l ,  2 - " 2  ~ )  

and 

Iv =111 X122 [~i I -ni-i 1 --nl--1 2 __~--n2--1 ,,2 4_~--n2--1] ---- - 2  , ub, 1 -~-2 ] • [u~2 - , - - 2  - - -  J 

Furthermore let 
2n1+3 

cI1 = R \  U Ii,=R\[}-2-m-l'8+2-m-1] ' 
Yl=2n1-3 

2n2+3 

~ U 12~=a\[1-2-"~-~, s+2-"~-~] 
V2__--2n2 - 3  

Setting 

(412) 

gL (s) = g;(~)r (s -  ~) d~, 
v 

gL1, (s) = f~, • g;(~)r ~ '  

~;(s)  = ,• g ; ( ~ ) r  du, 
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we split 

(4 13) 

where 

(4 14) 

We set 

~ =  
2 n i + 3  2"*2+3 2 - I + 3  2n2-{-3 

Z Z ~ku+ Z Tkz'l-}- Z 2 0 n l  T~k v2 _~.. T~k , 
Ul ----2"1-3 v2----2 n2 - 3  Vl = 2 " 1  --3 ~,2=2n2--3 

T~v"'~(~) : g~v(2 k'-kz~l/~3, 2k2-ka~2/~3)r , 2k2~2 , 2k3~3)](~), 

n 1 kl--k3 TL,1 f ( 0  = g~,~ (2 ~1/~3, 2k2-k3~2/~3)r 2k3~3)](0,  

T~22f(6) n 2/21r , e  
= gkv2 k ql/g3, 2k2-kz~2/~3)dp(2kl~l, 2k2 ~2, 2k3 ~3)/(~), 

A 

T~ 0f(~) _-- 0~ (2k1-}s~1/~3 ' 2k2-k3~2/~3)r ~1,2~2~2, 2k3~3)/(~) 

b~v = sup Ignk(u)[, 
uElu 

bL'l= sup Ig~(~)l, 
UEI11 Xr 2 

(415)  b" 2 _ 
k~2-  sup Ig~(~)l, 

ue =I 1 x 122 

b~= sup Ig~(u)l 
uEcI 1 x =I" 2 

Since the Fourier trA.n.qform of g~ is supported in [-2 n1+3, 2 n1+3] x [-2 n2+3, 2n2+3], 
suitable variants of the Plancherel-Polya theorem (see [27, p 19]) and the Sobolev 
embedding theorem imply 

(4 16) [b~u] r <cr2("I+"2)/~l[g'~ll,, 0 < r < o o  
\ V l = 2 n l - - 3  v2__--2n2--3 

with the appropriate interpretation for r=c~; moreover we have 

n l  r [bkvl] ~ C2 nl /r  sup [[g~( , 8 2 ) [ [ L r ( R )  

\yl~__2n I --3 82 

(4 17) <_ C2(nl+n2)/r]lg~Hnr(R2 ) 

and a similar statement with the Sl and s2 variables interchanged Also by (4 8) b~ 
is bounded by C2('~l+n2)/r]lg~]]~ 

We need pointwise estimates for the convolution kernels g ~ ,  K~ 1 , K~ 2 ,  K~ ~ 
of the operators T~u , T ~ ,  T~v 2, T~ 0, respectively 
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Let 

L e m m a  4 4 L e t  1 2 e l  _ [ ~  1 0,  1) 2 __ 2 e~=(U~l,U~,l), ~--~.~, ,  and%2-(O,u~ , l  ) Let 

w~v (~) = 2-",-"~ (1 + I (e,,, ~)I)-N (1+ 2 -"~ I~ I)-N (1+ 2-"2 Ix= I) -~ ,  

W~:~ (~) = 2-"'  (1 +l(e~,, =)l) -N  (1 +2-"*  Ix1 I)-N (1 + I~ I) -~ ,  
W ~ ( z )  = 2-"=(I +I(e~=,x) I)-N (I +IxxI)-N (I + 2-"~Ix21) -N, 
I,I~ 0(X)= (I +IxlI)-N (I +Ix21)-N (I +Ix3I) -N 

u~v N(x) ---- 2-k,-k2-ks W~v (2-k, Xl, 2-k2x2, 2-kSx3) 

and similarly define ~ 1 ~ 2 

I~g~(x)l < e~Nb~2-~'~'-~2~-k~U~ N(~), 
Id~zA~k~ (x)l <_ C, yNb~ 1 2 - "  N 2-k~,-k272-ksTs U~kv~ N(x), 

(4 18) 1O~/C~k~(x)i<C~ . b. 22_.,N2_k,7,_k272_ksT~rr. 2 (X ~ 
- -  7 -'~ k~'2 uk~, 2 Nk /~ 

Proof First consider K ~  Using the homogeneity of the multiplier and the 
decay properties of r  we see that 

2N*"* 2N2-2 
S C(N1, N2, N3, M)bk"v (1+2"' I~1/~s-ul, D M (1+2-21(2/(3-u22 D M 

Using integration by parts we obtain 

2k*+k2+ ~, IKL' (2~,z,, 2k2 z2, 2~" zs)l 

< CNM [ (1+2"' 16/~s -u~, I)-M(1 +2 "21~2/~s - u l  I)-M d~2"' +"' W:N (x) 
Jll /2 21 s 

< CNW~"~(x) 

In view of the compact support of ~ we get the same estimates for the derivatives 
of the left hand side and the desired estimates for K ~  and its derivatives follow 

The estimate for K~k o has nothing to do with homogeneity: By the decay 
properties of r  we have 

I~: ~ ~o~(..,)l <_ c.,~2-c"~+')"(1+1.,, I)-N(I+I.,',I) -~ 
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and hence 

The desired estimate for K~' 0 follows by integration by parts In the proof of the 
estimate for K~ 1 we replace (4 19) by 

I~ '  ~2 <4, v,> ~' [~(~)g;,,', (~,/~, ~/~)i I 
M '* 2N~nt2(/%+Na-M)'~" 

<_ C(Nb N2, N3, )bkv ( ~ M  

and argue as above El 

In what follows we shall denote by ~ a function which is similar to fl but 
equals 1 on the support of fl Next let x~C~~ be supported in 3 3 (-~, ~) such 
that ~-']~,.ez X2( - ~ ) = 1  Again let : ~ C ~  ~ be defined similarly to X but equal to 1 
on the support of X We define the operator A~. by 

A~vf(~ ) -- X(2"' (2/' ~1 --u 1' 2~ ~3))X(2n= (2k= ~r --u2= 2ks~3))~2 (2k~3)/(~) 

Lemma 4 5 There is a weighted norm inequality 
(4 20) 

Proof Set S'~.=T~k.A~, S~kl :T~k.IA~, S~f. 2 =T~k ~A'~ and S~k~ 
T~k ~ Then 

sn l  *2_, k-.2 + k~JA" (4 21) T~s = S~kv~'{-~--~ kv~, kvLk:f 
Px P2 

Let H~., ~ ) . , ,  "~ H~u~2 and H~ ~ he the convolution kernels of the operators S ~ ,  
S ~ ,  b~kv~ 2 and b~ ~  respectively Fix N (say equal to 100) and let U~v-U~v too 
etc The proof of Lemma 4 4 shows that 

bE" U~,(x), Ix-r~k,,.(~)l < c (1+1#1 _v112)(1R..l~2_v212) 
n l  

n 1 bk~l  
IHL~, (~)l < C~ 2 - " ~  (l+l m _vd2 ) ~(~), 

b~.~ 
IX-~k~, (~)1 _< cN2 -"'N (1+ 1~2 -~,~1 ~) vi,~ (~), 

IH'~f (x)l < ClV2-nxlV2-'~'lVb'~U~kv(x) 
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. < We observe that [[U~][I_C is bounded .niformly in v, n, k Therefore 

Ib~l \1/2 
< C F ~ (l+l#l-V~12)(l+l#2-v2')2 ( / U ~ v ( x - z ' d z )  

q / 2  
x ( /  IA~s dy) 

< C (1+1 . : -  v: 12)(1+ 1~2 -v2l) 2 

A"  s 2 ~ x ~1/2 

\x12 <_ C2n~+n']lg~l]2 (F / IA~f~'f(y)I2U~(x-y)dy) , 

where for the last inequality we have used (4 16) Using also (4 17) we derive the 
same inequality for the other three remaining terms in (4 21) and obtain 
(4 22) 

xl/2 \1/2 

Finally there is the pointwise estimate 

(4 23) sup ~ * l ~ l ( x )  < CM.~Cx) 
kv 

and (4 22) and (4 23)imply (4 20) [] 

Proposit ion 4 6 There is the weighted norm inequality 

(4 24) ~/ I A L . f k ( ~ ) l ~ " ( ~ )  d~ 

No > 2+1/e' 
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Proof It is convenient to introduce a decomposition in the ~3-variable which 
will give the factor of 22e'(nx+n~) We define for (X~, A2)~Z 2 operators Vk~ by 

A 

V~e'f(~) = X2(2ka~3-2 nl~ A1)X2(2ks~3-2 n~* A2)](~) 

Observe that A~u is a sum of no more then 0(2 ~ (.~1+.~2)) operators V~ ~ A~u where 
2 n'e A l E ( I , 2 0 )  and 2 n2e A2E(~0,20 ) Therefore it suffices to show that for those 
A the inequality 

(4 25) Z [ IV~ A'kJk(x)12w(x) dx 
k v  J 

_< c.o ~ [ II~(~)I'M~~ N0 > 2+1/~', 
k 

holds In order to show (4 25) we first prove an inequality for an analogous problem 
in two dimensions 

L e m m a  4 7 Let 6<<1 and let m, #, ~ be integers such that m>0,  2-m#E 
(1 ,20)  and 2 -m60e ( ~o,20 ) Let By,  C~ 6 be the operators acting on functions in 
R 2 defined by 

~ . f  (~) = x (2 ~ ( 6  - 2 - ~ ) ) / ( r  

c ~ ( ~ )  = x ~(2 ~ ( ~ - 2 - ~ ) ) / ( e )  

Let l<_max{1,m6} Then 

lB., C~ Y(~)l M~ 2)w(x) dx 
~t ~t 

Proof Let 

R.Q = {~; ]~a-2-mp~2[ _< 2-m+1; J~2-2-z~J _ 2-~+1}, 

Let ~ 'eRg ~and  suppose that [ # -# ' l<2  -z+2 Let ag_ t, = ( 2 - m ( # - # ' ) , 0 )  
/ a - u_g ERr. ~ Thus 

R~ ~ C a~_~ + R ~  

Define 
A 

r.mg l j ( ~ )  ---- x(2m-l~ (~ 1 - 2 - m  (#- /z  ' ) -  2-m/~2))~(2m~ (~ 2-2-m6t~))](~) 

Then 
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and define ~6 similarly as C~ 6 (with X replaced by ~ Then 

iB c 's( )l _< c 

An integration by parts argument shows that the convolution kernel of C ~ B ~  is 
bounded by CA, times 

m,6, , 2m 2m5 

~.N ~) = (i+2~i<~, e.)l) N (I+2~I<~, e.~)l)~ 

ife~=(1,_2-,.tt), • -m e~ --(2 #, 1) and if 2-'~#~1 Now the argument which led to 
(4 22) and Lemma 4 3 show that for fixed #~ 

I.-~ I<Z 

]Ft~ . .C~ B~, f(x)[ w..  *lw](x) dx 
It'- <z  

~_CN IC~Q$B2-1f(X)I 2 sup W.o *W.o *lw[(x)dx 
I.-.'l<Z 

The asserted inequality is an immediate consequence [] 

We now conclude the proof of Proposition 4 6 First, since the maximal oper 
ator M ~  2) is invariant under two-parameter dilations there is a scaled variant of 
Lemma 4 7 Also we can apply Lemma 4 7 twice, in the Xl -x3  and in the x2-x3  
plane; the same applies to the scaled variant We obtain the inequality 

f V~'  . 2 dx < C E /]Y~'A~~'h(x)]2M"w(x)  dx E j l k~ A~,.fk(x)[ w(x) _ 
k ~, k ~ ,~ 

if l=(ll, 12) and ll <_nle', 12 <_n2g We iterate and apply this inequality N times; 
here N<l+l / e '  The result is an estimate of the left hand side of (4 25) by an 
expression involving a scaled version of the square-function in Lemma 4 3 (with 
A=diag(2 ~ , 2k2)) Namely if F ~  is defined by 

2 
2 m 5  ks  mtf  2 rn5 k~ rn6 

i----1 
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we obtain the inequality 

E / [ V k ~  A~fk(x)[2w(x) dx < CN 
k u  

E / n E s 

1 
g>_ 1+~7, 

from which (4 25) follows by an application of Lemma 4 3 [] 

The asserted weighted norm inequality (4 10) now follows by an application of 
Lemma 4 5 and Proposition 4 6 This concludes the proof of Theorem 4 I 

Remark The weighted inequality in Proposition 3 6 implies 

\ ICy / [[4 

with Ce=O(A 1/~) as ~---}0, some A > I  The geometrical arguments by C6rdoba [12] 
show that in fact Ce=O(e -a) for some a>0  It would be interesting to find positive 
operators Ale, being uniformly bounded on L 2 such that 

f ]A~s 

An analogous problem is to find weighted norm inequalities for radial multipliers 
and associated maximal functions in R 2, with a positive operator Af In this context 
weighted inequalities with a nonpositive Af have been proved in [1] 

5 H n - e s t i m a t e s  

The purpose of this section is to prove Theorem 1 7 The proof relies on a 
result on multiparameter Calder6n-Zygmund theory obtained by the authors in [4] 
(extending earlier results by Journ~ [20] and Fefferman [17]) There it is shown for 
a large class of singular integral operators T that the boundedness of T on certain 
scalar and vector-valued rectangle atoms implies the boundedness on H p 

To be precise let R be an interval in R d (i e a rectangle parallel to the coor- 
dinate axes), and let Q be a nonnegative integer In what follows, Q will always 
be _>[1/p-l] (the largest integer < l / p - l )  Then a is called a (p,Q,R) rectangle 
atom if a is supported in R, if 

/R Ia(x)I2 dx <_ IR[ 1-2/p 
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and if for m =  1, , d 

/aM a ( x l '  , x ~ , x ~ + l ,  ,Xd)Z~' x~dXl d x ~ = O ,  rl, ,r~=0,  ,Q 

for almost all (Xm+l, ,Xd); furthermore assume that the analogous cancellation 
properties hold for all permutations of the variables xl, , Xd 

Now let R d = R  d' ~l:t d2, and let I be an interval in R dl Then we need the 
notion of an L2(l~.d2)-valued (p, Q, I) rectangle atom This is simply a function a 
supported on I x R d2 such that 

and such that for m---l, 

/R" a(xl, 

/la(x',x")12dx"dx'< i X l l - m  , 

, dl 

,Xm,Xm+l, ,Xd,+l, ,Xd)Xrl ' X~" dxl dxm = O, 

rl ,  ,rm-~O, ,Q  

for almost all (Xm+l, ,Xd); furthermore assume that the analogous cancellation 
properties hold for all permutations of the variables xl, , Xd~ 

Now let T: C~(Rd)-~(C~(Rd)) ' be an operator with Schwartz kernel K, with 
the property that K(x,y) is locally integrable in {(x,y);x~r ,d} Let r 
be a smooth bump function on R supported in [1, 4] such that ) - ~ _ ~  r  
for s r  For l=(ll, ,ldi), l_<dl<d, define the operator T z by 

that 

dl 

Tlf(x) = f K(x, y) H r Ixi-y'l)f(Y) dy 
i=1 

T h e o r e m  5 1 [4] L e t 0 < p < l ,  s>d(d+l)/2 and Q >_ [1/p-1], M > 2  Suppose 

(1) T is bounded on L2(R d) with operator norm <A 
(2) For all d ie ( l ,  , d - l } ,  for all LEZ d~, for all intervals I in R d~ with 

sidelengths 2 L1, ,2Ld~, for all L2(R d-d1) valued (p, Q, I) rectangle atoms a and 
for aUl=(ll, ,ld,), l~>l, i=l, ,dl 

(5 1) 
\i----1 

(3) The condition analogous to (5 1)/s  valid .for every permutation of the vari 
ables xl, ,Xd 
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(4) For all L E Z  d, for all intervals R in R d wish sidelengths 2 L1, ,2 La, for 
all Oa, Q, R) rectangle atoms a and]or all l=(ll  , , ld), / i>l ,  i= l, , d - 1  

/ d \ - s / p  

(5 2) ,,TL+l a,,Lp(Rd) ~_ A { ~-~ li ) 

Then T extends to a bounded operator from the multiparameter Hardy space HP (R  d) 
to LP(R d) and the operator norm is bounded by CA Here C depends only on p, d 
and s I] T is translation invariant then T is bounded on HP(R d) 

We now consider convolution operators T given by Fourier multipliers m via 
T'f(~)--m(~)](~) For kEZ  dl let Tk be the operator with Fourier multiplier 
m(~) rId=~ 1 f~(2k'~i) Variants of the standard Marcinkiewicz multiplier theorem on 
HP-spazes follow from Theorem 5 1 and 

Proposit ion 5 2 Suppose that 0<p_<l, a> l / p  - 1  and let Q, e be such that 
Q>_[1/p-1] and O<2c<min{a-1/P+�89 Q - 1 / p + 2 , 1 }  

(1) Suppose that l <_dl < d - 1  and 
(5 3) 

sup sup II~(1)| | , ,tall ,~d,+l, ,~d)lln~(Rd,) < O0 
t~(R+)d, (r ~)eRd--d~ 

Then for all L E Z dl , for all intervals I in R dl with sidelengths 2 L~ , ,2Ld~, for all 
L2(R d-d~) valued (p, Q, I) rectangle atoms a, for all l=(ll ,  , td,), l i>l ,  i=1, , dl 
and ]or all kEZ d~ 

dl 

(5 4) II(T~)L+lallL,(a~, L:(ad--d,)) <-- CA H 2--~(l'+lk'[) 
i----1 

(2) The inequality analogous to (5 4) holds for every permutation of the vari 
ables Xl, , Xd 

(3) Suppose that 

(5 5) sup [[~(1)| | , ,td )[[7-/~(R d) <~OO 
te(R+)a 

Then for all L EZ d, for all intervals R in R d with sidelengths 2 L~, ,2 Ld, for all 
(p,Q,R) rectangle atoms a, for all l=(ll ,  ,ld), l i>l ,  i=1, ,d, for all kEZ  d 

d 

(5 6) H(T~:)L+laI[I..(R d) <_ CA H 2-~(l'+lk'l) 
i = l  
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If  (5 5) is valid then m is bounded and (5 3) and the analogous conditions 
obtained by permuting variables are also satisfied In particular (5 5) implies that 
T is bounded on the multiparameter Hardy space HP(R d) and the operator norm is 
bounded by CA 

Proposition 5 2 is proved by standard arguments, see for example the proof 
of [4, Proposition 5 1] The last conclusion of Proposition 5 2 follows of course by 
Theorem 5 1 The reader should note that  the multipliers in Theorem 1 7 generally 
do not satisfy the assumption (5 5), even in the two-dimensional case 

Proof of Theorem 1 7 We may clearly assume that  p < l  Again since charac- 
teristic functions of half spaces with boundaries parallel to the coordinate axes are 
Fourier multipliers of multiparameter Hardy spaces there is no loss of generality in 
assuming that  m is supported in {~;~i_>0,i---1, ,d} We use the notation intro- 
duced in the proof of Theorem 4 1 Let T~k be as in (4 9) and set Tn=~-~kez d T~k 
We shall show that T n is bounded on HP(R d) with operator norm bounded by 

(5 7) Cs sup Hg~l[Lv(Rd-Z)2 (nz+ +nd-z)(2/p--1)(1-~-~tl+ +rid_l) (s+d)/p 
kEZ d 

Since 

E sup IIg~llLP(Rd-,)2 ('~'+ +n~-~)(2/P-Z)(I+nz+ +rid_Z)( ~+4)/p 
nE(N0)d-1 kE zd 

<_C~ sup Hg~:llnE i f a > 2 / p - 1  
kEZ ~ 

the conclusion of Theorem 1 7 follows 
We have to verify the hypotheses (5 1) and (5 2) of Theorem 5 1 for the oper- 

ator T n The mixed norm inequalities are a straightforward consequence of Propo- 
sition 5 2 In order to see this let 

Fh(~) =h(~z/~d, ,~d-1/~d) 

where h is compactly supported in [�89 4-1 Then for (~>_0 one has the inequalities 

(5 8) supllf~(z)| r ,~4)lln~(R~-Z) <_C[IhllnE(R,~-, ) 

and 

(5 9) sup[[/3(z)@ ~(d)Fh(~l, )[[7./~(Rd-Z) 
{ HhHn~(R), if d = 2 ,  

< C  d-1 ]]hllnR(Rd-1)Tsups, ~-~.k=2 HT)ff 
if d _ 3  

~)a ~r~2aq~a ~ lh(Sl ,  )IIL2(R~_2), k-1 nJk J'~k+l 
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It is straightforward to verify (5 8) and (5 9) if a is a nonnegative even integer and 
the general case follows by analytic interpolation Note also that by a version of 
Sobolev's imbedding theorem P d-1 2 d--1 TI~(BL )CT~(R. ) i f p ~ 2  and f~_>c~+(l/P-�89 
Using this and (5 8), (5 9) we see that (5 3) is verified for the case d t - - d - 1  The 
other cases follow similarly An application of Proposition 5 2 implies (5 2) 

The main work in the proof consists in the verification of (5 1) Assume that a 
is a (p, Q, R) rectangle atom and R is an interval of dimensions 2 L1 > • 2 Ld Then 
we shall prove that 

d 
(5 10) II(T'~k )L+tallv <_C2 ("'+ +"~-')N y I  2--~(Z'+lk'-n'l)ilg'~ll~, N > 2 ( 1 - 1 ~  

i----I ~p 2 /  

for some r > 0 and also 

(5 11) II(~r~'k )L+laHv < C2("~+ "[-.d--1)(2/p--1)llg~.ll,, 

We shall use (5 11) only if maxj{kj-Lj},maxj{lj}<Cp(l+~'~ni) where Cp is a 
large fixed constant while (5 10) is a remainder estimate In fact applying the 
Sobolev inequality (4 8) with dl =0 we see that (5 10) and (5 11) imply 

d 
__~ C (  Z 2(n1+ -{'-nd-1)(Np-I-1)H 2-~vm+lk'-L' l) l lg~ll~ , 

max{lk.~--Li] i=-1 d}~ i:1 
e-*(2N+2/p)(nl+ +ha--l) 

+ F. 
max{lk~-Lil i=1 d}< 

e-l(2N+2/p)(nl+ +rid--l) 

• min{2(n~+ "~d--1)(2--P);2(nl+ 
d \lip 

q-ha- 1) (NpF1)/1~1.= 2 --eV(l'+lk'--L'l) } Ilgkn HvP) 

<C2(n1+ +,~d_l)C2/n-t)(l+nl+ --knd_l) Cs+d)/p 
(lz+ +Id)~/v IIg~llv 

and it follows that T ~ is bounded on H p with norm not exceeding (5 7) 
The verification of (5 10) is easy Simply observe that 

la~[r <c~2-i~i+ +-~-~-~(2-~+ +2 -~-~)  

and an application of Proposition 5 2 yields (5 10) 
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We now verify (5 11) and assume for convenience d = 3  
the notation introduced in (4 15)) 

(512) II CT~'k,,,) L+iallp --< Cb'~,,2 ('`'+"=)(llp-1) IIg~ lip, 
(5 13) II (~.,~)L+'a I1,, < CNb~ 2 n'  ( l ip - i )2 - , - , ,  Jv IIg# I1,,, 

(5 14) . 2  L+i II(T~,,,) all,>_< C~b'~.-"'N2 "~~ 
(5 15) I1(~ 0)L+'allp < CNb'~2-("+"i)~llg'#ll,> 

We show that  (using 

Using (4 16) and (4 17) with r=p we see that  (5 11) follows from (5 12-15) We 
shall only verify (5 12); the remaining cases are similar or simpler 

We divide the rectangle R (which has dimensions 2Llx2L2x2  L3) into 
1-I3=1 max{l,  2 L ' -k '  } congruent intervals R~ of dimensions 

rain {2 L1 , 2 k' } x rain{2 L2 , 2 k2 } x rain {2 L3 , 2 k3 } 

and centers y~ Let be ~ ' -  a k-aXR~ and let 

~L+I __ {x; 2 L'+I'-2 < Ix,- (y~) 4 < 2 L'+''+2, i -- 1, 2, 3} 

Then it is easy to check that  if y e s u p p  a~, xET~ L+l then for U ~  N as in Lemma 4 4 

and therefore by Lemma 4 4 
(516) 

/ ,,,lip 
: * ;) II(K;,,VL+,) all,> < c II(//~k,,iL+,)*a~,'ll 

-i p \ l ip  

< 2o,,+.:x,1,>-%: [u~'..(x-yD]"~ _ c .  ~<,, ( ~ / ~ + ,  2-<-,+-:+'<,+'<,+'<,,<, , - '  ) 

r r 13,,,th, 

Using HSlder's inequality we see that  

/ a \ i l l ,  
(5 17) 2 (Li'+Li+L")(liP-1) (~-~ 1][nl~{1, 2r j 

" ~ i=1 / 

<- 02 (LI+L~+L~xl/p-') llaIll <_ CIRll/P-I/211aIl2 <_ C' 
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We perform the linear volume preserving change of variables 

(Vl, v2, = (Xl, x2, k,-k  1 2 uvlxl+2 uv2x2+x3) 

and see that for N>l/p 

n~+, 2 -("1+"2+kl+k2+k3)(p-D [U~ N(x--y~)] p dx 

<C (I+I2-kl-" 'vlI)NP (I+[2-k2-n2V2I)NP (1+[ 3[)NP dv<C' 

Therefore if ki-Li<_O, i=l, 2, 3, the desired estimate (5 12) follows from (5 16) and 
(5 17) 

In all other cases we use similar arguments together with the cancellation prop- 

erties of the atom For example assume kilL1, k2<L2, ka~L3 Since 

�9 / /  7"1 7" 2 a~(yl,Y2,Y3)Yl Y2 dyldy2=O 

for almost all Y3 for O~rl,r2~_Q we see, using Taylor's formula, that 

(K~u'L+,) ak(Xl,X2,X3)=~O' (1--s)Q ( 0  ~Q+~ 

x(g~VL+t)(xl-yl,x2-y2,xa-(Y~)a+s((y~)3-Y3))((y~)3-ya)Q+la~(y)dyds 

and using Leibniz' rule and Lemma 4 4 we see that 

t(KLVL+,) a (xl,x2,x3)l 

<- c2La(Q+I) max{ 2-ks(Q+1), 2-(Ls+~s)(Q+I)}u~ N(x--Y~k )b'~Ha~ I[~ 

Similar considerations in the other cases (where we use that a~ has cancellation 
in the yi variable whenever ki _> Li) lead to 

3 

II (g~r <_ Cg H[min{1, (2-" +2 L'-k')}]Q+I 
i= l  

x b~v ( ~  /7~+ 2(nl+'2+kl +k'+k3)(P-1)[V~kv N(x--y~)]P d.T,,a~,,P) 1/p 

As above it is easy to check that for N > 1/p 

g2+ 2 -("'+~z+k'+k2+ks)fp-1) [U~. N(x--y~)] p dx 

_< C m{n{l, 2 L' +h-k,-m } rain{ i, 2 L2+12-k2-n2 } min{ i, 2 L3+'3-/cs } 
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Therefore 

II(K~,,~n+z)*allp 
3 

< ~2(n1+n2)(I/p-l)b~v H[min{1, 2 (L'+l'-ki)/p} rain{l, (2 -~' "4-2L~-k')Q+I}] 
i----1 

x2(k14.k24.k3)(i/p_l)( ~ [IG/c[[I)P p, i / ,  

< c2(n~+n2)(I/P-I)b~v2(L~+L2+L3)(I/P -i) 
3 

< C2("l+"2)(1/v-1)b'~vlRll/p-Xllall 1 

< C2('~+n2)O/p-1)b'~, 

This proves (5 12) and concludes the proof of Theorem 1 7 [] 
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