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Capacitary inequalities for fractional 
integrals, with applications to partial 

differential equations and Sobolev multipliers 
Vlm-limir G Maz'ya and Igor E Verbitsky 

A b s t r a c t  Some new characterizations of the class of positive measures 7 on R "  such t ha t  
H~CL~,('y) are given where H~ ( l < p < o o  0 < l < o o )  is the  space of Bessel potentials This imbed 
ding as well as the  corresponding trace inequality 

lIJl%~llL~,(~, ) < C ]]~IIL,, 

for Bessel potentials J / - - ( 1 -  A) - / / 2  is shown to be equivalent to one of the  following conditions 
(a) J l ( J /7)  ~~ <_CJl7 a e  
(b) MdM~TF' <CM~7 a e 
(c) For all compact subsets E of R n 

E(JI')')P dx <_ Ccap(E H l) 

where 1/p+l/p'=l Ml is the  fractional maximal operator and cap( H / )  is the  Bessel capacity 
In particular it is shown tha t  the  trace inequality for a positive measure 7 holds if and only if it 
holds for the  measure (JlT)P'dx Similar results are proved for the  Riesz potentials IlT=[z[l-". 7 

These results are used to get a complete characterization of the positive measures on R n 
giving rise to  bounded pointwise multipliers M(H~n--~H~ l) Some applications to elliptic partial 
differential equations are considered including coercive estimates for solutions of the  Poisson 
equation and existence of positive solutions for certain linear and semi linear equations 

1 In troduc t io n  

Let M + = M + ( R  n) be the class of positive Borel measures on R",  finite on 
compact sets For l E R  and l_<p<oo, we define the space of Bessel potentials 

l / n H~,=H~(R ) as the completion of all functions ~ e ~ = C 3 ~  ~) with respect to the 
norm IlU[[H$ =ll(1--A)l/2UllLp For />0 ,  ueH~ if and only if u=Gl*f, where fELp 
and Gl is the Sessel kernel defined by G~( ) = ( 1 +  I ]2)-U2 (see [20]) (Note that 
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GI>O and GIELI(R n) ) The operator Jlf=Gt* f defined for functions f ELp or 
measures fEM + is called the Bessel potential of order l(l>0) The Bessel capacity 
capE=cap(E,H~) of a compact set EcR n is defined by 

(1 1) cap E =  inf {I]ullVL, : Jlu ~_ l on E; u > O, u e Lp} 

For 7 E M  + and E c R  ~, we denote by rE the restriction of 7 to E: dTE=XE d'7, 
where XE is the characteristic function of E 

In this paper we consider the trace inequality for Bessel potentials 

(1 2) IIJl~llL, ey) ~ const IlullL,, 

where the L f n o r m  of u on the right hand side is taken with respect to Lebesgue 
measure It is well known that inequalities of this type are closely connected with 
spectral properties of the SchrSdinger operator and lead to deep applications in par- 
tial differential equations, theory of Sobolev spaces, complex analysis, etc (See [20], 
[22], [3], and Section 5 of this paper ) 

The following result is due to Maz'ya [18], [19], Adams [1], and Dahlberg [8] 
(see ~so [20], [2], [10]) 

T h e o r e m  1 1 Let l<p<oo ,  0</<oo,  and "TEM + Then (1 2) holds if and 
only if, for all compact sets E in R n, 

(1 3) ~(E) < C cap(E, H i) 

(Note that we may restrict ourselves to sets E such that d i a m E < l  in (1 3) 
See [22]) 

It is easily seen that (1 3) is equivalent to a "dual" condition [1] 

(1 4) IIs,~Elli' < C.y(E), 

where l/p-t- 1/p~--1 Kerman and Sawyer [14] showed that we may restrict ourselves 
to arbitrary cubes E = Q  (d iamQ~l)  in (14) One can also replace Jl by the 
corresponding fractional maximal function 

(1 5) MtT(x) = sup{JQJl-z/"7(Q) : x ~ Q, diam Q < 1} 

Thus, the non-capacitary condition (1 4) can be restated as [14] 

(1 6) fQ( MC'/Q)f dx<_cv(Q), diamQ<_l 
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(See also [26] for a simplified proof of this result ) We observe that  conditions (1 3), 
(1 4), and (1 6) are difficult to verify and sometimes not sufficient for applications 
For instance, it is not straightforward that, if V1 and v2EM +, and Jl~/2< J~T1 a e ,  
then sup ~fl (E)/cap E < cr implies sup V2 (E)/cap E < oo In certain problems dis- 
cussed below we need characterizations of the trace inequality in terms of potentials 
JIv, rather than the measure 7 itself 

Our main result on the trace inequality (see Section 2) is as follows 

T h e o r e m  1 2 Let 7 E M  +, l<p<oo ,  and 0<l<oo  Then (1 2) holds if and 
only if any one of the following conditions is valid 

(a) For all uELp 

(1 7) f ( )* ( JrY F < cll,.,ll ,, 

(b) For all compact sets E 

(1 8) /E(JlT)n dx <_ c cap(E, H~) 

(c) For all compact sets E 

(1 9) dx < c caPCE, H~) 

(d) The potential Jl'y(x) is finite a e and 

(1 10) Jl(JlT) p <_c Jr7 a e 

Note that  in the simpler ease l>n/p  it follows that  (1 2) is equivalent to 

sup{?(Q) : diamQ _< 1) < oo 

Analogous results are also given for Riesz potentials, hu=(--A)- l /2u,  O<l<n/p 
(Theorem 4) 

In Section 2 we discuss some corollaries and examples In particular, we show 
that the trace inequality holds if there exists t > l  such that, for all cubes Q, 
(diamQ_<l) 

(111) i ~[ f ~l/pt 
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It should be noted that (1 11) is a strengthened version of the condition of C 
ferman and D Phong [9] 

(111') ( ~Q] /QQ~dx}llPt<c lQl-ll~ 

Fef- 

where d~/=p(x)dx We show that (1 11) is less restrictive than (1 11') and, ob- 
viously, applies to measures which are not necessarily absolutely continuous with 
respect to the Lebesque measure An example demonstrating that one cannot set 
t=l  in (1 11) so that the trace inequality remains true is given 

We also prove that many operators of Harmonic Analysis (maximal functions, 
Hilbert transforms, g functions etc ) are bounded in the space of measurable func- 
tions f such that 

/ I f l q d x  c cap(E,H~p) _< 

for all compact set E Here l<p ,q<c~,  0<l<c~  
Section 4 is devoted to the multiplier problem for a pair of potential spaces 

We denote 
M ( H ;  --, H~) = (g: u e H~ n =~ g u E g~} 

For positive m and l, multipliers have been characterized by Maz'ya and Sha- 
poshnikova [22] In the case m l<0, only some sufficient conditions were known 
We characterize positive measures ~feM(H~'-~H~ ~) and show that, at least in this 
case, the sufficient conditions of Maz'ya and Shaposhnikova are also necessary 

T h e o r e m  1 3 Let~/eM +, l<p<c~ ,  l>0 andm>O Then~/GM(H~--+H~ t) 
if and only if the following two conditions hold: 

(1 12) / (J~/)Pdx < c cap(E, H~) ,  

(1 13) /E( Jm'?)P'dx <: c cap(E, Hp l ), 

for all compact sets E c R  n 

Note that, in contrast to the assumption (b) of Theorem 1 2, the exponents on 
the left hand sides of (1 12) and (1 13) are the same as in the corresponding capac- 
ities on the right hand sides In the simpler case p=2, l=m this pair of conditions 
is equivalent to sup~/(E) /capE<oo by Theorem 1 2 (Cf [22, Theorem 1 5] ) 
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In Section 5 we consider applications to some linear and non-linear problems 
for elliptic partial differential equations We show, in particular, that solutions of 
the Poisson equation --Au=v, ~>0 and 7�9 1) satisfy the coercivity 
property: DIueM(H~--,H~ 1) for all l, Ill=2 
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wishes to thank Lars Inge Hedberg and Louis Nirenberg for their encouragement 
and support 
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2 Trace inequality for Riesz  and Bessel  potent ia l s  

F o r / > 0  and l<p<cx), we denote by h i the completion of the space :D=C~ 
with respect to the norm IlUlIh~=II(--A)I/2UlILp If O<l<n/p and l <p<oo ,  then 

uEhlp if and only if u=I~v, where yELp, and the Riesz potential It is defined by 
Izv=[ II-n,v In the same manner we define Riesz potentials of measures ~/EM+: 

f x �9 
dr(y) 

Ix-yl"-" R - 

Note that Ii7 is finite a e (locally integrable) if and only if flyl>l lY[l-"dv<eo [17] 
To any measurable set E C R  ", we associate its Riesz capacity by [20] 

(2 1) cap(E,h~)=inf{[[u[[PLp :Ilu>_ 1 on E; u>_O, ueLp} 

The (homogeneous) fractional maximal operator Mr, where 0 < l < n ,  is defined 
by 

(2 2) =sup 1Oll_ /,  : x � 9  

It is easily seen that M~7(x)<_cIl'~(x) for all x E R  '~ 
Now we are in a position to state our main result for Pdesz potentials 

T h e o r e m  2 1 Let 7 � 9  +, l <p<n/p The following conditions are equiva 
lent 

(a) The trace inequality 

(2 3) [lZlfHLp(.y) ~_ allfllL p 
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holds for all f ELp 
(b) For all compact sets E 

(2 4) 7(E) < c cap(E, h~) 

(c) For all compact sets E 

f (r 7 F'd  < c 7(E) (2 5) 

(d) For all compact sets E 

f (IlTE)P'dx < c cap(E, htp) (2 6) 

(e) For all compact sets E 

(2 7) fE(IlT)P dx < c cap(E, htp) 

(f) The potential It7 is finite a e and 

(2 8) I~(I~7) p <_ cll7 a e 

Note that the equivalence of (a), (b) and (c) is known (see [201) We can restrict 
ourselves to cubes E=Q in (2 5) due to a result of Kerman and Sawyer [14] It will 
be shown below that, for conditions (2 6) and (2 7), this is not true The potential 
I13' can be replaced by Ml3' in (2 5)-(2 8) 

Proof It suffices to prove that (c) =~ (f) ::~ (e) =~ (d) =~ (b) 

Step 1 (c) =~ (f) Suppose (2 5) holds Let us show first that It~/EL~ c, and, in 
particular, ItT<c~ a e Let B=Br(x) be the n dimensional ball with radius r>0,  
centered at x E R, n 

(2 9) 

For x E B, we have 

Hence, by (2 9) 

(2 10) 

Then 

B (Iv'/s)P dy _< cT(B) 

IlTB (x) _> cT(B) (diam B)l-n 

7 ( B r ( x ) )  _< c r 
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We set 7=71+'12, where 71=72B and 72=7(2B) Here 2B={t:lx-t]<2r } 

/B(I,7)" dy<-c[/B(I,71)" dY+/B(II72)" dY] (2 11) 

By (2 9) 

Then 

f 
(2 12) Js(Ii71)P dy < c7(2B) < oo 

To estimate the second integral on the right hand side of (2 11), note that, for all 

(2 13) 

1,~(y) =~ ly-ti'-nd~It)_< 2 n-' ~ l~-,l'-"d~It)_< 
tl>2r --tlYr 

f ~ 7(So(~)). <e ~ ao 

It follows from (2 10) that 

Z sup lt72(y) <_c O-l(P-1)-ldo< oo 
yEB 

X - ~ L l~ Thus, we have proved that ~'T= p, Now let us show that (2 9) implies (2 8) Note 
that oo dr 

~,(I,7)~ (x) _<c/0 /.~(~)(~,7)" %o-,+1 
To estimate the right hand side of the preceding inequality, we use again the de 
composition (2 11) By (2 12) 

(2 14) (1171) p yrn_-WLF~ _< c ~ / ( 2 B r ( x ) ) ~  _< clt7(x) 
~(~) 

The estimate of the second term is more delicate By (2 13) 

/B~(x) ( II72) p dy < cr'~ [j[~176 7( Bo(x) ) ~ ]v 

For fixed x E R ~, let 

~(r) = [~r~176 7(Bo(x) ) ~ ]v 
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We claim that 

oo . dr foo fo /B.(x)(Iz72F a Y ~  <CJo rl-l~a(r)dr<--cllT(x) 

To prove this, we note that 

(215) sup ~o(r) _ 7 (B . (x ) )  _~-==~ __ ~[X~7(x)l ~ 
r>O 

Similarly, by (2 10) 

1" (2 16) suprtP~o(r)_< r  tp O-t(v-1)-l do <_ c2 < cr 
r>O r>O 

Clearly, for any fixed R>0, 

rt-l~a(r) dr ~ Cl rZ-ldr sup ~o(r) +c2 rtO-P)-ldr sup rlP~o(r) 
r>0 J R r>0 

Applying (2 15) together with (2 16), we get 

~o ~176 rt-l~a(r) dr R t +c2R l(1-p) <_ e l  

Choosing R=[Ii'7(x)] 1/(~(p-1)), we have 

~ _< c x~7(x) r l - l ~ ( r )  dr 

We have proved that 

Thus, for all xER n, 

r(~) (IlT)P dY rn---g:-i-g-f <- cl t7(x)  

I,(I, TF'(z) < cI,7(x) 
The proof of Step 1 is complete 

Step 2 (f) =~ (e) Suppose (2 8) holds and IlT<oo a e  If, for some x0ER n, 
I,7(Xo) < c~, then 

M~(/17) v (xo) < cI~(ItT)f (xo) < cltT(xo) < oo, 
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where Ms is the fractional maximal operator defined by (2 2) Hence, for any 
cube Q, x0 E Q, 

Q(I,7) p dx < clQIl-Z/"Icdzo) < oo 

I - rLl~ By (2 8) This implies that r r= p, 

[x,(I,~)~]~ <_c(!,~F < ~  ae  

Setting d~= (Ii~,) p dx and integrating the preceding inequality over an arbitrary 
cube Q, we get 

fQ( I~) ~ dx <_ c~(Q) < 

This obviously implies 

Q(I~Q) p dx <_ c~(Q), 

and, by a result of Kerman and Sawyer [14], 

~(E) _< c cap E 

for all compact sets E The proof of Step 2 is complete 

Step 3 (e) =~ (d) Suppose that (2 7) holds Let us prove first that f(s dx< 
c~ for any compact set E Assuming ECB={x:IxI<_R}, we have 

/ ( I ,  TE)" dx<--C{~B(l,7)P'dx+~B) (gzTB)" dx } 

<_c{cap2B+[~/(B)]" ~ , > 2 .  dx < o o  
_ Ixl< ~ - o p '  , 

To show that (2 7) implies (2 6), we need some facts from the non linear potential 
theory The non linear potential of a measure 7 E M  + introduced by Khavin and 
Maz'ya in [16] is defined by 

L e m m a  2 2 ([16], [22]) For any compact set E C R  '~, there exists a measure 
v=v E such that 

(i) supp vCE,  
(ii) v(E)=cap E, 
(~i) IIIwll~ =cap E, 
(iv) VpW(x)_>I quasi everywhere on R n, 
(v) Vpw(x)<_K=K(p,l,n) on R ~, 
(vi) cap{Vpw~t}<At-acapE for all t>O, where a--min(1,p-1);cap(  )=  

cap( , h~), and the constant A is independent orE 
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sure of E 

Remark 2 1 

(217) 

Vl~iimir G Maz'ya and Igor E Verbitsky 

The measure v E associated with E is called the capacitary (equilibrium) mea- 

In what follows one can replace V#7 by the potential 

wpL~(~) = 7 )) -~__dr < c v ~ ( z )  
r 

As was shown by Hedberg and Wolff (see [2]), W# is a good substitute for V# in 
many problems In particular, the estimate (vi) holds for Wpz with a=p-1 

We will need the following lemma 

Lentraa 2 3 Suppose O<l,m<n Suppose 7 and vEM + Then 

(2 18) Ii(Imv d'~) <_ c[II(Im'y dv)+ I,=v II7] 

Proof of Lemma 2 3 By Fubini's theorem 

,x_y,,~-, f / K(x'y,t)dT(Y)' I v - t l . - m  

where K(x, y, t)=lx-ylZ-n[y-t{ "~-~ It is easily seen that 

/ K(x,y,t)dT(y) <_ f K(x,y,t)dT(y)+ f K(x,y,t)dT(y ) 
Jl~-ti<It-=I/2 J ly-t l>_It -z l /2  

2,*-1 2n-m 
< px_tl ._ ~ x , . 'd t )+ I'z-t] "-~ ~ ( x )  

Hence 

1~(ImvdT) < 2"-~X~(ImTdv)+2"-~X~7 Z~v 

The proof of Lemma 2 3 is complete 

Now we are in a position to complete the proof of Step 3 Let E be a compact 
set and let u=v E be its associated capacitary measure Then 

/(1,7 )' f[I,(/i~d~ )]' E Pdx< _ E Pdx, 

where r p - t  Applying Lemma 2 3 with I=m,7-=VE and dv=~odx, we get 

(219) /(I,~E)" dx<_c{/(I,~o)" (lv~E)" dx+/[g,(~oI, TE)]" dx} =c(Al+A2) 
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To estimate A1, we choose an arbitrary r > 1 and apply HSlder's inequality 

Recall that by assertion (v) of Lemma 2 2 one has Iz~(x)<_K=K(n,l,p) for all 
x E R  n Then 

/0 (L } / (h~/E) p (I~o) r V dx < (Ivy )V dx tr'P - l dt ~o>t 
By (2 7) and assertion (vi) of Lemma 2 2 

f~, Fc ~>t(IlT)P dx < c cap{Itf  _> t} < capE, 

where a=min(1,p-1) Hence 

/(.~,,.~E)p (I,~)r'p dx c cap S ~OK{ r'p -a-id~; 

Choosing r'>ap', we obtain 

(2 20) A1 <_ c II/l-YEll~:~(cap E) 11~ 

Let us get a similar estimate for the term A2 By duality 

Ilgll~,p<_lla I g Lp<l  J 

Suppose first that p>2 We set s=p/(p-2)>l  Then 1/p+l /p+l / s=l  Ap 
plying HSlder's inequality for the three functions, ~o, ~Ol=(I~TE) (p-2)/(p-1) and 
r we get 

' } lip 

Ilgllz, p___l ( J  

B y  ] ,emma 2 1 

II~ollL,, = IIZ~'II~, ' /"  = (cap E )  ~h' 

From (2 7) and the trace inequality for the measure (Iv),) p dx it follows that 

sup ~ f lkg,,(s dx}l/'<c<oo 
II.qllLp_<l L J  
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Thus 

(2 22) 

Vladimir O Maz ya and Igor E Verbitsky 

A2 < c(cap E) v/"llI~-ysll~'~/8 

Since p>_2, we can choose r'=p/p'>a/p' in (2 20) Then, combining (2 20) and 
(2 22), we have 

A1 +A2 < c(cap E?/P IZ~E IP (1-v'/v) 
- -  t L~ 

We have shown above that IIhTElIZp <co for all compact sets E Thus (2 19), 
together with the preceding estimate, gives 

! llh~Ell~., < c  capE 

In the case 1<p<2  we estimate the right hand side of (2 21) in a different way 
We set s=p/(2-p) with 1/p'+llp'+l/s=l 
the three functions, 

Using again HSlder's inequality for 

~,1 = ~ - ~ ,  ~2--  (@hgl) 2-v a n d  cp3 = II~gF-~I~o,, 

we obtain 
(2 23) 

A llp < IkoII~? sup ~ f I I l g I ' ( I i ~ [ )  , dx} lip 
IIgII~<llY 

x sup (flI~glP~aPdxl 1/s 
Ilgll~p_<l t . J  

As above II~[[Lp=(capE)UP, and, by (2 7) and the trace inequality, 

sup ~ f Illg['(IlT) v dx) 1/v <c<co 
llallLp_<l l , J  

(224) sup _<c<co 
UgiiLp<_l I , J  

as well Since v is the capacitary measure, its non linear potential is bounded: 
VpW(x)<_K for all xEI:t n Then, for any compact set eCR '~, we have 

/(Iw~)" dx= / V,w~dve < K v(e) 

Let us show that 



Capacitary inequalities for fractional integrals 93 

By Steps 1 and 2 of the proof applied to the measure u, the preceding estimate 
implies 

fe(Iw)P dx < c e cap  

for all compact sets e Hence, by the trace inequality for the measure (Izu)P'dx, we 
get (2 24) We have proved that, for 1 <p<2,  

As <_c]l~llPLp =c capE 

Together with (2 20) it gives 

(2 25) [[I~IEiiPL~ <_ c{cap E+lilzyEHPL:r (cap E) 1/r' } 

We have already shown that ][IITE[IL~ <OO Moreover, we may assume that 

I[/ZTE[i~p _>capE (Otherwise, the desired estimate (2 8) is obviously true ) Then 
it follows from (2 25) that 

liI,~ilt~ < c(capE) 1/r liI~iit~/r 
Since r > 1, we have 

l lI~llt ,  <c cape 
The proof of Step 3 is complete 

Step 4 (d) ~ (b) This is easy For an arbitrary E C R  n let Izu>l on E; u_>0, 
uELp If (2 6) is valid, then by H51der's inequality 

+(Z) < ./p+ l, ud~ .~ / ulz~E dx <_ II~II+,, IIX+~+II+,, -< +ll~ll+,,(cap E) 1/p' 

Now it follows from the definition of capacity (see (2 1)) that 

~,(E) < c cap E, 

which concludes the proof of Theorem 2 1 

Remark 2 2 Let l<p<oo ,  O<l<n/p, and q=l+l/p' Then assertion (e) of 
Theorem 2 1 can be rewritten as 

(2 26) Vql~/(x) <_ cIt'y(x) a e 
where VqZ=Iz(IzT) q -1 is the non-linear potential of 7 

We observe that one cannot replace Vat in (2 26) by the corresponding Hedberg- 
Wolff potential Wqz (see (2 17)) Note that Wql'y(x)<cVqz~[(x), but the converse is 
true only for l>(2-q)/n [16] Unfortunately, this is not the case when q=l+l/p ~ 
and O<l <n/p 

In fact, the inequality Wqz(x)<_cIlq,(x) follows from the estimate 

~(B~(~)) _< r ~-+~, (~ e R", �9 > 0), 

which is weaker than the trace inequality 
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Corol lary  2 4 Suppose l < p < o o  and O<l <u/p Suppose T, ~,EM + and IzT<_ 
Ilv a e Then 

sup <csup 
- cap E 

where the suprema are taken over all compact sets EcFt  n 

Corollary 2 4 follows from assertion (e) of Theorem 2 1 
The analogue of Theorem 2 1 for Bessel potentials (see Theorem 1 2 in the 

Introduction) can be proved in a similar fashion, and we do not go into details here 
Note only that condition (1 10) can be replaced by 

J, ( J,7 ) n' <_ cmax(1, J,7), 
since J, l=fGz(x)dx Hence, we can restrict ourselves to the set {x:J/7(x)_<l} 
in (1 10), as well as we can consider only the sets E of diamE_~l in conditions 
(1 3), (1 8) and (1 9) (see [22]) 

3 Some corollaries and  examples  

Let us show that we can put Ml7 in place of I17 in assertions (c)-(f) of The- 
orem 2 1 For (c) and (d) it is easy, since by a result of Muckenhoupt and Whee- 
den [23] 

(3 1) f ( I lT)  p dx_< c f ( M l T ) " d x  

with the constant c independent of 7; the reverse inequality is trivial 
We will need the following lemma, which shows that many operators of classical 

analysis are bounded in the space of functions f such that 

(3 2) <_ c cap E 

for all compact sets E, ( l<q<oo) ,  if they are bounded in Lq-spaces with Mucken- 
houpt weights 

Recall that a weighted analogue of (3 1), namely 

(3 3) / ( I lT lqwdx ~_ c f (Ml~/)qwdx, 

holds for 1 <q<oo and wEAoo, where Aoo is the union of the Muckenhoupt classes 
Ap, l<p<oo ,  [23] In particular, (3 3) is true for all Al-weights w such that 

(3 4) Mw(x) _~ A w(x) a e ,  

where Mw=M~w for l---0 is the Hardy-Littlewood maximal function Moreover, 
the constant c in (3 3) depends only on l, q, n and the constant A from (3 4) 
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L e m m a  3 1 Let 0<q<oo, l<p<oo ,  and O<l <n/p Suppose that a function 
feLFq ~ satisfies (3 2) with cap( )--cap( , h~) Suppose that, for all weights WeAl, 

with a constant K depending only on n, q, and the constant A in the Muckenhoupt 
condition (3 4) Then 

/E Ig[qdx <- C capE (3 6) 

for all compact sets E, with a constant C depending only on l,p,n and K 

For g = M f  andq=p, Lemma 3 1 is due to I Verbitsky (See [22], where it 
was used to derive an analogue of the Sobolev inequality for the spaces of functions 
defined by (3 2) ) The idea of the proof is the same in the general case and we give 
here only a sketch of the proof 

Proof of Lemma 3 1 Suppose u=u E is the capacitary measure of E c R  u and 
7~=Vpw is its non-linear potential Then, by Lemma 2 2, 

(i) ~a(x)> 1 quasi-everywhere on E; 
(ii) ta(x)<B=B(n,p,l) for all x e R " ;  
(iii) cap{~o>t}<ct -a  capE, (a=min(1 ,p-1) ,  t>0), with the constant c inde- 

pendent of E We need one more property of ~a [22]: 
(iv) M~6(x)<_ap6(x) a e ,  with a constant c independent of E, where 0<5< 

n/ (n- l )  for l <p<_2-l/n, and O<~f<(p-1)n/(n-lp) for 2-1/n<p<oo (Note that 
the bounds on 5 are exact If we use the Hedberg-Wolff potential WpW instead of 
Vplu, then one can show that (iv) holds for all O<6<(p-1)n/(n-lp) ) 
Now, it follows from (iv) that ~6EA1 Hence by (3 5) 

f lg[q~Sd~<K f lflq~6~ 
Applying this together with (i) and (ii), we get 

fElglqd~< fe lglq~'d~<--c frt lflq~'dx=C fo~ f~>_tlf[ "d~t'-ldt 
By (3 2) and (iii) 

>t lflq dx < c cap{~ > t} < ~ cap E 
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Hence 

fEIgl qdX < e capE  fo B t6-~-ldt  

Clearly, for all O<l<n/p, we can choose 6 > a = m i n ( 1 , p - 1 ) ,  so that 0 < 5 <  
n / ( n - l )  ff l<p<2-1 /n ,  and O<6<(p-1)n / (n- lp)  if 2-1/n<p<cr  Then 

fo B t6-a-  l dt < 0% 

which concludes the proof of Lemma 3 1 

We observe that  Lemma 3 1 is also valid for Bessel capacities cap ( ,H~) ,  
0<l<c~ (see [22]) 

In Section 5 we will need the houndedness of the Riesz transforms Rjf= 
f,xj/Ixl n+1 (j=l, 2, , n) in the spaces of functions defined by the capacitary con- 
dition (3 2) 

Coro l la ry  3 2 Let l < p , q < c o  and O<l<n/p Then 

f~ IRjfladx f~ Iflqdx < c s u p  , ( j = 1 , 2 ,  ,n), sup cap E cap E 

where the suprema are taken over all compact sets in R n and cap( )=cap( , hip) 

P r o p o s i t i o n  3 3 Suppose l<p<oo ,  O<l<n/p, and 7 E M  + Then the fol 
lowing three conditions are equivalent 

(a) For all sets E 

(3 7) /E(hT)P dx<_c capE 

(b) For all sets E 

(3 8) / (MtT) p dx_<c capE  

(c) The maximal function Ml7 is finite a e and 

(3 9) M~(MIT) p <c Mz7 
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Proof Applying Lemma 3 1 with g=I~7, f=Mz7, and q=p~, we see that (a) 
is equivalent to (b) 

Let us show that  (a) implies (c) Note that  the latter can be restated as 

(3 10) SQ(MIT)P dy < c IQll-Zl'~M,7(x) 

for all xEQ As in the proof of Theorem 2 1, we set 7=71+72 (~/t=72Q and 
72=7(2Q) ) and have 

So(M,.,. 
By Theorem 2 1, (a) implies that, for xEQ, 

, ,) i< (M,~,)" dY<CiQ(Ii~)" dy<c'l,(lQ)<c IO l ' - ' / "M,7 (x )  

To estimate the second integral, note that 

~/(Q'n(2Q) c) 
M~72 (y) -- sup 

~eQ IQ'll-Zi" 

If yEQ'MQ and Q'M(2Q)C~O, then clearly Qc5Q' Thus, for yEQ, 

7(V') 7(Q') 
sup iQ, ll_l/,~ ~ c  sup iQ, ll_l/,, M~72(y) _< Q :Qc5Q Q DQ 

Then 

SQ sup [~,(Q')/IQ'I~-I/"] p (M172) p dy < clQI Q DQ 

< clQl~-ll'~M~7(x) sup IQ'III'~[TCQ')IIQ'I~-iI'~] p -~ 
Q, 

It follows from (a) that 7(Q)<cIQI 1-zp/~', so that the last factor on the right 
hand side is finite Combining this with (3 11) we get (3 10) 

It remains to prove that  (c) =~ (b) It follows from (3 9) that 

iQ [M~(Mz~/) p ]P dx ~ ciQ(MZ~/)P dx 
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for all cubes Q Letting d~=(MlT) p dx we have 

Q(Mt'~) p dx < c'~(Q) 

Applying again the result of Kerman and Sawyer we get 

"~(E) = fE(M,.y)P <_ c cap E 

The proof of Proposition 3 3 is complete 

Let us consider some simpler conditions sufficient for the trace inequality to 
hold It was shown by Fefferman and Phong [9] that (2 3) is true for the measure 
d'T(x)=g(x) dx (g_>0) if there exists t > l  such that 

1 /Q g~(~) d~ < c IQI -'p~/" (3 12) IQ--/ - 

We observe (see [14]) that this result is a consequence of two known estimates: 
Sawyer's inequality for the fractional maximal function [25] 

(3 13) [[UlfHLp('r) ~-- C Hf[[Lp [sup [Q[lp/'~-lT(Q)]l/p, 

and the Adam.q-nedberg inequality [2], [12] 

(3 14) IIlfl <_ c(Mlt f ) l / t (M f)  l-1/t 

where t > l  and O<l<n/t Actually, it follows from (3 12) and (3 13) that 

(3 15) IlMuYllLp(a.~) < cllftln, 
Hence by (3 14) and the boundedness of the Hardy-Littlewood maximal oper 

ator, we have the Fefferman-Phong inequality 

{ fQgtdx )l/tp 
(3 16) IlIz/llLp(gdx) < cllfllL~ \ iQll_lpt/~ 

Combining (3 16) with our Proposition 3 3, we obtain the following corollary 

Corol la ry  3 4 Let 7 E M  +, l<p<oo ,  and O<l<n/p Then the trace inequal 
ity (2 3) holds if there exists t > l  such that 

(3 17) < clQ[ 1-'pt/" 

for all cubes Q 

It is of interest to note that condition (3 17) is stronger than the original 
Fefferman-Phong condition, and applies to measures not necessarily absolutely con- 
tinuous with respect to the Lebesgue measure 
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Propos i t ion  3 5 Let dv=g dx, g>_ O Under the assumptions of Corollary 3 4, 
(312) impZies (31~) 

Proof Suppose (3 12) holds Then, by HSlder's inequality, 

(3 18) 7(Q) < c IQI ~-'p/" 

for all cubes Q Using the preceding inequality, it is easy to see that (3 17) is 
equivalent to 

/Q( M,'rQ )" ~ dx <_ c IQI 1-'p~/" (3 17') 

(See analogous statements in the proof of Proposition 3 3 or Theorem 2 1 based on 
the decomposition dT=X2Q d'I--t-(1-X2Q)d'7 ) For xEQ we have 

[, /o 1 [M, To(x)]p t = sup Q'I '/"-~ g(y) dy 
zeQ oQ 

Then, by (3 18), 

[, ]' [M, TQ(x)] pt < c  sup Q'I -~ g(y)dy =c[M(XQg)] t 
zeQ nQ 

Since the maximal operator M is bounded in Lt(R"),  t > l ,  we have 

fQ(M, TQ)'tdx<c f [M(xQg)]tdx<C fQgtdx 

Now it is clear that (3 12) implies (3 17') The proof of Proposition 3 5 is 
complete 

We observe that, for t=  1, Corollary 3 4 is not true In other words, we cannot 
restrict ourselves to cubes E=Q in assertions (c) and (d) of Theorem 2 1 

Proposition 3 6 There exists a measure 7 with compact support such that 

(3 19) f (hT)P' dx < c IQI 1-tp/'~ 
Jo  
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for all cubes Q, but the trace inequality (2 3) does not hold 

Note that a similar example for assertion (b) of Theorem 2 1 is well known 
By a theorem of Frostman, there exists a measure u with compact support e such 
that u(Q)<ciQI s-tv/n, but cap(e, ht)=0,  which contradicts the condition u(e)< 
c cap(e, h~) Unfortunately, the energy of the measure u in this example is infinite; 
IlItueHL,p =oo Hence it does not satisfy condition (3 19) 

To construct a measure c]aimed in Proposition 3 6, we set 

dT(x)=~(xn)~(x')dx'dx= 

where 

X=(X',Xn), X'=(Xl, ,Xn--1), 
z/(xn)=l for ]xnl<l, ~/(xn)=0 for ]x,~l>l and 

f I x ' l l -n ( log (2 / I x ' l )  ) -~ ,  
(3 20) ~(x') = ~ ( ~ ' ) =  

t 0, 

Ix'l < 1 

Ix'l > 1 

Let l<p<oo ,  n>2,  and l = ( n - 1 ) / p  We claim that, for l + l / p ' < / 3 < p  the 
estimate (3 19) is true, but the trace inequality is not valid 

For 0 < r < l ,  set Er={x:[x't<_r , ]x=l<l } It is known [20] that for l = ( n - 1 ) / p  
the capacity of the cylinder Er, cap(Er, h~)=(log 2/r) 1-p 

Then 

~(Er) > cft= I_<r Ix'l x-" l~ -~dx' 
capEr - ( log(2/r)) l-v 

For ~<p, (log(2/r))V-~-~oo as r--*0 Thus the trace inequality is not valid 
Now suppose l + l / p ' < ~ < p  (Clearly, such ~ exists for any 1 <p<oo ) 

We show that 

{clz ' lz+l-"(log(4/Ix'l)) -~+1 for Ix' I <2; 
(3 21) It'7(x) < clxlt_,~ for Ix'l > 2 

It is easily seen that 

J-~ J1~q<~ (Ix'-r ("-0/2 

/,, /? <- E<I ~o(t') dr' dtn 
_ oo (Ix'-t'[2+[x~-t~12) ('~-0/2 

~( t') dr' 
<_ c Ix' t 'f n - z - 1  = c B  

I < _ 1  - 
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For Ix'i<2, we have 

B <_clx'l ~-~+z it'l 1-n l og ]~  dr' 

( 2)-t~j(~ Ix'-t'i'-~+Zdt ' 
+c[x'l z-'~ log ~ I/2<lt [<2Ix [ 

+C ~l= l<,t l<z lt'lt-2n+2 (log ~t~ ) -adt' 

= Bz + B2 + B3 

By direct computation we get 

( B1 _<cix'] l-n+z log 

4 -8 B2 <_ c [x"l-n+ l (log -F~ l ; 

( B3_<cix/I t-n+1 log 

Combining these estimates we see that 

{ 4 \z-~ 
I ~ ( x ) _ < c J x ' , ' - ~  , ,z'l_<2 

If Ix'l>2, we have 

II'~(X) ~ c fll jf[t 

Since/3> 1, we have 

~(t') dt' dtn < c Ixi ' -n f 
J_<l ([X'12 +lxn--tn[2) (n-l)/2 -- JIt [<1 

J ( t  ~(t') dt' < oo, 
I_<z 

which ~ves (3 21) for ix'l>2 
Using (3 21), we see that, for any cube Q 

fQ(I~)~ dx 

[ 4 ~(Z-~)p,dxl+j( x 

~( t') dr' 

]x'l (z-n)p dx t } 
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Recall that l=(n-1)/p Thus p'in-l-1)=n-1 and 1/n=l-lp/n Since ~> 
l + l / p  ~ and (n-l)p~>n-1, both integrals on the right hand side of the preceding 
inequality are finite We obtain that 

, (ZzT)" _< 

which concludes the proof of Proposition 3 6 

Remark 3 1 It can be shown that, for the measure 

d 7  = 

constructed in the proof of Proposition 3 6, the trace inequality holds if and only if 

The estimates of I~7 given by (3 21) are easily seen to be sharp In fact, on the 

support of 7, So = {ix', x,*): Ix'[ < 1, Ix,, I< 1}, we have IlTix)• z-,*+l (log ~_~)1-~ 

For x~2Bo we clearly have IlTix)xclxl ~-n Using these estimates and tak 
ing into account that l=(n-1)/p, one can show that, for ~>p,  condition if) of 
Theorem 2 1 is valid 

4 P o s i t i v e  m e a s u r e s  as  m u l t i p l i e r s  

Recall that h~ and H~ are the spaces of Riesz and Bessel potentials, respectively 
We define the class of multipliers for a pair of potential spaces as 

M(h~-~h~)={TET~:sup H7U[[h~ 1 

A similar definition is valid for Bessel potentials 
A complete characterization of the classes 

Mih~--*h~) and MiI-I~p--*H~) 

(as well as multipliers of some other spaces of differentiable functions) is due to 
Maz'ya and Shaposhnikova [22], mostly in the case when I m > 0  For l m<0,  some 
sufficient conditions were given 

In this section, we characterize positive measures which are multipliers for a pair 
of potential spaces when l m < 0  (Since by duality Mih~--~h~t)=Mih~,--*h~"~), 
we can assume m > 0  a n d / < 0  ) As in Sections 2 and 3, we give full proofs only for 
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Pdesz potentials The case of Bessel potentials requires minor modifications (mainly 
in the case when re>niP or l>n/p'), but we do not give the details here 

Let 
l < p < o o ,  O<m<n/p, O<l<n/p', and 7 E M  + 

Then, clearly, "~eM(h'~h'~ t) if and only if 

(41) < 

(Note that, by duality, hZp =( h~l) *, where 1/p+ l /p~= l, O < l < n/p' ) 
Letting u=IJ  and v=Img in (4 1), we restate it as 

(4 1') I / I , f  Zmgd  < cllfllL  IlgllL,, 

where the functions $ and g may be assumed to be positive 
By Hhlder's inequality 

I / I t f  Img d"y I < cllllfllL p (7)lllmg}]Lp(7) 

Suppose that 

(4 2) 7(E) _< c cap(E, h~ ); 7(E) < c cap(E, h~ n) 

for all compact sets E Then it follows from the trace inequality for the spaces h~ 
and h~ that  (4 1') holds, and hence 7eM(h'~---,h~ l) 

For p=2 and re=l, (4 2) is also necessary in order that  "yeM(h~2---*h2 ~) (See 
[22] ) Indeed, letting f=g in (4 1') we see that  it implies the trace inequality 

[[IlfHL2(.y) < c[[fI[L ~ 

Thus, ff(E)<c c a p e  for all compact sets E 
Unfortunately, conditions (4 2) are not necessary when p # 2  or l#m (See an 

example at the end of this section ) However, it follows from Theorem 2 1 that, for 
p=2 and l=m, (4 2) is equivalent to 

/ (ItT)2dx < c cap(E, hZ2) 

It is this condition, rather than (4 2) that can be extended to characterize 
positive measures 7EM(h'~-*h~ z) in the general case 
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T h e o r e m  4 1 Let 

l < p < o o ,  O<m<n/p, O<l<n/p ~, and 7 E M  + 

Then ~/EM(h'~--,h~ l) if and only if the following two conditions hold: 

(4 3) ./(IlT)Pdx <_ c cap(E, h~n); 

(4 4) fE(Im~/)P dx < c cap(E, hlp ) 

Proof It follows from (4 1') that 7EM(h'~h'~ l) if and only if 

]/ fI ' ( l~gd~)dx I ~cHf"L~,,HgHLp 

By duality, this is equivalent to 

(4 5) IIX, C Xmg d'y)llL~ < ellgllL,, 

for all gEL),, g>O Changing the roles of Ilf  and Img, we get in a similar fashion 
that  (4 5) is also equivalent to 

(a 6) IIXm(X~/d~)HL, <ellfllL, 

for an fELp,, f>O 
We recall that  by Lemma 2 3 

I~(X,.,,gd"),) < c[X~(gI,~'T)4-Img Ii~] (4 7) 

Thus 

where d r =  (IlT)Pdx 
from (4 3) that 

(4 8) 

JJI~(Img d~)llL~ ~_ e (JlI~(gIm~)llLp +llI~gllL~(~) }, 

Suppose that assumptions (4 3) and (4 4) hold Then it follows 

Similarly, it follows from (4 4) that  

IIZJIIL~ (~)_~ cllfllL~, 
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where da= (Ira"l) p The dual form of the preceding inequality is 

IIh(f dr)ILL,, < c IIflIL,,(~) 

Letting f=([mT) 1-p g, we get 

Ii (.f da) = Ii (glmV) 

Thus 

and IlfllL.(~) = Ilgllz. 

IIZ~(aI-,'Y)IIL,, < ~llgllr,, 
Combining this with (4 8) we obtain (4 5) We have proved that (4 3) and (4 4) 

imply "TeU(h'~---*h'~ l) 
Conversely, suppose that ,,feM(hp---,h; l) Then (4 1') is valid which implies 

(4 5) and (4 6) Letting f=g=xQ in (4 1'), we get 

")'(Q) IQI-~/"IQI  - ' / ~  < c /Q I~/ I.,g dr <_ c I I]IIL. Ilglln,, = ~ IQI 

Thus 

(4 9) 

for all cubes Q 

,~(Q) < clQIl-(~+,~)/,, 

Similaxly~ substituting f=XQ and g=XQ in (4 5) and (4 6) gives 

(4 10) /Q(Ii;QFdx<c IQII-mP/"; JQ(I~QF dx<c IQI 1- 'p /"  

(In fact, it is easily seen that any one of the preceding estimates implies (4 9) ) As 
in the proof of Theorem 2 1, (4 10) together with (4 9), implies 

/Q(Ir'y)Pdx < oo; /Q(Im"/)P dx < oo 

for all cubes Q Setting g=XQ(Im"/) p -1 we see that 

= f ( I ~ ) p  dx < llgll~,, 
Jq 

By (4 5) we get 

 411, 
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Clearly, for xEQ, we have 

IQ'I ~/'~-1 f Imgd'y= Ml(ImgdT)(x) <_ cIz(Imgd~/)(x) sup xEQ JQ 
By our choice of g, 

fQ I~gd'~= f glm'~Q dy>_ fQ(l,~'TQ )" dy 

Thus 

(4 12) 

for x~Q 

IQ'I l/n-1/(Ira? Q )P dy ~_ II(Imgd~/)(x) sup 
xEQ JQ 

Now from (4 11) and (4 12) it follows that 

t P 
(413) /Qsup('Q'"/'-I/QnQ(ImTQ)'dyldx<-c/Q(I"y)'dx.eQ 

Let us show that we can replace ImTQ by Ira7 in the preceding inequality We 
have 

/QnQ'(Im~DP'dy ~- c ~ QnQ (Im'll)P dyTC /Q '(Irn'I2)p dy' 

where d71=X2Qd7 and dT:=(1-X2Q)d7 Then by (4 13) 

To estimate the second term note that, for x, yEQ' and te(2Q') c, we have 
It-ylxlt-x I Hence 

I t _ y ] ~ - m  - It_xl.-~ 

Consequently, 

IQ'l ~/"-1 f (.r~2)p dy < c sup JQ'll/"[x~2(x)] p sup 
(415) xeQ JQ ~eQ 

< c f x ~ ( x ) ] ~ - 1  sup IQ'll/"I~2(x) 
xEQ 
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Let diam Q'=r Making use of estimate (4 9) we get 

sup IQ'll/'~Im~[2(x) < csupr  I [ r 162  7(BQ(x)) dQ < c < Co, 
xEQ -- r>0 Jr Qn-m+l -- 

with the constant C independent of zeQ This, together with (4 15), implies 

Io [, fo ]" Io( 
! ! 

(4 16) sup Q'I z/n-1 (Imp/2) v dy dx < c ImT) p dx 
zeQ nQ 

Combining (4 14) and (4 16), we obtain 

Q[M~(xQ~)]PdX < c~(Q), 

where dv=(ImT) p dx Applying again the result of Kerman and Sawyer [14], we 
conclude that the trace inequality 

IlI~fllL~ (~) <_ c]]fllLp 

holds Thus assertion (b) of Theorem 4 1 is valid 
Substituting f=xQ(IlT) p-1 into (4 6), we derive in a similar way that, for 

']O [Mm(XQa)] p dx < ca(Q) 

for all cubes Q, which implies assertion (b) The proof of Theorem 4 1 is complete 

Coro l la ry  4 2 Under the conditions of Theorem 4 1 it is true that 
~/EM(h~--*h~ l) if the following two relations hold 

(4 17) II(ImT)P'(x) <_ C(Im'T) p - l ( x )  < co, a e ,  

(4 18) Im(II'T)P(X) <___C(II'T)P-I(x) <~co, a e 

Proof It follows from (4 17) and (4 18) that 

I ~ [ I z ( I ~ )  p ]P < c/~(I.~7) p < co, a e ,  

/~[x~(Iz~)~] p' < cI~(I~7)~  < co, a e 

By Theorem 2 1, this gives 

E(ImT)P dx <_ c cap(E, htp ), 

f (Z~).d~ c hy) <_ cap(E ,  
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for all compact sets E Applying Theorem 4 1 we conclude that 7EM(h~-*h~ l) 
For p=2 and l=m, the assumptions of Corollary 4 1 coincide with the estimate 

Iz(I~7)9 <cIlT< eo, a e  

By Theorem 2 1 the preceding condition is valid if and only if 

-y(E) < c cap(E, ht2) 

As mentioned above, this is equivalent to "yEM(hl2 --*h~ l) 

Remark 4 1 If p#2  and l#m, conditions (4 2) are not necessary for 7e  

To show this one can use the same idea as in Proposition 3 6 For p#2  we set 
l=(n-1)/p' and m=(n-1)/p Let dT=~l(xn)~a(x')dx'dxn where ~o(x') is defined 
by (3 21) with 8=2  ; ~/(x,~)=l for ]x . ]< l  and 7/(x.~)=0 for ]xn[>l For 

Er=(x=(x',xn):ix'l<_r, IxnI<l},  0 < r < l ,  

we have cap(Er, h~,)~(log(2/r)) 1-p and cap(Er, hPm)-~(log(2/r)) 1-p [20] Then 

"/(E,.) > c fl~ l<_,. lx'[1-n(l~ ) -2dx' ( 2 )  p-2 
cap(Er, h~ n) - (log(2/r))l_ v > c log 

Similarly 

~'(Er) > c  log 
c a p ( f r ,  - 

Letting r ~ 0 ,  we see that for p#2, one of the conditions (4 2) is violated In the 
opposite direction, one can use estimates (3 21) (see also Remark 3 1) to show that, 
for l=(n-1)/p ~ and m=(n-1)/p,  conditions (4 17) and (4 18) are valid Hence, 
7eM(h'~h~Z),  but (4 2) is not true 

Setting p=2, I=(n-2)/2, m=(n-1)/2, (n>4), one can construct an analogous 
example showing that (4 2) is not necessary even in the case p=2, l#m 

There is another generalization of the fact that 7EM+MM(hl2--*h2 l) if and 
only if the L2-trace inequality holds 

Propos i t ion  4 3 Let l<p<eo ,  O<l <n/p, and TEM + Then 7eM(hlv---*h~ z) 
if and only if 

(4 19) [IXlf[[L2(~) < c If filL n 
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The proof is the same as for p=2 By duality, 7EM(h~---,h~ l) if and only if 

f u v d'Yl < iiunh~ iiviih~ 

Substituting u-=v=IJ in the preceding inequality, we see that (4 19) holds 
Conversely, it follows from the Schwartz inequality that 

l i  u v d~/ < cnuliL,(~)iivnL,(~) 

Applying (4 19), which is obviously equivalent to 

liUIILi('y) ~ CHUiih~, 

we get that 7EM(h~p---,h~ l) 
Note that, for p<2, by a result of D Adams (see [3]) (4 19) holds if and only if 

< clQl o/p- l 

for all cubes Q For p>2, we arrive at the 'kipper triangle case" of the trace 
inequality considered in [21] According to the Maz'ya-Netrnsov result (4 19) is 
equivalent to 

f 
(420) Jo l~(t)J dt<oo, 

where p>2 and tJ(t)=inf{cap(E, h~):v(E)>t}, t>0  A non-capacitary characteri- 
zation of the trace inequality in the "upper triangle case" based on different ideas 
was given by Verbitsky [26] 

5 Applications to partial differential equations 

In this section we outline possible applications of the trace inequality and ca- 
pacitary estimates found above to some elliptic partial differential equations We 
mention here only simple cases of several model problems without any attempts of 
generalization However, we treat both linear and non-linear equations, sometimes 
in the non-Hilbert case p~2, so that the elements of non-linear potential theory 
used in the proofs above are essential 

Some of the applications are known (see [20], [3], [14]), and we discuss them 
briefly, emphasizing interesting connections with other parts of Analysis Note that 
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even in this case known results are stated in a new ~alytical  form; all criterions are 
close to being necessary and sufficient, and many particular cases can be derived 
easily from them 

We start with a few problems for the SchrSdinger equation 

(5 1) Lu = - - A u - T u  = 0, 

with -yEM +, related to the trace inequality 

(5 2) 

or, equivalently, 

(5 2') IIZl IIL ( ) II IIL , 

where I1 is the Riesz potential of order l=1 Note that (5 1) and (5 2) are obviously 
connected through the equation 

(5 3) 

We would like to mention the following problems for the SchrSdinger operator: 
(1) Spectral properties of L 
(2) Positivity of solutions 
(3) Unique continuation property 

Problem 1 has been studied in great detail from the point of view of imbedding 
theorems since the work of Friedrichs (see [18], [20], [9], [11], [14]) It follows from 
(5 3) and our Theorem 2 1 that if L>0, then 

(54) I1(I17)2(x)<_c I17(x)<oo a e  

Moreover, there exists a constant c~>0 such that if (5 4) holds for c<c~, then 
the SchrSdinger operator is positive A sui~cient condition for L>0 is given by 

for some p > l  and all cubes Q, if c<c~ As was mentioned above, (5 5) is a refined 
version of the Feffermann-Phong condition applicable to measures 7 not necessarily 
absolutely continuous with respect to the Lebesgue measure Many other applica- 
tious to distribution of eigenvalues, semiboundedness, discreteness and finiteness of 
the negative part of spectra, e tc ,  can be found in the cited literature 
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The second problem has attracted attention of specialists in partial differential 
equations as well as in stochastic processes A necessary and sufficient condition 
for existence of positive solutions to the SchrSdinger equation (5 1) for positive 
potentials 7 was given by R Khas'minsky [15] in terms of the Brownian motion (see 
also [7] and the papers cited there) It was shown later that Problem 2 reduces to 
Problem 1 under minor restrictions on the potential 7, not necessarily positive (See 
A~non [4] where the case of general second order elliptic operators on Riem~nnian 
manifolds is considered; 7 is assumed to be in L l~ p>n ) 

We note that a standard substitute u=e ~ yields that Problem 2 is equivalent 
to the existence of solutions of the n dimensional Riccati's equation 

(5 6) -ZXv = IVvl2+7 

As was pointed out by K Hansson (see Proposition 5 2 below), one can obtain 
directly a criterion for existence of solutions of (5 6) in the following form There 
exists a constant C.  >0 such that, if 

(5 7) 7(E) _< C cap(E, hl) 

for C <Cn and all compact sets E, then (5 6) has a solution (in a weak sense) in R n 
Conversely, if a solution exists, then (5 7) is valid 

Problem 3, first considered for the SchrSdinger equation by T Carleman (see 
[6], [13], [25]), is related to the inequality 

(5 8) IlU[In2(o) < c[[AuHL2(Q-, ) 

where ~ is an arbitrary non-negative weight It is easy to see that (5 8) is equivalent 
to (5 2) with d7=odx, for any weight ~ Hence again the solution can be given in 
terms of condition (5 7) 

Next, we obtain coercive estimates for solutions of the equation 

(5 9) - A u  = 7, 

where 7 is a measure from M(h~--* h~ 1), 1 <p < co (Similar results are also valid for 
the equation --Au+u=7 if we replace h~ by Hn ~ and use the corresponding Sessel 
capacity ) The proof is again based on Theorem 2 1 and Lemma 2 3 

Proposition 5 1 Let 7 e M  + and let u be a solution of (5 9) such that 

(510) f ]uldx=o(r n+l) a8 r - - }  oo 
J r  <[zI<2r 

Then the following properties are equivalent 
(a) 7eM(h~--*h~ 1) 
(b) VueM(h~--.Lp)nM(h~,~Lp,) 
(c) D l u e M ( h ~ h ~  1) for all l, 1l[=2 
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Moreover, the following estimates hold 

(5 11) 

IIDxulIM(a~h~') ~ cl (IWulIM(h~L~) + IWulIM(h~,-~L~ ) 
111=2 

<_ c2HAUllM(h~_.h;x) 

C3 ~ HnlUHM(hg~h;1) 
Itl=2 

Proof 

(s 12) 

Let ~eC c~, ~(x)=1 for Ixl<Z and ~(x)=O for [x]>2 
From (5 9) it follows 

- A ( ~ u )  = ~ / -  2V~r V u - u A ~ ,  

which yields 

Suppose 7EM(h~--,h~ 1) Then by Theorem 2 1 

/E( I17)Pdx < c cap(E, hl) , /E(II~)P dx <_ c cap(E, h I ) 

~ru = I2 ( ~ f -  2Vu~Vu- uA~)  

After integrating by parts this is rewritten as 

~?rU --- I2(~r~[)+I2(uA~r) - 2  div I2 (UV~Tr) 

Put ~?r(x)=~?(x/r) 

By differentiating we obtain that on the ball Ix} < r /2  there holds the estimate 

[VU[ ___~ C (n)(-Tl~'-~r -n-1 f ]u(y)[dy) 
\ Jr<[y[<2r 

where the constant c(n) depends only on n By using (5 10) and taking the limit 
as r--*oo we obtain the estimate 

IVu I < c(n)Ii"y 

Now (5 12) implies 

(5 13) /~  ]VulPdx < c cap(E, hl) , EIVUlP dx < c cap(E, h i ) 

We have proved that VueM(h~---,Lp)NM(h i,--,Lp ) Thus, (a) ::~ (b) 
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Now suppose VuGM(h~-.Lp)AM(h~ -.Lp ) Then by a theorem of Maz'ya 
and Shaposhnikova ([22], Section 1 5), DluGM(h~--~h~ 1) for all [l[=2 and 

[[DlU[[M(h~-~h; 1) ~-~ C(I[VU[[M(hl"-~L~)"[-I[VU[[M(h 1 --*Lp )), 

from which we conclude that (b) :=~ (c) 
The implication (c) ::~ (a) is trivial, because if nluGM(h~--~h~l), then - A u =  

~GM(h~-~h~ 1) Obviously, estimate (5 11) follows from the above argument The 
proof of Proposition 5 1 is complete 

Now let us consider two non-linear problems 

(5 14) -Au=uq+A7 on 12, u > 0 ;  

(5 15) -Au=alVulq+~ on ~; 
(5 16) u = 0 on 012, 

where ~ is a bounded open subset of R '~ with smooth boundary and 7 is a positive 
measure with compact support on f~ Moreover, l<q<oo,  )~ and a are positive 
constants 

The semi-linear problem (5 14), (5 16) was treated by Baras and Pierre [5] A 
necessary and sufficient condition for existence of solutions (in a weak sense) was 
given in terms of a certain non linear functional Later Adams and Pierre [3] showed 
that (5 14) has a solution, for sufficiently small A>0, if and only if, for all compact 
sets Ecl2 ,  

(5 17) ~,(E) ~ c cap(E, h2), 

where p=q~ The proof is based on capacitary estimates and certain weighted Lp 
estimates, as in our Lemma 2 3 

The generalized Riccati's equation (5 15) was considered by K Hansson The 
proof of the following result is to appear 

Propos i t ion  5 2 (K Hansson) If the problem (5 15)-(5 16) has a solution 
(in a weak sense), then for all compact sets EC~ 

(5 18) 7(e) _< c cap(E, hl) 

Conversely, (5 18) implies that (5 15)-(5 16) has a solution for su~ciently small 
~>0 

Han,~son's proof of the second assertion is based on our Theorem 2 1 and an 
iteration procedure Clearly, both (5 17) and (5 18) can be given in a different form 
by using results of the present paper 
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