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Torsion sections of elliptic surfaces 

Rick Miranda( 1 ) and Peter  Stiller 

Abstract  Given a torsion section of a semistable elliptic surface we prove equidistribution 
results for the components of singular fibers which are hit by the section and for the root of unity 
(identifying the zero component with C) which is hit by the section in case the section hits the 
zero component 

1 I n t r o d u c t i o n  

In this article we discuss torsion sections of seml.qtable elliptic surfaces defined 

over the complex field C Recall tha t  a semistable elliptic surface is a fibration 
~r: X---~C, where X is a smooth compact  surface, C is a smooth  curve, the general 
fiber of ~r is a smooth  curve of genus one, and all the singular fibers of Ir are 

seml.qtable, tha t  is, all are of type Im in Kodaira ' s  notat ion (see [K]) In addition, 
we assume tha t  the fibration ~r enjoys a section So; this section defines a zero for a 

group law in each fiber, making the general fiber an elliptic curve over C 

The  MordeU-Weil group of X ,  denoted by M W ( X ) ,  is the set of all sections of 

r ,  which forms a group under fiber-wise addition; the section So is the identity of 
M W ( X )  Note tha t  any section SEMW(X) meets one and only one component  of 
each fiber 

Given any section SEMW(X),  one can ask the following two questions First, 
which components  of the singular fibers of X does S meet,  and second, exactly 
where in these components  does S meet  them? 

When S is a torsion section, the first question was addressed in [M] To describe 
those results we require some notat ion Recall tha t  a singular semi.~table fiber of 
type Im is a cycle of m P l ' s  Suppose tha t  our elliptic fibration ~r: X---*C has s 
such singular fibers F1, , Fs, with Fj of type Im~ Choose an "orientation" of each 

(1) Research supported in part by the NSF under grant DMS 9104058 and the NSA under 
grant MDA 904-92 H 3022 
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fiber Fj and write the mj components of Fj as 

C 0 ( J )  ~(/) r,(J) 
' V l  ~ , ~ J m j - - 1  

where the zero section So meets only C0 (j) and where for each k, Ck (j) meets only Ck(~X 

rood mj If rnj=l, then Fj=C (j) is a nodal rational curve with self-intersection 0 

If mj>_2, then each C (j) is a smooth rational curve with self-intersection - 2  
Given a section S of X, and orientations of all of the singular fibers Fj, inducing 

a labeling of the components as above, we define "component numbers" kj (S) to 
be the index of the component in the jth fiber Fj which a given section S meets 
That is, 

S meets Ckj(/)(s) in the fiber Fj 

This assigns to each section S, an s-tuple (kl(S), , ks(S)) The component number 
kj can be taken to be defined rood mj once the orientation of Fj is chosen; if 
the orientation is unknown, then kj is defined rood rnj only up to sign Note 
that kj(So)=O for every j; indeed, after choosing orientations, the assignment of 
component numbers can be considered a group homomorphism from MW(X) to 
Sj z/mjz 

Now suppose that S is a torsion section of prime order p In this case, since 
p S=So, we must have pkj(S)-O mod mj for every j If p does not divide mj, 
then this forces kj(S)=O However if mj=pnj, then kj(S) can a priori be any one 
of the numbers inj, for i=0, , p - 1  This multiple i measures, in some sense, how 
far around the cycle S is from the zero-section So in the jth fiber 

Of course, changing the orientation in the fiber Fj will have the effect of chang- 
ing this multiple i to p - i  (if i#0; i=O rem~in.q unchanged) We are therefore led 
to a definition of the following quantities Let Mi (S) denote the number of singular 
fibers where kj(S)=inj or kj(S)=(p-i)nj (weighted by the number mj of compo- 
nents in the fiber Fj), and then divided by the total number Y~j mj of components: 

M , ( S )  = 

mj 
j with kj(S)=inj or (p-i)nj 

~-~ mj 
J 

We may view Mi as a probability, since it is the fraction of the fibers where S meets 
"distance i" away from the zero section 

The main result of [M] is the following: 
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T h e o r e m  1 1 1/S is a torsion section of odd prime order p, then M~(S)= 
2p/(p2-1)  if leO, and Mo(S)=I/(p+ I) 

Notice that, firstly, these fractious are independent of S, and secondly, that 
they are independent of i (for i non zero) Thus we obtain an "equidistribution" 
property for these component numbers The proof of the above theorem given in [M] 
used only basic facts about elliptic surfaces and some intersection theory 

In this paper we will address the second of the two questions raised above 
in a similar spirit Again let S be a torsion section of order p, and consider those 
fibers where kj(S)=0,  i e ,  where S and So meet the same component By the above 
result, this happens exactly 1 / (p+l )  of the time, where each fiber is weighted by the 
number mj of components it has Each identity component C0 (j) may be naturally 
identified as a group with C*, by sending the two points of intersection with the 
neighboring components to 0 and co, and the point where So meets C~ ) to 1 (This 
identification can be made in exactly two ways, corresponding to which node is sent 
to 0 and which to oo ) Given such a coordinate choice on CO(j), the section S of 
order p will hit C~ ) at a point whose coordinate is a pth root of unity 

Let us denote by lj(S) that integer in [1 ,p- l ]  such that the point SNCO(j) has 
coordinate exp(27rilj(S)/p) (Since torsion sections can never meet, lj(S) cannot 
equal 0 ) Note that lj(S) is defined only when k j (S)=0 and may be thought of as 
being defined modulo p; in addition, if we switch the roles of 0 and c~, we see that 
lj(S) is replaced by p- l j (S)  Thus, combinatorially, we are in a situation identical 
to the one for the component numbers kj We will call these numbers lj (S) root of 
unity numbers for the section S 

Now define numbers R/(S) to be the total number of fibers having kj(S)=O 
and having lj(S)=4-i mod p (weighted by the number of components rnj), and 
then divided by the total (weighted) number of fibers with kj (S) =0: 

P~/(S) = j with kj(S)=0 and lj(S)=:l=i 

mj 
j with kj(S)=O 

The main theorem of this article is an equidistribution property for these fractious 
R/(S): namely, i fp  is odd, then P~(S)=2/ (p-1) ,  independent of S and i 

These results rely on computations on elliptic modular surfaces We also give 
as a by product the equidistribution for the component numbers kj(S), both by an 
explicit computation and via a relatiouship between the component numbers and the 
root of unity numbers Finally we develop an Abel theorem for a singular semistable 
elliptic curve and use it to compute a Weil pairing on the singular semistable fibers 
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of an elliptic surface Using this Weil pairing, we may also discover the duality 
between the component numbers and root of unity numbers 

2 Equidistribution for the roots of  unity via the universal  p rope r ty  

In this section we will give a proof of the following theorem 

T h e o r e m  2 1 Fix a prime number p, and let S be a section of a smooth 
semistable elliptic surface which is torsion of order p Then 

R I ( S ) = I  i f p=2 ,  and P~(S)=2 / (p -1 )  i fp  is odd 

Proof First note that if p---2, then the only possible value for lj is one, so that 
certainly RI (S )=I  Similarly, if p=3, the only values for lj are 1 or 2, which are 
inverse rood 3; therefore RI(S )=I  again Thus we may assume that p is an odd 
prime at least five 

Second, note that it is immediate to check that if S is a section of 7r: X-*C ,  
and if F: D-*C is an onto map of smooth curves, then S induces a section S ~ on 
the pull-back surface 7r~: X~-*D, which is also torsion of order p Moreover, it is 
easy to see that P~(S')=R~(S) for every i 

If p_>5, then we may consider the elliptic modular surface YI(P) over the mod- 
ular curve X1 (p), which is defined using the congruence subgroup F1 (p) of SL(2, Z) 
given by 

Note that X1 (p) is a fine moduli space for elliptic curves with a torsion point of 
order p, and that YI(p)--*XI(p) is the universal family (see [Shm], [Shd] or [CP]) 
This elliptic modular surface also has a universal section T of order p, and every 
elliptic surface with a section S of order p may be obtained via pull-back from this 
modular surface in such a way that S is the pullback of T By the above remark 
concerning the constancy of the fraction R~ under pull-back, it suffices to prove that 

1 1 /~ (T)=2 / (p -1 ) ,  for each i=l ,  , ~ (p-  ); in other words, we need only verify the 
statement of the theorem for the universal section T of the modular surface Y1 (P) 
over the modular curve X1 (p) 

Now the elliptic modular surface has exactly p -  1 singular fibers, occuring over 
the cusps of the modular curve X1 (p), of which half are of type /1 and half of 
type Ip depending on the order of the cusp: the total '~veight" of the singular 
fibers, which is equal to the Euler number of the modular surface, is ~'~j m j =  
�89 (p2_ 1) For the/1  fibers, the component numbers kj (T) must be 0, contributing 
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[ �89189 to the weighted fraction Mo(T) However, by the 
results of [M] mentioned in the introduction, the total weighted fraction Mo(T) is 
1/(p+l) ,  and therefore the component number must be non-zero for all the fibers 
of type Ip 

At this point, label the /1  fibers as F1, ,F(v_l)/2 Choose an "orientation" 
of each/1 fiber, which in essence means give an isomorphism of its smooth part 
with C*, such that the zero section To meets Fj in the point corresponding to the 
number 1 

Denote by TI=T, T2=2T, ,Tp_l=(p-1)T the non-zero multiples of the uni 
versal section T Note that T~ and Tv_i meet each 11 fiber Fj in inverse roots of 
unity; in other words, using the notation of the Introduction, lj (Ti)=-lj (Tp-i) mod 
p for every i and j Construct a square matrix Z of size �89 whose ij th entry 
is the pair of integers q-lj(Ti)={lj(Ti), lj(Tp_i)} 

Now two torsion sections of an elliptic surface never meet, so the sections {Ti} 
are all disjoint In particular, if we fix an index j ,  in the jth column of this matrix 
Z, we must have p - 1  distinct integers; since the integers come from [1,p-1], each 
integer in this range occurs exactly once in each column of Z 

Next fix an integer ie  [1, x ~(p-1)] By the universality of the modular surface, 
there is an automorphism of the surface fixing the zero section and carrying Ti to 
T=T1 Therefore, the entries along the ith row must be the same as the entries along 
the first row, but permuted in some way (indeed, permuted as the automorphism 
permutes the Ix fibers Fj) 

As noticed above, each integer in [1,p-1] appears exactly once in the first 
column of Z Hence each integer appears in some row of Z By the above remark, 
each integer must then appear in the first row, and indeed in every row This is 
exactly the statement that R/ (T)=2/ (p-1)  in this case [] 

3 Equidistribution for the roots of unity via explicit computat ion 

In this section we will re prove Theorem 2 1 via an explicit computation Fix 
an odd prime p>5, and let F=FI(p) be the relevant modular group defined in the 
proof of the theorem Let H denote the upper half-plane Form the semi-direct 
product F = F o Z  2 and recall that F acts on H x C by 

(aT+b 

Denote the quotient H x C / r  by yO(p), and the quotient H/r by X~ The 
natural map r: Y~176 induced by sending (T, w) to r is a smooth elliptic 
fibration 
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The curve X~ is not compact, but these quotients and the fibration ~ extend 
to the natural compactifications lr:YI(p)-~XI(p) The compact curve XI(p) is 
obtained by adding p - 1  points (called cusps) to the open curve X~ over which 
the elliptic fibration has singular curves These cusps correspond to an equivalence 
class of rational points on the boundary of the upper half-plane and the vertical 
point ioo at infinity 

For this modular group FI(p), representatives for the cusps can be taken to be 

the rational numbers 

r 1 1 1 
with 1 < r <  _--(v-I), and - with 1 < s <  : ( p - l )  

p '  2 ~  " s - - 2 - -  - 

(See [CP] ) The cusp at ioo is equivalent to the cusp l ip  
Over the cusps of the form r/p, we have singular fibers for ~r of type I1; over 

the cusps of the form 1/s, we have singular fibers of type Ip 
There are exactly p sections of the map ~r, which are induced by letting 

= - -  

P 

for 0 < a < p - 1  (See [Shd] ) The zero-section To for ~r is of course defned by 
w(r)=0, while the universal section T can be defined by W(T)=I/p 

A local coordinate for the modular curve X1 (p) about the point corresponding 
to the cusp at T=ico is q=exp(2~riT); the fibers of the modular surface itself may be 
locally represented near this point as C/(Z+Z~)-~C*/q z We want to determine 
a local coordinate about the point corresponding to the cusp at r=r /p  For this, 
choose b, dEZ such that rd-bp=l ,  and let 

which is then in SL(2, Z) This element 7 sends rip to ioo via the action of (3 1); 
for our purposes its effect is to induce an isomorphism 

C/(Z+ZT)  = C / ( Z ( r - p r )  +Z(dT-b))  =~ C*/q z 

where this last map sends w to exp (21riw/(r- pr)); here q = exp ( 27ri (dT -- b) / (r - pr ) ) 
is the local coordinate near ~-=r/p 

Since a/p=a(dT-b)+(ad/p)(r-pT) ,  we see that the section w(v)--a/p maps 
under the above isomorphism to exp(27ri(a~,(r)+ad/p)) As T approaches r/p, ~(r) 
approaches ioo and this quantity approaches exp(2~riad/p) This is the root of unity 
which we have desired to compute 



Torsion sect ions of  ell iptic surfaces  123 

Note that had we used -~/instead of ~/we would have gotten the inverse root 
of unity, and that d is determined only mod p 

Using the notation of the introduction, let us label the /1  fibers of the modular 
surface as F1, ,F(p-1)/2, with Fr corresponding to the cusp at ~'=r/p We have 
shown that for the section T~=(~T, 

= a t  -1,  

where the value of r -1 is taken modulo p 
This gives an alternate proof of Theorem 2 1, since for any fixed a, these values 

are equidistributed among the nonzero classes mod p, up to sign 

4 Equidistribution for the component 
numbers via explicit computation 

The main theorem of [M] concerning the equidistribution of the component 
numbers can also be proved by appealing to the universal property of the modular 
surface 7r: YI(p)--'XI(P) Using the notation of the introduction, one sees that the 
fractions Mi(S) for a torsion section S of order p remain unchanged under base 
change Thus it suffices to check that they have the correct values, namely those 
given by Theorem 1 1, for the universal section T of the modular surface This we 
do in this section 

As noted in the previous section, the modular surface contains the fibers 
F1, ,Fr, ,F(p-1)/2 of type /1  over the cusps represented by the rational num- 
bers r/p, for l < r < � 8 9  For these fibers, since they have only one component, 

1 1 2 the component number k~ (T) is zero, contributing [~ (p -  1)] / [3 (P - 1)] = 1/(p+ 1) 
to the fraction M0 (T) 

The rest of the singular fibers of the modular surface will be denoted by 
F(p+l)/2, , Fp-1 where Fp-s will be taken as the fiber over the cusp represented 
by the rational number l / s ,  for 1 < s < �89 (p -  1 ) 

The component number theorem then follows from the next computation 

Proposition 4 1 With the above notation, if l < s < � 8 9  then kp_s(T)= 
=l=s (the indeterminacy of the sign being due to the choice of orientation of the 
singular fiber Fp-s ) 

Proof It is convenient to again transport the computation to r=ioo as was 
done in the previous section Fix an s, with l < s < � 8 9  and let 



124 PAck Miranda and Peter Stiller 

As r approaches 1/s, 7(~')=~-/(1-s'r) approaches ioo 

This element 0' induces an isomorphism 

c / ( z + z r )  = c / ( z ( 1 -  --- C*/q 

where this last map sends w to exp(27riw/(1-s~')); here q----exp(27riT/p(1--ST)) is 
the local coordinate near this cusp 

Since 1/p=(1/p)(1--ST)+(s/p)'r, we see that the universal section T, which is 
defined by w (T) ---- 1/p, maps under the above isomorphism to exp (21ri (1 + s7 (T))/p) ---- 
CpqS, where Cp=exp(2 i/p) 

Now using the toric description of the surface near this cusp, (see [AMRT, 
Chapter One, Section 4]), the exponent of q (modulo p) in this formula governs 
which component is hit by the section In particular, the universal section hits 
component s in the fiber over the cusp represented by 1/s Note that using - 7  
instead of -~ would result in - s  instead of s [] 

5 T h e  c a n o n i c a l  i n v o l u t i o n  

The matrix 

:) 
normalizes the congruence subgroup FI(p), and therefore induces an automorphism 
of the modular curve Xl(iV) Since .4 2 is a constant multiple of the identity, this 
automorphism (which we will also call A) is an involution, called the canonical 
involution; in terms of the variable T, .4 takes 7" to - 1 / p r  The involution .4 also 
permutes the cusps, exactly switching the two sets of �89 cusps; indeed, the 
rational number rip is taken by A to the number -1/r ,  which is equivalent to the 
number 1/r under the action of r l(p)  Thus the /1 cusp represented by rip is 
switched via .4 with the Ip cusp represented by 1/r 

Hence we observe that under this correspondence, the/1  cusp having u as the 
root-of-unity number for the universal section T is paired with the Ip cusp having 
u - I  as the component number for T 

Note that for the h fibers, all sections have component number kj equal to 
zero, and all non zero sections have root-of-unity number lj in G(p)=(Z/p)X/~l 
Moreover, for the Ip fibers, all non zero sections have component number kj also in 
this value group G(p) For a cusp x of type I1, denote the root-of-unity number of 
the universal section T in G(p) by lx; for a cusp x of type Ip, denote the component 
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number of the universal section T in G(p) by kx With this notation the above 
statement can be re phrased as follows 

(5 i) For every cusp x of type /1 ,  lx -- kA~ in G(p) 

This is a manifestation of a certain duality between the two notions This 
we will explore further in the next sections, via a version of the Weil pairing on 
singular fibers of elliptic surfaces Before proceeding to this, we want to make some 

' elementary remarks concerning the modular surface and this involution 
As above, denote the modular surface over XI(p) by 7r:YI(p)-*XI(p) Let 

r ' :YI(p) ' -- ,XI(p) denote the pull back of ~r via the involution A This operation 
exactly switches the fibers over the cusps, so that  the fiber of ~d over an riP cusp 
is now of type Ip, and the fiber of 7d over a 1Is cusp is of t ype /1  The universal 
section T of r pulls back to a section T'  of ~' (We note that  this surface is the 
modular surface for the group Fl(p) ) 

An alternate way of constructing this elliptic fibration ~r' is to take the origi- 
nal modular surface 7r: YI(p)--*XI(p) and divide it, fiber-by-fiber, by the subgroup 
generated by the universal torsion section T Over the cusps represented by r/p, 
the original modular surface has I1 fibers, which are rational nodal curves; in the 
quotient there is again a rational nodal curve, but the surface acquires a rational 
double point of type Ap-1 at the node, and the minimal resolution of singularities 
produces a fiber of type Ip Over the cusps represented by l/p, we have Ip fibers in 
the original surface; in the quotient the p components are all identified to a single 
/1 component For details concerning this quotient construction, the reader may 
consult [MP] 

The section T'  in this view comes not from the original section T, but from a p- 
section of the modular surface, consisting of a coset of the cyclic subgroup generated 
by T in the general fiber of ~r (The universal section T and all of its multiples of 
course descends to the zero-section of 7d ) The formula (5 1) implies that  

kx(T') =lx(T) -1 

in the group G(p) 

6 T h e  f u n c t i o n  g r o u p  o f  a s e m i s t a b l e  e l l i p t i c  c u r v e  

In the next section we will develop a version of the Weil pairing on a semistable 
singular fiber of an elliptic surface (that is, a fiber of type Ira) The essential 
ingredient in the definition of the Weil pairing on a smooth elliptic curve is Abel's 
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theorem; see for example [Sil, Chapter III, Section 8] Therefore we require a 
version of Abel's theorem for a fiber of type Ira, and this in turn requires a notion 
of appropriate rational functions on the degenerate fiber In this section we describe 
the set of functions which we will use; Abel's theorem is an immediate consequence 
of the definition 

For a nodal fiber F of type I1, which is irreducible, we have the function 
field of rational functions on F, which may be identified with the field of rational 
functions on p1 The non-zero elements of this field form a multiplicative group, 
which has as a subgroup K; the group of functions which are regular and nonzero 
at the node This group K: comes equipped with a divisor function to the group of 
divisors Div(F 8m) supported on the smooth part F sm of F Since F 8m is a group, 
there is a natural map ~:Div(FSm)--*F sm which takes a formal sum of points of 
F sm to the actual sum in the group It is easy to check that Abel's theorem holds: 
a divisor DEDiv(F  sm) is the divisor of a function f E E  if and only if deg(D)=0 
and ~(D)=0 in the group law of F srn 

We will now extend this to fibers of type Im with m>2  With this assumption 
there is no field of functions to employ, since the fiber F is no longer irreducible 
Thus we must find a multiplicative group of appropriate functions without the aid 
of an associated field of rational functions 

For this we rely on the existence of a set of coordinates on the components 
of F,  which are adapted nicely to both the group law on F 8m and to the elliptic 
surface on which F lies 

Definition 6 1 Suppose that the singular fiber F (which is assumed to be of 
type Irn) has components Co, C1, , Cm-1, with the zero section So meeting Co and 
Cj meeting only Cj• for each j Let uj be an affine coordinate on Cj for each j 
The set {uj} of coordinates will be called a standard set of a~ne  coordinates on F 
if the following conditions hold: 

(a) For each j ,  uj=O at CjNCj_I and uj=oo a#~-~Cjf~Cj+l 
(b) The map a: C*• Z/ rn -*F  8m sending a pair (t, j) to the point u j = t  in 

component Cj of F is an isomorphism of groups 
(c) For each j ,  if we set v i = l / u  i to be the atone coordinate on Cj near uj=oo, 

then vj and Uj+l extend to coordinate functions Vj and Uj+I on the elliptic surface 
near the point CjNCj+I, such that Vj=0 defines Cj+I and Uj+I =0 defines Cj near 
this point 

Proposition 6 2 Let F be a fiber of type Im on a smooth elliptic surface X 
Then a standard set of a]fine coordinates exist on F Moreover, given the ordering 
of the components, there are exactly m such standard sets of a~ne coordinates on F 

Proof The existence of a standard set of atone coordinates on F is an immedi- 
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ate consequence of the local tonc  description of a smooth sermstable elliptic surface 
near a singular fiber of type Im given m [AMRT, Chapter  One, Section 4]. Indeed, 
the standard set of affine coordinates m exactly the set of coordinates on the tonc  
cover described there, wlnch descend mcely to X 

Note that  by C a) and (b), the coordinate u0 on Co is deternnned: it must 
be 0 at CoNCm-1, co at CoNCI, and 1 at SoNCo. Similarly, each coordinate u 3 is 
determined by the point uj = 1, which must be one of the points of C~ of approprmte 
order. Thus there are exactly m possibilities for Ul By (b), once Ul is determined, 
so m u 3. It  is easy to check that  these m different possibilitms all give standard sets 
(once it LS known that  one of them does). [] 

Note that  if (u0, ..., urn-l} IS a standard set of atone coordinates on F ,  then 
any other standard set is of the form (u~=r for some m th root of unity 

We can now define the group of functmns ]C which plays the role of ratmnal 
flmctmns on F A bit of notation m useful. Suppose tha t  g(u) is a nonzero ratmnal 
flmctmn of u. Firstly, define no(g) to be the order of g at u=0 ,  and noo(g) to be 
the order of g at u=oo (which LS the order of g(1/v) at v=O). These integers are 
of course independent of the chome of affine coordinate u. Moreover, we have that  
g(u)/u "~~ has a finite value at u=O, and g(u)u '~~176 has a finite value at u=c~.  
Secondly, define co(g) to be the value of g(u)/u n~ at u=O, and define coo(g) to 
be the value of g(u)u '*~176 at u--co.  These constants do depend on the choice 
of coordinate u; they are simply the lowest coefficient of the Laurent series for g 
expanded about u=O and u=oo. 

If we write 

e I 

(6.3) g(u) = I- [ / l-I 
~=i k=l  

with ~, Az and #k nonzero, a n d / E Z ,  then 

(6.4) no (g) = l 

(6.5) noo (g) =f-e-l 

(6.6) co(g) = a ( - 1 ) ~ + l  I I , \ ~ / I I  ~k, and 
~ k 

(6.7) coo(g) 

Fix a standard set {u: } of a ~ n e  coordinates on F Define/C to be the set 
of ra-tuples of nonzero rational flmctlons (go(Uo), gl  (Ul) ,  ---, gra--1 (Urn--l)) satmfymg 
the foUowmg conditions: 

(a) For each 3, n~(g~)--Fno(g~+l)----O. 
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(b) For each j, Coo(gj)=Co(gj+l) 
(c) m-1 Z =0  0(gj)=0 
Note that condition (a) says that the functions {gj) have opposite orders at the 

nodes of F,  and condition (b) says that with respect to the standard set of affine 
coordinates, they have the same leading coefficients in their Laurent series at these 
nodes These are local conditions about each of the nodes The final condition (c) 
is a global condition, saying that the orders sum to zero upon going around the 
cycle of components We note that K: is a multiplicative group (the operation being 
defined component-wise), and that it does not depend on the particular standard 
set of affine coordinates used 

These conditions are motivated by a notion of restriction of functions from the 
surface to the fiber Suppose that G is a rational function on X We may uniquely 
write its divisor, near the fiber F, as div(G)=H+V, where V is the '~ertical" part 
of the divisor consisting of linear combinations of components of F, and H is the 
"horizontal" part of the divisor consisting of linear combinations of multi-sections 
for the fibration map If one restricts to the general fiber near F,  one only sees the 
contributions from H We want to make the following regularity assumption for 
the function G: 

{*) No curve appearing in the horizontal part H passes through any node of F 

Under this assumption, we see that the zeroes and poles of G, as we approach 
the singular fiber F,  survive in the smooth part F 8'~ of F Therefore we have a 
chance of obtaining a limiting version of Abel's theorem 

Take then such a rational function G, and let us define a "restriction" to the 
fiber F, which will be an element of the group ]C Fix a standard set of affine 
coordinates {uj ) on F, and also assume that we have normalized the base curve so 
that ~r=0 along F Write V=)-~j rjCj as the vertical part of div(G) For each j ,  
consider the ratio G/~ rj; this is a rational function on X which does not have a zero 
or pole identically along Cj (since 7r has a zero of order one along F) Restricting 
this function to Cj gives a nonzero rational function gj (uj) 

L e m m a  6 8 If G satisfies the regularity condition (*), then the m tuple 
(go, ,gin-l) lies in ]C 

Proof Near the point CjNCj+I, we have local coordinates Uj+I and Vj on X 
as in the definition of a standard set of affane coordinates The curve Cj is defined 
locally by Uj+I =0, and Cj+I by Vj =0 Moreover the fibration map r is locally of 
the form ~r=Uj+IVj Hence near CjACj+I, we may write G as 

G(Uj+I, Vi) = U~.~_I VjrJ+~ L(Uj+I, Vj) 
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where the condition {.} implies that L(0, 0)#0  With this notation we have g j ( v J =  
v~) + '-r j  L(0, vj) and gj+l(uj+l)=u~+S~+~n(uj+l,0) 

Thus we see that n~(gj)=rj+l-r j  and no(gj+l)=rj-rj+l, proving that con 
dition (a) of the definition of/C is satisfied 

We also have that coo(gj=co(gj+l)=L(O, 0), giving us condition (b) 
Finally, the sum ~ j  no (gj) telescopes to 0, showing that condition (c) holds [] 

From this point of view, the definition of K:, though at first glance rather ad- 
hoc, is actually quite natural Motivated by the above, we call/C the function group 
of the singular fiber F 

We have a divisor map div: K:--,Div(FS'~), sending an m-tuple (go, , gin-l) to 
the formal sum of the zeroes and poles of each gj, throwing away any part of the 
divisor at the nodes This map is a group homomorphism Recall that we also have 
a natural summation map @ from Div(F sin) to F sm Abel's theorem for F can be 
stated as follows 

T h e o r e m  6 9 A divisor DEDiv(F sin) is the divisor of an element of IC if 
and only if deg(D)=O and @(D)=O 

Proof Let (g_)EK:, and let D=div(g_) For each j ,  write 

i=1 k=l  

From the definition of K:, we must have 

lj-%+l 

i k 

J 

and 

Summiug the first set of equations over j ,  we see that 

d e g ( D ) = E ( e j - f j ) = O  
J 

Multiplying the second set of equations over j ,  and applying the above, we have 
that 

~-'S~..~) = 1  
i I-Ik #k 
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which shows that the C* part of the group element @(D) is trivial Finally, to show 
that the Z/m part of @(D) is trivial, we must show that ~"~.jj(ej-fj)=O mod m 
Writing e j - f j  as t j+l- l j  using the first equation, we see that this sum telescopes 
to 

J J 

which is 0 mod m by the third equation This completes the proof of the necessity 
of the conditions on D 

We leave the sufficiency, which is equally elementary, to the reader [] 

We note that the only elements (g_) of/C which have div(g_)--0 are the constant 
elements, where gj--c for every j with c being a fixed nonzero complex number We 
thus have an exact sequence 

v-  d i v  ~,-.,. / T~sra'~ 
0--* C* -* A. --* tnv0t~ )~'~F"~"*O 

where Div0(F 8m) is the group of divisors of degree 0 on F 8m 

Example 6 10 Suppose F is a fiber of type Ira}, with a standard set of affine 
coordinates {uj} Fix a primitive mth root of unity r and an integer c~E[0,m-1], 
and let p be the point of Ca} with coordinate u a k : r  We note that p is a point 
of order m in the group law of F 8rn, so that D=mp-mO_ is a divisor on F s'~ with 
deg(D)=0 and @(D)=0 (where 0 is the origin of the group law, i e ,  the point in 
Co with coordinate uo=l )  

By Abel's theorem, there is an element (g)EK: such that div(g)=D If c~=0, 
this element (g) is 

(uo - r  
go = (uo_l)r~, gj----1 f o r j # 0  

If l < a < m - 1 ,  we have 

go = ( u o _ l ) m ,  

g~ =u~  -'~ 

~ (~(--'I]rl. m ) , 

g j  = 

for j = 1, , a k - 1 ,  

and 

for j = a k + l ,  , m k - 1  
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7 The  l imit  Weil pair ing on a degenera te  elliptic curve 

The Well pairing on a smooth elliptic curve E is defined as follows (see [Sfl, 
Chapter III, Section 8]) Let S and T be two points of order m on E Choose a 
rational function g on E with div(g)=[m]*(T)-[m]*(O_O.), where [m] denotes multi- 
plication by m Then the Weil pairing em on the m-torsion points of E is defined 
by 

e.~(S, T) = g(Xr 

for any X E E  where both g(X(gS) and g(X) are defined and nonzero (We use @ 
as the group law in E to avoid confusion ) The existence of the rational function 
g relies solely on Abel's theorem for E, as does the fact that em has values in the 
group of mth roots of unity 

In the previous section, we developed an Abel theorem for a singular fiber F of 
type Is on a smooth elliptic surface, by replacing the notion of the field of rational 
functions with the limit function group ~ This allows us to define in the same way 
a limit Weil pairing on the m-torsion points of F,  which we also denote by em In 
this section we compute it 

Since the em pairing is isotropic and skew-symmetric, it suffices to compute 
era(S, T) for generators S and T of the group of m-torsion points on F 

Fix an integer m; in order that F have m 2 m-torsion points, F must be of type 
Imk for some k Since the Weft pairing is formally invariant under base change, we 
may assume k= 1 and F is of type Im Also fix a standard set of affine coordinates 
{uj} on F Let r be a primitive mth root of unity Let T be the 
m-torsion point of F which is in component Co having coordinate u0 =r Let S be 
the m torsion point of F which is in component C1 having coordinate Ul--1 These 
points S and T generate the group of m-torsion points of F 

Let u=exp(2ri/m 2) so that ym=r Consider the point T~EF in component 
Co having coordinate uo=u; note that mT~=T, and [m]*(T)=~,R(T'~R ) where 
the sum is taken over all m-torsion points of F Similarly, [m]*(O)=~'~R(R ) 

The element (_g)e/C such that div(g_)=[m]*(T)-[m]*(O) is defined by 

u7-r 
gJ(uJ) = r  7-1 

Now choose an XECo with coordinate uo=x The point X ~ S  is then the 
point in C1 with coordinate x Thus 

i x m - r  / Xm--r ~---r 
g(X~S)/g(X)  = gl (x)/go (x) = r ~ _ - ~  

- / Xm--1 

This shows that era(S, T) =r -1 
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Let M(t, s)=tT(gsS be the general point of order m in F; note that M(t, s) is 
in component C, and has coordinate us =r Extending the calculation above using 
the bilinearity and skew-symmetry we obtain the following 

P r o p o s i t i o n  7 1 
the form 

With the above notation, the limit Well pairing on F takes 

e,~(M(tl, sl), M(t2, sz)) = ~t182-t2sl 

Note that this limit Weil pairing is computed using Abel's theorem for the 
limit function group/C; since/C is independent of the choice of the standard set 
of arlene coordinates used, as are deg(D) and ~(D), we see that Abel's Theorem 
and the limit Well pairing are both wen-defined, independent of the choices made 
(The formula of the above Proposition also depends on the choice of the sections S 
and T; if we choose different sections, the formula may change, but the limit Weil 
pairing does not ) 

Moreover the limit Well pairing is indeed the limit of the usual Well pairing 
on the nearby smooth fibers of the elliptic surface This follows from the nature 
of the element (_g)E/C used in the computation above: each gj has degree 0 on 
the component where it is defined, and hence is the usual restriction of a rational 
function G on the elliptic surface This function G can be chosen so that, when 
restricted to the nearby smooth fibers, it is the function used to define the Well 
pairing there Therefore the limit Weil pairing is the limit of the usual Well pairing 

8 The  roo t -o f -un i ty  and c o m p o n e n t  
n n m b e r  re la t ionship  v ia  the  Weil  pai r ing 

Finally, we want to point out that the duality between the root-of-unity results 
and the component number results, which were mentioned in Section 4 as being 
related to the canonical involution, can be expressed also in terms of the Weft 
pairing We will compute this Weil pairing on the singular fibers using the limit 
Weft pairing developed in the previous section 

First let W be a torsion section of order m of an elliptic surface passing through 
the zero component Co of an Im fiber Let (=exp(21ri/m) be a primitive mth root 
of unity Assume that the Im fiber is given a standard set of arlene coordinates, 
such that the point WNCo has coordinate uo=~ a, with ( a , m ) = l  In the notation 
of the last section, we have W=aT Let W* be the set of (local) sections Z such 
that era(W, Z) - - (  By the computation given in Proposition 7 1, we see that such 
a local section Z is one which passes through component b, where ab-1 rood m 
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Specializing to the case where m is an odd prime p, and using the root-of-unity 
numbers l and the component numbers k, we see the following: 

(8 i) 
If kj (W) = 0 and lj (W) = a, then W* is the set of local sections Z 

with ks(Z ) =a -1 

Finally let us return to the modular surface 7r: Yl(p)----~Xl(p) and the quotient 
~d: Ylr(p)-*Xl(p), as described in Section 5 In the above, set W--T,  the universal 
section, and fix a cusp x of type /1  on XI(p) Assume that  lx(T)=a for this cusp, 
that  is, TACo is the point with coordinate ~a The section T r on the quotient 
is induced by the multisection of r which, by (5 1), has kx=a -1 Since the Weil 
pairing is invariant under isogeny, we see by (8 1) that  T t is exactly the image, 
locally, of the set W* of sections pairing with T to give value r Alternatively, we 
may write 

T ' =  image of e~(T, _)-1(~) 
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