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The complex scaling method for 
scattering by strictly convex obstacles 

Johannes SjSstrand and Maciej Zworski 

1 I n t r o d u c t i o n  a n d  s t a t e m e n t  o f  r e s u l t s  

The purpose of this paper is to obtain upper bounds on the number of scattering 
poles in varying neighbourhoods of the real axis for scattering by strictly convex 
obstacles with C ~ boundaries The new estimates generalize our earlier results on 
the poles in small conic neighbourhoods of the real axis and include the recent result 
of Harg~ and Lebeau [3] on the pole free region In fact, one of the new components 
here is their observation on the choice of the angle of scaling (see Sect 2) 

The starting point of our approach is the same as in [13]: the poles are identified 
with the square roots of complex eigenvalues of a non self adjoint operator obtained 
by scaling 'all the way to the boundary'  That  produces a new elliptic boundary 
problem for which a semi classical calculus was developed in [13] It was then 
applied to the s tudy of the characteristic values of the scaled operator 

In the present work we adopt a more direct and microlocal approach partly 
similar to the one used in [9] By a microlocalization on the boundary we reduce 
the problem to the study of ordinary differential boundary problem for which a 
detailed spectral information is available 

We recall that  if P is - A  on R ~ \ O ,  with the Dirichlet boundary condition, 
and O is a bounded subset of R n with a connected exterior, then the resolvent 

(P-)~2)-I:L2(R"\O) ,H2(R"\O)nH~(R"\O), Im)~ > 0, 

extends to a meromorphic operator 

(P-A2)-1  : L2omp(R" \O)  ~ H~oe(R"\O)nH ~ toe(R" \O) ,  

for AEC or AEA, the logarithmic plane, when n is odd or even respectively (see [6], 
[14], [10]) Here Hk(Rn\O) is the standard Sobolev space and H~(Rn\O) is the 
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2 2 1 closure of C ~  (R n \ 9 )  in Hi-norm Then, Lcomp , Hioc, H~ loc are defined from these 
spaces in the usual way The poles of this continuation are called the scattering poles 
and can be considered as a replacement of the discrete spectral data for an exterior 
problem In our results we count the number of the poles with their multiplicity 
(see [10]) 

We will estimate the poles in the following neighbourhoods of the real axis 

(1 1) {r : l _< Re ( _< r, - I m ( < / ~ ( R e r  

where the function # is assumed to satisfy 

(1 2) 
1 #(z)l/2z, #(x)2 x n-1 non decreasing, 

- 2 / 3  ___ z > C 2  
• < 

- -  C 1  ~ 

We remark that, if n>4,  the last monotonicity condition is a consequence of the first 
two and that we could take more general/~'s at the expense of some complications 
in the statements The natural #'s to take are #(r)=~r -~, O<_a<2--see Fig 1 

C 

- I m  ( =  1Stain (Re ~)1/3 - C l  

- lmr =#(Re ~)Re 

Figure 1 The neighbourhoods of the real axis and the critical curve 

T h e o r e m  1 
isfying (1 2) then 

If  N(r, I ~) is the number of scattering poles in (1 1) with # sat 

N(r ,#)  <_Cl~(r)3/2rn+C, r > C ,  

for some constant C depending only on the 0 and the constants in (1 2) 
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The proof will be given in Sect 7 as a consequence of a more precise local 
upper bound in Theorem 4 there In that bound we also recover the result of Harg~ 
and Lebeau [3] on the pole free region: 

(1 3) I.~ . ~ . - - 2 / 3  ~u(r) < 2~mm. --clr -1 ~ N(r ,g )  < C, 

where 
t \2/3 

~mind----ef22/3COS(171")~l(z rain Ki(x  )) , 
E00 i=1 n--1 

with Ki(x'), the principal curvatures of 0 0  at x' and -r the first zero of the Airy 
function In other words there are only finitely many poles above the critical cubic 
parabola - Im~=�89  Near that curve one expects finer estimates 
once the geometry is more controlled To that aim we have 

T h e o r e m  2 I f  the second fundamental form of O0 restricted to the sphere 
bundle of O0 has a non degenerate minimum on an embedded submanifold of codi 
mension u (in the sense that the transversal Hessian is nondegenerate), then the 
number of scattering poles in 

{ l_<Re~_<r, 

-- IIn ~ __~ 1 Stain (Re ~)1/3 -~-c(Re ~)1-o~, 

2 <a~_l, is bounded by 

(1 4) Crn- l r  -((a/2)-(1/3))v 

As in the case of Theorem 1, a more precise local bound is possible, see (7 8) 
The special choices of # in Theorem 1 give the following corollaries In the 

first one we take 0 large (at least, to get a non-trivial statement, greater than the 
critical value): 

Corol la ry  1 1 For 1Smln<0<01 and r>C(01) 

#{~ :~ a scattering pole, 1 <_ Re r <_ r, - Im ~ < O(Re r = 0(03/2)rn-1 

For 0 small and c~=0 we recover, in a strengthened form, the result of [14]: 
Corol la ry  1 2 IfO<O<Oo t h e n f o r r > C  

~/:{~ : ~ a scaUering pole, 1 ~ Re ~ < r, - J_in ~ _~ 0 Re ~} = 0(03/2)r  n 

The two corollaries and the pole free region estimate are optimal for the sphere 
In the non-symmetric case the only lower bound follows from the work of Bardos, 
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Lebeau and Ranch [1]: a non-degenerate, isolated, simple closed geodesic V of length 
d~ on the boundary of a strictly convex analytic obstacle generates infinitely many 
poles in any region 

"x 1 
{ r 1 6 2  ~ S(R,er B> .~,.y d==ef 2--1/3r COS (6)'-T'x]a~ ,I0 f ~0"Y(8)2/3 d$, 

where 0~ is the curvature of "y in R n, n odd and s is the length parameter on 
From their argument it also seems to follow that there are only finitely many poles 
in the region with 1 ~Smin replaced by B, B<Bmin, where 

- 1 3  ~, ]11" 1 ~0T inf 2 / r  ~ L0,y(8) 2/3 d8 Bmi. = sup .  
T>0 t~' a geodesic} 

Using a simple Tauberian argument [12] one actually sees that for every e>0  and 
B>B~,  there exists r(e, B) such that 

# { ( : (  a scattering pole, IP~r <r, - ~ r  Rer ?/3-~, r> r (e ,B )  

Finally, we give an example of an obstacle for which the assumptions of The- 
orem 2 are nicely satisfied We let OO be an ellipsoid of revolution Then the 
second fundamental form restricted to the sphere bundle takes its minimum on the 
normal bundle to the shortest geodesic, which is assumed to be the equator The 
codimension is 2 and the bound (14) becomes O(1)r (s/3)-a compared to the bound 
obtained using Theorem 1, O(1)r 2 In the analytic case a better estimate is possible 
(corresponding to a larger pole free region obtained by using Brain above) but the 
bound seems new if the boundary is no longer analytic but the geometry is the 
saIne 

2 The  scaled o p e r a t o r  

In this section we will review the complex scaling construction used in the 
preceding papers [10], [11], [12] stressing the explicit representation of the operator 
Thus, let O c R  n be bounded and open with a smooth boundary We assume that O 

is strictly convex It then follows that d( x ) d-e--f dist( x, O) is in C ~  (Rn \ O ) and that 
d(x) is a convex function with kerd~(x)  of dimension 1, generated by x - z ( x ) ,  
where z (x )eO0 is the unique point such that d(x)=[x-z(x)[  We observe that at 
zEO0 the exterior unit normal of 0 0  at z is given by 

(2 1) n(z) = Vd(z) 



The complex scaling method for scattering by strictly convex obstacles 139 

If Zo E 00 ,  we choose some local coordinates y ' =  (Yl, , Yn-1) for 0 0  centered at zo 
so that we have a corresponding diffeomorphism 

(2 2) s: neighrt~-, (0) , neighoo (zo) 

We then get the normal geodesic coordinates (y', Yn), Y'EneighR--1 (0), yn>O for a 
sector of an extension of O, given by 

(2 3) x = s(y') +ynn(s(y')) = s(y') +ynVd(s(y')) 

We will also write 

(2 4) �9 = ~(v), v = (v', v,,) 

Let Xo=s(O)+yonn(s(O)) be some fixed point (we take y '=0  for simplicity--any 
other:choice of y~ e neighrt~-I (0) would work in the same way) We  shall compute 
the leading contribution to A in the y-coordinates at the fixed point yo=(0,y0 ~) 
After a Euclidean change of the x-coordinates we may assume that Xo=(0, Y0 ,~) lies 
on the positive xn axis From (23) we get 

(25)  Oyn=Vd(s(Y')), ~--~y(YO) = 

We also have, 
Ox Os 
Oy--- 7 = ~-~ t-YnV2d(s(Y')) ~ , 

Y 

and in particular at y~=O: 

(2 6) Oz = "I-- d"~ 
Oy 0 

Notice that dg z,(0)>0 so that the matrix (26) is invertible for y n E C \ ( - o o ,  0) 
y'=O and for y= small we get from (2 6) 

d" 
(2 7) \ N ]  0 

" T d l t  

At 
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The principal symbol of - A  then becomes (still at y'=0): 

(2 9) 

(2 I0) 

II(OX~--I I(t~XV1 \ 

f Os -1 2 , 2 

2 f OS - - i  # 2 

tlg 0 8  \ - -1 f --1 
2 /d"  - - 0  ' ( ~ ( 0 ) ) i 7 ' > + O ( y 2 t 7  '2) - = x , ( o ) t , o r  ))., 

Here the second term in the last expression is the principal symbol of - A o o  d--ef 
l# R(y',D~ ) expressed in the local coordinates y' We can interpret d x ~,(0) as the 

Hessian of d at 0 restricted to ToO0 (viewed as a subspace of 1%" =ToFt ~) and, by 
the Euclidean duality, as the corresponding Hessian on T*OO Then 

< )-' )-'> Os , Os , 
d~ z (0) (0) rl, (0) 71 

is the corresponding quadratic form expressed in the (y', 17')-coordinates on T~O0 
Let Q(y', Du ) be the corresponding elliptic differential operator on the boundary 
(where now we let y' vary) From the discussion above we see that R(y', ~1') is dual 
to the first fundamental form (the metric on 00 )  and Q(y', 17'), to the second fun- 
damental form (given at ? /=0  by (d T n(Y') , (Y ' ,O))=(d~x (O)Y',Y'), Y 'eToO0) 
Since the principal curvatures of 0 0  are the eigenvalues of the second fundamental 
form with respect to the first, we obtain 

L e m m a  2 1 The principal curvatures of O0 at xl=s(y ') are the eigenvalues 
of the quadratic form Q(y', i7' ) with respect to the quadratic form R(y', if) 

With the new notation, and for y', y .  small, we now get 

(211) 
-h2A (hDu.)2+R(y' ,hDy 2 ' = ) -  y.~Q(y ,hDy ) 

+O(y2(hD~ )2) +O(h)hD~ +O(h  2) 

Here we found it convenient to introduce the semi-classical parameter h>0  that we 
will let tend to 0 

In [13] we considered exterior complex scaling which near 0 0  was of the form 

(2 12) z = x+iSf ' (x)  
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with f(x)=�89 2 so that f'(x)=d(x)d'(x) Replacing x by the corresponding 
geodesic coordinates above, we get 

(2 13) z=s(y')+ynVd(s(y'))+iOynVd(s(y')) =s(y')+(l+iO)ynVd(s(y')) 

Following Harg~ and Lebeau [3] near 00,  we shall scale up to the angle ~r, so that 
]1 +i0[ -1 ( 1 +i0) =exp (i �89 near 0 0  Further on we connect the scaling to the one 
used in [13] (with smaller 8) More precisely, we let 8>0 be small enough and let g be 
an injective C ~176 map [0, co)--.C We demand that Ig'l=l, g(0)=0, g(t)=texp(i�89 
for t near 0 and that g(t)=tll+iOl-l(l+iS) outside a small neighbourhood of 0, 

arg(l+iS) <argg(t)  _< �89 �89 arg(l+iS) _<argg'(t) < l~r 

Let F = F g C C  "~ be the image of 

(2 14) OO x [0, oc) ~ (x', xn) '  ; x'+g(x,,)Vd(x') 

Then, replacing x' E00  by the corresponding local coordinate considered before and 
denoted by y', we see that 

Pr  ~ f - h 2 A l r  = 1 (g,(y.~))2 ( hD~-)2 + R( y', hD~, )-2g(y.)Q(y', hD. ) 

+O(y~(hD~ )2)+O(h)hD~+O(h2), 

so that the operator is elliptic in both the semi-classical and the usual sense 
For Yn so small that g(yn)=ynexp(i~), we get 

_h2Air = e-2~,/3 ( ( hD~.)2 + 2y.Q(y', hDy, ) ) + R(y', hD~ ) 
(215) 

+O(y~(hDy )2) +O(h)hD~ +O(h 2) 

We finally notice that if pr denotes the principal symbol of P--Pr, then pr takes 
its values in the closed lower half plane and for every 5>0 there exists e>0 such 
that 

y,~>$ ==~ e < - a r g p r ( y , ~ } ) _ < r - e  

We also recall from Sect 2 of [13] (partly based on Sect 3 and Sect 2 of [10] 
and [11] respectively) the contents of the following 

L e m m a  2 2 The poles of the merornorphic continuation of ( - A - A 2 )  -1 in 
O<- arg A<8/C are given (with multiplicities) by the square roots of the complex 
eigenvalues in 0 < -  arg z<28/C of the Dirichlet realization of --Air, provided C is 
taken large enough 
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3 Some facts about  the  FBI  t r a n s f o r m  

We will now review some basic facts about the FBI transform or rather its 
simpler version, the Bargmann transform Our presentation is motivated by the 
general theory [7] and the discussion of Bargmann transforms in [8] (see [5, Sect 6]) 
Although in the application here we will only use one phase function r x)= 
] i ( z - x )  2, it is instructive to proceed in this greater generality 

Thus, let r x) be a quadratic form on Cm• C 'n satisfying 

02r 02r 4-o 
(31) Im ~-~x2 >>0 , det 0 - ~  x 

We define T=Tr h on S ( R  m) by 

(32) Tu(z) = ech -3m/2 / e ir x)/hu(x) dz, z �9 C m, 

Cr : 2--m/27r-Sm/4{ det (Im 0x2xxr det 19~2~zr 

Some basic motivation comes from the standard observation that for r  2 

2m/4 e(Imz)2/2h-i Im z Re z/hT(e-( -Re z)2/2hu)(_ Im z/h), 
(33) Tu(z) = (2~rh)3m/4 

where ~': v(x).--~f v(x)e - ~  dx is the Fourier transform on R "~ 
We now define the weight 

(34) r = max - I m  r x), 
xER TM 

and the corresponding L2-space, L~, with the measure e-2r where f..(dz) 
is the Euclidean measure on C m 

In the special case of r189 2 we have •(z)=�89 2 and (3 3) shows 
that T extends to an isometry 

(35) T: L2(R m) , L~ (Cra), 

and for the case of any r satisfying (31) we refer to Proposition 61 of [5] In what 
follows ]1 [], ( , ) and II He, ( , )~ will denote the norms in the source and target 
spaces in (35) respectively 

The same definitions apply if we consider vector valued functions Thus for a 
Hilbert space ~/we start with S(Rm,:H) and obtain an isometry 

T: L2(Rm, 9/) , L2(Cm, T/), 
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where we have the obvious norms: 

li~li~.~cR,,, ~:~ = f il'~(~)ll~ d~, li~ll~cc,.,, ~ = f li~(~)ll~e-2| 'h dRe z dImz  

In our applications we will take re=n-1 and 7-/=L2([0,c~)) Thus we will either 
discuss the scalar case (when the vector valued extension is clear) or that specific 
case 

For the main part of the proof of Theorems 1 and 4 in Sect 5 we will need 
the following proposition (motivated by Theorems 1 2 and 2 2 of [9], see also [2]) 
which for notational simpliticity we state and prove for the phase i �89 2 only 
It describes the intertwining properties of T on L2(Rn-I,L2([0,c~))), in a way 
sufficient for our purposes Let C~~ n) be the space of smooth functions on lgt n 
that are bounded with all derivatives, and define C ~(R n-1  x [0, cx)[) similarly 

P ropos i t i on  3 1 If A(x, hD) is a second order operator on B, n-a x [0, c~) 
with coei~cients in Cg~(R "-1 • [0, c~)), then/or ueC~(r t  "-~ • [0, ~)) 

IIA(x, hD)u]] 2 = IIA(Re z, xn; - I m  z, hD~.)TuH~ 

(3 6) +O(h)(ll(hDx,,)2Tu[I 2 

+ll( l+l  Im zl)hDx. Tu]l~ + ll ( l + l Im zl2)Tul]~ ), 

where T is given by (3 2) with r189 2 

Proof It will be clear from the discussion below that we can neglect the xn 
variable We will first consider B(x', hDx,), a differential operator of order p with 
coefficients in C ~ ( R  n- l )  We claim that for u, v e C ~ ( R ' ~ - I  x [0, c~)) 

(3 7) 
(B(x', hD~ )u, v) = (B(Re z, - I m  z)Tu, Tv)v 

+O(h)ll(l+l hn zlPl )Tull~ll(l +l hnzl)r~Tvll| 
p~ EN0, p1+p2=p 

Proceeding inductively on p=lal we only need to consider 

B(x',hDx )=(hDx )~2a(x')(hDx )a ' ,  la~l=Pi, 

so that 

(B(x', hD~ )u,v)= (a(x')(hDx )"'u, (hDx )~2v) 

= (T(a(hD~)~'u), T((hDx )a2v))r 
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For ul, u2 6C~~ n-1 • [0, oo)) we have 

(3 8) (T(aUl),Tu2)r = (a(Rez)Tul,TU2)e +O(h)[ITUl][e]lTu2Hr 

In fact, since aEC~~ n- t )  we can write 

a(x') = a(Re z) + ( x ' - R e  z, at (x', Re z)), 

and thus we need to estimate 

(T(( 

(a 9) 

at e C~~ n-1 x Rn-1; R~- t ) ,  

- R e z ,  a 1 ( , R e z ) ) u l )  ,Tu2) r 

1 /fl 
= (2~rh)_(n_l)/2 e -(~ -aez)2/h(x'_Rez,  al(X',Rez)) 

x ut (x', xn)u2(x', xn) dRe z dx' dxn, 

where we used (3 3) and the Plancherel formula Since 

( x ' - R e  z) e x p ( - ( x ' - R e  z)2/h ) = hVp~ :, �89 e x p ( - ( x ' - R e  z)2 /h ), 

we can integrate by parts so that the d R e z  integral is O(h) uniformly in x' and 
xn Hence the left hand side of (3 9) is estimated by O(h)l[Tulllr162 To see 
that (3 7) follows from (3 8) we observe that 

T( ( hDx, )f~ vl ) = ( hD z )~Tvl 

and that for la[=l  

(b(Re z)(hDz)aTvl, Tv2)r = <[(-hD~-Im z)a(b(Re z) )]Tvl, Tv2)r 

v ieC~ ~ beC~ ~ 

which follows from integration by parts using 

( -hDz)  a exp(-  (Im z)2/h) = ( -  Im z) a exp(-  (Ira z)2/h) 

and (-hD~)aTv2(z)=O as Tv2 is holomorphic 
We conclude the proof by deriving (3 6) from (3 7) For that let us write 

A = Ao(hDx.,)2+AI(hD~..)+A2, 

where A/'s are of the same form as B above (with some irrelevant dependence on 
x,~), with p=i Then 

[[Au][ 2 = ( A~Ao( hDx., )2u, ( hDx. )2u) + 2 Re( A ~ Ao( hD~:., )2u, hDx., u) 

+ <A~AlhDx,.u, hDx,.u) +2 Re(A~Ao(hDz,~)2u, u) 
2 * * + Re(A2AlhD:~,,u, u) + (A2A2u , u), 
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where A*'s are the formal adjoints We can now apply (3 7) to each individual term, 
taking p~_2 [] 

As is well known and as is also indicated by the proposition above, the be 
haviour of the FBI transform (3 2), r189  2, at z reflects the microlocal be- 
haviour o f u  at ( R e z , - I m z ) E T * R  m Hence in Sect 5 we shall use the notation 

z = x~-i~ ' 

In the remainder of the section we shall review some facts needed in Sect 6 for 
the proof of Theorem 2 In doing this we will allow any phase r satisfying (3 1) 
To such r and the corresponding T we associate a linear canonical transformation 
(with respect to the complex symplectic forms ~-~jm=l d~jAdxj and ~'~j=l d~jAdzj): 

(3 10) x•:T*Cm , T*C m, (x ,-Oxr , (z, Ozr 

We ca~, then quote f~om [7], [8] (see also Proposition 6 2 of [5]): 

Lenn~na 3 1 The quadratic form r given by (3 4) is strictly pluri subhar 
monic (that is, strictly subharmonic on any complex line in Cm), and the canonical 
transformation Xr is a bijection of T*I:t m onto 

= {(z, -2i0zV(z))  :z e Cm}, 

which is a totally real submanifold of T*C m, Lagrangian with respect to the sym 
plectic form Im y~jm__l d~j Adzj (that is, I Lagrangian) 

Since Tu(z) is clearly holomorphic, the closed subspace of the holomorphic 
elements of L~(Cm), Hv(Crn), makes a natural appearance We will now follow [8] 
and give a well-known expression for the kernel of the orthogonal projection 

H: L2 (C m) ---, He (C m) 

Let ~(x, y) be the unique holomorphic quadratic form on C m • C m such that ~(x) = 
~2(x,~) (in the special case, r189 2, ~ ( x , y ) = - ~ ( x - y )  2) We will use it 
to deform the contour in the following representation of identity in Hr 

(311) 
1 f f r  ei(=-Y)~/hu(y) dy d~, u(x) = (2~rh) m (z) 

2 
r(z) :y ,  7oxv(z)+ie(z-y), c > 1  
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This can be seen by introducing polar coordinates at x, the mean value theorem 
for holomorphic functions and an evaluation of a Gaussian integral--the absolute 
convergence is guaranteed by 

(3 12) Re(2Oz(~(x)(x-y)+r162 2) < -Ix-yl 2, 

if C is large enough We want to change (3 11) to obtain a kernel giving a self-adjoint 
operator on L~ For that we use ~ and make a change of variables 8H~: 

04 _ 

O ) -  e) ) - i 

Putting 8=9  we obtain another 'good contour' (compare (3 12)): 

< 02~ > -'x-Y[2 
(313) Re(2k~(x, fl)-2k~(y, fl))+r162 O--~z (X-y),~A-y <_ ---------~- 

Thus, for uEHv(C m) 

(3 14) u(x) : (21rh),n det ~"v ~)/hu(y)e-:'(u)/h dy dfl d--e--flIu 

The operator H is defined for any ueL~(C "~) and gives an element of Hr  'n) 
Since it is self-adjoint and equal to the identity on He,  it must be equal to H The 
inequality (3 13) shows that the reduced kernel of H, e-r '~/h is smooth and 
O(h-m)e -I~:-y[=/oh Thus for any compact KcC, 1KH and H1K are of trace class 
From this observation we will pass to traces of Toeplitz operators 

For q6Lco~176 'n) we define the operator 

nqn*: H (C -, H (C 

Here we consider H* as an operator H~(Cm)--*L2(C m) From the comments above 
it follows that 

qHes Hqes 
qH* 6 s162 L~(Cm)), 

so that IIqII*6s162 and from the cyclicity of the trace we see 
that 

l ( 2 ) m d e t ~  / /q(x)dxd~ (3 15) trH. HqH* = trL~ qH = (2~rh)------ ~ 

For the future reference we shall restate (3 15) in a more elegant form: 
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Lemma 3 2 Let qEL~omp(C m) and let 1I be the orthogonal projection 
L~(Cm)-- ,H~(C m) If Av={(x,  -2iOxr m} then 

(3 16 / trH. rid]* = (2~hlm q(z) dx d~ 
@ 

The method of the proof of (3 14) can also be used to establish the following 
basic fact, roughly half of which was already seen in (3 5): 

Lemma 3 3 The FBI transform (3 2) /s unitary as a map 

T: L 2 (R m) ~ Hr (C m) 

We will now review briefly the Weyl quantization in the usual and He settings: 

~ o ( T * R  ~) ~ b, , b~(x, hDx) e OPW~o 

S~o o(A~ ) ~ a, , a '~ (z, hDz) e Op~S~ 

where S~o o(R 2m) is the class of symbols satisfying the estimates IO~O~{a(x, ~)l<Ca# 
The operators are initially defined for aES(Ar and bES(T*Rm): 

(317) 

(318) 

1// 
bW(x, hDx)u = (2rh)m e '{x-~ r189 ~)u(y) dy d~, 

1 f / .  
a'~(z, hDz)v = (2~rh).~ oCz) 

ueL~(R'~),  veHv(C'~) ,  and where Fo(z) is an integration contour in C2"~: w H  

The oscillatory behaviour of the exponential when z~w,  the non-degeneracy 
of a2~r (Lemma 3 1), and an integration by parts based on 

0 z+w 
--O@O - -  (z-w)o-O-~z , 02r 

allow a definition of a~(z, hD,) for any aeS~0 o(Av) and give 

P r o p o s i t i o n  3 2 For aeS~ the Weyl quantization (3 18) defines an 
operator 

a~(z, hD~): Hv(C m ) , Hv(C m) 

We can now apply the method of Theorem 18 5 9 of [4], first for aES and then 
by approximation for aES~ to obtain 
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Propos i t ion  3 3 The FBI transform (3 2) gives a one to one correspondence 
between OpWb-~o o and Op~S ~ 0: 

T-loa~(z, hDz)oT = (aoxr hDx), a e ~oo 0(hv) 

As an immediate corollary of Propositions 3 2 and 3 3 we obtain the well-known 
boundedness of the elements of Op~S ~ 0 on L2(R m) Our goal here is the following 

T h e o r e m  3 / f a e S ~  then 

a~(z, hDz)-a(z, -2iOzr = 0(hl/2): Hr m) ; L2(C m) 

Consequently, if b e S ~ 0(T*R ~) then 

TobW(x, hDx)-a(z, -2iOzr 0(hl/2): L2(R " )  , L~(Cm), b= aox, 

Proof We start f~om the expression (3 18) where we want to deform the inte- 
gration contour F0(z) to a 'good contour' in order to obtain an exponentially de- 
caying integrand To control the error coming from Stokes's formula we introduce 
an almost analytic extension of aES~o 0(Av) (also denoted by a) with the support 
in Av+Bc2~(0, 1) and satisfying 

(3 19) Oz ~a(z,~)=ON(1)clJst((z,~),hr N, N EN 

We then define a family of contours Ft (z): w~-*-2iOzr189 -t-itz(-~w), O<t<_ 1, 
and put 

AlU(X) --- 1 /~F e '(z-w r ~)u(w) d~ dw 
(21rh) m l(z) 

In this notation aW(z, hDz)u becomes Aou(z) and we claim that 

(3 20) IIAlU-a(z' --2iOz~(Z) )UllL~ = O(hl/2)llulltt*' 
]]Alu--AoUIIL~ = O(h~)llUHH~ 

In fact, since on Fl(z) 

0r z+w Re(i(z-w, r Re{ 2~z ( - - -~  ), z - w ) - , z - w , 2 =  r  ~ , 

the reduced kernel, exp(-r exp((I)/h), is O(h -m) exp(-Iz-w]2/h) By ex- 
panding a ( �89 (z + w), - 2i0z r (�89 (z + w)) ) in Taylor series around w = z we similarly see 
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that  the reduced kernel of Al-a(z,  -2iOzr is O(h-m)lz-wl exp(-[z-wl=/h) 
=O(hl/2)h -m exp(-Iz-wl2/2h), so that  the first part of (3 20) follows from Schur's 
lemma (see for instance Lemma 18 1 12 in [4]) 

To obtain the second part we apply Stokes's formula: 

1 f s  AlU(Z)-Aou(z) - (2rh)m dw r r189 r dwA dr 

1 /~ei(Z_ ~ r (~.~.llOafz+w _ ';.) d~j  

+21 )d- j=l~-~j ----~,r Cj AdwAdr 

where f]--U~=o r t  is parametrized by wEC m and tE[O, 1] Thus, 

d~jAdwAdr d~jAdwAdr163 

The almost analyticity of a guarantees that  on Ft, 

O~ r189 r = ON(tNIz--wlN), for any g e N 

Hence we can write A1 -Ao=f~ Bt dt, where the reduced kernel of Bt is 

O( h-m )e-tlz-wl2 /htN Iz_ w[ N + I  = O( h-m+( g + l ) /2t( g-1) /2)e-tlz-wl2 /2h 

Schur's lemma shows that  the r2  __+r2 ~-r . .r norm of Bt is O(h(N+l)/2t(N-1)/2-'~), from 
which the second part of (3 20) follows This completes the proof of the theorem as 
the first part is immediate from (3 20) while the second one follows from Proposi- 
tion 3 2 [] 

4 Estimates  for localized ordinary differential operators 

The purpose of this section is to provide lower bounds for ordinary differential 
operators arising by freezing (y', ~')6T*O0 in (2 15) and considering it as an op 
erator on [0, oo) We start by discussing the Dirichlet realization of (hDt)2+t on 
[0, OO) Since T2--[-t--4OO as [TI,t'-+OO , its resolvent is compact and the spectrum dis- 
crete By a simple scaling argument (putting t=h2/38) we see that  the eigenvalues 
are of the form r 2/3, 0<r <r < , where ~j's are the eigenvalues of the Dirichlet 
realization of D2+s on [0, c~): 

(D2 +s)Ai(s-~j)=~jAi(s-~j), Ai(-~j)=O, 

(4 1) Ai(s) = ~ fimr162 d~ 
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If N(#, h)=N(#h -2/3, 1) is the number of eigenvalues less than it, then the semi- 
classical Weyl law or the well-known asymptotics of the zeros of Airy functions show 
that N (it, h )---(2/3~r)h-l it3/2(l +o(1) ) 

The spectral theorem gives the following trivial lower bound 

(4 2) (((hDt)2 +t)u, u) >_ it]lull ~ -  (it-r (Ht`u, Ht`u), 

~ e c3~ u(0) =0, 

where 1-It,: L 2 ([0, oo )) --, L 2 ([0, oo ) ) denotes the orthogonal projection onto the space 
spanned by the first N=N(i t ,  h) eigenvalues of (hDt)2+t 

The motivating operator (2 15) contains additional terms--to control them we 
start by studying the stability of (4 2) with the potential t in the left hand side 
replaced by a potential mln(t, 2Rit) with R_>2 To do that  we shall first review 
exponentially weighted estimates on the eigenfunctions That can be done using 
asymptotic expansions of the Airy functions (4 1) but we prefer a direct approach 
in the spirit of Lithner-Agmon estimates 

Recall that  if P = - h 2 A + V ( x )  on ~ and (P-A)u=O, then under reasonable 
assumptions (which will be satisfied below), we have 

(4 3) h211V(e~/h~)ll~c~) + faCV(x)-~-IVr d~=O 

In our case ~=[0,c~),  P=hD2+t  and AE(0,it] is an eigenvalue with u the corre- 
sponding normalized eigenfunction We then define r depending on # but not 

/ O~ O_~t_it ,  
t 

(4 4) r = ~ ds, it <_ t <_ R#, 

r R~ _< t 

In (4 3) this gives 

h: IID~(e*/h~) II ~ + i f ( t -  ~)l~(t)l ~ dt + ~ R , ( i t _  A)e2*CO/hlu(t)l 2 dt 

// +e 2*(mo/h (t-A)lu(t)] 2 dt = O, 

which implies 

/? // // e 2~(n€ (t-A)]u(t)l 2 dt <_ (A-t)lu(t)l 2 dt <_ # ]u(t)l 2 dt <<_ # 
t* 

o n A b y  
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Since t - A >  ( R -  1)# on [R#, cr and r = ~ ( R -  1)a/2# 3/2 we obtain from this 

(4 5) Ilulln (lR  < e-<2/3)(R-1)"/2"/2/h 

for any eigenfunction u of (hDt)2+t with an eigenvalue AE(0,#] This is crucial for 

L e m m a  4 1 / f # < l  and R>_2 then for ueC~([O, oo)), u(0)=0 

(4 6) (((hDt)2+min(t,2R#))u,u) 
h 2 

>_# ( 1 - 0  ( R---~ 3 ))HuH2+(R-1)I~Hxlu,,2-(]~ - ~1 h2/3)+ HII.u.. 2, 

where 1-I., r are as in (4 2) and XleC~((R#,c~); [0, 1]), XI -1  for t>2R#, xI=O 
.for t close to R# 

Proof We take X1 with the properties in the statement of the lemma and in 
addition such that 

1 -X12 = Xo,2 Xo e CC~) ((-(x), 2R.); [0, 1]), ~ X j  = O• ((R.)  -•) 

It then follows that 

Xo[Xo, (hDt)2]+XI[X1, (hDt)2] = -(xo(hDt)2(Xo)+X1 (hDt)2(X1)) = 0 (  ( ~-~ )2), 

from which we get 

(((hDt)2+min(t, 2R#))u, u) 

> (((hDt)2+t)Xou, Xou)+R#llXluH u-O I1 ,11: 

Combining this with (4 2) we obtain 

(4 7) (((hDt)2+min(t, 2Rl~))u,u) 
h: 

_>~ ( 1 - O  (~ -~3) ) ' l u "2+(R- l ) I z "XlU[12- (~ - r  1 h2/3)+ HII.xouH 2 

This is almost (4 6)--we only need to see that the last term can be replaced by 
-(#-r 2, that is we have to estimate [lII.(1-Xo)u[I 2 Let us write 

g(D,h) 
H.u= ~ (u, ej)ej, ((hDt)2+t)ej=Ajej, ej(O)=O 

j=l 
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(49) 

provided that 

Then 
N([~,h) N(~,h) 

[[II.(1-Xo)U[[ 2 ~ ~ [(u, (1--Xo)ej)[ 2 < [[u[[ 2 ~ [[(1-xo)ej[[ 2, 
j=1 j=1 

so that, using (45) 

(N(.,h)~. Ilejll R.  i/2 -~ ~/-~.,h)e_(2/3)(R_l)a/2~z/2/h I[II~,(1-zo)]l < 
. ~ ~ ) )  V R - 1  

.]' ~3/2 )1/2 
_ C [ h(-R-=-- 1) e-(3/2)(R-1)3/~s/2/h 

-- (R-  1) 5/40 ( a -  1)'3/2~ 3/2 ' 
for any M Taking M=2 we obtain (46) [] 

When we restrict the support of u to a fixed interval and optimize the param 
eters we get 

L e m m a  4 2 For L>0, 0<h<ho(L)  and O<_~<_p~(L) the following estimate 
holds uniformly for ueC~([0 ,  (2L)-l]), u(0)=0: 

(48) (((hDt)2+t)u'u)>-"(1-O(1)max(#L'h~L ) )  ]lu''2 

-(]~-(lh2/3)+HH.uH2 + LHtuH 2 

Proof Writing T=2R]~, we observe that (46) implies that for T>4#  (this 
reflects the condition that R_>2), some C>0  and any ueC~([0 ,  a D, u(0)=0, 

( ( (hDt)2 +t )u, u) >_ #(1-C#-l h2T -2-~)[[ull 2 

- -  (p,--~'1h2/3)+ IIn,,, ll +Llltull 2, 

Lt 2 - 1 ~  _< 0 if 0 < t < T, 

(410) Lt2-l~+T<_t i fT<t<a 

We choose a=(2L) -1 and require that T<_(2L) -1 Then (410) follows if we have 
the last inequality of (410) satisfied at the end points t=T, t=(2L)-l: LT2<#$, 
T -  (4L) -1 _<#5, we choose ~=~-1 max(LT 2, T -  (4L) -1) Remembering also that 
T=2R#, R>2, it is enough to restrict T to the interval 4#_<T<(2L) -1 As 
suming that # and h are sufficiently small depending on L, we can then take 
T=max(C1/4L-1/ahl/2, 4#) and get ~=[~-I LT 2, and 

5+C#-IT-2h -2=O(1) max(#-lL1/2h,L#) [] 

We still need to control more terms and for that we have 
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L e m m a  4 a For uEC~([O, oo)) with u(O)=O 

(4 11) Vf-~lh 1/3 ][hntu]] <_ ]] ((hnt) 2 +t)uH, 

(4 12) II(hDt)2uH g II((hDt)2 +t)uH 

Proof For u in the statement of the lemma we have 

II( (hDt)2 +t)ull 2 = H(hDt)2uH2 +Htull2 + 2 Re(tu, (hDt)2u), 

where the last term is equal to 

2 Re(hDt(tu), hDtu) = 2 Re(thDtu, hDtu) +h Re 2 (u, hDtu) = 211tl/2hDtu[[2 
Z 

Hence (4 12) follows To get (4 11) we observe that  

Ilull -< (r h2/S) -1 II ((hDt) 2 +t)~l l ,  

so that, by (4 12) 

IIhDtuH 2 = ((hDt)2u, u) <_ (~1h2/3) -1 H ( (hDt)2 +t)ull 2, 

which is (4 11) E] 

To motivate the proof of the main result of this section let us now consider the 
model scaled operator e-2~i/a ((hDt) 2 +t) Let wo =Re wo +iro satisfy 0 < arg wo < 2 ~r 
and let #>h2/3/C be close to 0 Then for uEC~([0,  (CL)-I]),  L, C>>1, u(0)=0, 
we have 

II (e-2.~/3 ((hDt)2 +t) -O:o)ull 2 = i~ ~ i s ilul 12 + II ((hOt)2 +t)ull 2 

(4 13) +2 Re(-e-2~/3tOo)(((hDt) 2 +t)u, u> 

Since Re(-e-2t~/3~o)= Iwo I cos(�89 ~r-arg wo)>0, the combination of (4 13) and (4 8) 
gives for h<ho(L) and u same as above 
(4 14) 

II(e-2~'/S((hDt)U+t)-wo)ull  2 >_ (l~o-~-2~'/S#l~-- 0(1) max(r  h, L#2))Ilull ~ 
- 2  Re(-e-2"i/S~:o)(#-r h:/S)+ IIH.~II 2 

+ LIItull 2 + II ((hDt) u +t)ull 2, 

where we also used ]Wo - e - 2 " ~ / s # 1 2  = I~ol m +2 Re(-#e-2~/S~o) + o ( ~  2) 
We will now proceed to the main result of this section: 
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Proposi t ion  4 1 Suppose that a second order ordinary differential operator 
P on [0, cr satisfies 

(4 15) P = e-2~i/3((hDt)2 +t)+O(h)hDt+O(h+hl/2t +t 2) 

If L>0 is su~ciently large and h>0, tt>O are sujO~ciently small depending on L, 
then for woeC, 0<argw0<2~r and ueC~([0,  (CL)-I)), u(0)--0: 
(4 16) 

ll(P- o) ll =-> 

-2 2+ �89 = +t) ll 

Here II~ is the orthogonal projection onto the eigenspaces corresponding to the in 
tersection a( (hDt) 2 +t) n(-oo, U) 

Proof Since hl/2t=O(t2+h) we can neglect that term in (4 15) Thus, to 
apply (4 14) and Lemma 4 3 we first estimate the left hand side of (4 16) from 
below by 

II (e ( (hDt) 2 + t ) -   0) 112- <(O(h)hDt + O(h+t 2) )u, (hDt)2u> 

-< ( O( h )hDt + O( h + t2)t )u, u> - < O( h )hDtu, O( h )hDtu I 

The last three terms are bounded from below by 

-0(1)  [hllhDtull II (hDt)=utl + hii~'ll II (hOt)2ull 

+ IIt=~'ll II (hO~)2~]l +hi] hD~ll Ilull + hll~lt 2 + IIt~'ll = + h = ]1 h D ~ l l  =] 

I h2/3( hllallhDtul])2q-h2/3jl(hDt)2ull2+hlluli2+hll(hD~)2ull2 > 

q-MHtuH2 +2~Jl(hDt)2uH 2 q-hl/3(hl/3jJhDtuH) 2 + hllulJ 2 -{- ]]tZt H 2] ~ 

which by Lemma 4 3 is bounded from below by 

--(9(1) [ ( 2 ~ + h l / 3 + 2 h 2 / a + h )  [[((hDt)2+t)u,[2+2hHuH2+ (M+I) [ , t u , [  2] 

By taking M sufficiently large and then L>>M this estimate combined with (4 14) 
gives (4 16) provided h is sufficiently small depending on L [] 

It is clear that (hDt)2+t in (4 15) can be replaced by (hDt)2+Qt where QeI  
with I a compact subset of (0, cr The projection H~ is then to be replaced by 
the spectral projections associated to a((hDt)2+Qt)N(-c~, #) All the estimates 
remain uniform for Q E I 
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5 Lower b o u n d s  for P--wo 

As already indicated in Sect 3 we want to freeze (y',rlr)ET*O0 in (2 15) and 
to apply Proposition 4 1 to the resulting ordinary differential operator 

Let f / C 0 0  be a neighbourhood of a fixed point y~ E 0 0  near which we consider 
coordinates such that (2 15) holds Consequently for P = - h 2 A [ r  

(5 1) 
P(x', x,~; ~', hDx.) = e -2i~/3 ( ( hDx.)2 + 2xnQ(x', ~') ) 

+R(x' ,~ ')+O(x2 +h)(~')2+O(h)hDx,,, 

where we identify f~ with a subset of R n-1 so that (x ~, ~ ) E T * R  n-1 , and xn is small 
enough so that g(xn)=xne ~/3 (see (2 14)) For a fixed w0 in the first quadrant, 
we want to obtain lower bounds (positive except for a fmite rank contribution) 
on (P-wo)*(P-wo)  In view of Lemma 2 2 we can start with the corresponding 
differential operator obtained from (5 1) The estimate in the critical region 1/C< 
I~'I<C is provided by 

Lemma 5 1 Suppose that w0EC, Rew0, Imwo>0 and IRewo-R(x' ,~') l  is 
sufficiently small, L is large enough and 0<h<ho  Then for fz close to 0 and any 
veer~ (CL)-I)) ,  v(0)=0, 

(5 2) 

II ( P( x',t, ~', hDt ) -wo)vll 2 

(1~0-R(x r, ~')- e-2"/3~12-0(1) ma~{ ~/~ h, ~2})ilvll 2 
- 2  Re(-e-Zi'~/3(ff)o-R(x' , ~')))(/2-r (x', ~')h2/3)+ llH(x e ~)vll 2 

+ �89 II ((hD,) 2 +2tQ(x', ~'))v II 2 + �89 I12, 

where II II ~ the L 2 norm on [0, oo), II(x r 2) is the orthogonal projection associ 
ated to a((hDt) z + 2tQ(x', 5') ) n ( - ~ ,  ~) and Cx(z', 5 ' )=r  5,))2/a ~ the first 
eigenvalue of D2t + 2tQ(x ', ~') 

Proof The bound (5 2) follows immediately from Proposition 4 1 and (5 1) 
once w0 in (4 16) is replaced by wo-R(x ' ,~ ' )  The size condition on [Rewo-  
R(x', ~')I guarantees that 0<arg(wo-R)  < 27r, so that 2 Re(-e-2i~/3(~ 0 - R ) )  > 0 
The uniformity of the constants follows from the ellipticity of Q and R and the 
bound Rewo-c< R(x' ,~')<c+Rewo [] 

In the 'easy' region, the estimate is immediate: 

L e m m a  5 2 Suppose that w0EC, Rew0, r0=Imw0>0 and that 

(5 3) [R(x',~')-wo] >c+r0 ,  c > 0  
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Then for L large enough, h sui~ciently small, and r eCk( [0 ,  (CL)-I)), v(0)=0, 

(54) H(P(x',t,~t, hDt)-wo)vH2-> ro+ Hv][2+ (H(hDt)2v]12+(~')allvH 2) 

Proof In place of Proposition 41 we use the following elementary inequality 
(aER): 

]1 ( e-2i~/a (hOt) 2 +a-iro)v II 2 = I[ (hDt) 2v If 2 + (r 2 + a 2) iiv]]2 

+ 2 Re(e -2i~/3 (a+iro))((hDt)2v, v) 

> (1-sin( .))ll(hD )2vll 
+ (r 2 -I-a s (1-s in ( l i t ) ) ) I I~ l l  2, 

which holds since 

) 2Re(e-2i~/a(a+iro))((hnt)2v, v) ->-asin ~ II(hnt)2vll2+aHvll 2 

We then put a=R(x' ,~ ' ) -Rewo so that in view of (53) [a[->C-i(~') 2 Hence for 
L sufficiently large and h sufficiently small 

II (0( t+t2 +h)(~')2 +O(h)hDt)vll 2 <_ C (a2 Ilvl12 + II (hD~)2~l12), 

so that (5 4) with yet another constant C follows from (5 1) [ ]  

Using the term O(th 1/2) in (4 15), the lower bound given in Proposition 4 1 
allows us to vary (x', ~') in the left hand side of (5 2) within the distance h 1/2 More 
precisely, let us fix (x',~'), x'E~, 1 / C < W ] < C  For #>0  and e>0 small, we define 
/2(x',r by 

(5 5) inf Iwo-R(y',~?')-e-2i'rl3/2(x',~')l=ro+#, ro=Imwo, 
](y ~ )-(x ~ )[<~h~/2 

with the convention that /2=0 if 

inf Iwo-R(y',7?')l ->to+# 
I(y v ) - (x  ~ )1-<~ hl/2 

We notice that 0p(]w0-R(y', ~?') -- e-2i'r/3/212)----2/2+2 ae(-e-2iTr/3 (Q0 - R ) )  >0 if C 
is chosen as in Lemma 5 1 Hence, /2~-+lwo-R(y~,~')-e-2i~/3/2] is an increasing 
function of/2_>0 and the definition makes sense,/2(x', ~')=O(max(h 2/3, #)) 

We also observe that for ](x ~, ~ ' ) -  (y', y')] <eh 1/2 

P(y', t, ~?', hOt) = (P(x', t, ~', hDt)-R(x ' ,  ~')) +R(y', ~') 

+O(hl/2)(t +h+O(h)hDt) 

Hence, proceeding as in the proof of Lemma 51 we obtain 
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LemLma 5 3 Under the assumptions of Lemma 5 1 and for 

/z = max(el (x', ~')h 2/3,/2(x', ~')) 

with/2 given by (5 5) we have for I(Y', 7')-  (x', ~')l <ehl/2 and vEC~~ (eL) -1 ) ) ,  
v(o) =o, 
(5 6) 

II (P(y',  t; 7', hDt)-,.,,o)vll 2 >_ ((to +~) 2 -  o(1) max (v/'L h, ~2L)) Ilvl12 
-O(~)IIH~ ~ ~ll2+�89 2 [] 

The advantage we gained is in having a fixed projection IIx ~ ~ for varying 
(y', ~f) in P as long as they remain in an Eh 1/2 neighbourhood of (x', ~') We will 
now follow Sect 3 of [9] and introduce finite rank operators associated to partitions 
of unity 

Let K a C ~ x R  "~-1 be the compact set 

(5 7) g~ = {(x', ~') E fi • Rn-l:/2(x', ~') _> ~1 (x', ~')h 2/3} 

where/2 is defined by (5 5) We observe that/2>0 implies ]Wo-R(x',~')i<_ro+l z 
and hence [Rewo-R(x',~')l<#W2(2ro-l-p)W2 , and finally 

(5 8) volR2(~-1) (K~) = 0 ( #  1/2) 

Let us assume that  g n  can be covered by M=M(Kn, eh 1/2) balls B((x~, ~j); eh 1/2) 
We then choose a partition of K: 

g a = U K  ~, K~nKk=O, jr  K~cB((z~,~),ch~/2),(x~,~)eK~ 
j=l 

We note that  (5 6) holds precisely for (y',~f)EKj and (x ' ,~ ' )= (x~ ,~)  in the right 
hand side Motivated by this we define a modified projection operator for (x ~, ~t)E 
T*~: 

0 
(5 9) ~r ~ ) = 

With this notation we can state: 

if~ ,~j~:  

if (x', ~) E Kj 
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P r o p o s i t i o n  5 1 Suppose that uEC~176  satisfies 

supp u c f lx  [0, (CL)-I) ,  u[oo --- O, 

where L is sufficiently large, ~ is a su~ciently small open subset of O0 and we use 
the coordinates (2 3) near ~t Then for h2/3/C<#<1/C, woEC, O<Imwo<l/C, 
and 0<h<ho(L) :  

(510) tl(P-~o)~ll 2 > ((ro+,) 2-0(1) m~(,2L, V~h))ll~ii ~-o(,)ii~T~il., 

where T is given by (3 2), z=x t-i~ ~ and 

fi~(~',r ~,)(u(~',r )))(x.) 

Proof We apply Proposition 3 1 with A=P-wo (since suppu is compact, the 
coefficients of P-wo are effectively C~~ 

[[ ( P-wo)UH 2 = ][ ( P(x', xn; ~', hD~.) -wo)Tu[[ 2 
(5 11) 

+O(h)([[(hDz,,)2Tu[[2q-[[(l+[~/[2)Tul[~), 

where, as Tu[~,,=o=O, we simplified (3 6) by interpolation 
Lemmas 5 2, 5 3 and 4 3 show that 

~o ~176 t hD ~ ~ 2 [(P(x',x,~;~, . . ,)-wo)Tu(x,~,x,,)l  dx,~ 

is bounded from below by 

((ro +,)  2 -o(1) m~x(,2L, v~ h)) . [~  iTu(*', r *.)I ~ a. .  
dx 1 oo 

-o ( , ) f0  Ifi(x,~)T~(*',.",..)l 2 .+~]o t(hD*')2T~(~""~")12 dx,., 

if IR(x',~')-Rewo[<c, and by 

1C1 ((~'}4 / co  ,Tu(x,,~,,x,~)[2 dx,,+l ~oo [(hD..)2Tu(x,,~,,xn)[2 dx,~), 

otherwise If O<ro+#<2/C for C>>C1, integration in (x',~') (with the weight 
function exp(-[~'[2/2h)), gives (5 10), as the remainder terms in (5 11) can be 
absorbed into the lower bound [] 
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Since the second term on the right hand side of (5 10) is obtained from inte 
gration over the finite volume subset of the phase space (of 0O), K, and H(x ~ ) 
projects on a finite number of eigenspaces, we would like to replace that term by 
the square of the norm of a finite rank operator acting on u 

We recall from Sect 3 of [9] that for any e>0, which is the same as the 
in the construction of the partition {Kj} of K above, there exists an operator 
�9 =.: L2(C'~-I)--+L2(C ~-1) of finite rank less than or equal to M = M ( K ,  chl/2), sat 
isfying 

(5 12) II1K(Tu-.-'-(Tu( , x.)))l[+ __ CellTull+ 

In fact, by the mean value theorem for holomorphic functions we have for vE 
H+(C ~-1) 

v(z) = I f  e i(z-w) Im z/hxo( (z_w)h-1/2)h-,~v(w) s 

where xoEC~~ 1)), fxo(w)s  Xo(Z)=~(Iz]) (compare (3 11) where 
(21r) -'~/2 exp(-JxJ 2) is used in place of Xo) We then define an operator of rank 
less than or equal to M 
(5 13) 

f ei(Z-w)Imz/h)~o((zj-w)h-1/2)h-nv(w)~(dw), z E K j ,  zj : x j - i ~ j  
F~v(z) = [ O, z C K  

In our case the relevant operator v ( z , x , ) H ( ~ ( v ( , x n ) ) ) ( z )  is not of finite rank 
However, it becomes one when composed with the projection H: 

v(z, ~.) ,  , ( f i (~z -,=.>((-'-v)(z, )))(x.) = (fi-=,)(z, ~.)  

The rank of H.=. is less than or equal to }-~M Nj, where Nj is the rank of the 
projection II(aezj --Imz~ p), z jEKj  On the other hand by (5 12) 

H r ITu-  IIETu [I + <- I I 1 K (Tu - ETu)II + <=- CE II Tu[I +, 

and consequently 

(5 14) HfiTu[[~ < (]]rI.--.Tu[[e+llIITu-IIETul[e) 2 <_ HrI.=.Tu]]2e+O(e)l[u]] 2 

We have thus proved the local version of the main result of this section: 
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Propos i t ion  5 2 Suppose that h ,#>0  and woEC satisfy 

0 < h < h 0 ,  h2/3/C<p<l/C,  r0=Imwo>0 ,  Rewo>2(Imwo+#) 

Then for every ~>0 there ex/st finite rank operators 

"~: L2(R'~ \O) , L2(C "-1 x [0, co)) 

such that for uEC~(Rn\O),  u[ao--0 we have 
Q 

(5 15) , ,(P-wo)u,[2>((ro+p)2-O(h+p2+~g)),,u,[2-O(/.t)(~_-~1 "~ePu'[2) 

~(Kp ~h ~/~) 
rank ~ p _< ~ rank(fi(z~ ~)), 

j=l 

where Kp=Ka, given by (5 7), o0=UQp=I ap, ~p open, and fi(z~. r /s defined 
by (5 9) 

Proof We start by proving (5 15) for u with the support sufficiently close 
the bou.dary: suppu={x:d(x)<(CL) -1} If o~=U~=I ~ where a~ are open 
sets which are images of coordinate maps gp=~ (see (2 2)), then we choose XpE 

Q C~(O0; [0, 1]), suppxpCflp, )-~p=l X 2--1 We have already seen that (5 15) holds 
for u replaced by XpU: 

] l (P-~o)x~ul[  ~ >- ((~0+,)2-O(1)(h+,  ~ +~,))llx~ull ~-o(,)llfi_=~Tg;xpull2, 
with -~-e--~ given by (5 13) and using (5 10) and (5 14) We also used the fact that 
since a small neighbourhood of f~p in R n \ O  is identified with f~p • [0, ~f), the Xp's 
can be considered as functions on R'~\ O 

We now write 
Q 

II(P-~o)U[[ 2= 
p=l 

Q 

Q 

p----1 
Q 

p=l 

Hxp(P-wo)ull 2 

Q Q 
II(P-o~o)xpull2+y~ II[xp, P]ull 2 - 2  ~ II (P-oJo)Xpull I[[Xp, Plull 

p=l p=l 
Q Q 

11 (P-wo)XpUH 2 -  ~ l[ [Xp, P]ul[ 2 _ 2 ~ IIxp(P-wo)U][ [1 [Xp, P]u][ 
p=l p=l 
Q 

II (P-wo)xpull z - ~ II [xp, P]ull 2 
p----1 

-2[[(P-wo)u[[ [[[Xp, P]u[[ 2 ) 
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We also have Ilull2=E~=l Ilxpull ~ so  that if we put 

=p dd~  . . . .  L2(R. \ 0 )  , L~(C '~-1 x [0, co)), ~ e  = l l ~ e l S p ~ . P :  

then (5 15) follows, once we show that 

II [xp, P]ull = O(h)(ll(P-wo)ull + Ilull) 

Since II[~,,,P]ull=O(h)(llhD~.~ll+llhD~ ull+llulD, this is immediate from the el 
lipticity of the Dirichlet problem for P-wo (see the proof of Lemma 52) 

It remains to remove the restriction that the support of u is close to 0 0  For 
that let r176176 satisfy 2 2 r +r = 1, supp r C {x:d(x) < (CL)-I }, 
r on {x:d(x)<(2CL) -1} Let # be small enough so that Im((l+iO)wo)>ro+#, 
where 0 is the same as in the definition of F (2 14), P = - A I r  We claim that then 

(516) II (P-wo)r 2 > (to +#)2 I I r  ~ 

In fact, we can replace P on F by -A le  where F extends the totally real submauifold 
F c C " \ O  to a smooth totally real submanifold in C n By the construction of F 
and by choosing the extension suitably, we see that the symbol of --AI~ takes its 
values in arg( l+iB)<-argz<�89 Hence, infla(-Ale)-w0l>Im((l+iO)wo) and 
(5 16) holds if h is small enough We conclude the argument by writing: 

II(P-wo)ull 2 >_ 

> 

II(P-wo)r 2 -  ~ II[r 2 
i = l  2 i----I 2 

- 2  ~ llr II [r P]ull 
i----I 2 

( (roT#)2-O(hTtz2 TelZ) )Hr 2 
P 

+(~o +#)= I1r o(#) ~ I1#-~,,115 
p= l  

- ~ II[r P]uH 2-2 ~ IIr162 Plull 
i=1  2 i=1  2 

By estimating the commutator terms by O(h)(ll(P-wo)ull+llull ) as before we ob 
tain (5 15) [] 

It is clear that for/z smaller than C-lh  2/3 a better estimate is possible if C 
is large enough Thus we want to find the largest # for which one gets a positive 
lower bound 
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P r o p o s i t i o n  5 3 Suppose that w0EC satisfies O<ro=Imwo<l/C, Rew0>0 
and that 0<h<h0  for some su~ciently small h0>0 Then 

(5 17) 

(5 18) 

II ( P -  ~o)ull ~ -> Iro + Stain (Re Wo)2/3h 2/3 - O(h)12 I1~'112, 
t \2/3 

min gi (x  )) , Smind~e~'f2213 00S(~Tr)<l(x EOOi:l n-1 

where Ki(x') are the principal curvatures of O0 at x' and -~1 is the first zero of 
the Airy function (4 1) 

Proof Following the arguments in the proof of Proposition 5 1 we only need 
to consider the critical region IR(x~,~')-Rewol<C and prove the bound on the 
FBI transform side: 

I[(P(x', t, ~', hDt ) -~,o )V[[ 2 >_ (ro + S~i~ (Re o.,o )2/3 - O (  h ) )21]vll2 , 

where v satisfies the assumptions of Lemma 5 1 (from which we take the notation) 
If we put/2=~l(2Q(x', ~'))2/3h2/3 in (5 2) then we see that the minimum of 

I o-R(x', 2/ 12 = IRe o- r +cos( �89 r 2/ 12 
 ')h2/ 12 

is obtained by taking R(x', ~')=Rewo+O(h 2/3) and the minimum of ~l(x', ~') with 
that constraint Since ~l(x',~')=r 2/3, Lemma 2 1 gives the minimal 
value in terms of Stain: 

Iro+ Smin(Rewo)2/3h213]2 +O(h 4/3) [] 

6 R e f i n e d  e s t i m a t e s  near  t h e  cr i t i ca l  c u r v e  

We will now investigate the lower bounds with the parameter # close to the 
critical value Smin(Rewo)2/3h 2/3 In the case of the model ordinary differential 
operator--the Airy operator--this corresponds to taking ~lh 2/3 </2<~2h 2/3 in (4 2) 
In the analysis in Sect 5,/2 was replaced by/2(x', ~) given by (5 5) Here we will 
consider a fixed (x', ~')eT*O0 and determine/2(x', ~') by the equation 

(6 1) IWO --R( xl, ~#)- e-2ilr/3 /2( x', ~#)1 = ro-{-/~, 

with the convention that /2=0 if IR-wol>ro+# 
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Let e= r (t) be the first normalized positive eigenfuction of (hDt)2+2tQ(x ', ~') 
corresponding to the eigenvalue r ~')h 2/3 We also define 

/0 ~176 "~I(Xt,~C') 'V - - - "  V(Xn)ex ,~ (xn) dxn, 

so that for r ~')h2/3<p<~2(x', ~')h 2/3, we have 

I I [ I=  = 

Let f~ and u be as in the statement of Proposition 5 1 Then, using (5 2) and 
the proof of Proposition 5 1 we get with the same notation and for /2(x', ~')< 
~2 (x', ~') h 2/3 

II (P-wo)ul l  2 > ((to +~)2 _ O ( h )  - 0(# 2)) II = 

(6 2) - . [ L  x R , , - ' __ . .  X1 (~')q(x', ~')171 (x', ~')Tu(x', ~')12e -I~ 12/h dx' d~', 

q(x', ~') : 2X2 (~,)2 Re((R(x', ~r -~o)e -2~r/3) (/].(x', ~') - ~1 (x', ~r 

with x ,~C3~  ~-1, [0,1]), X~(5')=0 for 15'1>2C or 15']<(26) -1 and Xi(~')=l for 
C- I< I~ ' [<C,  X 2 X ~ = X l  

We shall reexamine, in a more microlocal way, the approximation of the nega- 
tive term in the lower bound (6 2) by -(Qu, u), where Q is a finite rank operator 
For that we investigate the symbol properties of ~l(X',~') If eo(t) is the first nor- 
malized positive eigenfimction of D 2 + t  then 

The function e0 and all its derivatives belong to S([0, co)), so that for C - 1 <  i~,1< C 

(( ) 
where ]~ : (t) is smooth in x', ~' with values in S([0, co)) 

Hence, ~(x',~')=X(~')~l(X',~') satisfies 6~ 0~ ~/(x',~')=O(1): n2([0, co))-+C, 
and consequently gives a pseudodifferential operator 

7(x', hD= ): L2(~2 • [0, co)) ---* L2(R n- l )  
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Theorem 3 now shows that 

]1 (T~/( x' , hDx ) -~(x ' ,  ~')T)u]]g ---- O( h 1/2) HuH, 

for any compact K c C  '~-1, z=x ' - i~ '  
X2X1 =X1 we define 

r: L2(~ x [0, c~)) , L2(~•  

If x 2 e C ~ ( R  '~-1, [0, 1]) has the property 

r -- l~X2 (~')(T~(x', hD~ ) -7(x ' ,  ~')T) 

Using r we rewrite the last term in (6 2) as 

- f fa•  q(x',~')[TT(x', hD~ )u[2X2(~/)2e -[~r [2/h d.T, ! d~ ! 

- / / o (~ ) l ru (x ' ,  ()l  2 dx' d~'-//O(~)lru(~', ()l ]T~(x',hD~ )ul d~' d~', 

and here the last two terms can be estimated by O(#hW2)HulI2=O(#2Th)[[u[[2 
Thus, (6 2) can be rewritten as 

(6 3) 
[[(P-wo)u]]2 >_ ((ro+#)2-O(h)-O(#2))HuH2 

- f Jn q(x', (')]TT(x', hD~: )u[2e -I~ 12/h dx' d~' 

We now gained an advantage of having TT(x' , hD~ )uEHr n- l )  so that the last 
term above can be written using a Toeplitz operator: 

-(IIqII*TT(x', hD~ )u, TT(x' , hDx )u)r 

We now have a simple 

Lemana 6 1 / f  qELcC~mp(C ") 
finite rank operator Q. such that 

and q>_O, then for every e>0 there exists a 

(6 4) [[IIqII*-Q~Hs H.) <e ,  rankQE_< I trIIqH* 
g 

Proo] Put Qc=ltE ~)(IIqII*)l-IqII* The first part of (6 4) clearly holds while 
for the second part we observe that the rank of Q. is equal to the number, Ne, 
of eigenvalues of HqH* larger than or equal to c Since HqH* is self-adjoint and 
positive, ~N. < t r  IIqH* [] 
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by 
From Lemmas 3 2 and 6 I we now see that  the last term in (6 3) can be replaced 

-(Q~u, u)-ellull 2, 

1 ff 2X 2(~,)2 Re((R(x',  ~ ' ) -~o )e  -2i~/3) (6 5) rank Q6 -< e(2~h) ._  1 

X (~(X', ~) --r (X', ~')h2/3)+ dx' d~' 

We will use this to prove the next lemma which will then be used in Sect 7 to 
estimate the number of poles near the critical line Let us first recall that  R(x', ~') 
is the symbol of the tangential Laplacian so that  S * 0 0 =  {m ET*00 :R(m)  = 1} 

L e mma 6 2 Let us define pj--=-~jSmin(Reo30)2/Zh 2/3, j : l , 2 ,  where Stain ~8 
given by (5 18) and assume 

h < < # - # l ,  #<_#2-h2/3/C 

Let us also assume that QIB oo attains its minimum on a submanifold Fo c T * O 0  of 
codimension u and that the transversal Hessian of Qls oo is non degenerate Then 
for any fixed 0<5<~1 there exists a finite rank operator Q8 such that 

(6 6) 
II ( P - ~ o ) ~ l l  2 >- ((~o + ~ )  2 - 6 ( ~ - ~ ) - O ( h ) ) I l u l l  2 - (Qs~, u), 

rank Q8 <_ C ( # - # l  )(U/2)+(1/2) h-(V/3)-(n-1) 

Proof We only need to consider a local version of (6 6)- - the  global one follows 
as in the proof of Proposition 5 2 We start by observing that/2(x' ,  ~ ' )>0 implies 

(6 7) fL(x', ~') -~ 2 r ~  (R(x', ~') - R e  Wo) 2 
2r0cos( .)  O(h) 

In fact, (6 1) is equivalentto 

(6 8) ( r 0 + c o ~ ( ~ ) ~ ( x ' , ~ ' ) ) ~ + ( R e w 0 - R ( x ' , ~ ' ) + c o s ( l ~ ) ~ ( x ' , ~ ' ) ) 2 = ( r 0 + , )  2, 

and/2(x ' ,~ ' )>0  implies Rewo-R=O(/~l /2)=O(h 1/3) Expanding (6 8) gives (6 7) 
To simplify the notation let us now assume that Re w0 = 1 (a scaling argument 

then treats the general case) Denoting by A the annulus {C-I<I~']<C}, we 
introduce new coordinates on T*OON(f~xA),  zl, , z2n, so that  

S'oon(~ x A )  = {z~ = 0} ,  r o n ( ~  x A )  = {Z l  = = Z~+l = 0}  
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Motivated by this we write z=(zl, z z, z"), where z'=(z2, , zv+l) The nondegen- 
eracy assumption allows a more particular choice of coordinates in which 

Q(z)lz,=o = Q(0, 0, z") + Iz'l 2 

Since the minimal value of r 2/3 is r we get using (6 7) and 
the fact that zl=O(h 1/3) if/2(z)>0 

f~(z) - r (z)h 2/3 =/2(z) - r [Q(0, 0, z") + Iz'l s +O(zl)]2/3h2/3 

# - # 1  z 2 

= c e s ( ~ )  2ro c o s ( ~ )  

4 ( cos(~) ~/2r 1 +O(iz,12 )) +O(h) 
3 \ ~ /  

We now insert this into (6 5): 

C1 /~  X2(~,)2(ro+ll)(~(xt,~t)_r d~, 
rank Q~ _< ~ xR--' 

__< ~ 6 2  ~COS~)( ~$--]/1 -c2h2/31z'12)+ dzl / /n•  X2(~'(z))2 ~-O(h)-Cl Z 2 dz'dz", 

where Cl, c2 >0 This is bounded by 

C re1 dZl dz' < Ch-"+l (#-#l)(V/2)+C3/2)h -W3 
6h._ i ( # - # i )  z[+c2h2/Slz'12<O(~-~) e 

Putting 6=6(#-#1) ,  we get (6 6) from (6 5) [] 

7 Dis t r ibu t ion  of  sca t t e r ing  poles 

We will now use the lower bounds of Sect 5 and 6 to prove Theorems 1 and 2 
This will be done by the method originating from Sect 3 and 4 of [9] (see also [10], 
[11], [13]) but for the convenience of the reader we will try to make the presentation 
self-contained 

We start with the results of Sect 5 which give: 

T h e o r e m  4 If O<h<ho and h2/3/C<l~<Po~l, then the number of eigen 
values of P=-h2  AIr in 

(7 1) I a e z - l l  < ~1/2/C, - Tmz < 2~, 
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n( h, p), satisfies 

(7 2) n( h, p) = O(1)(2p-Sminh2/3 +coh)O+pZh -n, 

for some co and Brain is given by (5 18) 

Proof We start by showing that  if21Z<Sminh2/S-coh, for some CO, then P has 
no eigenvalues in the rectangle (7 1) In fact, if z were an eigenvalue in (7 1), then 
by Proposition 5 3 applied with Wo=Rez+iro, p < r 0 < 2 R e z ,  

ro - Im z > ro + Stain (Re z) 2/3h 2/3- 0 (h) 

Since (Rez)2/3=l+O(l~x/2)=l+O(h 1/a) we get a contradiction once Co is large 
enough 

Let us now assume that  2#>Bminh2/a-coh and take wo=l+iro with ro suffi- 
ciently small We observe that  for C large enough the rectangle (7 1) is contained 
in the disc 

D = D (w0, r0 +4#) 

I fz l ,  ,zgaretheeigenvaluesofPinDthenN>n(h,l~),sowewillestimateN Let 
us introduce the characteristic values of P-wo, #1<_ <_ItN < _ as the eigenvalues 
of [(P-wo)*(P-wo)] I/2 (with the convention that  in case there are only finitely 
many such eigenvalues we repeat the infiraum of the essential spectrum infinitely 
many times) We then use the Weyl inequality (see Apppendix A of [9]): 

(7 3) m ~N_~ IZl-W0l [ZN-WOl 

We start by estimating 

with p</Zo so that  

N # = #{/zj :#j  < r0+6/~}, 

inf a~([(P-wo)*(P-wo)] 1/2) >_ Im( (l +iO)wo) > ro+8/z, 

see the proof of Proposition 5 2 The max-mln principle shows that  

(74) N# < M r { V5 > 0 3 a closed subspace E C Z)(P-wo) C L2(F) 

of codimension less than  or equal to M - 1  such that  

II(P-wo)ull 2 >_ ((r0+6//)2-5)lluH 2, u E E 

Let us now apply Proposition 5 2 with/z replaced by 8# to see that  

II ( P -  o~o)~ll 2 ~ ((ro +8~) 2 - o(1 ) (h+#  2 +c/z))Ilull 2 ~ (to + 6 # )  2 Ilull 2, 
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N 

if E~u=O, for p=l, , Q and h, ~ axe small enough Thus (7 4) implies that 

Q Q M(gp eh 1/2) 

N# < E rank ~-~ < E E rank H=~. ~S 
p~--1 p=l j=l 

We now recall (5 8) and (5 9) to see that M_(Kn,ehl/2)=O~(~l/2h-("-l)) and that  
rankHx~. ~=0(#3/2h -1) Hence N#=O(#2h -'~) and the proof is completed by 

showing that  g<_cY # and that is done exactly as in [9], [10], [11], [13]: if Y > Y  # 
then 

#~# (ro +6#) N-N# _< (r0 +4#) N 

Since by Proposition 5 3, # l> ro  if h<h0, we get 

ro+6# -1 (ro+6#~N#=O(1)N#=O(#2h_n) [] 
N < ( l o g ( r 0 - - ~ )  ) l o g  ro ] 

Writing A-- h -  1, ~2 = h-  2 z the semi classical statement about resonances trans- 
lates immediately into a statement about the scattering poles: for A>> 1 and ~-2/3/C 
<~<IlC, the number of scattering poles in a rectangle 

is bounded by 

(7 5) 

for some el 
it we need 

I g _ Imr  < #A, 

O(1)(~--~min)~--2/3-[-al )~--l )O_t_~2v~ n, 

Theorem 1 is a somewhat weaker global version of (7 5) and to obtain 

L e m m a  7 1 Suppose that m , f  and g are measurable fanctions on [1, c~), 
f(x),  f (�89 are non decreasing, C -1 < y(x) <_ C-ix  and 

(7 6) m ( x ) - m ( x -  f (x) ) < g(x), 

then 
re(r) < CrS(lr)-lg(r)+C 

Proof We first obtain a bound on rn(A)-m(�89 and for that we define a 
sequence Ao=A, Ak+l=Ak--f(Ak) Then 

K 

k=0 
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where K is the smallest integer for which AK+:<�89 Hence �89189 and 

K < �89 Jtf (�89 Jt )-I Consequently, using the monotonicity of f (�89 A)- lg(A) 

1 ~ 2-#:r - k  rg(r) .~(~1<~ /(2_~_-----,,.)g(2 ~)+c<cs(1---~+c, 
k=0 

where M is the largest integer for which 2-Mr>2 [] 

Proof of Theorem 1 We put m(A)=N(A, #z), f(A)=#(A)l/2)tlC and g(A)= 
C#(A)2A n The estimate (7 5) implies that (7 6) and the assumptions of Lemma 7 1 
are satisfied in view of (1 2) Thus the bound 

.~(r) <_ CrS(lr)-:g(r)+C < C~(r)31~, -" 

follows from the monotonicity of #~ [] 

Proof of Theorem 2 The proof is based on Lemma 6 2 (from which we borrow 

the notation) in the same way as that of Theorem 4 was based on Proposition 5 2 

Thus we start by estimating the number of eigenvalues of P=-hlAlr in the disc 

Iz-~ol < ro-[-~l -]- �89 (]2-- ~1), 
(7 7) 

#-#: >> h, 

and claim that it is bounded by 

r0 =Imw0 < �89 Rew0-3#l, 

1~ <_ #~2-h2131C, 

O(1)(#-#~l)(l/2)+(~/2)h-"/ah- ( ' -  ~ ) 

To see that, we observe that for 5<<ro 

<.o (.o + , .  + 9_< ';, ) 
>_ 0 

Hence, (see Lemma 6 2) except on a space of codimension less than or equal to 
rank Q~ 

II(P-w0)ull 2> (r0+#~: + ( 1 -  ~ro) (.-.:))21lull 2 

Since 1-6/3r0 > 2 for small 6 we conclude that the number of characteristic values 
of P-wo in [0,ro+#i-t-2(lj-#l)] is O(1)~-s(#-#l)(1/2)+(~/2)h-~/3h-("-1) The 
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Re Wo 

^1/2 
~ ~ - -  : . 3h2/3 

Figure 2 The covering of a neighbourhood of the critical curve 

Weyl inequality applied as in the proof of Theorem 4 gives the claimed bound on 
the number of eigenvalues of P in the disc (7 7) 

A covering argument analogous to the one used in [13] (see Fig 2) shows that  
the number of eigenvaiues of P in 

{ �89 
- -  Iln z <~ Smin(Re z)2/3 h2/3 + a, 

is bounded by 

(7 8) O(1)QV/2h-V/3h-(n-1) 

We now need to translate this bound to the C-plane with r Q=Re f (z)h  '~, 
~a_<l, where f is holomorphic near the positive real axis and positive on it From 

(7 8) we immediately get a bound in the region 

3h_2 l h - 2  _~ Rer <: ~ , 

- I m  r < Smin(R e r162 

2 < a < l ,  becomes which by choosing f(z)=eoz 1-(~/2), -~_ _ 

lh_2<Ro/ .2  ~ 3h-2 ~ . . . .  ~ _ ~ . -  , 

- I m  r < 1Stain (1 - (Re r (Im r r + leoRe r e r 

Using Imr162  1/3, we get this to be the same as 

~ /~h  - I  ~ Re r162  -2/3) ~ ~-32 h - I  , 

- Im r < 1 ~min(ae r t_ leo(R e r r 
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Thus the number of the scattering poles in this region is bounded by (7 8) with 
Q--h a Another standard scaling argument completes the proof [] 
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