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Some estimates related to fractal 
measures and Laplacians on manifolds 

Limin Sun 

A b s t r a c t  Let  A be  t he  L ap l ace -B e l t r ami  ope ra to r  on  an  n d imens iona l  comple te  C ~  

manifo ld  M In  th i s  pape r  we es tab l i sh  an  e s t i m a t e  of  etA(d#) valid for all t > 0  where  d/~ is a 

locally un i fo rmly  a d imens iona l  m e a s u r e  on M 0 < a < n  T h e  resul t  is used  to  s t u d y  t h e  m a p p i n g  

proper t ies  of  (l--tA)-B considered as an  ope ra to r  f rom LP(M dl~) to L P ( M  dx)  where  dx is t h e  

R i e m a n n i a n  m e a s u r e  on  M ~>(n-ot)/2p' 1/p+l/p'=l l<_p<_co 

1 I n t r o d u c t i o n  

Let M be an n dimensional complete C ~ Riemannian manifold We will denote 

by A the Laplace-Beltrami operator on M and by ht(x, 9) the heat kernel for the 
heat semi group e tA A Borel measure # on M is said to be locally uniformly 

dimensional if there exists a constant C such that  

sup r n-a#(Br(x)) <C, 
l>r>0 V ( B r ( x ) )  - 
xEM 

where B~(x) is the geodesic ball with center x and radius r,  and V(Br(x)) is the 
volume of Br(x)  with respect to the Riemannian measure dx on M If M is of 
positive injective radius and the sectional curvature K(M) of M satisfies k_> K(M)> 
- k  for some positive constants k and k, then M is said to be of bounded geometry 
Assuming that  M is of bounded geometry, R S Strichartz in [5] established several 
results about the asymptotic behavior of et~(fd#) as t-*O, where fELY(M,d#), 
1 <p<_c~, and 

e tz~ (fd#)(x) = fM ht (x, y)f(y) d#(y) 

Later, A G Setti [3] obtained similar results about  L p weakly a dimensional men 
sure with respect to a weighted Laplacian The results in [3] and [5] are based on 
estimates of the heat kernel 
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From e ta  one can construct a family of operators { ( I - t A ) - ~ ;  t>0}  (wi th /3>0 

fixed) by setting 

1 f0 r(/3---) ds 

The kernel Jr(x, y) corresponding to (I--tA)-~ is given by 

~0 ~176 1 s#-le-Shst(x, y) ds JR(x' Y) = r(/3) 

It  is interesting to know the asymptotic behavior of ( I - tA) -#( fd l z )  as t--*O The 
aim of this paper is to show that  a key to this problem is to get certain estimates 
of eta(iz ) valid for all t > 0  rather than to estimate the kernel J~(x,y) directly 
Actually, by our reproach, one may find that  most of the results in [5] valid for 
eta(fd#) are essentially valid for ( I - t A ) - ~ ( f d # )  We do not intend to give every 

detail here, but  present the main steps These are contained in our proof for the/_2- 
boundedness of (I-- tA)-~ and the generalization of Wiener's theorem Moreover, 
under the suggestion of R S Strichartz, we here also present an estimation for 
[[(I--tA)-~(~)l[LP(ax ) where v is an IF  weakly a-dimensional measure (see the next 
section for its definition) 

I am especially grateful to Professor R S Strichartz He sent me several of his 
papers on fractal measures, which brought my attention to this subject, and later 
gave me many helpful comments and suggestions on my original manuscript, which 
led to the results in this paper I also would like to thank Professor Bo Berndtsson 
who supplied me a copy of A G Setti 's paper 

2 S t a t e m e n t  o f  the  results  

We make the convention that  all the constants, if not specified, are denoted 
by C which may be different in different occurences A simply connected n- 
dimensional manifold with K ( M ) = - k  is denoted by H n ~ and called a hyperbolic 
space As usual, p' denotes the adjoint number o f p  (>1),  i e ,  1 /p+l /p '= l  Fol- 
lowing A G Setti [3], a locally finite (complex) measure v on M is said to be 
/_F-weakly a-dimensional, if 

sup r ('~-a)/p v(Br(x)) LP(M da:) o< , -<1  < c  

The main results of this paper are as follows 
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T h e o r e m  1 Let ht(x,y)  be the heat kernel on a complete n dimensional 
C ~ Riemannian manifold M Suppose that M is of positive injectivity radius, 
infxeMV(Bl(X))>O, and the Ricci curvature Pdc(M)>_-(n-1)k  I f  p is a lo 
cally uniformly a dimensional measure on M,  (O<a<n), then there exist constants 
C1 =CI(M, #) and v=~-(M) such that 

M h~(x, y) dp(y) < Cl (o-(n-a)/2 +e ~ )  

for all x e M  and ~>0 In particular, if M = H  n k, one can choose T-~T(H n k)----0 

T h e o r e m  2 Let M and p be given as in Theorem 1 Suppose that f E 
IF(M,d#)  and ~ > ( n - a ) / 2 p ' ,  l <_p<c~ Then there exists a constant 

such that 

(1) 

C2 =C2(M,# ,~ ,p )  

H(I--tA )-~ (f d/.t)llL,(d..O <_ C2(t-(n-a)/2p --l.-l )ll fllL~,(d~) 

for all 0<t< l /2~"  In particular, if M = H n k then (1) holds for all t > 0  

T h e o r e m  3 Let M be given as in Theorem 1 Suppose that v is an I) '  weakly 
a dimensional measure on M Then, for ~ > ( n - a ) / 2 p ' ,  l<p<_oo, there exists a 
constant C3=C3(M, v, ~, p) such that 

(2) _< C3(t +I) 

for 0 < t < l / 2 T  Moreover, if M = H  "~ k, then (2) holds for all t > 0  

T h e o r e m  4 Let M be a complete n dimensional C ~ manifold with bounded 
geometry and/ i  a locally uniformly 0 dimensional measure on M Suppose that 
#=#c+ ~-~cj#xj is the decomposition of p into its continuous and discrete parts 
Then, for fELP(M,d#)  and ~>n/2p '  with l < p < c o ,  

,--)olim t"/'P H(I--tA)-'(fd#)llL'(a~)=C(n'~'P)(~ f(x')'~) '/p 

where 
2n/2+1-~ 

= 0 II 

and K1 is the l th K Bessel function (cf [6]) 

Theorem 4 can be viewed as a generalization of Wiener's theorem (cf [5]); its 
proof will be given in the last section In the next section we will prove Theorem 1 
and Theorem 2 and deduce some interesting consequences 
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3 P r o o f  o f  T h e o r e m  1 a n d  T h e o r e m  2 

Keep the notations previously used The following two facts crucial to our 
discussion are valid under the assumption that  R i c (M)_>- (n -1 )k  (cf [2], [3D: 

(F1) sup~e M V(Br(x))< Y(n, k, r), V(n, k, r )=0  (eV'-gn 0 as r---*oo, where 
V(n, k, r) is the volume of a ball of radius r contained in H ~ k 

(F2) For any 0 < e < l ,  there exists a constant C4=Ca(n,k,e) such that  

h (x, y) <__ C4 [Y(BMx))Y(S,a(y))]-l/2e exp(-d( , y)2/4(1 

for all x, yEM and t>0,  where O<,kM<(n-1)2k/4 

Remark 1 It is easy to check that  the Riemannian measure dx is a locally 
uniformly a dimensional measure for all 0 < a  < n  

Remark 2 Given a locally uniformly a-dimensional measure #, a paving ar 
gument (cf [5]) simply yields that  #(Br(x))<_C V(B~(x)) for all x e M  and r > l  
Consequently, one gets from (F1) that  #(B~(x))<C e v~ '~  This inequality is ob 
viously valid for all x E M and r > 0 

Proof of Theorem 1 For 0<0_<1, the assertion has been proved by Setti in 
[3, p 1073] For 0>1 we know from (F2) (choose e-=�89 and the assumption 
inf~eM V(BI(x))>0 that  

ho(x, y) < C e (1/2-)~M)O e -d(x Y)2/6~ X, y e M, 0 > 1 

Applying the above inequality and noting Remark 2, we have 

.[,, ho( , c e-d( 

= C e O/2-)'M)~ -(e-~2/6~ dr 
J o  

< C e (1/2-x~)~ e_~/60 r eV~,~dr 
- J0 30 

_< C e (1 /2 -~ )~  f o o  re-r2evrff~nrdr 
Jo 

But, f o  re-~2eb~dr<--eb2/2 for b>0 Hence, fM he(x,Y)d#(y)<C e "-e for all x e M  
and 0>1, where T=�89 2 

Now, consider the special case M = H  n k In this case, the heat kernel can be 
written as ht(r) with r=d(x,y) And ht(r) has the property (cf [1]): for any t > 0  
and r > 0 ,  

ht(r) <_ (4rrt)-"12e -r2/4t and h~(r) <_0, 
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where the derivative is taken about the variable r This fact together with Remark 2 
yields 

L /o /o hQ(x, y) dtt(y) = h~(r) d#(Br(x)) = -h'(r) #(Br(x)) dr 

( /o /1 ) <C Q--n~2 e-r2/4~ L radr+ -h'~(r)V(Br(x)) dr 
- 2Q 

_<C(8-(~-")/2+1), x e M ,  8>0 

This completes the proof 

Proof of Theorem 2 First note that in the proof of Theorem 1 we have used the 
identity fM h~(x, y) dx--1 This identity and the conclusion of Theorem 1 together 
with an interpolation argument shows 

He~A(fdtt) HLp(d~) <-- C(8-(n-a)/2 q-er~) 1/p []fHLP(d•) 

for l<p_<oo and 8>0 Then, an application of Minkowski's inequality yields that, 
for ~>(n-~) /2p '  and l <_p<oo, 

F II(I--tA)-r < C sr ds 
(3) p- 

<_ C(t -(~-~)/2p +l)lIfllL~(d~,), if 0 < t < 2T 

If M = H  n k then T=O, and hence (3) holds for all t>0  The proof is completed 

The operator ( I - A ) - # ,  usually called a Bessel potential, is of particular inter 
est A consequence of Theorem 2 is the following 

Corol la ry  1 Let M and # be given as in Theorem 1 Assume that p> l and 
8> (n-a)/2p'  If p' >nZk- AM then the Bessel potential (I--A)-# is bounded from 
I2(M, d•) to I2(M, dx) In particular, ffmc(M)>0 or K ( M ) = - k  then ( I - A ) - a  
is bounded from IF(M, dl~) to EP(M, dx) for all p>_l 

Proof In fact, one can deduce from (F1) and (F:) that, for any 0 < e < l ,  

h~(x, y) <_ C e (e-xM)e e -d(x Y)2/4(I+e)P, if 8 > 1 

And a simple calculation shows that for any O>0 there exists a constant C(0) such 
that 

fo ~ -r2 e br dr C(O)e 0+~ b 0 < > 
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Hence, it is easy to see that (3) (in its proof, we have choosen e =  i and 0=1) 
is still valid for all O<t~to<p'/~, where ~=(E--)~M)E(1-t-~)(1TS)kn 2 Hence, if 
p':>kn2-AM then one can choose e>0  and 8>0 small enough so that p '>~  Thus, 
the first part of the conclusion follows If K(M) = - k  the r = 0  and the conclusion is 
already contained in Theorem 2 If Ric(M)>0 then one can choose k>0  arbitrarily 
small But p ' > l ,  hence p'>kn2--AM This completes the proof 

Corol la ry  2 Let # be a locally uniformly a dimensional measure on the hy 
perbolic space H n ~, 0 < a < n  /f  Re(z)<(a-n) /2  then the Riesz potential ( -A )  ~ 
is bounded from L~(H n k, d#) to L~(H n k, dx) for l < p < c o  

Proof Let w and z be complex numbers Bear in mind that the manifold 
presently discussed is the hyperbolic space It follows from Theorem 2 that, for 
w:>0 and z<(a -n ) /2  (the same proof works for Re(w)>0 and Re(z)<(a-n)/2),  
the operator (wI--A) z is bounded from LC~(d#) to L~(dx) and from Ll(d#) to 
Ll(dx) as well On the  other hand, it is also a consequence of Theorem 2 that 

IIE~(f d~)llL~(~) <_ c(.~("-")/2 + l )llfllL~(d.), .~ > o, 

where E~ is the spectral projection onto the portion of the spectrum of A in the 
interval [-)~2,0] This fact implies that (wI--A) z is bounded from L2(d#) to L2(dx) 
provided that R e ( w ) > - ( ( n - 1 ) / 2 ) 2 k  and Re(z)<((~-n) /4  A complex interpolat- 
ing argument (cf [4, p 69]) yields the conclusion 

4 P r o o f  of  T h e o r e m  3 and  T h e o r e m  4 

Proof of Theorem 3 It has been shown in [3, p 1075] that 

(4) sup ~(n-~)/2p Ile~(V)HLP(dx) < C 
0<~_<1 

Moreover, fixing a paving {Mj} of size i ,  one can define a measure pl/4 by 

Ivl(A) V tM .~, i f A c M j  jUl/a(A)= i~,l(Mj) , j j  

so t h a t  w i t h  

For any x e M  and r > l ,  let J:{ j ;MjNBr(x)~O} Then, one must have 

U Mj C B2,.(x) 
jEJ  
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Hence, 

ftll4(B,(x)) <_ E f t l / t ( M j )  = E V(Mj) <_ V(B2,(x)) 
jEJ j~J 

Arguing as in the proof of Theorem 1, one gets fMhe(x,y)dftlla(Y)<Ce ~,  and 
hence 

(5) Ile~A(v)llL, ca~) <_Ce "~Ip for ,o> 1 

The conclusion follows from (4) and (5) immediately 

To prove Theorem 4, one can treat all the cases ( l<p<oo)  using the same 
approach But we will use a different method in the case that p--2, which is of 
particular interest 

Proof of Theorem 4 The special case (p=2) For t>0  and/~>0, ( I - t A )  -~ is 
selfadjoint and has the semigroup property with respect to ~ This fact together 
with Fubmi's theorem yields 

I I(I--tA)-t~(fd#)ll~'(dz) 

----/M J ~  (x, y)f(x)f(y) aft(x) dft(y) 
1 co 

- F ( 2 ~ ) /  82/~-le-S{/M hst(x,y)f(x)f(y)dft(x)dft(y)}ds 
F(2/~)1/~ �9 -- s2~-le-'..eCst/2)A, dft... 2Caz) It ( f  )11~ ds 

The last equality follows from the semigroup property of e tA Hence, we have 

(6) t "/2 II ( I -  tA) -~  ( fd~)l l  ~-, c~) 

--F-(-~) 2nl2 / co8213-n12-1e-s'f[lsthn1211e(st/2)A[fd''MI2~tk2 ] It ~, P/IlL (dx)f  d s /  

By Theorem 1 (see the proof of Theorem 2), the integrand in (6) is dominated by 
C(s2/~-n/2-1e-8+s2t~-le -s/2) for 0<t<min(1,  1/2T) Thus, the conclusion follows 
from Theorem 3 2 in [5] and the Lebesgue dominated convergence theorem In 
particular, we obtain 

c ( . ,  ~, 2) = \ ( ~ ) )  for ~ > 
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The general case ( l < p < c c )  
to verify the following two facts: 

(I) For any fixed 5>0 and yEM, 

According to the argument in [5, p 197], it suffices 

(II) 

lim t~/~ (f~ t--,o (~ y)_<~ 

\ l /p 
Jt~ (x, y)Vdx) = 0  

\l/p 

approaches to the constant C(n,/~,p) independent of 5 and y 
By an argument similar to the one used in the proof of Theorem 1, one can 

show that, for a locally uniformly a dimensional measure it, 

/ t \~/P (7) ~]~ho(x, yl,e.(~)) <C(o-n/2+~ "o1 

Recall that dx is a locally uniformly n-dimensional measure Then (I) follows from 
the known result about the heat kernel ht(x,y) and the Minkowski inequality to 
gether with (7) combining with a dominated convergence argument Furthermore, 
a similar argument shows that, for any fixed 5>0 and ~/>0, 

l imt n/2p st~-le-Sh,t(x,y)ds dx} = 0  
t - .o  (z ~)<~ It 

Thus, to show (II) we need only to deal with 

(8) tn/2" (~(z y)<~ fo~/t st~-l e-Shst(X, y) ds " ds) 1/" 

Since 5>0 and 7>0 can be arbitrarily small, one can replace hst(X, y) by ~tst(x, y)= 
(4~rst) -n/2 exp(-]x-yl2/4st) and compute (8) in the Euclidean sense Finally, we 
get 

t~/2p ( f Ip ~'/~ C(n,~,p)=~ r(~) ~xJR- ~0 ~176 d8 dx) 

2n/2+1-~ 
- -  ( 4 ~ ) n / 2 r ( z )  II M~-~/2 g,-n/2 (Ixl)IIL~ (R.), 
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where dx denotes the Lebesgue measure on R n The proof is completed 

In general, it is not simple to compute C(n, fl, p) since the integral involves a 
Bessel function But  for ;3-- �89 it is easy to check that  

,, f -  \l/p ~ 
C(n, � 8 9  V ~r - ) 

Moreover, looking back to the proof of Theorem 4, one may easily see from Theo 
rem 6 2 in [5] that  

C(n, ~,p) _< (4~)-"/2~ p-./2~ 

An interesting by-product to Theorem 4 is the following equality 

c  fr(2z-ln)  
111~I~-"/2K~-,/~(I~I)IIL~cR-) = , ~, r , ,_ , \  ~ ) 

for f~>�88 n=2,3, 

Remark 3 The assumption that  M is of positive injectivity radius is needed 
to carry out the paving procedure on M globally 

Remark 4 In [2], S W Yau gave an example of M with Ric(M)>0 but 
infxeM V(BI(x))=O In our approach, we need a uniform control on V(B~(x)) -1 
for all x E M  and r > l  Hence, we posed the condition that  infxeM V(BI(x))>O, 
which is valid if K(M)<_k 
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