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On a theorem of Baernstein

Enrique Villamor(?)

Abstract In the paper [B2] Baernstein constructs a simply connected domain 2 in the
plane for which the conformal mapping f of € into the unit disc A satisfies
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for some p€(1 2) where R is the real line

This gives a counterexample to a conjecture stating that for any simply connected domain Q
in the plane all the above integrals are finite for any 1<p<2

In this paper we give a conceptual proof of the basic estimate of Baernstein

1 Introduction

Let us consider the following problem Let © be a simply connected domain
and f be the conformal mapping from  into the unit disc A Assume that L is
a straight line which intersects the domain 2, Hayman and Wu [HW] showed that
for any configuration as above,
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where C is a universal constant Later Garnett, Gehring and Jones [GGJ] simplified
Hayman and Wu’s proof and gave an improved value for the constant C Ferndndez,
Heinonen and Martio in [FHM] gave another proof of the same result with a better
constant C=472, and a conjecture is offered for the best constant In the same
paper they showed that there exists a positive number p between 1 and 2, such that
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(*) I would like to thank Professor Albert Baernstein II for his helpful comments and sug
gestions concerning this work
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where C and p are constants independent of the configuration It is not difficult to
see that the line L may be taken to be the real axis R The question is then for
which exponents p is it true that f/'(z)e LP(RNS), for any f and Q7 Taking §2 to
be A\(~1,0] one sees that f'(z)€L?(RNS) can fail Baernstein [B1] conjectured
that f'(z)eL?(RN) would be true for any 1<p<2

Baernstein in [B2] showed that his own conjecture is not true He constructed
a simply connected domain 2 such that if we consider the conformal mapping f
from €2 into the unit disc, there exists a positive value p between 1 and 2, such that,

/ | (2)[P)dz] = o0
RN

We pass to describe briefly the work done by Baernstein in [B2] His domain
is the complement of an infinite tree T clustering to the real line The fixed aperture
at every branching of the tree T is %7!’

Let us consider the domain ©=C)\ ((—o0, 1JU(0, &i*/3]), where (0, /3] is the
segment joining these two points We are going to call a=¢e""/3 and consider the
conformal mappings F;(z), i=1, 2; mapping © onto the domain H=C\(—00,0],
such that F1(1)=0, Fz2(a)=0 and lim,_,, |F;(z)/2|=1, i=1,2

If we consider,

F
= lim __1(2) , = lim ——F2(Z) R
z—1| z—1 z—a| z—a
then Baernstein’s theorem states that,
Theorem
NV24 8125 /2

In his paper Baernstein proves this result after numerical evidence given to
him by Donald Marshall, who computed the values of v and 3 using Trefethen’s
program [T}, see also [H, p 422}, for finding parameters for Schwarz—Christoffel
transformations He starts with the 4-place decimal approximation to the param
eters given by the computer and confirm by Calculus the validity of the theorem,
then mentions that it would be desirable to have a conceptual proof of the theorem

In this paper, we present such a conceptual proof, in it our main tool is the
method of the extremal metric The idea of how to obtain lower bounds for y and 3
using extremal metric was inspired by the paper of Jenkins and Oikawa [JO), in
which they obtain a sharp version of Ahlfors’ distortion theorem, and then use it
to give simpler proofs of some well known results of Hayman
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2 Proof of the theorem
21 Estimating v=|F](1)|
Let g be a small positive number and consider the discs Dgl) ={z:|z—1|<p},
and DS) ={z:|z—1|<1/p} Let 921) be the doubly connected domain
el =(enn{)I\D{)
Let H, L(,l) be the image under Fi(z) of 82,1) , by the normalization properties of

the function Fj(z2), it is not difficult to show that for any positive ¢, there exists a
small positive g(¢) such that,

{2212l < (1=e)/e(@)}nH € F(DY) ) C {2212l < (1€ e(e)}nH
and

{z: |2 <|F{(1)|(ee)—&)}nH C Fi(DY)y) € {z: || < |F} (1) (ele) +€)}nH

Consider now the module problem for the family of curves I' joining BD(( ) with
6D1 Jote) I 82()) Using the conformal invariance of the module and the comparison
property for the modules, we have that

)< 27
27 = In((1—¢)/o(e)(o(e) +e) F{(1)])
This provides us with an upper bound for the module, our goal is to obtain a

lower bound for the same module For this we consider the conformal mapping
®(z)=In(z-1),

M, e

ol _ o
(): 6y = ),

where SU )) is the quadrangle in the Figure 2 1a

Let T be the family of curves in st )) joining the pair of sides opposite to the
vertical sides By the conformal 1nvar1ance of the module we have the following
equality o

(1)
M(F e (e)) (F S (s))

where T is the family of curves in S( ) © joining the pair of vertical sides Since the
families of curves I and T are conjugate in the quadrangle s o(e) Ve have that

M(T,88)) =1/M(T, 5,
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Figure 2 1a

therefore, to obtain a lower bound for M(T, eg&)), we need an upper bound of

M(F, 55)
The idea of how to obtain the right upper bound for M (f, 5’22)) was suggested
by [JO] For any value of z in the interval In g(¢) <z <—In p(€), let o(z) denote the

maximal open subinterval of Re{z}=z in .5’22) such that the two components of

(Ség) \o(z)) have the two vertical sides as boundary components Let §(z) denote
the length of o(z), 6:(z) the length of the part of the segment o(z) below the z-axis,
and 6(z) the length of the part above the = axis As it can be easily seen, 6;(z)=n
for any z in the interval In o(e)<z<—1Ing(¢) For §5(x) we have

I, if Inp(e) <z <In(3v3),
82(z) =14 8a2(z), if In(3v3)<z<0,
T, if0<z<—Ing(e)
Let the interval [ln(%\/g ) , 0) be divided into n consecutive half closed subintervals
Aj=[In(3v3)(1-j/n),In(3v3)(1~(j+1)/n)), j=0, ,n—1 of equal length, and

for each =0, ,n—1let

05" = min 030,

and define for any z€[In(1+v3),0), 0&8)(:1:):053])- if z€A;, =0, ,n—~1 Itis clear
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Figure 21b  zo=In(1v/3)+A; —27+6)

that such minimum exists and 9( %) is a step functlon on the interval [ln(2 ) 0)

At the right end point Z of any interval A; the step function «95 )(a:) has a negative
jump, then we draw the ray given by —\, 0(3) (Z)+A; A>0; j=0 ,n—1 The lower
envelope of these rays and the locus y=0§s) (z) defines on the interval [In(11/3),0)

a piecewise continuously differentiable function Gét) (z), which determines a decom-
position of the interval into a finite number of subintervals on which the locus
=0§t) (x) has slope —1 or 0 We define Oét) (z) in the interval (In g(¢), — In g(€)) by

( lng(e)<x$ln(%\/§)(1—n‘1)—-7r+0§s%,
(3)—:c+1n(2\/_)(1 n1),
o0 = | 1n(§\/—)(1—77,_1)—71'+49(s)<:l:<ln(2 3)(1-n"1),
65 (), In(4v3)(1-n"1) <z <0,
2w+ A2?, 0<z<+/7/3),
L 7T, VT3 <z < —Ing(e),

where A is a positive parameter to be determined later The domain determined by
—h(z)<y< BS) (z); Ingle) <z <—Ing(e),

becomes a quadrangle Q The part of Q( ) below the z-axis is the same as for

o(e)
S (l) and the part above the z-axis is as in Flgure 21b

If we let I be the family of curves le(‘)_:) joining the pair of sides complementary
to the two vertical sides, we have that

M(T, sf,}g)) <M(T, Qf_,?s))
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Thus it is enough to obtain an upper bound for M (I~" ,Qs()e)) It is known that

an upper bound for this module is given by the Dirichlet integral of any piecewise
continuously differentiable function in QS()E) taking the value 0 on the side given by

y=—01(z), and the value 1 on the side given by y=0§t) (z) A function like this is
given by

+61(z)
'Ll.(:l:, y) = ge_(#z';)_)

where ) (z)=6, (x)+9§t) (z) To estimate the Dirichlet integral of u(z,y) we sub
divide the domain le()e) into five pieces each corresponding to one of the following
intervals in the z axis:

I'=(In g(e), ln(—%\/g)(l—n_l)—w+0§s%];
II=(n(3v3)(1-n"Y)—r+65),In(1v3) (1-n"1));
IIT=In(3v3)(1-n"1),0);
IV =[0,/7/3X);
V=[vr/3x-Ing(e))

On the two pieces of the Dirichlet integral corresponding to the intervals I

and V, the function u(z,y)=(y+7)/27, and since when we take the limit as the

number of subdivisions n— oo then 05’%—»%#, we have that

//I+/V|Vu(:c,y)|2dzdy=%m($>+§1;[m_?_%]

It is not difficult to see that the Dirichlet integral corresponding to IT after we
let n— oo tends to

2

In(v/3/2) 57 /6~(z—1In(v/3/2))
y+m
[ s )
In(v/3/2)-n/6 J—x 117r/6—(:z—1n(\/§/2))
/ln(\/§/2) 57 /6—z+In(v/3/2) 1
"~ Jn(va2)-ase /_,r [(1171'/6—1:+ln(\/§/2))2’

(y+m)? } dy
(117/6—z+1n(v3/2))"
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In(+/3/2) 4 1
—,/m(\/‘/z)—n/e [llﬂ/6 $+111(\/_/2)]
4[ 1 V3\ ]R3/

i )

n| —-—z+n—
In(v/3/2)—~n/6

3 6 2

4 12
3P

As for the piece corresponding to IV, we have that after some calculations

Ul P By T S £
‘/j/;v‘ 57r/3+/\$2)ldxdy—[ 5 /x 3 3\/X] arctan — + \/>\/—

The estimate corresponding to 111 is more delicate, and we will treat it care-
fully

0 dr 1 /0 (91 )2__9@)’91 +(9(¢)’)2
Vu(z, y)|*dz d =/ ——+—/ L2 L2 dy
/ /mrl @)l Y m(v3/2) 09(z) 3 Jin(vaye) 00 ()

0 n—-1
dx 1 / 1
= ———+z ———dx
/1n(\/§/2) 6 (z) 3 j;o Q; O(t)(m)
= (i) +(id),

where €}, is the subinterval of A; over which 09)'(.'1:) is equal to —1 We proceed to
estimate these two integrals (i) and (ii)

In—

_ /° _dz _ 3 V3
m(v3/e) 0 (z) = 57 2

We estimate (ii) as follows,

o1 dz 1 1
=3 ;0 /Qj 80(z) 3 ; /g 0 @)+ (V3/2) (=G

-1

1 1
~3 Z/n, 7+08°) +In(v/3/2) (1— (J+1)/n)—

7=0

A

j=0
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where :vgr) is the right endpoint of the interval 2; and :zg.l) is the left endpoint

Hence, for n large enough,

3 j+1 3 j+2
m()12) 5 -t (-2

for any j=0, ,n—2, thus

S (rvon(5) (-22) ),

= % [In (7r+0(s)+ln(\/§) (1— —71;) —x(()l)) —1n(7r+0§s,)1—x$[))} ,

since zo =In(1v3), limp—,c0 0%—671', z{" =0, and 0(8) =27, letting n go to oo,

we obtain that 1 1
(ii) — 3 In T
This completes all our estimates, putting all of them together, we obtain that
QW y< L L A TS E_im_\/_??
M(T, Q) < 1o ( 2(5)) [m 2% 300 52
31 5T 1
In ==
+[ \/__ 3 \/—}arctan += \/7\/—+200+3

Let us call G()\) the expression on the right hand side of the above inequality
involving the positive parameter ),

G’(/\)=[ %%—;— 5“\/—]arcta.n += [\F 5

and solve the equation G(A\)=0, hence

4 /7r 4 [Bw 1 1 /1\' /3 171
l:g "?-’—'5 ?arcta.ng}\/x_ [g g— Er-arctang}ﬁ
thus,
1 /n 3 1 4 | 4 /57 1
= — —_—— —_— hod - —_——— —_ - = 2
(271-‘/3 \/57ra.rctan5)/(3’/3 3‘/ 3 a.rcta.ns) 0 10050259
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Choosing A to be this value the expression on the right hand side of the inequality
involving A is equal to zero, therefore
™ o) )< _1_ 1y, 1 ﬁ _r
M(F”Qg(e)) ~2r ln(gz(s) ton In 2 6
1,1, 11 4 12 3 3
)

T R T R

Putting together the two estimates of M(T", eglé)) from above and from below, we
obtain

2 1 1 1 \/5 ™
n((1—¢)/e(e)(e(e)+€) | Fy(1)]) 2(%1“(?(?))*'2?(‘“7‘6)

1 1,11 4. 12 3. 3\
+’2’®+§1"E+§l“1—1‘§h‘7)

Taking inverses and exponentiating both sides, we obtain

1—¢ 1 \/§ T
@ +@F D] = 26 ""‘p{ (h‘ T'E)

I 1,11 4. 12 3 3
+2”(5®+§‘“Ia+§1nﬁ"a‘“7)}

It is not difficult to see that choosing € conveniently and letting e—0 we get that
V3 m 1,1 11 4 12 3 /3
=|F > —_— _— - —_— —adt—n——— —_— =
¥ |F1(1)|_exp{ (ln 5 6) 27r(2::+31n10+3ln11 57rln 2)} a

Hence,
M2 = |FI(1)[}? > o'/ > 0 79249

2 2 Estimating 8=|F;(a)|
Let o be a small positive number, and consider the discs D& ={z: |z—al< o},
and Dg%:{z: |z—al<1/p} Let 0% be the doubly connected domain
2 21 P
6y = ([enD{?) |\ D)

Let Hg” be the image under F3(2) of 952), by the same reason as in the first
estimate 2 1, for any positive ¢, there exists a small g(¢) positive such that;

{z: 12| <|F}(0)|(e(e) ~€)}NH C Fa(DE,)) C {: |2l < | F3(a)|(ole) +e)nH
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and
{z12| < (1—¢)/0(e)}nH C F3(DY), ) C {2 || < (1+€)/e(e)}nH
Considering now the module problem for the family of curves T joining 8D£2) with

2) . 2
6D§ /)g(e) in Gg()e), we have that

@) 2n
M(T,800) < Hi=8) /@) @) TIR@D

Our goal is to obtain a lower bound for the above module For this we consider the

conformal mapping ¥(z)=In(z—a),

@ @
W(2):850) = Syes

where .5'22) is again a quadrangle as in Figure 2 2a above
Let T be the family of curves in 5'52) joining the pair of sides opposite to the

vertical sides of S@

o(©) By the conformal invariance of the module we have that,

M(T, 922)) =M(T, sgg)),
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where T is the family of curves in 5'22) joining the pair of vertical sides Since the

families of curves T and T are conjugate in 522), we have that

= @ _ = @
M(T, 88y =1/M(T, sg(;,>,

thus, to obtain a lower bound for M(T", 922)), all we need is an upper bound for the
module M (f, 52,2)) To obtain this bound we proceed as in case 21 Our function
() in this case is given by,
62(2) am, if In p(e) <z <0,
r)l=
2 m+arctan 1/3/(4e22~3), if0<z < —Inp(e)
We modify the function #;(z) in the same way we did with 62(z) in case 2 1 for

values of z satisfying In p(¢) <z <0, and for values of z in the interval [0, — In o(g))
we are going to modify 6,(z) as follows;

O(t)( ) { %w-l—&x, if0<z<),
)=
! 61(z), ifA<z<-—Inp(e)

Where §>0 is a free parameter and A is implicitely defined by the equation

3 2T

The domain determined by

—0(z) <y <Ba(z); Inpge) <z <—Inp(e),

2

becomes a quadrangle Q o(e)

on assigning, as a pair of opposite sides, the segments

~8(" (In o(€)) < y < b2(In o(€))

and
—6) (= In(e)) <y < b2(~Ine(e))

The part of ng()s) above the z-axis is the same as for Sﬁl) and the part below the
z-axis is as in Figure 2 2b
As in the case 2 1 we have that

M(T, 8,0)) < M(T, Q4),
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In o(e) A |—Inp(e)

Figure 2 2b

where IV is the family of curves in Q o(c) joining the pair of sides complementary
to the vertlcal sides Thus, it is enough to obtain an upper bound for the module
M (1"’ Qg( e)) An upper bound is given by the Dirichlet integral of the piecewise

continuously differentiable function in Qg( A

uz )= 2L,

where 60 (2)=6{ (z)+82(z) Hence,

// (2) ]Vu(z,y)lzdxdy=// . +// \ |Vu(z,y)|>dz dy
Q) QP n{Re{z}<0} @ N {Re{z}>0}
=I+1II

The estimate of the integral I is the same as in case 2 1 because if we look at the
left hand sides of the domains QS&) and Q( o(e)? they are the same up to a symmetry
and a vertical translation Thus,

1 1 1. 11 1 V3 n f
<— —|ln<=—— —-ln—— In
—21r1n(g(e)) ln1o+200+27r[1n 6] 3711 57 2

We pass to estimate the second integral IT,

= / / Vu(z, y)Pde dy
QR n{Re{z}>0}

B /~ ne(e) g +l /— Ing(e) 0§t)/(x)2 —Hgt)'(x)% (z)+65(z)? i
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where

02(z) = m+arctan for 0 <z < —1Ing(e),

_3
4e2=—3
and

80 () =61 () +02(z) = 2

for values of z such that A<z<—1Ing(¢) Thus IT is equal to

0 ()20 ()8, (z) +6, @?
" =/o ) / ()

1 1 A1

In g(¢)
A AL Y
o ng(e) 27r+67r/)\ 3(05(x))“dx

Let us compute the last integral in the above equality,

—In o(e) —Ing(e) _a.2
/ (84(z))*dz =3 / dz =%1n(4_ﬁ@>
A A

4e?* -3 4-3e—22

It remains to estimate
/* dz_ 1 /* o8 ()2 - G(t)'(z)é?’(:z:)+02(z)2
6 (z) 3 6®)(z)
/A 14362 +1/(4e**—3)+15,/3/(4e2= -3
0 $m+6z+arctan \/3/(4e2=-3)
/* 1+262+1/(4e**-3) p
z
o 3m+éz+arctan /3/(4e%* -3)
—36 [In(éz+4m+arctan 1/3/(4e2= —3) )]3

The second term in the formula above is equal to %Mng Thus, to complete
our estimate, our final goal is to find a suitable bound for the following integral

1 — 5| 9%,
$m+bx+arctan \/3/(4e?*—-3) 2w

where §A+arctan \/3/(4e?*~3)=2r Our first observation is that

4T 3 3
—+4-6x+ar ta.n”—— > 21 —arctan A /—————
3 ¢ (462” - 3) ot (4e2’ — 3)

/*[ 14262 4+1/(4e?—3) 1 ]
0
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for 0<z <A Therefore it is enough to estimate the integral

/*[ 141/(4e?*~3) 1]

o |2r—arctan \/3/(4e%—3) 2
</°° 27r/(4e2$-—3)+arctan\/3_/(4_62’”T3)dx
“Jo 27!'(27(-—-8.1‘0138.11\/3/(—462;"?))

In the above integral we have dropped the term %62 in the numerator, since when
A goes to oo then § goes to 0 as 27/3), thus

A %52 (52/\
de< 22,
/0 27 +6z+arctan 1/3/(4e2% —3) T

and this goes to :—1;6 as A goes to oo, hence the term in the integral correspond-
ing to %62 can be made as small as we please Using the change of variable

u=arctan 1/3/(4e2* —3), the above integral becomes
0 2.t 2 x/3 /3
_/ sm(tanu)’+u du =i/ 2n tanu du+i/ U ot du
/3 2m(2r—u) tanu 27 Jo, 3 (2m—u) 2 o (2m—uw)
=A+B

Standard numerical integration methods give us the following estimates from above
for the two integrals A and B:

< %(o 126) =0 042

and
271( )

Putting all these estimates together and letting 6 go to 0, we obtain that

1 11 1 1], V3 =«
MT,Q? vs_®
N TR TR R jin 10 200+27r[ ) 6]
12 3 f 4—30%(e)
+3 in nog—g=ln - —m(———z—— +0 04240 0252

Putting together the estimates of M(T, ef;(l ) from above and from below, taking

inverses and exponentiating, as we did in case 2 1, and letting € go to 0, we have
that

=|Fy(a)l

1. 11 1 V3 7\ 4. 12 3. 3
> — Zln=— ~ Zln =~ —.In -
_exp( 271'{31n10+200+2 (l 5 6)+31n11 o In 5 +00672})

=N
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Hence,
ﬂl/z — IFZI(a)Il/Z Z n1/2 ZO 6403

Therefore putting together the two estimates 2 1 and 2 2, we have that
[Fa(a)| 2+ |F{ Q)12 = /24412 > 0 7924940 6403 = 1 43279 > V/2,

and this proves the theorem [
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