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On a theorem of Baernstein 

Enrique Villamor(1) 

Abstract  In the paper [B2] Baernstein constructs a simply connected domain f~ in the 
plane for which the conformal mapping f of f~ into the unit disc A satisfies 

Iron I f  (z)Fldzl -- co 

for some pE(1 2) where R is the real line 
This gives a counterexample to a conjecture stating that for any simply connected domain Ft 

in the plane all the above integrals are finite for any l<p<2 
In this paper we give a conceptual proof of the basic estimate of Basrnstein 

1 I n t r o d u c t i o n  

Let us consider the following problem Let ft be a simply connected domain 

and f be the conformal mapping from ~2 into the unit disc A Assume that  L is 

a straight line which intersects the domain I2, Hayman and Wu [HW] showed that  

for any configuration as above, 

Ln .  If'(z)l Idzl <~ C, 

where C is a universal constant Later Gamett ,  Gehring and Jones [GGJ] simplified 

Hayman and Wu's proof and gave an improved value for the constant C Ferngmdez, 

Heinonen and Martio in [FHM] gave another proof of the same result with a better 

constant C=47r 2, and a conjecture is offered for the best constant In the same 

paper they showed that  there exists a positive number p between 1 and 2, such that  

fL ]f'(z)iPidz] < C, ngt 

(1) I would like to thank Professor Albert Baernstein II for his helpful comments and sug 
gestions concerning this work 
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where C and p are constants independent of the configuration It is not difficult to 
see that the line L may be taken to be the real axis 1~ The question is then for 
which exponents p is it true that f'(z)ELP(RN~2), for any f and ~? Taking ~2 to 
be A\(--1,0] one sees that .f'(z)eL2(Rn~) can fail Baernstein [B1] conjectured 
that f ' (z )eLP(RN~)  would be true for any l < p < 2  

Baernstein in [B2] showed that his own conjecture is not true He constructed 
a simply connected domain ~ such that if we consider the conformal mapping f 
from ~ into the unit disc, there exists a positive value p between 1 and 2, such that, 

frtn lf'(z)]P}dzl=oo 
f~ 

We pass to describe briefly the work done by Baernstein in [B2] His domain 
is the complement of an infinite tree T clustering to the real line The fixed aperture 
at every branching of the tree T is �89 

Let us consider the domain O = C \ ( ( - c ~ ,  1]U(0, e~/a]), where (0, e ~/3] is the 
segment joining these two points We are going to call a=e ~/3, and consider the 
conformal mappings F~(z), i=l, 2; mapping e onto the domain H = C \ ( - c o , 0 ] ,  
such that FI(1)=0, F2(a)=O and limz-.o~ iF~(z)/zi-=l, i=l, 2 

If we consider, 

v=h~m 1 Fl(Z),z_l J3 = ~li~mal F2(z) ' z - a  

then Baernstein's theorem states that, 

T h e o r e m  

In his paper Baernstein proves this result after numerical evidence given to 
him by Donald Marshall, who computed the values of 7 and j3 using Trefethen's 
program [T], see also [H, p 422], for finding parameters for Schwarz-Christoffel 
transformations He starts with the 4-place decimal approximation to the param 
eters given by the computer and confirm by Calculus the validity of the theorem, 
then mentions that it would be desirable to have a conceptual proof of the theorem 

In this paper, we present such a conceptual proof, in it our main tool is the 
method of the extremal metric The idea of how to obtain lower bounds for V and/3 
using extremal metric was inspired by the paper of Jenkins and Oikawa [JO], in 
which they obtain a sharp version of Ahlfors' distortion theorem, and then use it 
to give simpler proofs of some well known results of Hayman 
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2 P r o o f  o f  t h e  t h e o r e m  

2 1 E s t i m a t i n g  ;=lF:~(1)l 
Let 0 be a small positive number and consider the discs D(1)={z: {z-l{<0}, 

and D~l/)o={z:{z-ll<l/o } Let 0 (1) be the doubly connected domain 

= ( [ e n D i / o ] \  o ) 

Let H~ I) be the image under Fl(z) of e (1), by the normalization properties of 
the function Fl(z), it is not difficult to show that for any positive e, there exists a 
small positive 0(e) such that, 

{z: I*1 < (1-e)/O(e)}nH ( i )  {z: cF~(D,/o(~))C Iz l< (l+e)/O(e)}nH 

and 

{z: Izl < IF~(1) l (o (e) -e) InH c O) . Fl(Do(e) ) c {z. Izl < IF; (1 ) l (o (~)+e) }nH 

Consider now the module problem for the family of curves F joining OD O) with o(~) 
0r~(1) . .,(i) Using the conformal invariance of the module and the comparison ~i/o(~) in ~o(e) 
property for the modules, we have that 

M(F,  A(1) ~ < 
vo(e) J - 

27r 

In( (1 - s ) /0 (e ) (0 (e )  + e) IF((1){) 

This provides us with an upper bound for the module, our goal is to obtain a 
lower bound for the same module For this we consider the conformed mapping 
r  

~(z):O (1) --* d 1) 
0(~) ~o(~)' 

where ~(1) is the quadrangle in the Figure 2 la  ~'o(c) 
Let F be the family of curves in S O) joining the pair of sides opposite to the o(r 

vertical sides By the eonformal invaxiance of the module we have the following 
equality 

M(F,O O) ~ - -M@ e(1) ] 
o(~)/-- ~ '~'o(e)J' 

where P is the family of curves in S O) joining the pair of vertical sides Since the o(~) 
fa.milies of curves F and r are conjugate in the quadrangle S~1(~), we have that 

M @  ~(1) ~ _-1/M(F, S O) '~'o(e)] o(~)J' 
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ln~o(E) ln(1V~) o 

-~ri 

x 

Figure 2 l a  

M ( F  A(1) therefore, to obtain a lower bound for ~ , ve(e)j, we need an upper bound of 
(i) M(r, 

The idea of how to obtain the right upper bound for ~zr~ S (1) ... ~ , Q(~) j was suggested 

by [JO] For any value of x in the interval in O ( e ) < x < - I n  ~(e), let a(x) denote the 

maximal open subinterval of Re{z}=x in .r such that  the two components of 
(1) (S~(~) \a(x)) have the two vertical sides as boundary components Let (~(x) denote 

the length of a(x), 81(x) the length of the part of the segment a(x) below the x-axis, 
and (~2(x) the length of the part above the x axis As it can be easily seen, (~l(X)=~r 
for any x in the interval lnQ(~)<x<--lnQ(e)  For 02(x) we have 

{ ~r, if lno(e)<x<ln(lvf3), 
82(x)---- (?2(x), if i n ( lv f3 )  < x < 0 ,  

r ,  if 0 < x < - In Q(e) 

Let the interval [ln(�89 v ~  ), 0) be divided into n consecutive half closed subintervals 
Aj=[ln(�89189 j = 0 ,  ,n--1 of equal length, and 
for each j=O, , n - 1  let 

= min O2(t), 
2 j tEAj 

and define for any xe[ ln( �89  . ( s ) . . . ( s )  ~2 s i f x E A j ,  j = 0 ,  , n - 1  It is clear 
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' 

, , n -  2?ri 

lna( ) s0 - In ~(e) 

X 
D.- 

Figure21b xo=ln(�89 2) 

that  such minimum exists and 0~ s) is a step function on the interval [ ln ( lvf3) ,0)  

At the right end point ~ of any interval Aj the step' function 0~ s) (x) has a negative 

jump, then we draw the ray given by ~-)~, 0 (~) (~) +~;  ),>_0; j = 0  , n -  1 The lower 
envelope of these rays and the locus y=O~S)(x) defines on the interval [ln(�89 0) 

a piecewise continuously differentiable function o~t)(x), which determines a decom- 
position of the interval into a finite number of subintervals on which the locus 
y--.O(t)(x) has slope - 1  or 0 We define O~O(x) in the interval (ln Q(e) , -  In Q(e)) by 

r ,  In Q(e) < x < ln( �89  - n  -1 ) _~r+~2(s)2, 

ln ( �89  ( 1 - n - 1 ) - ~ r + 0 ~  < x < In ( iv /3 )  ( 1 - n - 1 ) ,  

2~-+Ax2, 

7I', 

l n ( l v ~ ) ( 1 - n - 1 )  _< x < 0, 

0_< �9 < 

V/'~/3~ _< x < - In Q(6), 

where )~ is a positive parameter to be determined later The domain determined by 

-81(x)  <y<O~t)Cx); In L)(6) < x <  - In QC6), 

becomes a quadrangle ~(e)1")(1) The part of Q~l(~)below the x-axis is the same as for 

S (1) and the part above the x-axis is as in Figure 2 lb  

If we let F' be the family of curves Q ~ ) j o i n i n g  the pair of sides complementary 
to the two vertical sides, we have that 
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Thus it is enough to obtain an upper bound for M(F', Q~I(~)) It is known that 
an upper bound for this module is given by the Dirichlet integral of any piecewise 
continuously differentiable function in Q~I(~) taking the value 0 on the side given by 

y=-81(x) ,  and the value 1 on the side given by y=8~t)(x) A function like this is 
given by 

y+81(x) 
u ( x ,  y )  - e (~) (x)  ' 

where 8 (t) (x)=81 (x)+8~ t) (x) To estimate the Dirichlet integral of u(x, y) we sub 

divide the domain f)(D into five pieces each corresponding to one of the following ~e(~) 
intervals in the x axis: 

I= (In @(~), In(l v~ )(l--n -I )-- ~r +8~s2) ] ; 

II= (In( } v~ )(l--n -1)-~r +8~s2), In(�89 v~) (1--n-l)); 

III= [ln(�89 ( l - - n - ' ) ,  0); 

iv= [0, v ~ ) ;  
V= [vf~/3A-ln @(s)) 

On the two pieces of the Dirichlet integral corresponding to the intervals I 
and V, the function u(x,y)=(y+~r)/2~r, and since when we take the limit as the 

,~(s) 5 number of subdivisions n--*c~ then ~2 2--~ ~r, we have that 

In 1 2~r 

It is not difficult to see that the Dirichlet integral corresponding to II after we 
let n--~c~ tends to 

~lnln(v~/2) fSv:/6--(x--ln(v~/2)) V(. y+r 2 
(v~/:)-./6J-~ ~.11~/6-(x-ln(v~/2)) ) dydx 

fo(~/2) /5./0-x+,.(~/2) 1 
=Jl.(v~/2)-. /6 J - .  [ ( l l~ r /6 -x  +In(x/~/2) )2 

(Y-~Tr)2 4 dy (ll,~/6-x+a(,,'~/2)) ] e= 
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=Jln(v~/2)-~/6 - [llTr/6--x+ln(v~/2) ] dx 

= 4 [_ in (1~_~_~_~ _x+in v ~  ] h~('~/2) 
3 2 / / ln(vr~/2)_~r/6 
41n 12 =~ 

As for the piece corresponding to IV, we have that after some calculations 

y+~r 2 4 51r 
/ / v I V ( 5 ~ / - ~ x 2 ) l d x d y = [ i ~  ~V/~v/~]axctan 1 4/-~''--~+~v~x/~ 

The estimate corresponding to I I I  is more delicate, and we will treat it care- 
fully 

IVu(x,y)12dxdy= dx 1 o ~a,',2 a(t)~a, .r 
H (~/2) O(t)(z) ~'3 (,/~/2) ~"lJ -~20(t)~l~w2(x) j dx 

J(ln ~ln-1/a 1 ~  0 (t) o d~ ~ V" d~ (Vf3/2) O ( t ) ( x )  ---- j (x) 

= (i) + (ii), 

where ~j is the subinterval of Aj over which o~t)~(x) is equal to -1 We proceed to 
estimate these two integrals (i) and (ii) 

( i ) = [  ~ dx ~ 
Jln(v~/2) O(O(x) <- - In --~- 

We estimate (ii) as follows, 

(n) = ~ j=o ~ O(O(x) = 3 j=o ~ ~+O(2S)(x)+ln(v~/2)(l_(j+l)/n)_x dx 
n--1  

='3 ~ r+O + l n ( v ~ / 2 ) ( 1 - ( j + l ) / n ) - x  dx 

---= ~ - ~  [ln ( ~r+0(~ +ln (z]--~-~ ( 1 -  j + l ~  -x~]x~')'n/]jzj,) 
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where x~ r) is the right endpoint of the interval ~j and x~ l) is the left endpoint 
Hence, for n large enough, 

2j+ln~_.~._)(l_~_l_)_x~r)_O(s) _~ln(__~_~(i_J:2) ~.(t) 
- 2 j + 1 -  \ 2 / - ~ j + l  

for any j=O, , n-2, thus 

n - - 1  

j=0 [ln ("+t~2' +ln (-2--)(1-J--+n 1 ) ) J , ~ o  

=_[  ( ( z  / (1  1)_x(0) (s) x(r) 

~ince X(o ') =In(�89 ~ ), lim,~.~ o(')- -~ ~)=0, and "(') _2 v20-- 6 , v2n--~r, letting n go to oo, 
we obtain that 

(ii)-+ g in .i_ ~ 1  11 

This completes all our estimates, putting all of them together, we obtain that 

M(~,,O(D,< 1 In( 1 ~+ 1 [ l n ~  6] 1 ~ 41n12 3 Inv/3 

[153 1 4 5~r A 1 4V~ 1 l l n l l  + v/~ g axctan g + 5 10 

Let us call G(A) the expression on the right hand side of the above inequality 
involving the positive parameter A, 

G(A)=[V~ 1 4 5V~V~ ] 1 4 /~-v~ 1 ~/~ 1 vT~ ~ arctan ~ + ~ V ~ VA-- ~-~=~r ~r~' 

and solve the equation G(A)=0, hence 

3 V 3 - 3 V  --~- arctan v/A= [~V3-V5-~=~ arctan51V~' 

thus, 

u / _-o 
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Choosing A to be this value the expression on the right hand side of the inequality 
involving A is equal to zero, therefore 

1 1. 11 41n12 3 in._~ + ~ 6 + ~ m ~ + S  H - ~  

Putting together the two estimates of M(F, A0) ~ from above and from below, we "e(~); 
obtain 

In 1 1 
, 

> 1 ~ln V~ 
ln((1-e)/o(~)(o(e)+e)]F~(1)l) ~ 2- 

, 11 +~5-6+] ~+]~nH-~  
Taking inverses and exponentiating both sides, we obtain 

1-~ 1 { (  -~--~ 6 )  
(0(~)+~)0(~)lf{(1)l < ~ exp h~ - 

( 1  lin11+4 12 3 _~_~)} 
+2,~ g6-6+~ lO t " i i - ~ h ~  

It is not dlmcult to see that choosing e conveniently and letting g--*0 we get that 

{ ( V ~  _~_2~r(  1 1. 11 4. 12 3 . ~ ) }  
7=lF{(1)l>exp - In 2 6 /  26-0+31n'i'-0+31nl'l-5-~ In -----a 

Hence, 
V 1/2 = IF{(1)I 1/2 > a 1/2 > 0 79249 

2 2 Estimating ~3=lF.~(a)[ 
Let ~ be a small positive number, and consider the discs D(2)={z: [z-a[<Q}, 

and D~2/)o--{z:lz-al<l/o } Let 0 (2) be the doubly connected domain 

O(o2) (2) D(2) =([OnD1/~] \ o ) 

Let H~ ") be the image u~der F~.(,) of e~ "), by the sa~e reason as in the ~rst 
estimate 2 l, for any positive ~, there exists a small ~(e) positive such that; 

{z: ]z] < [F~(a)I(Q(e ) - e )}n H C F2(D~)) C {z: ]z I < IF~(a)](Q(E)+E)}nH 
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in(�89 
~ . (~ )  

--~ri 
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-17ri 

Figure 2 2a 

and 
/D (2) {z: Izl < (1-~) /~(~)}ng c ~2~ l/.(~)J c {z: ]zl < (1+~)/~(~)}nH 

Considering now the module problem for the family of curves F joining -gD (2) with v o(~) 
or,t( 0 (  2 ) ~i/~(~) in o(e), we have that 

27r M(r ,  O ~ ) )  _ 
ln((1-a)/~(a)@(E)+r 

Our goal is to obtain a lower bound for the above module For this we consider the 
eonformal mapping ~(z) = l n ( z -  a), 

�9 (z): O (2) ~ ~(2) 

where S~ )) is again a quadrangle as in Figure 2 2a above 

Let F be the family of curves in S ~ )  joining the pair of sides opposite to the 

vertical sides of S(~) By the conformal invarianee of the module we have that, 

(2) _ M f ~  .~(2) M ( r ,  Oo(~) ) -  ~"~o(~)/, 
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and 
-0~ ') ( -  in e(~)) < y < 0,.(- in e(~)) 

.r and the part below the The part  ..r o(2) above the x-axis is the same as for ~e(e) 
x-axis is as in Figure 2 2b 

As in the case 2 1 we have that 

M (  ~ .~(2) h < M(F ' ,  c)(2) 
V " ,  " o ( e )  ] - "~ o (e )s ,  

is the fA.mily of curves in ..S(~) joining the pair of vertical sides Since the where 

families of curves F and F are conjugate in S ~ ) ,  we have that 

M ( ~  .~(2) ~ = 1/M(F, ~(2) 
' ~'o(~)] ~0(~) j '  

thus, to obtain a lower bound for M(F,  0 (2) e(e) J' all we need is an upper bound for the 

module M(F,  S ~ ) )  To obtain this bound we proceed as in case 2 1 Our function 

O2(x) in this case is given by, 

{ ~Ir, i f ino(~)  < x < O ,  

92(x)= lr +arc tan  X/3/(4e2~- 3), if 0 <  x < - l n ~ ( ~ )  

We modify the function Ol(x) in the same way we did with O2(x) in case 2 1 for 
values of x satisfying In Q(e)<x<0,  and for values of x in the interval [ 0 , -  In Q(e)) 
we are going to modify 01(x) as follows; 

0~t)(x)= { �89 i f 0 < x < A ,  

81 (x), if A < x < - hi ~(e) 

Where 5>0  is a free parameter and A is implicitely defined by the equation 

V/~1 3 2r  5A+arctan 
e ~ _ 3  = 

The domain determined by 

-e~) (~)<y<e~(~) ;  i n ~ ( ~ ) < ~ < - ~ ( ~ ) ,  

becomes a quadrangle .~o(e)t3(2) on assigning, as a pair of opposite sides, the segments 

-o~ ') (~ ~,(~)) < y < e~ (~ ~,(~)) 
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- l r i  

0 ~ - l n  ~(E)I 

Figure 2 2b 

where F' is the family of curves in o(2) joining the pair of sides complementary 
to the vertical sides Thus, it is enough to obtain an upper bound for the module 
M(F', Q~))'~" An upper bound is given by the eirichlet integral of the piecewise 

continuously differentiable function in o(2) 

82(X ) --y 
u(x, y) - 0(~)(~) ' 

where 0 (t) (x) = 0~ t) (x) +82 (x) Hence, 

/fQ:~()) Ivu( x' y)12 dx dy = f f J Q:() ) n.C~e.C~} <0, + J/Q(~())n(~(~} >o) 'Vu( x' y)'2 dx dy 

= I+II  

The estimate of the integral I is the same as in case 2 1 because if we look at the 
left hand sides of the domains f)O) and o(2) they are the same up to a symmetry ~(~)  ~(e ) ,  
and a vertical translation Thus, 

1 I 1 )  1 11 1 1 1 41n12 3 lnV~ _r___~--~ln ~ --I-~ln-~+~-~+~--~[ 2 6J+3 11-5-~ 2 

We pass to estimate the second integral II, 

II  =//Q(~))n{Re{z}>0} JVu(x, y) 12dx dy 

= f 0 -  + 3 ~  (t), 2 (t), , , 2 
--ln0(~) 01 (X)--81 (X)82(X)+O2(X) ]n Q(e) dx 1 

dx, 0(t)(x) 0(t)(x) 
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where 

and 

/ 3 02 (x) = r+arctan ~/ 4e 2x --3 V 
for 0 < x < - In 0(c), 

o(O (~) = o{ ~) (x) +e= (.) = 2,~ 

for values of x such that A_<x<- In Q(c) Thus 1I  is equal to 

fo fo ~ e~')'(~)~-e~~ +e;(x)~ ~' 1 dx + l dx 
u =  o(,)(x) o(o(~) 

1 1 A 1 j r -  in QCe) 
+V. in ~{~) ~ + U ~  a(O~(~))~d~ 

Let us compute the last integral in the above equality, 

- - dx = 1 ln('4--3Q2(e)' ~ 
fx lnq(e)(82(x))2dx--3fx ln~(~)4e2~-3 2 ~,4-3e -2-x ] 

It remains to estimate 

fo )' dx 
1 

O(O(x) ~ 

f ~  1+�89 

Jo } ~r + bx + arctan V/3/(4e 2~ - 3) 

f0 x 1-i-262+1/(4e2x-3) 
= 47r-t-bxTarctan ~3/(4e 2"-3) dx 

- �89 [ln(bx+~r +arctan ~f3/(4e2X- 3) )]o ~ 

dx 

The second term in the formula above is equal to �89 ~ Thus, to complete 
our estimate, our final goal is to find a suitable bound for the following integral 

J C [  l+~f2-t-1/(4e2X-3) 1]  
~+~x+~rctan ~/3/(4e2~--3) ~ d~, 

where ~fA+arctan x/3/ (4e2) ' -3)=27r Our first observation is that 

~ +bx+arctan i 3 i 3 (4e 2x-3) -> 2~r- arctan (4e 2~-3)  
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for 0 < x < A Therefore it is enough to estimate the integral 

~o~[ I+i/(4e2x-3) 

j~o ~176 2T:/(4e 2x -- 3) -I- arctan V/3/(4e 2x - 3) 
- 21r (27r- arctan V/3/(4e2~-3) ) dx 

In the above integral we have dropped the term 252 in the numerator, since when 
A goes to cc then & goes to 0 as 27r/3A, thus 

fo ~, 252 52 A 
47r-1-6x+arctan V/3/(4e 2"-3) dx <_ 21r ' 

and this goes to l& as )~ goes to oo, hence the term in the integral correspond- 
ing to ~52 can be made as small as we please Using the change of variable 
u=arctan ~/3/(4e 2x -3) ,  the above integral becomes 

_ _  ~0  ~r( tanu)2+u__du 1 [~132~r tanu 1 / ~ 1 3  ~ u  
/3 21r(21r-u) t anu - -  ~ J0 3 (27r-u) du+ Jo (27r-u) cotudu 

= A + B  

Standard numerical integration methods give us the following estimates from above 
for the two integrals A and B: 

3 (0 126) -- A 0 042 

and 
1 158) < 0 0252 S_< ~-~(0 

Putting all these estimates together and letting 5 go to 0, we obtain that 

1 - ..1 1. 111_0+2~+~1 1 [ ~Vf3 6] M(F', Q ~ ) )  < In ~ - ~ + ~  In In - 

+41n 12 3 v~ , 1 ~ / ' 4 -3e2 (e )~  ,,~ ~ -  ~-~ In-~-~-~-~ m~ ~- ) t v  042+00252 

the estimates of M(F, 0~1(~)) from above and from below, Putting together taking 
inverses and exponentiating, as we did in case 21, and letting E go to O, we have 
that 

~---IF~(a)l 

l I n l l  1 1 ( i n ?  ~) ~'~ 4In12 __33 In_2~-3Vr3+O0672}) 
_ >e~p( -2~{~  ~ + 2-0-6 + ~ - ~ / + ~  11 5~ 
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Hence, 

~1/2 = iF~(a)ll/2 ~ nl/2 ~ 0 6403 

Therefore putt ing together the two estimates 2 1 and 2 2, we have tha t  

IF (a)lX/ +lFi(1)ll/2 = > o 79249+0 6403=  1 43279> V/-2, 

and this proves the theorem [] 
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