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Directional operators and 
radial functions on the plane 

Javier Duoandikoetxea and Ana Vargas(z) 

A b s t r a c t .  Let E C S  t be a set with Minkowski dimension d ( E ) < l .  We consider the Hardy-  
Littlewood maximal function, the  Hilbert transform and the  maximal Hilbert t ransform along the 
directions of E. The main result of this paper shows tha t  these operators are bounded on LrPad (R  2) 
for p>l+d(E)  and unbounded when p<l+d(E).  We also give some end-point results. 

1. I n t r o d u c t i o n  

Given a one-dimensional operator T and a direction u ES ~-1, we define the 
directional operator Tu in R n as follows: for a smooth function f and given x E R  n, 
set x=(x,u)uTx' and g(t)=f(tu§ then, Tuf(x)=Tg((x,u)). If T is either 
bounded in LP(R) or of weak type (p,p), the same is true for T~ in R '~ with the 
same norm (in particular, the norm does not depend on u). 

In this paper we shall consider directional operators in the plane. Associated 
to the angle 0 which determines the direction given by the point e i~ = (cos 0, sin 0) in 
S 1 we define the maximal operator Ma, the Hilbert transform Ha and the maximal 
Hilbert transform H$ as follows, 

Mef(x)=sup 1 /~" If(x-te'e)l dr, 
h>0 2"h h 

Her(x) = e-.olim -~rl ~ I>~ f(x-teie)t dt := 6-,01im He,~f(x) 

and 

H$ f(x) = sup tHe,6f(x)l. 
e>0 

Thus, all of them are bounded operators in Lp(R2), 1<p<cr  and of weak type 
(1, 1) with norms independent of 0. 

(1) Both  authors are partially supported by Spanish DGICYT grant  no. PB90-0187 
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Let E be a closed subset of S 1. Associated to E we define the operators 

D3~Ef(x) = sup Mof(x), 
OEE 

?-lEf(x) = sup ]Hof(x)[, 
OEE 

H'El(X) = sup HS f (x) 
OEE 

(we shall write OEE instead of ei~ We are interested in the boundedness 
properties of these operators as functions of E. When E is a lacunary set, that  
is, E= {0j ) is a decreasing sequence converging to 0 such that  lira sup(0j+l/Oj)< 1, 
then 9Y~E is bounded in LV(R2), l < p < o o  ([NSW]), but if E has positive measure, 
~E is unbounded for p<oo.  

We consider radial functions. Denote by L~ad(R 2) the set of radial functions 
belonging to I2 .  We associate to each E a number, d(E), as follows: 

logAf(5) 
d(E) = lim sup - -  

6- ,0+ - l o g 6  ' 

where Af(5) is the minimum number of closed intervals of length 5 needed to cover E. 
If E has positive Lebesgue measure, d(E)=l. If E has zero measure and we write 
S I \ E  as the union of a sequence of disjoint open intervals, {Ij}, then 

d(E)=inf (a  >_O: Ei l j[ '~  < oo) 
J 

where [Ij[ denotes the length of I j .  Our main theorem is the following: 

T h e o r e m  1. 
(i) ME is bounded on L~Pad(R 2) if p> l +d(E) and unbounded if p<l +d(E). 
(ii) The same holds for ~E and TI* E if d(E) < 1. 

There is no standard name for d(E) and one can find the names Minkowski 
dimension, box-counting dimension, entropy dimension and logarithmic density 
among others. There are also many different equivalent definitions (twelve of them 
appear in IT], including those mentioned above). The number d(E) is an upper 
bound for the Hausdorff dimension of E but they are different in general. Never- 
theless, they coincide for self-similar sets like the Cantor ternary set (see [F, p. 118]). 

When E is lacunary, d(E)=O and the operators are bounded in L~Vad(R 2) for 
all p >  1; if E is the set of directions given by the sequence k -v,  then d(E) = l / ( q , + l )  
and we prove boundedness if and only if p>( ' r+2)/(~4-1) .  We remark that  acting 
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on general functions, the operators are unbounded for all l < p < c o .  If E is the 
Cantor ternary set, d(E)=log2/log3 and the boundedness on L~P~d(R 2) holds if 
and only if p >  1 +log 2/ log 3. In this case the question for general functions remains 
open. When E=S 1 the boundedness for p > 2  is proved in [CHS2]. A result slightly 
more restrictive than our Theorem 2, but  still enough to deduce Theorem 1, was 
claimed in [CHS1], but  it was obtained using an erroneous estimate. The correction 
in [CHS2] does not supply a proof to our theorem. 

2. M a x i m a l  o p e r a t o r s  

Due to the result in [CHS2] we can limit ourselves to considering the case 
d ( E ) < l .  Decompose SI \E  as the union of {Ij} as in the introduction and assume 
that  there are Nk intervals of length 2 - k - 1 <  IIjl _<2 -k. With this notation, 

a(g)=i   >_0: Nk2-k <oo . 
k=l 

To prove the necessiW of p>_l+d(E), take as f the characteristic function of 
the unit ball. On 2z_<lxl_<2 t+l, />0,  9JtE is of the order 2 -I at least on the union 

l of Y'~k=l N~ rectangles of sides 1 x 21 which correspond to the directions defined by 
end-points of intervals of length greater than 2 -I-1.  Thus, if g)tE is bounded in 
L ~ ( R  2) we have 

l = l  ~ k = l  

which is the same as 
oo oo 

c. 
k = l  l = k  

Hence, p -  1 >d(E). 
Theorem 1 will be a consequence of the following: 

T h e o r e m  2. / f p < 2  and ~ j  ]Ij]p-l(log(1/]Ij[) )P-l+e < co for some e>0,  then 
ff)~E is bounded in L ~ ( R 2 ) .  

Let r be a nonnegative one-dimensional Schwartz function such that  r  
and set Cj (t) =2-Jr Define the operator 

M-of(x) = s u p  f Cj(t)f(x-te iO) dt. 
j~z JR 

Thus, Me and Mo(Ifl) are equivalent in the sense that  their quotient is bounded 

between two strictly positive constants, so that  we can study 9)~Ef=supecE Maf 
instead of 9)IE. The following lemma is used in a crucial way. 
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L e m m a  3. Let fEL~P~i(R 2) and l < p < 2 .  Then 

II~of -Mo, fllv <_ CpIO-O'I 1/p' llfllP, 
where 10-e'l denotes the length of the shortest are joining e i~ and e i~ 

Proof. Consider first the case p=2,  the others following by interpolation. For 
the sake of simplicity, we can assume that 01=-9 (that is, the directions 0 and 0 I 
are symmetric with respect to the OXl-axis). For every function g we have 

I-~og(x)-M-o,g(x) _< supj [ j  Cj ( t ){g(x- te  i ~ 1 7 6  dt 

[~ 11/2 
:=suplr~og(x)t:=Tog(x) < _ Irgg(x)12] �9 

J 

The Fourier transform of T~g(x) has an explicit expression, 

(Tgg)^(~) = [r j (e i~ ~))-~(2 j (e - '~ ~))]~(~). 

Let X0 be the characteristic function of the (double) sector centred at the OX2-axSs 
of width 40 and Po the multiplier operator associated to X0- For a radial function 
f ,  the inequality 

IIP0fll2 _< cIo11/211f112, 
is a consequence of Plancherel's theorem and the fact that  ] is also radial. Hence, 

IITo(Paf)ll2 <_ IIMo(Pof)II2+IIMo,(Pof)II= <_ CI011/211f112. 

Therefore, we are reduced to estimate 

( 3 ~"  \1/21122 
IITo(f-Pof)ll~ < IT~,o(f-Pof)l 2) 

= [ E [ ~(2~ (e'~ ~))-q~(2J < e- '~ ~>)]21](~)12(1-X~ d~. 
. /  

3 = - - o 0  

Using the bound 

2J 1~2 sin 0 I 1r ( e~~ ~ ) - r  (e -'~ ~))1 -< C (2J1~1 cos el) 2+ 1' 
valid when 1-X0(~)r we add the series in j and integrate in polar coordinates 
(0, T) to get 

fo ~ If(Lg)I2Q ~1r/2-2~7 tan2 7" dTtan 2 ~ dQ <_ C[Oltlfll 2. C 

The result for l < p <  2 is an almost straightforward application of the Marcinkiewicz 
interpolation theorem. There is only a minor technical problem: Mo-Mo,  is not 
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sublinear. It is not difficult__ to  go around this failure. We have defined a new 
operator To satisfying [Mog-M-og[<Tog, and To is sublinear, of weak type (1, 1) 
and [[Tog[[2<CIO[U2][g[[2. We can perform the interpolation over To. [] 

We use the preceding lemma to prove 

L e m m a  4. Let 01,02,... ,ON be N directions in an interval I c S  1. Then, for 
radial f we have 

sup IMo  f - MoN f l  <- C(log N)lII1/211fll2 

and 

suplM-o f- o, fl p<_CN2/P-~III1/P'IIflIp, 1<p<2. 

Proof. Without loss of generality we can assume that  N = 2  Z- 1 (adding points 
if necessary) and label the directions consecutively. Decompose the index set f l - -  
{1,2, . . .  , 2 t - l }  into l subsets containing 1, 2, 22, ..., 2 t-1 points as follows: J1 = 
{21-1}, ff,~=ff,~_lq-21-m (m>2).  This definition associates to each point 0j with 
j E J , ~  a unique point 0~(j)EJm-1 in a canonical way. Now, we have 

sup IMo~f-Mo~fl <_ sup  IMo~f-Mo~(~)fl+ sup  IMo~(~)f-MoNfh 
j~,7,,, J~J~ j~..7,,,, 

and using Lemma 3 

j sup S-- oN fl 
U3"~ p 

--< je sup 
U .7, 

,i~m--1 

( E I-~o~f-M-o~fl + IOj-o ( >l " / r  Ilfll~. 
P j E.7"., 

Applying HSlder's inequality, the last term is bounded by 2 (m-1)(2/p-1) Ill 1/p' [[f[[p. 
The lemma follows by induction. [] 

Proof of Theorem 2. By a limiting argument we only need to consider the 
directions determined by the end-points of the intervals I j .  Denote by Ek the set 
of end-points of intervals of length 2 - k - l < t l l < 2 - k  which are not end-points of 
intervals of length greater than  2 -k. The connected components of the complement 
in S 1 of the union of these latter intervals (of length greater than 2 -k) will be 
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denoted Jk,l; let Ek,t be the subset of Ek contained in Jk,z and Nk,z the cardinality 
of Ek,l. Then )--~t Nk, t<-2Nk and ~ l  IJk,tl<-~j>k NJ 2-L 

If 01 is anyone of the end-points of Jk,t (which are in Uj<k Ej), according to 
Lemma 4, we have for p<2 

('-y AT2/p--1 IMoS-Mo, fl p _ 
! 

sup < ~"k ,~  Igk:l :/p I 1 : 1 1 , "  OEEk,z 
Since 

sup sup 
l OEE~:,I 

we deduce 

I~r,,,f(x)l_<supn~,,,f(:~)l+(~-~ s u p  - -  - -  Y/P ' \-'S O~E~,, IMo.f(x)-Mo,.f(x)I p) , 

s u p  I.~oft p< _ s u p  IMofl ( ~  N2,TPlJk:IP-:I:/P ll:llp. 

Applying Hblder's inequality to the sum in I with exponents 1 / (2-p)  and 1/(p-1), 
the coefficient of Ilfllp in the last term can be bounded by 

C(~l \(2--p)/p{ ,)(p-1)/PcNk/p_l(j~>_ k 

By induction, sup0eE Mof is bounded in L~d(R 2) if 

oo hrz/p-1/,__~Nj2_j~l/p, 
(1) E " k  ~/__, } <co. 

k=l "j>_k 
Assume that ~ IIj I p-1 (log(I/l/j I)) b < co for some b>0, i.e., 

O O  

(2)  ~ Nk2-k(P-:)kb < co. 
k=l  

~...,oo ]~d-2/p- 1 {~., To check that z-,k=l "k ~Z..,j>_k Nj2-J)UP' is finite, apply first HSlder's inequal- 
ity with exponents p/(2-p) and p/(2p-2), after including 2-k(P-D(2-P)/Pkb(2-p)/P 
in the sum and the same with opposite exponent. We get a factor like (2) and we 
are left with 

/ \I12 
E ( E N - 2 - J )  2k(2-p)/2k-b(2-p)/2(p-1)" 
k=l "j>k 3 / 

Applying the Cauchy-Schwarz inequality, we get 

k:l xj>kNj2-3)2k(2-P'k b) ~k~lk--b/(p--1)) 1/2. 

The second term is finite if and only if b>p- 1. Rearranging the first term we again 
get (2). [] 
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3. H i l b e r t  t r a n s f o r m s  

The counterexample to show the necessary condition is the same as above. To 
prove the theorem for Hilbert transforms we need first two lemmas like in the case 
of maximal functions. The first one is: 

L e m m a  5. If f is a radial function, then 

IIHof -no '  fllp ~ CplO-O'I lip' Ilfllp, 
/ ,-, \ l - - 2 / p  

llHof-Ho, f H p < - C r l O - O ' I I / P ( l o g ~ )  llfllp, 

l < p < 2 ,  

2 ~ p < ~ .  

Proof. The multiplier of the operator Ho - Ho, is supported in a (double) sector 
of width 10-0'1. This gives the L2-result. For l < p < 2  we interpolate with the weak 
type (1, 1) estimate, and for p>2  with a uniform estimate for big Po. [] 

Applying this lemma we get the following counterpart of Lemma 4: 

L e r n m a  6. Let 01,02,... ,ON be N directions in an interval I c S  1. Then, for 
radial f we have 

sup[Ho~f-HoNfl p<_CN2/p-l[I[1/P'[[f[[p, l < p < 2  

and 

~<J \ 27r i)_2/p. 1 suplHojf-HoNfl p<C(logN)lII1/Psup(logloi_o~ Ilfllp, 2 < p < c o .  

The proof of the theorem now follows the same scheme as before for l + d ( E ) <  
p<2.  But  we cannot interpolate with p=c~ as in the maximal function case and the 
range p>2  also needs a proof. Minor changes using the second estimate in Lemma 6 
lead to the following substitute of condition (1): 

(3) 
oo / \l/p 

k = l  \j>_k " 

which is satisfied if d(E)< 1 since Nj <C2 j~ for some a < l .  
To treat the maximal Hilbert transform we apply Cotlar's inequality. Usually 

it is written as 
H ' f  (x) < C[M(H f)(x)+ M f(x)] 
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with M the Hardy-Lit t lewood maximal hmction, but it is easy to see ([S, p. 67]) 

tha t  the first term can be taken as M(Hf). Then, for directional operators 

H~ f(x) < C[Mo(Hof)(x)+ Mof(x)] 

and 

7~f(x) < C[sup Mo(Hof)(x)+93tEf(x)]. 
LSEE 

We shall need a new modification of the key lemma: 

L e m m a  7. Let f be a radial function. Then 

liar0 (H0f)--Ma,(Ho,  f)llp < CplO-O'l lip' IlSllp, 1 < p  ___ 2 

,,Mo(Hof)-Mo,(Ho, f)llp < Cplt?-O'll/P(log ~ )  ,,fllp, 2 < p <  c~. 

Proof. Again, we only need to prove the case p=2 .  From it, the estimate for 
p < 2  is obtained by interpolation with the weak-type (1, 1) estimate (which holds 

because M(Hf)<C(H*f+Mf)) and for p > 2  we interpolate with an estimate for 

big P0. 
To prove the case p = 2  write first 

Mo(Hef)-Mo,(Ho, f) = [Mo(HoI)-Mo(Ho, I)]+[Mo(Ho, I)-Mo,(Ho, I)]. 

For the first term we have 

II-~o( no ) f - M-o( no, ) f ll2 <_ cIIno f - Ho, f ll2 <_ ClO-O'l~/211f ll2 

and we only need to control the second one. Observe then that  in the proof of 
Lemma 3 we can replace f with Sf where S is a bounded multiplier operator,  
without modifying the estimate. [] 

With this lemma we prove the theorem for 7-/~ exactly as we did it for 7-/E. 
Notice also that  if p < 2  the condition in Theorem 2 is sufficient for the boundedness 
of 7-/E and 7-/~. 

4. F u r t h e r  r e s u l t s  

4.1. E n d - p o i n t  b o u n d e d n e s s  

The proof of the necessity in Theorem 1 shows that  if the operators are bounded 
LI+d(E) [1:~2 in ~r~i ~,~ j, then 

(4) IIjJ < 
J 
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In the case where E is given by a decreasing sequence Oj converging to 0, such 
that  0 j - 0 j + l  is also decreasing (i.e., the intervals are ordered by their lengths), 
condition (4) is also sufficient. Indeed, in the proof of Theorem 2, Jk,l is reduced 
to just one interval of length __Nk2 -k and Nk,l =Nk. Then, 

sup I_~of -.~o~fl p < CN~/P2-k/P' llfll p, 
OEEk 

where 8k is the direction in [-Jj<k Ej closest to Ek. Then 

. c~ \l/p 

IMoJl +C Nk2 -~<"-I) 

The last sum is bounded for p=l+d(E), assuming (4). Moreover lOk-Ok+ll_< 
Nk2 -k < C2 -k(x-d(E)) so that  ~-~k IOk -8k+118 < oo for all ~ > 0, if d(E) < 1 and, there- 
fore, the first term is bounded for l < p < o o .  

4.2. Rearrangement  of  directions 

When E is finite and has N points, 93IE is bounded in L p, l < p < c ~ ,  but then 
the interesting problem is to study the dependence on N of the L p norm of the 
operator. It is known that  

I l l - f l i p  ~ C(log N +  1) ~ Ilfllp (~ = ~(P) > 0, 2 _ p < oo) 

and 

II~Efllp <- CpN2/p-I(log N+l)~l l f l lp  (~--- ~(P) - 0, 1 < p  < 2), 

if the directions are equidistributed (see [Col] and [St]). Without this hypothesis it 
is an open problem to determine the above estimates. When f is radial, no matter 
what the directions are, both results are given by Lemma 4 and even more, if the 
N directions are distributed in a small arc I ,  the norm can be made smaller, more 
precisely 

II~tEf 112 ~ C(1 + (log N)1II1/2)Ilfl12, 

II~EflIp ~ C(I+N2/P-IlIIX/P')IIflIp, 1<p<2.  

An estimate of this type is impossible for general f ,  a change of variables showing 
that  the norm is independent of the length of the arc in that  case. 
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This observation is sometimes useful in order to show that  an operator is un- 
bounded in the general case. In fact, if there are Nk consecutive intervals of length 
2 - k - 1 <  II[ <2  -k and the sequence {Nk} is unbounded, the associated operator can- 

not be bounded in L p for p<oc .  

We have shown in Theorem 1 that  the boundedness of ~IE,  7-/E and 7-/~ on 
LrP~d(R 2) depends only on the length of the intervals in S I \ E  (except maybe the 

end-point). In the general case the distribution of the intervals can modify the 
boundedness of the operator. More precisely, we can give two sets E and E ~ such 
that  S I \ E  and S I \ E  ' are decomposed as unions of sequences {Ij} and {I~} such 
that  [IjJ=lI~l, and ~ E  is bounded in LP(R2), l < p < c ~ ,  while ~F~E, is unbounded 
if p<c~.  To this end, decompose S 1 dyadically and decompose then each dyadic 
interval into dyadic pieces again. Take as E the set of end-points of these intervals. 
Rearrange the intervals so that  they are ordered according to their  length and take 
as E '  the complement of their union. Then  9:RE and ~)IE, satisfy the above claim. 
For the positive result see [SjSj], for the negative one apply the observation in the 
preceding paragraph. 

Added on March 24, 1995. The maximal operators studied in this paper are 
of restricted weak type in L p, p > l ,  if and only if there exists a constant C such 
that  Nk<C2 k@-l), where Nk denotes the number of intervals Ij  whose length is 
between 2 -k-1  and 2 -k (or equivalently, the minimum number of intervals of length 

2 -k needed to cover E).  

This result is particularly interesting at the end-point p : l + d ( E ) .  The coun- 
terexample is the same as in Section 2 and to prove the sufficiency decompose the 
operator into two parts according to the length of the intervals Ij. Then apply to 
each one of them an L 2 estimate or an L 1 estimate. The result follows by choosing 
the decomposition in such a way that  both  terms are of equivalent size. 
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