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Compression semigroups of open 
orbits in complex manifolds 

Joachim Hilgert(1) and Karl-Hermann Neeb 

In t roduc t ion  

Let Gc be a connected complex Lie group and GCGc a real form, i.e., there 
exists an antiholomorphic involution a of Gc such that G=G~={geGc :a(g)=g} 
is the group of fixed points. Now let M=Gc/P be a complex homogeneous space 
and suppose that the C-orbit O of the base point is open. We are interested in the 
semigroup 

S(P) := {g E Gc : gGP C_ GP} = {g E Gc : g.O c_ (.9} 

of compressions of the open C-orbit. 
Such semigroups play a central role in the theory holomorphic extensions of uni- 

tary representations of the group G (eft [HO0], [FHO], [Ols], IN5], IN6], [NT], [St]). 
More concretely we are dealing with the following two classes of homogeneous 

spaces, namely with complex flag manifolds and with certain embeddings of complex 
coadjoint orbits into complex homogeneous spaces. 

The main results for complex flag manifolds are fairly easy to describe. Since 
everything decomposes nicely according to the decomposition of Gc into simple 
factors, we may assume that Gc is simple. In this case three mutually exclusive 
possibilities occur (cf. Proposition II.3, Theorem III.14): 

(1) S(P)=Gc. 
(2) int S(P)=0. 
(3) G c r  S(P)•O. Then G is a Hermitean simple Lie algebra and we have 

two possibilities. Let Pk be one of the two maximal parabolic subgroups containing 
the complexification K c  of the maximal compact subgroup K of G. Then int S(P) r 
0 if and only if either PnPk or PnPk contains a Borel subgroup. In the first case 
S(P)=S(Pk) and S(P)=S(Pk) -1 in the second case. 

(1) Supported by a DFG Heisenberg-grant 
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According to these results one has a complete description of all non-trivial 
compression semigroups of open G-orbits on complex flag manifolds. One also 
has a characterization of the existence of non-trivial compression semigroups in 
terms of the projective realizations of the flag manifolds. Recall tha t  each complex 
flag manifold Gc/P may be written as the G-orbit Gc.[v~] of the projective line 
through a highest weight vector v~ for a holomorphic representation of G c  with 
highest weight )~. Then it turns out tha t  the interior of S(P) is non-empty if and 
only if the coadjoint orbit through iA is closed and its convex hull contains no lines 

(cf. Theorem III.16). 
Compression semigroups can also be determined for more general, non-semi- 

simple, groups. All one has to assume a priori is the existence of a compactly 
embedded Cartan algebra in g. Then one can embed coadjoint orbits of G as open 
domains into a complex homogeneous space of G c  via a generalized version of the 
Borel embedding theorem (cf. Theorem 1.3). For these domains the compression 
semigroups then split up nicely into the complex nilradical and a compression semi- 
group for a reductive subgroup (cL Theorem II.8). 

I. T h e  B o r e l  e m b e d d i n g  a n d  t h e  c o m p r e s s i o n  s e m i g r o u p  

In this section g denotes a finite dimensional real Lie algebra. A subalgebra 
aC 6 is said to be compactly embedded if the closure of the subgroup generated by 
e ~ a  in Aut(g) is compact. We assume that  {] contains a compactly embedded 
Cartan algebra ~. 

Associated to the Cartan subalgebra t c  in the complexification gc  is a root 
decomposition as follows. For a linear functional AEt~ we set 

g~ := ( x  e ac: (vy  e ~)[y, x] =~(Y)X) 

and 

Then 

:= a ( . c ,  ~ ) : =  {~ e ~ \ {0 } :  .~  # {0}}. 

 o=,oeOg , 

~(~)CiR for all AEA and ~(a~)=a~ ~, where a denotes complex conjugation on 
gc  with respect to g. Let E Dr denote a m ~ i m M  compactly embedded subMgebra. 
Then a root is said to be compact if g~CEc.  We write Ak for the set of compact 
roots and Ap for the set of non-compact roots. A subset E C A is cMled a parabolic 
system of roots if there exists an element XEit such that  E={aEA:c~(X)_>0}. 
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A positive system A + is a parabolic system with A+M-A+=O. The Weyl group 
associated to t is the group 

)/~ := NG(t)/Zc(t) ~ NK(t)/ZK(t) 

which coincides with the Weyl group of the compact Lie algbra ~. A positive system 
A+ is said to be C-adapted if A + is invariant under the Weyl group. The Lie algebra g 
is said to have cone potential if for every non-compact root a and for every non-zero 
element X~eg~ we have that [X~, .Y~]~0. 

We fix a simply connected complex Lie group Go with L(Go)=gc .  Then the 
complex conjugation a: go--*go integrates to an antiholomorphic automorphism of 
Go which we also denote a: gH~. We write G for the subgroup G~ of fixed points 
with respect to a. We also define K:--exp ~ and Ko :=(exp ~c)EGo. 

Definition 1.1. Let wEg* be a linear functional on g which we also consider as 
a complex linear functional on go. The coadjoint action of G on g* is given by 

Ad* (g).a = aoAd(g) -1 

for gEG and aEg*. Let G~ denote the stabilizer ofw. Then 
gw:={XEg:woadX=O} is the Lie algebra of G ~. 

(a) A complex subalgebra b C_go satisfying 

bn~=~ ~, w([b,b])={0}, and b+b=go 

is called a complex polarization in w. Note that for any complex polarization in 
w we have bNb---(g~)o and ~+b---gc (cf. INS]). Recall that the Ad(G~)-invariant 
complex polarizations are in one-to-one correspondence with pseudo-K~hler struc- 
tures on the coadjoint orbit O~ :=Ad*(G).w which are compatible with the natural 
symplectic structure on O~ (cf. [NS]). This symplectic structure is defined by the 
2-form ~ given by 

~(~)(~o~ x,  ~oaa y) = ~([x, Y]) 

(cf. [LM]). 
A complex polarization is called positive if the corresponding pseudo-K~hler 

structure is positive, i.e., if the Hermitean form 

m 

(X, Y) ~-* w([iX, Y]) 

is positive semidefmite on b which means that w(i[X, X])> 0 for all X E b. Note that 
always b •  holds with respect to this form. 
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(b) A coadjoint orbit O~ is called a pseudo-Kghler orbit if there exists a complex 
polarization in w which is invariant under G ~, and a K~hler orbit if there exists 
such a positive complex polarization in w (cf. [OW] and [Woo, pp. 92, 103]). 

In the following we identify the dual t* of the Cartan algebra t always with 
the subspace [t,g] • of 9"- This makes sense since g--t~)[{,9 ] is a direct sum of 
vector spaces. We will see that a pseudo-Kiihler orbit of an element w Et*, where 
the polarization is defmed by a subalgebra 

aE~ 

and Z={(~EA:a(X)_>0} is a parabolic system of roots, can be embedded as an 
open G-orbit into a complex homogeneous space of Gc. The main achievement of 
this paper is the calculation of the compression semigroup of this open G-orbit. For 
the case of simple Hermitean Lie groups this was done for the orbit isomorphic to 
a symmetric space by Ol'shanskii ([Ols]) and independently by Stanton ([St]). 

For the following lemma we recall from [N7, Lemma II.2] that for every para- 
bolic system Z the subalgebra b :=p~. decomposes as a semidirect product b TM b~ )~ bs, 
where bs=P~.n-2 and bu is a nilpotent ideal. 

L e m m a  1.2. Let Z C A  be a parabolic system of roots, b:=p~, and B:= 
(expc c b). Then the following assertions hold: 

(i) The group B is closed, B~-B~ >~ Bs, where B,,=exp b~ is simply connected, 
and Bs=(expcc b~). 

(ii) The mapping B~ x Bs x B~-~Go, (x, y, z)~-+xyz is a diffeomorphism onto 
an open subset of Go. 

(iii) B n B - - B s .  

Proof. (i) Since tc  is a Cartan subalgebra in go contained in b, the closedness 
of B follows from [B2, Ch. 7, w no. 1, Cor. 4]. The closedness of B~ follows with 
the same argument. 

To see that B,, is closed, let /~ denote the simply connected covering group 
of B. T h e n / ~ B u  ~ B~ and it is clear t h a t / ~  is closed in B. 

Let a:=t+iZ(g)CtcCbs.  We claim that a is a maximal compactly embedded 
abelian subalgebra of b. To see this, suppose that a I_D a is compactly embedded and 
abelian. Then a' C Z,  c ( t )=tc  and the assertion follows immediately from the fact 
that every ad X, X E a' has purely imaginary eigenvalues. 

Now we use [HN1, III.7.11] to see that Z(B)C_exp~(t+iZ(g)), which in turn 

yields Z(B)CB~. Let r l ( B ) C Z ( B )  denote the kernel of the covering/~--+B. Then 
7rl (B) Bu ~ / ~  x ~rl (B) is a closed subgroup and ~1 (B) n B~ --- { 1 }. We conclude that 
B~ is closed and simply connected because it is the injective image of B~. 
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To see that B ,  MBs={1}, we only note that /~ is a semidirect product and 
rz (B) is contained in the factor Bs. 

(ii) That the image is an open subset follows from the fact that bu+bs+bu=  
b + b = g c .  To see that the mapping is a diffeomorphism, in view of (i), it only 
remains to show that BMB,={1} .  

Pick EEi t  such that E={AEA:A(E)>_0}. Set 

~/t (g) :-~ exp(- tE)g exp( tE). 

Then "~t fixes Bs pointwise and, since A(E)>0 holds for all A E E \ - E ,  we conclude 
that limt--+oo 3,t(b)=l for all bEBu. On the other hand, for every bEBu\{1}, ~t(b) 
eventually leaves every compact subset of the closed subgroup Bu. Hence we have 

(iii) Since B8 is invariant under a, the inclusion BsC_BMB is trivial. To see 
the converse, pick b=b~b, EB with b~EBs and b,~EB,. Then bEBMB implies that 
buEBQB and therefore b, EBuFIB={1}. Hence bu=l and thus BMBC_Bs. [] 

The preceding leInma is a generalization of the well known result of Harish- 
Chandra for the case where G is simple Hermitean and E=AkDA+ (cf. [Hel, 
p. 388]). The following result is a generalization of the Borel embedding theorem for 
Hermitean symmetric spaces (cf. [Hel, Ch. VIII, w 

T h e o r e m  1.3. (The embedding theorem) Let wet*, P~C_A be a parabolic sub- 
set, and suppose that b=PE is a complex polarization in w. We set B:=<expc c b>, 
M : = G c / B ,  and write xo for the base point of M. Then the orbit mapping G--* 
M, g~-*g.xo induces an open embedding 

- c / c  -+  C c / N  

which is holomorphic with respect to the complex structure on 0~ defined by the 
complex polarization b. 

Proof. In view of Lemma 1.2(i) and [N8, Prop. 1.2], we only have to show that 
BQG-~G ~. First we apply IN10, Thm. 1.18] to see that O~ is simply connected. 
Let p: G ~ G  denote the universal covering group. Then G~ is connected and since 
p(C~)--G ~, it follows that C ~ is connected. Hence 

G ~ = (exp t] ~) c BMG 

because bMg=g ~. 
On the other hand Lemma 1.2(iii) tells us that 

BMG = B~ = {b E Bs : a(b) = b}. 
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Since b is a complex polarization in w, we have bs=bN~=(gW)c because gc  = 
b~ �9 bs @ bu is a direct vector space decomposition. Hence Ad(Bs).w=cu holds in g~. 
We conclude that  

BMGC_G~MG=G ~. [] 

With the preceding theorem we have a realization of the coadjoint orbit dO~ as 
an open subset D=D~ of the complex homogeneous space G c / B ,  namely as the 
open G-orbit of the base point. Next we study the semigroup 

S(B) = {g E Gc : gGB C_ GB} = {g EGc : g.D C_ D}. 

We call this semigroup the compression semigroup of the domain D or the compres- 
sion semigroup associated to B. Note that  S(B)  only depends on B or, equivalently 
the parabolic set E, but  not explicitly on w. Consequently there are many elements 
w and therefore many coaxijoint orbits 0~  which lead to the same semigroup. 

Remark 1.4. (a) Note that  we have not assumed in Theorem 1.3 tha t  b is a 
positive polarization in w, so that  this result also applies to pseudo-K~ler  orbits. 

(b) Proposition IV.16 in [N8] shows in particular that  the embedding theorem 
applies to every coadjoint orbit in a reductive Lie algebra which meets the dual of a 
compactly embedded Cartan algebra. This can also be viewed as a result on adjoint 
orbits. 

The  following observation facilitates the determination of the semigroups S(B).  

L e m m a  1.5. Let G be a topological group, D a subset of the locally compact 
G-space M, and S = { g E G : g.D C D } . Then the following assertions hold: 

(i) If D is open or closed then the semigroup S is closed in G. 
(ii) If M is a homogeneous G-space and D is relatively compact then 

i n t S =  {gEG:g.DC_intD}.  

Proof. (i) This is Lemma 8.34 in [HN2]. 

(ii) Let sEint  S and U be a neighborhood of 1 in G such that  USES. Then 

s.D = s.D C_ U(s.D) = (Us).D C int D. 

D 

This shows s.DCint D. 

Conversely, if s .DCint  D, then there exists a neighborhood U of 1 in G such 
tha t  Us .DCin t  D. In particular, it follows tha t  USES, i.e., sEint  S. [3 
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Hamiltonian functions and the compression semigroup 

One first step towards the determination of the semigroups S(B) will be a 
result showing that  S(B)  is rather big whenever O~ is a K/ihler orbit, i.e., b--p~, is 
a positive polarization. 

For X E g  we write Hx :g*---,R, v i l e ( X )  for the associated function on g* and 
in particular on the orbit O~ which is a symplectic manifold. We define the cone 
B~ consisting of all those X E g  for which the function Hx is bounded from below 

o n  (~)w. 

Let X" denote the vector field on O~ defined by 

X(/3) = ~ t=oAd*(exp(-tX)).13 = - ad*(X)(fl)  = /~oadX Vfl E O~. 

Since the canonical symplectic form on Oo~ satisfies 

~2(/3)(floadY,/3oadZ)=fl([Y,Z]) VY, Z Eg, /3EOo~, 

we find that  

f~(fl) ( X(fl), fload Y) ----/3([X, Y]) = - (fload y, X)  = - d H x  (/3)(fload Y). 

This means that  2d is the Hamiltonian vector field on O~ corresponding to the 
Hamiltonian function H x .  

Since the function Hx is constant on Oo~ if and only if the corresponding vector 
field vanishes, we see that  the set of all XEt]  with constant Hamiltonian function 
Hx is the Lie algebra of the effectivity kernel of the action of G on O~. If Ooj spans 
[t*, then the linearity of the vector field X yields that  this Lie algebra consists of 
those elements for which a d X = 0 ,  i.e., 

Z(g) = ( X  �9 g: dHx low = 0}. 

Definition 1.6. (a) We say that  an element w�9 is admissible if the coadjoint 
orbit O~ is closed and its convex hull contains no lines. We call wEg* strictly admis- 
sible if there exists a closed invariant convex set CCg* which contains no lines and 
which contains the coadjoint orbit O~ in its algebraic interior, i.e., the interior with 
respect to the affine subspace it generates. We say that  O~ is (strictly) admissible if 
w is (strictly) admissible. Note that  strict admissibility implies admissibility ([HNP, 
Cor. 5.12]). It is clear that  this property implies that  the convex hull of O~ contains 
no lines. 

An element w�9 is said to be of convex type if the coadjoint orbit O~ lies in 
a closed pointed convex cone and of strict convex type if O~ lies in the algebraic 
interior of a pointed convex cone in g* which is invariant under the coadjoint action. 
We recall from [HNP, Lemma 5.9] that f is strictly admissible if and only if (w, 1) 
is of strict convexity type in g* x R.  [] 
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L e m m a  1.7. Let w�9 be admissible and X � 9  Then the function H x  
is proper on 0~.  

Proof. This is a consequence of [HNP, Prop. 1.17]. [] 

In the following we say that  w�9 is reduced if3(g) is the largest ideal contained 
in the stabilizer algebra g~. For a positive system A+ of roots we define the cone 

Cm x := {X �9 t: (W �9 is(X) > 0} 

and 

Cmin :-'~ Cmin(A;) := cone{i[.~a, X~]:a  �9 A~, Xa gc}, 

where for a subset S of a vector space cone(S) denotes the smallest closed convex 
cone containing S. For a cone C in a vector space V we write C* : = { v � 9  V*:v(C)C 
R + } for the dual cone. A closed convex cone is called a wedge. 

L e m m a  1.8. Let g be a Lie algebra containing the compactly embedded Cartan 
algebra t. Then there exists a reductive subalgebra [ C g such that 

g~n)~[  and t=~(g)@(tnD, 

where n--[t, n] +~(g) is the nilradical. 

Proof. (i) Using Lemma III.7.15 in [HN1], we find a Levi decomposition g=  
t>~s with t=( tn r )@( tn~)  and [tn~,s]----{0}. Let h be a vector space complement 
for the center in tAt. We set [:----h~s. Then [ is reductive and [nnC_hnn={0} 
because tNn=Z(g) .  On the other hand [t, r] C_ [g, ~] C_n shows that  r-~n>4h. Hence 

P r o p o s i t i o n  1.9. Let wet* be strictly admissible and reduced. Then the fol- 
lowing assertions hold: 

(i) There exists a unique ~-adapted positive system A~ of non-compact roots 
* + such that weintC*min(Ap) and a unique positive polarization b=p~. with A ~ C E  

in w. 

(ii) B~=Wmax, where Wmax denotes the unique invariant wedge in g deter- 
mined by Cmax=Wmaxnt. 

(iii) I f  an invariant wedge W Cg contains Cmax, then it contains Wmax. 
(iv) Wmax contains the nilradical n of g. 

Proof. (i) First we use Theorem IV.23 in [N8] to find a ~-adapted positive sys- 
tem such that  w �9  C ' in .  To see that  the system A~ is uniquely determined by this 
condition, let a�9 and pick X~�9  Then, according to [N8, Thm. IV.23], 
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the Lie algebra g has cone potential, hence [Xa, X--~] ~ {0). Therefore i[,Y~, Xa] �9 
Cmin and the choice of A + shows that  w (i[Xa, X~])> 0. Changing a to - a  changes 
the sign of this expression. Therefore A~ is uniquely determined. The second 
statement follows from IN8, Thm. IV.21, 23]. 

(ii) First we apply the convexity theorem for coadjoint orbits [HNP, Thm. 5.17] 
which yields that  

Pt* (O~) = cony(We.w) +cone(/A+), 

where Pt* :g*---~[* denotes the restriction mapping. Note that  the assumptions of 
this theorem are met because wEint C~nin. Therefore X E t  is contained in B~ if and 
only if Hx is bounded from below on the cone generated by iA$. This means that  
XECmax. Therefore B~n~----Cma~. Since an invariant wedge WC_g is uniquely de- 
termined by its intersection with [ (cf. [Nd, Prop. III.34]), it follows that  Wm~=B,~. 

(iii) Suppose Cm~xCW. Let W1 denote the closed convex hull of Ad(G).Cma:,. 
Then W1 is a generating invariant wedge contained in Wmax such that  W1 Nt_D Cm~. 
On the other hand W1NtC_Wm~xNt=Cma~. Therefore W1nt=Cm~ and conse- 
quently Wl=Wma~ by (ii). Now the assertion follows from the trivial observation 
that  W1C_W. 

(iv) The nilradical nC_g can be written as n=[~,n]+~(g) (cf. Lemma 1.8). Let 
W:=Wmaxd-n. Then W is an invariant wedge in g and if pt:g---~t denotes the 
projection along [t,g], then pt(W)=Wnt=pt(Wm~)=Cmax. Therefore W=Wma~ 
follows from (ii) and therefore we have n CWm~. [] 

Let S be a closed subsemigroup of the Lie group G. For the following propo- 
sition we recall the definition of the tangent Lie wedge 

L(S) := {X �9 L(G):  exp(R+X) c_ S} 

of S. Recall that  a wedge W in a Lie algebra g is called a Lie wedge if eadXw=w 
holds for all X � 9  

P r o p o s i t i o n  1.10. Let w�9 be strictly admissible and b the positive complex 
polarization in w. Then iB~ C_L(S(B)). 

Proof. We have already seen, in Lemma 1.5, that  the semigroup S :=S(B)  is 
closed. Since DC_Go/B is a G-orbit, it is clear that  GC_S, i.e., that  9_CL(S). Hence 
L(S)=9§ where W:=(-iL(S))A9 is an invariant wedge. 

Next we note tha t  we may without loss of generality assume that  w is strictly 
reduced because every ideal a contained in O • is contained in B,~ and on the other P) 

hand (exp(ao)) C_S(B) in this case. 
It remains to show that  B~C_W. In view of Proposition 1.9(ii), (iii), it suffices 

to show that  int Cmax -- (int B~) N [C_ W. Let X �9 int Cmax and (I): O~ -~ D C_ M denote 
the embedding of O~. 
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Since limp---,OD Hx(~-l(p))=c<) (Lemma 1.7), it suffices to show that, for t>_0 

(Hxo~- l ) (expi tX.~(~))  <_Hx(~) Vfl E O~. 

Let X denote the vector field on g* defined by k'(fl)=floadX for all f~EO~ 
and recall that this is the Hamiltonian vector field on O~ corresponding to the 
function Hx.  Let J denote the tensor field defining the complex structure on O~. 
Then 

dHx (fl) (d~- 1 ((~ (fl) ) (_id~ (/3)X (fl))) = - d H x  (~) ( J (fl)X (fl) ) 

= -gl(fl)(J(fl)X(j3), X(fl)). 

This expression is always non-positive since b is a positive complex polarization in 
w and the corresponding K~Lhler structure is compatible with the symplectic form 
(cf. IN8]). Now the assertion follows from 

�9 (Ad*(exp(itX)).fl) =exp(itX).~(fl). [] 

Let g=n >~ [ denote the decomposition described above. We set N:=exp n, L:= 
(exp D, N c : : e x p n c ,  Lc :=(exp  It),  p:=bN[c, and P : : ( e x p p ) .  Note that 

G ~ - N ~ L  and G c ~ - N c ~ L c ,  

so that Nc  and Lc  are simply connected. 

Lemzna 1.11. Let Nc  be a complex nilpotent Lie group and N a connected 
subgroup such that L(N) is a real form of L(Nc).  Let further b be a complex 
subalgebra of nc  such that for every characteristic ideal aC_n we have that a c =  
a+(bNac). Then N B = N c  holds for B=exp  b. 

Proof. Let 
n 0 :={0}CB I=~(B) C . . . c n  k = n  

denote the ascending central series of n. Note that every ideal n j is characteristic. 
We write NJ for the associated analytic subgroups of N and N~ for the corre- 
sponding subgroups of Arc. We show by induction over j that NJB is a subgroup 
containing N~. 

This is trivial for j = 0 .  Suppose that j < k  and the claim holds for j .  Set B ' :=  
BANJc +1. Then (NJB)NN~+I=NJB t is a subgroup containing N~ and therefore 
the commutator group of N~ +1. It follows in particular that this subgroup is normal. 
Therefore NJ+IB ~ is a product of a subgroup and a normal subgroup, so that it 
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is again a subgroup. According to our assumption, the Lie algebra of this group 
contains nJ+l+(bnnJc+l)=n~+l. Hence NJc+I=NJ+IB '. From this it follows that 
NJ+IBDNJ+IB'=NJc+I. Thus it contains the subgroup Nic+IB because it is right 
B-invariant. This shows that NJ+IB is equal to this subgroup and the assertion 
follows. 

For j = k  we obtain the assertion of the lemma. [] 

L e m m a  1.12. Let t c  9 be a compactly embedded Cartan algebra, ~C_A a par- 
abolic system and b=p~. Then ac C a+ b holds for every characteristic ideal a of g. 

Proof. Since a is characteristic, its complexification is invariant under tc,  hence 
adapted to the root decomposition. Let ~6A.  If c~6~, then acNg~C_b holds 
trivially. If ~ 6 - E ,  then 

acNg~ C an(g~+~c'~)+~c '~ C a+b. D 

Propos i t i on  1.13. Let tC_g be a compactly embedded Cartan algebra, w6t*, 
and Z C A  a parabolic system such that b=p~ is a complex polarization in w. Then 
the following assertions hold: 

(i) Nc_CS(B). 
(ii) LNc=GNc. 
(iii) LPNc=GB. 
(iv) S (B)=NcS(P) ,  where S(P) is the compression semigroup of the open 

L-orbit of the base point in L c / P .  

Proof. (i) First we use Lemma 1.12 to see that the subalgebra ncNb satisfies 
the assumptions of Lemma 1.11. Thus N B = N c B  and therefore 

N c G B  = G N c B  = G N B  = GB. 

(ii) Since C=NL,  we have that G N c = L N N c = L N c .  
(iii) First we note that (i) implies that Nc C_S(B). Hence 

G.B=Nc(G.B) .  

Since both subalgebras l and n are invariant under t, it follows that their com- 
plexifications are adapted to the root space decomposition. Now it follows from 
g=[+n  that g~=(g~Nnc)@(g~Nlc) holds for all roots aEA. It follows that 
b=(bN[c)+(bNnc) which in turn yields that 

nc+~ = nc+(bn[c) = .c+~, 
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and therefore P N c = B N c .  Using (i), this leads to 

L P N c  = L B N c  = L N c B  = G N c B  = N c  (GB) = GB. 

(iv) Since Gc~-Nc  )~Lc, it is clear that, for gELc,  

g ( L P ) N c  C_ (LP)Nc r g(LP) C_ LP. 

Therefore S ( B ) n L c  = S(P) and the assertion follows from Nc C S(B). [] 

In view of the preceding proposition, 'the investigation of the semigroup S(B)  
boils down to the semigroup S(P)  associated to the reductive group Lc.  

L e m m a  1.14. Let v:--wl~. Then p=p~., is a complex polarization in v. I f  b is 
positive, then the same holds for p. 

Proof. Since b =p~ holds for a parabolic system ~ of roots, it follows that the 
set P / :={kE~:~cn[c r  is also parabolic. Therefore p=bO[c is a parabolic 
subalgebra of [o. Since [[, n]C_[t, n] ([HN1, III.7.15]), we find that 

~ = ( x  e [: . ( I X ,  ~]) = { 0 ) }  = { x  e [: ~ ( [ x ,  g]) = {0 } }  

= { x  e ~: ~ ( [ x ,  g]) = {0}}  = g~n~= pn~. 

Hence ([~)c=pMO and consequently p is a complex polarization in v. 
If, in addition, b is a positive polarization, then 

( X,  Y)  H v( i[X, Y ]) = w(i[X, ? ]) 

defines a positive semidefinite Hermitean form on p and therefore p is also posi- 
tive. [] 

This result entails that we find exactly the same situation as in g in the re- 
ductive Lie algebra [. As we have seen in IN8], the subalgebra p is well adapted to 
the decomposition of [r into simple ideals. It follows immediately that the space 
G c / P  decomposes accordingly, and the same holds for the G-orbit of the base point. 
Hence S(P) is a direct product of semigroups of the same type corresponding to 
the simple factors. So it remains to study the simple case. 

In the next section we conclude the determination of the semigroup S(B) cor- 
responding to a strictly admissible coadjoint orbit (P~. The determination of this 
semigroup for the case where O~ corresponds to a Hermitean symmetric domain is 
due to Ol'shanskii (aft [Ols]). 
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II.  T h e  case of  s imple H e r m i t e a n  groups  

In the next two sections we consider the following problem. Let G be a linear 
simple Lie group, Gc its complexification, M = C c / P  a complex flag manifold and 
O C M  an open C-orbit. We assume that P is the stabilizer of a point in O. Then 

S(P) = {g �9 G c :  g.O c_ 0}.  

We will show in Section III that these semigroups have non-empty interior 
different from Gc  if and only if G is Hermitean and the orbit (9 is a Borel embedding 
of an admissible coadjoint orbit. 

Let g=t~+po be a Cat-tan decomposition, tc~  a Cartan subalgebra, and [~= 
t+a=Z~ (t) the corresponding Cartan subalgebra of ~. Then gc = (t~+iP0)+(i~+P0) 
is a Cartan decomposition of gr and [ f := i t+a  is a maximal abelian subalgebra of 

it~+po. 
To study our semigroup S(P) we first need some knowledge on the C-double 

coset decomposition of Cc .  

P r o p o s i t i o n  II.1. Let G be semisimple and tl , ... , tn representatives for the 
conjugacy classes of Cartan subalgebras in 1~. Then the set 

[_J GNGc( )G 

coi~tains an open dense subset of Gc. 

Proof. For gEGc we set g* :=a(g) - l ,  where a denotes complex conjugation on 
/2-reg denote the set of regular elements in Gc,  Gc.  Let " c  

:= {g �9 a c :  gg* �9 C3 }, 

and Ti :=Zcc( t i )  the Cartan subgroups corresponding to the Cartan subalgebras 
t i c C gc .  Then it follows from [OM, p. 400] that the open set G~ is a union of the 
finitely many open sets G~ :=GH~G, where 

Hi:={gEGc:gg* eTi} and H~:=HiNG~c . 

To obtain a better description of the representatives of the double cosets, we 

need to shrink the sets Hi. So let g=hh* ETifqG~ g. Then Ad(g) fixes t4c pointwise. 

Since 
Ad(h*) =aoAd(h)-loa, 
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it follows that Ad(h) -1, and therefore Ad(h), commutes with a on %c. Hence 
Ad(h)(%) is a Cartan subalgebra of g and we find h'6G and j6{1 , . . .  ,n} with 
Ad(h') Ad(h)%=tj. Then i=j  by Corollary 2.4 in [Pm72]. Hence 

(h'h)(h'h)* = h'(hh*)h '-1 = h' gh '-1. 

We conclude that GH'GC_GNGc(%)G and the assertion follows. [] 

Corol la ry  II.2. A subsemigroup SCGc  containing G with dense interior is 
completely determined by its intersections with the groups NGo (%). More presicely 

?% 

SMG'c = U G(SMNGo (%)')G. 
i=1 

Proof. Since G~ is open and dense in Gc  and int S is open and dense in S, it 
follows that SMG' c is dense in S. On the other hand GC_S shows that 

SN(GNGc(%)G)=G(SMNGc(%))G. [] 

P r o p o s i t i o n  II.3. Let G be a linear simple Lie group, Gc its complexification, 
and M = G c / P  a complex flag manifold. Assume that S(P)~ S(P)7~O. Then 
either 

(1) S(P)=Gc,  G acts transitively on Go~P, or 
(2) G is Hermitean and S( P)~ )7~@. 

Proof. Let S:=S(P) and suppose that this semigroup is non-empty. Then 
Proposition II.1 shows that there exists a Cartan subalgebra tjC_g such that S~ 
NGc (tj)50- Let aj C itj denote the vector part of itj. Then an application of [HN2, 
Cor. 1.20] entails that S~ because exp ( t j ) cS  and therefore S O exp(tj)= 
S ~ The subspace iaj _c 9 is abelian and compactly embedded. Hence there exists g6 
G such that Ad(g)iaj c t (cf. [HN2, Prop. 7.3]). Then Ad(g)aj c it and consequently 
S~ 

Let C:=exp ]~1(S~ Then C is an open subsemigroup of it which is invariant 
under the Weyl group We. Let c6C. Then 

co:=  (c)cc 
~'EWe 

is a fixed point for We. There are two possible cases: 
Case (1): c0=0. Then 0EC and 16int S. This means that S=Gc because Gc 

is connected. 
Case (2): cor Then co is a non-zero We-invariant element in it. It follows 

that iRcoC_Z(e), and in particular that Z(~)#{0}. Hence 9 is a Hermitean simple 
Lie algebra (cf. [Hel, p. 382]) and S~ [] 
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Propos i t ion  II.4. Let g be simple Hermitean, tC_g be a compactly embed- 
ded Caftan algebra, A+ a positive ~-adapted system, and Cma~=(iA~)* the corre- 
sponding maximal cone. Suppose that S C Gc is a subsemigroup with dense interior 
containing G. IS 

Snexp(i0 c_ exp(iCmaxU--ir 

then 
S C_ GNcc (t)G. 

Proof. In view of Corollary II.2, we have to show that 

int(S) NNcc (r =0  

for every Cartan subalgebra r which is not conjugate to t. 
As before, let ~cg be the unique maximal compactly embedded subalgebra 

containing t and pick a Cartan subalgebra r  not conjugate to t. Using [PR, 1.3], 
we may assume that t' is invariant under the Cartan involution determined by ~, 
i.e., 

r = (end) + (r 

where p is the orthogonal complement of ~ with respect to the Cartan-Killing form. 
Moreover, since all compactly embedded Cartan algebras are conjugate by [PR, 
1.4], and r may be extended to a Caftan subalgebra of ~, we even may assume 
that Cnlc_t. 

Now we consider the group N' :=Nee (r Its Lie algebra coincides with r and 
A':=exp(i(gn~)+(gnp)) is a normal subgroup such that N'/A'  is compact. Let 
S':=int(S)NN and suppose that S'~0.  Then S'A' /A'  is an open subsemigroup of 
the compact group N'/A '  and therefore it is a subgroup ([HN2, 1.21]). It follows 
in particular that it contains the unit element. This means that A'NS'~O. Since 
exp(gnp)CGC_S, it even follows that 

S' nexp( i( r n~ ) ) = int( S) nexp( i ( r ne ) ) ~ 0. 

Let XEi(gA~)Cir. If there exists no non-compact root vanishing on X, then 
Z~(X)C~ and therefore r yields a contradiction. Thus we find an 
element Xe i [A i r  and a non-compact root a such that a(X) =0 and exp(X) Eint(S). 
This is impossible since SAexp(it) Cexp(iCm~U-iCm~,). [] 

We want to apply Proposition II.4 to study the semigroup S(B). The following 
lemma can be found in ]N1, IV.6]. Its proof is basically obtained by reduction to 
the case of sl(2, R). 
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L e m m a  II.5. Let G be simple Hermitean, A+ a positive C-adapted system, 
and B C Go the corresponding Borel subgroup. Then 

S(B) Mexp(it) C_ exp(-iCmax). 

Before we can compute the compression semigroup for the K~hler orbits, we 
need a result on the open G-orbits in flag manifolds. 

L e m m a  II.6. Let G be simple Hermitean, A+ a positive C-adapted system, 
B C__Go the corresponding Borel subgroup, 

W : = N G c ( t ) / Z c c ( t )  and We:=NG(t) /ZG(t)  

the Weyl groups. Let lr:Go--~Gc/B denote the orbit mapping and x0=r(1)  the 
base point. Then the action of Nvc  (t) on the orbit through xo factors to an action 
of)IV on G c / B  and the open G-orbits are the orbits through the points in the orbit 
o f W ( G o ) .  I f  T, V 'EW, then 

G.(~.2~o ) = G.(71.Xo) ~ ~t,~-i C W~. 

Proof. This is Corollary 4.7 in [Wolf. [] 

P ropos i t ion  II.7. Let G be a simple Lie group which is Hermitean or com- 
pact, and PC_Go a parabolic subgroup such that the set ~p : = ( ~ E A : ~  Cp} satisfies 
~pnAp=A+,  where A+ is a C-adapted positive system. Then the following asser- 
tions hold: 

(i) I f  G is compact, then S ( P ) = G o .  
(ii) If  G is Hermitean, then S(P)=Gexp(- iWma~) ,  where Wmax is the gener- 

ating invariant cone in g such that 

W m ~ n t  = Cmax = c o n e ( i A ~ ) * .  

Proof. (i) Since an open G-orbit is also compact in the manifold G c / P ,  it 
follows that G acts transitively on G c / P .  Hence S ( P ) = G c  (cf. Proposition II.3). 

(ii) (cf. [Ols], [OH]) Let BC_Gc denote the Borel subgroup defined by the 
positive system A+ CA and Pm~ the unique maximal parabolic subgroup such 
that ~pm =AkUA~. We also write N for the commutator group of B and P+:= 
exp((~ez~+ 9~). Then BCPCPma~. We claim that GB=GPma~. To see this, we 
consider the Levi decomposition Pmax=P + )~Kc and the Iwasawa decomposition 
Kc  = K  exp(i[) (NMKc). Then 

GPraax = G K c P  + = G K  exp(i t )(NAKo)P + = G exp(it)N -~ GT exp(it)N = GB. 
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It follows in particular that  GP=GB. Applying the complex conjugation on Go,  
we also see that  GP=GB. Therefore 

S(P) = {g e Gc : gGP c_ GP} = {g e Gc : gGB c_ GB}. 

So we may assume that P=B.  To see that the C-orbit in G c / B  comes from a 
coadjoint orbit, we pick w 6 - i n t  Cmin(A~)* such that Ow has maximal dimension, 
i.e., g ~ = t  (cf. [N8, Lemma II.4]). Then p = b  is a positive complex polarization in 
w (cf. IN8]). 

It follows that O~ corresponds to the open domain G.xo in Gc/P.  Hence 
Proposition 1.10 implies that  iB~=-iWma~CL(SiP)) and therefore 

L(s(P)) _~ ~-iWma~. 

We conclude that G exp(--iWmax) C S(P). 
It remains to show that S(P)C_Gexp(-iWm~). From Lemma II.5 we infer 

that  

S i B  ) Nexp(it) = S(P) Mexp(it) C e xp ( - iCm~) .  

Then Proposition II.4 applies and since SiP ) has dense interior, we find that 

SiP ) C_ GNGc (t)G 

and that GiSiP ) MNv c (t))G is dense in S(P) .  Let s 6 Nr (t) MSiP  ). Then S.Xo 6 
G.xo, G.(s.xo)=G.xo, and Lemma II.6 yields that  sENGit)ZGc (t). Using Zvc it) = 
exp(tc) ,  we conclude that 

G( S( P) MNGz (D)G = G( S( P) nZa~ ( ~) )G = G( S( P)nexp( tc ) )G 
= G i S ( P  ) Mexpiit))G C_ GiexPi- iCmax))G C G expi--iWma~ ). 

Now Corollary II.3 shows that SiP)=GexPi-iWm~x ). [] 

We subsume the results obtained in the first two sections in the following 
general theorem. 

T h e o r e m  II .8 .  (Theorem on compression semigroups of K~hler orbits) Let 
g be a Lie algebra with the compactly embedded Caftan algebra t, w6t* strictly 
admissible and reduced, A + a ~-adapted positive system, and E a parabolic set of 
roots such that b:=p~. /s the unique positive complex polarization in w. Write Gc 
for a simply connected Lie group with L ( G c ) = g c .  Then B :=/exp b> __ G c  is closed, 
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the G-orbit of the base point in Gc / B is open, and the compression semigroup S( B ) 
of this orbit is given by 

S(B)  = N c L  exp(-iWmax),  

where G = N  >~ L is a semidirect decomposition into the nilradical and a reductive 
Lie group L, and Wm~ is the maximal invariant cone in [ corresponding to the 
~-adapted positive system A +. 

Note that  if w is not reduced, then one obtains a reduction to the reduced case 
by factoring the ideal a:=O~ and looking at w as a functional in (g/a)*~-a• *. 

I I I .  C o m p r e s s i o n  s e m i g r o u p s  a n d  highest weight o r b i t s  

In the first two sections we have determined the compression semigroups of 
all open orbits in G c / B  arising via the Borel embedding of strictly admissible 
co~ljoint orbits. If G is simple, this includes all the semigroups S(P),  where P is a 
parabolic contained in one of the two K-invariant maximal parabolics Pmax=KcP + 
and Pm~= K c P - .  

In this section we will extend these results to general parabolics and therefore 
complete the whole puzzle for simple groups. Recall that  we have already reduced 
matters to the case where G is simple Hermitean in Proposition II.3. 

We start  with a simple lemma from linear algebra. 

L e m m a  I I I .1 .  Let V be a real vector space and gEGl(V)  be diagonalizable 
with positive real eigenvalues, and [v]EP(V). Then [v0]:=lim,~-,oo g%[v] exists and 
g.vo=AmaxVo, where Am~x is the largest eigenvalue of g on the smallest g-invariant 
subspace of V containing v. 

Proof. We may assume that  the smallest g-invariant subspace of V containing 
v coincides with V. Let A0 <A1 <...  <Ak =Amax denote the different eigenvalues of g 

k on V. Then v = ~ = o  v~ with g.vi=Aivi and therefore 

][i 
This proves the lemma. [] 

It will be useful to review a few facts about invariant control sets for semigroups 
acting on spaces: An invariant control set for a subsemigroup S of G acting on a 
set X is a set Cs which satisfies 

S . c = C s  V c ~ C s  

and is maximal with respect to this property. 
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Proposition I I I .2 .  Let X be a G-space and SC_G a subsemigroup. Then the 
following assertions hold: 

(i) Each closed invariant control set for S is S-invariant. 
(ii) I f  S has non=empty interior S ~ and G acts transitively, then each invariant 

control set is closed and the set C~176 is open dense in C~. It satisfies CO= 
S~ for all cEC ~ 

(iii) I f  G is semisimple, X = G / P  is a flag manifold, and S has non-empty 
interior, then there is a unique invariant control set given by 

Cs= N S.x. 
xEX 

Proof. (i), (ii) [HN2, Prop. 8.1]. 
(iii) [HN2, Prop. 8.2]. [] 

Proposition I I I .3 .  Let G be a semisimple Lie group, P a parabolic subgroup, 
and L a closed subgroup such that LP is open in G. Suppose that 

S(L, P) := {g �9 G: gLP C_ LP}  

has non-empty interior. If  g t=LP/P is the open L-orbit of the base point, then the 
closure ~t of 12 in G / P  is the invariant control set for S(L, P). 

Proof. This is a special case of [HN2, Prop. 8.8]. [] 

Let us return to the setting where G is simple Hermitean and 

S(P)~ ) ~ 0 

(cf. Proposition II.3). Then S(P) is a subsemigroup of G c  with non-empty interior 
containing G and Cs(p) = O  is the corresponding unique invariant control set on M. 

Highest weight modules 

In this subsection ~c denotes a simple complex Lie algebra, g a real form, and 
t___g a Caxtan algebra. Let V be a go-module. For a linear functional A on tc  we 
write 

V ~ := {v e V: (VX e ~c)X.v = ~(X)v} 

for the weight space of weight ),. We set P v : = { ) , E t ~ : V ~ r  and call this set 
the set of weights of gc  with respect to tc .  An element wEPv is called a highest 
weight with respect to the positive system A+ if 

( w + A + ) n ~ v  = 0. 
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Next let x denote the Cartan-Killing form of gc and ( ., .  ) the bilinear form 
on the dual IJ~ of go induced by x. Then ( - , . )  is positive definite and real on 
span R A and for every root AEA there exists an element ~Etc  such that 

2(~, , )  v . e t h .  . ( i ) -  (~,~) 

We write 7~ for the abelian subgroup of to generated by/k,  define the weight lattice 

:= {. e tb : . (n )  c z}, 

and define the set of dominant weights by 

~'+ := p+ (a+) := { .  e ~ :  (W e a + ) ( . ,  ~) e No}. 

Note that if T is a basis of the root system, then a basis of P is given by 

{w~:aET} ,  wherewa(/3)={ 0 i f f l ~ a ,  
1 i f f l = a .  

Then :P+ =Y~-~eT N0w~. 

P ropos i t i on  III .4.  Let V be a finite dimensional go-module and A + C A a 
positive system. Then the following assertions hold: 

(i) :Pv GP- 
(ii) V=~ .e~ , , ,  V'.  
(iii) I f  V is irreducible, then "Pv M'P + contains a highest weight with respect 

to A +. 
(iv) For every )~E'P + there exists, up to isomorphy, a unique irreducible tJc- 

module called V~ such that )~ is a highest weight with respect to A + in 79v~. 

Proof. (i), (ii) ([82, Ch. 8, w no. 1, Prop. 1]). 
(iii), (iv) ([82, Ch. 8, w no. 2]). [] 

Let V be an irreducible go-module, Go a connected group with L ( G c ) = g c ,  
and suppose that the representation of gc integrates to a representation of Gc (this 
is always the case if Go is simply connected). We write P(V) for the projective 
space of V. Then the representation of Go on V induces an action of Go on P(V) 
defined by 

g.[v]=[g.v] vgecc ,  vev\{0},  

where V \ {0}--*P (Y), v~-* Iv] is the quotient mapping. 
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Proposition III .5.  Let AEPv be a highest weight with respect to the positive 
system A + and v~ E V ~ a highest weight vector. Then the following assertions hold: 

(i) The stabilizer of [v~] EP(V) is a parabolic subgroup P~ associated with A +. 
(if) Let A=~-~ T n~w~. Then p~:=L(P~)=p~, with 

E = A + U ( - A + n s p a n a { a  E T:  n~ = 0}) .  

(iii) with then In particular i f #  is 
the highest weight, then/3' is an extremal weight. 

Proof. (i) Let a E A  +. For XEg~ we have that X.v~EV~+~={O}. Hence v~ is 
a common eigenvector for the Borel subgroup B=B(A+) .  Thus B fixes the point 
[v~] in the projective space. This means that the stabilizer of [v~] is a subgroup 
which contains B, hence parabolic. 

(if) It follows from [B2, Ch. 8, w no. 2, Prop. 3] that gc~CP~ holds for AEA+ 
if and only if ),(&)=0. Let A = ) - ~  T n~w~ and aET.  Then A(&)=n~=0. 

(iii) According to our assumption, there exists gEGo such that [v#,]=g.[v#]. 
Hence the stabilizer P~, of Iv#,] satisfies P#, =gp#g-1. Since Ad(g){c C p#, :=L(P#,) 
is a Cartan algebra, there exists pEP#, such that Ad(p)Ad(g) tc=tc .  Now pgE 
Nao(tc).  Hence ~,:=Ad(pg)lt c E142 satisfies "),.~=;3' since g.v#CCv#,. [] 

Since every parabolic subalgebra pC go associated with b(A +) occurs as some 
p~ for a parabolic subset E DA+, let E ' :=TNE.  We consider the weight 

0J]E :~  E cos 

and the corresponding highest weight module V. Then the preceding proposition 
shows that P=P~.=Pw~ arises as the stabilizer of a highest weight vector [v~] 
in P(V). Thus we have obtained a realization of the flag manifold G c / P  as a 
compact submanifold of the projective space P(V). This realization will turn out 
to be crucial for the investigation of the compression semigroups. 

For the following we recall that for a finite dimensional irreducible highest 
weight module V the weight spaces corresponding to the extremal weights are one- 
dimensional (cf. [B2, Chap. 7, w Prop. 5]). 

Definition III.6. (a) Let Y be a diagonalizable endomorphism of the complex 
vector space V with real eigenvalues. An element vEV is said to be generic with 
respect to Y if the smallest Y-invariant subspace containing v contains eigenvectors 
for the maximal and minimal eigenvalues of Y. 

(b) If V is a finite dimensional module of the complex Lie algebra go and 
Pv  the corresponding set of weights, then we say that an element X E i t  is weight 
separating if the values a(X),  aET~v are pairwise distinct. 
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L e m m a  III .7.  Let V be an irreducible finite dimensional Gc-module, v~ EV 
a highest weight vector, OCGo.[v~] an open C-orbit, and YEexp(it). Then there 
exists a vector v E V which is generic with respect to Y such that [v]E (9. 

Proof. The fact that V is a simple Go-module entails that V is spanned by 
the set {vEV:[v]EGo.[v~]}, and, by the analyticity of the orbit mapping, it is 
even spanned by {v E V: [v] E U} for every open subset U c Go. [v~]. This applies in 
particular to the G-orbit (9. Let v=y~ v~ denote the decomposition of a vector 
v E V into Y-eigenvectors, where va is an eigenvector with eigenvaiue c~. Write )~min 
and ~r~a~ for the minimal and maximal eigenvalue. Then, since (9 spans V, we first 
find [v']EO with v~m~#0. We note that the complement of this set is an analytic 
set, hence nowhere dense. So we even find [v]EO with v~m~x#0 and v~m,,#0. Now 
the smallest Y-invariant subspace containing v also contains v~m~ and v~mi .. [] 

P r o p o s i t i o n  III .8.  Suppose that g contains a compactly embedded Cartan 
algebra and that the complex flag manifold M is realized as a Go-orbit of a highest 
weight vector in P(V).  Then the following assertions hold: 

(i) Every open G-orbit in M contains an element [v~], where AET~v is an 
extremal weight. 

(ii) Every G-orbit of an extremal weight ray is open in M.  

Proof. [HN2, Prop. 8.25]. [] 

L e m m a  III .9.  Let S C G o  be a subsemigroup with non-empty interior con- 
taining G, M a complex flag manifold realized as a highest weight orbit Cc.[v~], 
Cs C_ M the invariant control set for S, and 7~Cs the set of all extremal weights (~ 
with [va] ECs. Then 7~cs has the following properties: 

(i) w~.~c~=Pc~. 
(ii) I f  X Eit is weight separating with exp X ES, then 

c~(X) = max{fl(X): fl E T~v} 

implies that aET)Cs . 
(iii) I f  X Eit is weight separating with expXES,  #EPcs ,  seA, and saEI~V is 

the corresponding reflection, then s~ (#) (X) > #(X)  implies that s~ (#) E Pcs.  
(iv) Pc~ ={aePv:[v.]Eint Cs}. 
Proof. (i) Let ~/el4;t~NK({)/Zg(t) .  Then there exists k E K  with Ad(k)It o --'Y- 

It follows that k.[v~] = [k.v~] = [V~o~-, ]= [v~.~]. 
(ii) Since the invariant control set Cs is G-invariant with non-empty interior, 

it contains at least one open G-orbit (9 ([HN2, Prop. 8.10(ii)]). Using Lemma III.7, 
we find [v] E(9 such that v is generic for X. Then, according to Lemma III.1, 

[v'] := ~m exp(X)"  Iv] e C8 
? 1 - - r  (~:) 
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exists in P(V) and v' is an eigenvector of exp(X) for the maximal eigenvalue e s(x), 
hence a weight vector of weight a for to because X is weight separating. Finally 

a(X) = max{fl(X):fl E ~v}  

and the weight separating property of X show that a is extremal. 
(iii) Let Go(a)  denote the analytic subgroup of Go with 

(a)  := L ( C c  (a))  = 05  s + [g0, s] - s1(2, C) .  

Further let W denote the smallest gc(a)-submodule containing v~. This module 
is irreducible with highest weight vector v~ and lowest weight vector v#, where 
# ' :=ss(#)  ([82, ca .  8, w no. 2, Prop. 3]). 

It follows that the Gc(a)-orbit  Ms of [v,] contains exactly two weight rays, 
namely [v,] and [v#] (cf. [B2, Ch. 8, w no. 2, Prop. 5]). The orbits of these elements 
under the group Gs := (exp(gc(a)Ng)) are relatively open in Ms (Proposition III.8). 

Since gc(a)  is invariant under Ad(expit), it follows that 

exp(X).Ms = exp(Z). (Cc (a).[v,]) = Gc  (a).((exp X).[v,]) = Gc (a). [v,] = Ms. 

On the other hand, the orbit Gs.v~ spans W, so it contains a generic vector v for 
X on W (Lemma III.7). Note that Gs.[v,]CG.[v,]CCs since #E~Vvs. Now our 
assumption # ' ( X ) > # ( X )  shows that the maximal eigenvalue of X on W is #'(X). 
Hence 

Ivy, ] = limoo exp(Z)'L Iv] E G. Iv] G Cs, 

so that #/ET~cs. 
(iv) Since every G-orbit of an extremal weight ray is open by Proposition III.8, 

and Cs is the closure of a union of open G-orbits ([HN2, Prop. 8.10(ii)]), the con- 
dition [vs]ECs even implies that [vs]C_intCs. [] 

We apply these results in the special case where G is simple Hermitean and 
the interior of S(P) intersects exp(iZ(t)) non-trivially. We fix an element ZkE 
S(P)~ and consider a realization of the flag manifold M = G c / P  as a 
Gc-orbit of a highest weight ray [v~] in a highest weight module V of Gc. Let/~y 
denote the corresponding set of weights. Then the extreme points of the convex 
hull of 7~y consist precisely of the Weyl group orbit ),V.), of the highest weight 
([82, Ch. 8, w no. 2, Prop. 5]). 

We choose a weight c~ET~y such that a(Zk) is maximal. Then there exists a 
weight separating element Zs Eit arbitrarily close to Zk such that 

a(Zs) = max{fl( Zs) : fl E 7~v }, 

and exp(Zs)ES(P) ~ Now Lemma III.9(iii), (iv) yield [vs]Eint Cs(p). So we have 
shown that T~cs(p) contains every weight a, where a(Zk) is maximal. 

To evaluate this condition, we need the following lemma. 
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Lerm~a III.10. Let A + C A be a ~-adapted positive system. Then the following 
assertions hold: 

(i) Let #EC~i ~. Then W.#MC*i~=W~. #. 
(ii) W~:..~{~eW:,'),.C~min~-C~in}. 
(iii) If  ZEiZ(~) such that a ( Z ) > 0  holds for the positive non-compact roots 

and #Eii*, then 

i#EC~in ~ #(Z)=max{('7.#)(Z):'TEW}. 

Proof. (i) That the right hand side is contained in the left hand side follows 
from the invariance of Cmin under the small Weyl group We. Suppose that "yEW 
with %#EC*in. Then (%#)(i&)<0 for all ~EA~. Thus there exists ~"EW~ such 
that 

((~'~).u)(i~) <0  W E a  +. 

On the other hand there exists 7"EW~ with (~".#)(i5)<0 for all ~EA+. Thus 
('y'~).#=~".# ([B1, Ch. 5, w no. 3.3, Thm. 2]) and therefore 

%# = (~)-l.y,,.~ E We.~. 

(ii) That We leaves C~i ~ invariant is clear. To prove (ii), pick #EC*i ,  such 
that the stabilizer of/~ in W is trivial. Suppose that ")'EW leaves the cone C~i n 
invariant. Then 7.]~EC~i n C~V~.~ shows that 0'EWe. 

(iii) Let aEi[*_Ct~3 such that ~(Z)=max{(%~)(Z):'yEW}. Pick a positive 
non-compact root fl and consider the reflection s~ at the hyperplane ker ft. Then 

s~(c~) = a 2(~, ~))) fl = ~ _  ~(/~)fl. 

Since sZ((~)(Z)<<~(Z), this means that ~(fl)fl(Z)>O. This shows that ~ is non- 
negative on all the elements IX, X] for ZEl~c, flEA~. In view of [HN2, Lemma 7.7], 
this means that ic~ E Chi n, since fl E R + IX, X ]. 

If, conversely, i~EC~i~, then (%c~)(Z)=~(Z) holds for all ~/EWt. So, as in (i), 
we may assume that c~(j3)>0 holds for all flEA+. This means that c~ is contained 
in the positive Weyl chamber corresponding to A+. It follows that 

W . ~ _ c ~ -  ~ R+fl 
~A+ 

(cf. [He2, p. 459]), so that the assertion follows from fl(Z)=0 if fl is a compact root 
and fl(Z)>O if fl is non-compact. [] 
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L e m m a  III.11. If Gor176 and M=Go.[v~], then there exists a ~- 
adapted positive system A+ such that i)~ECmin(A~)* is a highest weight, and (9= 
G.[va] holds for a highest weight vector v~ in V with respect to A +. 

Proof. If aET)y is such that c~(Zk) is maximal among the Weyl group translates 
of c~, then a(Zk)>0 and Lemma III.10 yields that ic~EC*in. 

Thus there exists "/EWe such that (%c0(~)>0 for all /3EA~ since ic~EC*mi ~ 
and the )4~-translates of the positive Weyl chamber cover C*mi ~ ([B1, Ch. 5, w 
no. 4, Cor. 1]). Thus )~=7.c~ is a highest weight for V with respect to the positive 
system A +. Pick gEG such that ~=Ad(g)lt o. Then g.[v~]=[v.r.~ ] entails that 
(9=G.[va]. This proves the lemma. [] 

P ropos i t ion  III .12. Let (9=G.x, Px be the stabilizer of x in Go and BC_Px 
be a Borel subgroup. Then S(B)CS(Px), and equality holds if b--p/x+ for a 
C-adapted positive system and P~AG is compact. In this case S(B)=S(Px)= 
G exp(iWma~) �9 

Proof. Let gES(B). Then gGBC_GB and therefore gGC_GBC_GP~ entails 

gGP~ C_ (GP~)P~ = GPx, 

i.e., gES(Px). 
Now suppose that b=pA+ for a t-adapted positive system, and that P, MG is 

compact. Let Tk denote the set of all compact base roots in T. Then T=TkU{5} 
and the parabolic P:=Px is a parabolic containing B. We also write N for the 
commutator group of B. We claim that GB=GP. To see this, write p:=L(P)  as 
p= for a parabolic subset EC_A. Then the compactness of PMG is equivalent to 
EM-EC_Ak. Now Proposition II.7 shows that S(P)=S(B)=Gexp(iWm~). [] 

Propos i t ion  III .13. Let A + be a ~oadapted positive system, )~EP + such that 
i)~ E C~i~ (A~)*, V~ a corresponding highest weight module, and (9:= G. [v~] C_ Go. [v~] 
the corresponding open G-orbit. Then ~EPv and [v~]E(9 implies that ~EW~.)~C_ 
- - iCmin ( A ~ )  * �9 

Proof. Since [v~] =G.[v~], there exists lEG with g.[v~]=[vz]. We first use [HN2, 
Thm. 8.30] to find a G-invariant pseudo-Hermitean structure J on V such that the 
corresponding moment mapping is given by 

( �9 , 

where ~={[v]EP(Y):J(v,v)r Then ~([v~])=is and 

i~3 = ~([v~]) -- Ad* (g)~([v~]) -- Ad* (g).i)~ 
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because ~ is equivariant. Let p: g*--*t* denote the restriction mapping. Then, 
according to the convexity theorem for coadjoint orbits ([HNP, Thm. 5.17]), 

i/3 = p(it3) E p(Ad* (G).iA) C_ conv(W~.iA) +C*m~ _C_ C~in. 

Since, according to Proposition III.5, flEW.A, we conclude with Lemma III.10 that 

/3 e W . A N - i C * i n  -~ ~lt)e.A. [ ]  

T h e o r e m  III .14. Let P be a parabolic in the complexification Gc of the Her- 
mitean simple Lie group G. Then 0r S(P) if and only if P contains a Borel 
subgroup associated to a positive ~-adapted system A+. In this case S(P) is the 
maximal Ol'shanskii semigroup Sma~:=G exp(iWmax) associated to A +. 

Proof. It remains to show that Sm~.,=S(P) holds in all these cases, where 
S:=S(P) has non-empty interior. 

We want to apply Proposition II.4. So we have to show that 

,S'nexp(it) C exp(iCmax). 

To do this, we return to the realization of the complex flag manifold G c / P  as an 
orbit of a highest weight ray [v~] in the projective space P(V) of a highest weight 
module. Let XEit\iCmax be weight separating and suppose that exp(X)Eint(S). 
Then there exists a non-compact root a with a (X)<0 .  Since every short non- 
compact root is the average of two long non-compact roots ([Pa, p. 219]), we even 
find a long non-compact root a such that a (X)<0 .  We also know from [Pa, p. 220] 
that the long non-compact roots are conjugate under kV~. Hence }/Ve.a generates 
the same cone as A+. 

Since A(/3)>0 for all flEA+, it follows that (A,/3)>0 for all/3~A+. We find in 
particular that (A, kV~.a)C_R +. Since, on the other hand, kV~.a generates it*, there 
exists 7E kVe such that (A, q,.a)>0. The semigroup S is invariant under conjugation 
by Na(t), so that we can replace X by v.X and therefore assume that X~iCmax, 
a(X)<0 ,  and A(&)>0. Hence 

s.(A)(X) = A(X)-(A, > A(X). 

Thus, using Lemma III.9(iii) and (iv), we see that [v~] ECs implies that [vs~.~] E 
Cs. Let/3:=s~.A. Then/3EkVt.)~ by Proposition III.13. As before, let ZE$(~) such 
that A+={flEA:t3(Z)>O}. Then/3(Z)=A(Z),  so that A(&)a(Z)=0, contradicting 
the fact that A(&)>0 and a (Z)>0 .  
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So we have proved that SMexp(it)CexpiCmax. Now Proposition II.4 shows 
that S c  GNGc (t)G. 

Let sESMNGc(t). Then s.[v~]=[v~.~], where VEW is the element of the big 
Weyl group represented by s, i.e., 7=Ad(s) ltc. Now, again using Proposition III.13, 
we find that ~/.AEYV~.A. This means that s.[v~]ENv(t).[v~]. The same argument 
applies to every other weight vector in We.[v~]. Thus v.(W~.),)C_We.A. Let/~:= 
~-~we~V~ w'~E-iinte*min" Then/~r  and V./~=/3. It follows that 7 preserves the 
set of Weyl chambers containing R+/~. Since the small Weyl group W~ acts simply 
transitively on this set of Weyl chambers and W acts simply transitively on the set 
of all Weyl chambers, it follows that 7EW~. Hence sESMNGc (t) is represented by 
an element in W~, so that 

SMNGc(t) c NG(t)ZGc(t) = NG(t) exp(tc) C G exp(it). 

For sESMNGc(t) this implies the existence of gEG such that gsEexp(it)MSC_ 
exp(iCmax). So SMNGc (t)CSm~ and since G(SMNGc (t))G is dense in S, we con- 
chide that SC_Sm~x. [] 

We collect the information obtained in Sections I-III in the following theorem. 

Theorem III.15. Let tC 9 be a compactly embedded Cartan algebra, wet*, 
a parabolic system of roots, b=p~ a complex polarization in w, and p=bN[c. Then 

S(B) = NcS(P)  

and i] [----}([o)@~k=l [j denotes the decomposition of [ into simple ideals, then 

k 

S(P) = Z(Lc)0 x H S ( ~ ) ,  
j = l  

where p/:=pM([/)c. More precisely, S(P j )=(L j )c  holds if and only if [j is not 
simple Hermitean or/ fp i=([ i )c .  The interior of S(Pj) is non-empty and different 
from (Lj)c if and only if [j is Hermitean and pj contains a Borel algebra associated 
to a ~-adapted positive system of roots. In this ease S(Pj) =Lj exp(-iWmax), where 
Wmax C [j denotes the corresponding maximal invariant cone. 

Proof. This is a collection of the results from Proposition 1.13, Proposition II.3, 
and Theorem III.14. [] 

Compression semigroups and admissible orbits 

In this last subsection we want to relate the non-triviality of the semigroups 
S(P) to a convexity property of the co~ijoint orbit (-0i~ associated to P by realizing 
G c / P  as a highest weight orbit Gc.[v~]. 
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T h e o r e m  I I I .16 .  Let G be a simple Lie group contained in a complexification 
Gc and P be a parabolic in Gc. We realize the flag manifold G c / P  as a highest 
weight orbit Gc.[v~]. Then the following are equivalent: 

(i) 0~in t  S ( P ) ~ G c .  
(ii) Oi~ is of convex type and not zero. 

If these conditions are satisfied, then G is Hermitean. 

Proof. (i) ~ (ii): Proposition II.3 shows tha t  G is Hermitean. Then we can 
apply Lemma III.11 to see that  iA is contained in an invariant cone. Moreover iA 
cannot be zero since that  would imply P = G c  and hence int S(P)=Gc .  

(ii) ~ (i): If (_0~ is of convex type and non-zero, then g contains a non-trivial 
invariant cone and hence is Hermitean. Moreover [HNP, Thm. 5.20] shows that  
there exist a C-adapted positive system such that  )~E-iC*in. Then iA permits 
a complex polarization p~ such that  E DA+. This implies P=P~ and therefore 
Proposition III.12 shows that  int S(P)r Finally the proof of [HN2, Thm. 8.49] 
shows that  i n t S ( P ) r  [] 
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