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Random recursive construction 

Christ ian Bluhm(1) 

of Salem sets 

Abstract .  We introduce a random recursive method for constructing random Salem sets 
in R d. The method is inspired by Salem's construction [13] of certain singular monotonic functions. 

1. I n t r o d u c t i o n  

Let K c R  d be a compact  set. For a � 9  [0, d] the a-dimensional  Hausdorff mea- 
sure of K is defined by 

H ~ ( K ) : = s u p i n f  diam(Uk)~lUkCR d, K C  Uk, d i a m ( U k ) < 5  . 
~>0 ~ - ~  k=l 

T h e n  the  Hausdorff dimension of K is defined by 

d imH(K)  :=  s u p { a  ~ O IH~(K) = + c o }  = in f{a  > O I Ha(K) = 0}. 

F ros tman ' s  theory  [4] implies tha t  the Hausdorff  dimension of  K is equal to its 

capacitarian dimension. Therefore,  if we write M r (K)  for the  set of probabil i ty 

measures with suppor t  in K,  we have the following equMity: 

(1) d i m H ( K ) = s u p { a > _ O l 3 # c M ; ( K ) : / / l x - y l - ~ # ( d x ) # ( d y ) < c o } .  

In  the sequel we write 

fi(x) := / ei(X'Y)p(dy) (x �9 R d) 

(1) This work contains parts of the author's forthcoming doctoral thesis [2] which were 
presented at the Conference on Harmonic Analysis from the Pichorides Viewpoint in Anogia 
Academic Village on Crete in July 1995. 
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for the Fourier transform of measures #EMi~(Rd). It is well known (cf. [8, Chap- 
ter 10]) that  for 0 < a < d  there exists a constant c=c(d, a ) > 0  with 

(2) f /  [x-y[-~#(dx) #(dy) = c f I#(x)12 ]xl~-ddx. 

If K has Lebesgue measure zero then by (1) and (2) its Fourier dimension 

dimE(K) := sup{c~ _> 013m e M~(K) : /2 (x)  = O(Ixl -~/2) (Ixl--* ~ ) }  

is majorized by the Hausdorff dimension of K.  A compact set K C R  d is called 
a Salem set, if dimF(g)=dimH(K) (cf. [8, Chapter  17]). A random Salem set 
with dimension c~ in R d is a random compact set in R d (cf. [10]), whose Fourier 
and Hausdorff dimensions are almost surely the same and have (almost surely) the 
value c~. 

In 1950 Salem [13] constructed for given aC ]0, 1[ a random Cantor set, which 
is a random Salem set of dimension c~ in R. His construction solved the existence 
problem for Salem sets in R. 

Later on in 1985 Kahane [8] treated the existence problem for Salem sets in 
R d, dcN.  He showed that  under a certain condition the image of a compact set in 
R n under (n, d)-fractional Brownian motion is a random Salem set in R d. 

Salem's construction [13] rests on a rather delicate dissection method based on 
the Steinhaus parametrization (cf. [14]). His dissection method uses step by step 
an increasing number of contractions with randomized Lipschitz factors and fixed 
translation vectors (cf. [1] for an appropriate technical setting). It seems to be 
difficult to find a (direct) generalization of Salem's construction for R d with d> 1. 

In this paper we introduce a Salem-like construction of random Salem sets in 
R d, but we use a completely different random mechanism by fixing the Lipschitz 
factors and randomizing the translation vectors. That  results in a method for 
constructing random Salem sets with given dimension in R d. Moreover it is possible 
to push the topological dimension of the resulting sets down to zero. This leads 
to a proof for the existence of sets with given topological, Fourier and Hausdorff 
dimension in R d. 

2. T h e  r a n d o m  recurs ive  c o n s t r u c t i o n  m e t h o d  

Fix ~E ]0, d[ and let (N(k))keN be a sequence of positive integers with 

2 d _< N (1) < N (2) <. . .  < N (k) < N (k+l) (k E N). 
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We refer to N (k) as the number of contractions in the kth step of a dissection 
(kEN).  The Lipschitz factor Q(k) for the kth step of a dissection will be defined by 

(3) (Q(k))~N(k) = 1 (k E N).  

For convenience we set additionally N (~ __ Q(0) :--1. 
Moreover we choose a sequence of independent random variables 

xJk):(~,A,P)--+(Rd, B d) ( k e N ,  j = l , . . . , N ( k ) ) ,  

defined on an appropriate probability space (~, .A, P) ,  where/3 d means the Borel- 

a-field in R d. Furthermore we assume that  the random variables XJ k) (kEN,  

j = l ,  . . . .  N (k)) are uniformly bounded. This means that  there exists a compact set 

X c R  d with X~k)(w)EX for all wE~,  kEN,  j = l , . . .  , N  (k). 
To describe our construction we need the following code spaces (mEN):  

m c~ c~ 

D m : = H { 1 , . . . , N ( k ) } ,  D~:=H{1 , . . . ,N (k ) } ,  and D : =  U D,~. 
k=l  k=l  m=l  

Here 1-I Ak denotes the cartesian product of Ak. For a =  (a(1), a(2) ,  . . . ,  a(m)) EDm 
we define a random variable 

m 

X(7: ( a ,  ~4, P )  --~ ( R  d, ~d ) ,  co ~ E Lo(0) "'" ~'~(k-1)x(k)a(k) (o.)). 

k=l  

The following estimation shows the absolute convergence of the sum on the right 
hand side above for m--*oc (aEDor 

OO OO 

E Q(o) Q(k-1) X(k) (w~' < E ( N  (~ ~T(k--1)~--l/~ __(k) , ,, �9 "" ~(k)~ Jl . . . .  ~v ) IA~(k)~W)I 
k=l  k=l  

OO 

< sup Ixl 2 _< 2 sup Ixl < 
x E X  k=O x E X  

Therefore we have for every a- - (a(1) ,  a(2), . . . )ED~ a random variable 
(X)  

X ~ : ( ~ t , A , P ) ~ ( R d ,  Bd), w ~  (~ Ak-1)X(k) rw~ �9 .. e ~(k)~ J" 
k = l  

Now we define a random set K in R d through 

g : w ~ g ( w ) : =  {X~(w)I a e D~} .  

The next theorem shows that  K(w) can be interpreted as the limit set of a random 
recursive construction in the sense of Graf [5] and Mauldin ~z Williams [11] (cf. [1] 
for a general framework). As usual we write pM:={QxlxEM } for QER and M C R  d. 
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Pr op os i t i on  2.1. There exists a compact set M c R  d such that 

K(w)=N U vwca. 
m = l  crEDm 

Proof. By assumption on the variables XJ k) there exists a compact set X c R  d 

with x~k)(w)EX for all wE~, kEN,  j = l , . . .  , N  (k). We define the set M as 

M : = { x E R d l l x l < _ 2 s u p l x I } .  
xEX 

Because ~(k)< 1 (kEN} we conclude that the mappings 

SJk)(w):M-+M, x~-+X}k)(w)+ytk)x (wEFt, kEN,  j = I , . . . , N  (k)) 

are random contractions in M. Then the equality 

s(al({)(w) . . . . .  S(~)m)(W)(M)=Xr176 (WEFt, aED,~) 

implies immediately the assertion of the theorem. [] 

Corol lary  2.2. For every wEFt the set K(w) is compact in R d. 

Proof. The assertion of the corollary follows from the representation (4) of 
g(w) (wE~t) given in Proposition 2.1. [] 

Remark 2.3. It is obvious that the mapping K: wHK(w) is a random compact 
set in the sense of Matheron [10]. 

3. A n  upper  b o u n d  for the  Hausdorff  d imens ion  

T h e o r e m  3.1. For every wEFt we have H~(K(w))<+e~ and therefore 
dimH(K(w)) <c~. 

Proof. Fix wEFt. From the representation (4) of K(w) given in Theorem 2.1 
we see that for 6>0 and m=m(5)EN large enough, the sets 

. . .  ( r  e 
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can be used as a 5-covering of K(w). This leads to an upper estimate of H~(K(w)): 

H~(K(w)) -< sup E diam(X~176 
5>0 o_EDm(5) 

=sup  E (8(~ 
5>0 aEDm(5 ) 

m(~) 

= diam(M) ~ sup 1-I N(k) (Q(k))~ ~) diam(M)~. 
5>0 k=l 

This implies [] 

4. A lower b o u n d  for the  Fourier d i m e n s i o n  

For the construction of K we assumed the variables X~ k) (k E N, j = 1,. . .  , N (k)) 
to be independent and uniformly bounded. To establish c~ as an almost surely lower 
bound for the Fourier dimension of the random set K we need some more conditions 

the variables X~ k). These conditions seem to be very technical, but we will later o n  

see that  they are rather canonical. 

of random variables X~ k) will be called admissible Definition 4. 1. The sequence 
if for their characteristic functions 

/ ei<x'x~k)(~)>P(dw) (x e R d, k e N, j = 1,...  , N (k)) ~y,k(x) 

there exist constants ck >0 (not depending on j)  and an s >0 with 

(i) I~y,k(X)l<_CklXl -~ V x e R  d, k E N ,  j = l , . . . , N ( k ) ;  
p 

(ii) ( l<k<p+l)  ~ 1 7 6  log max Ck : \k--l-- . (p---~ Cr 

Example 4.2. Let XJ k) (kEN, j = l ,  ... , N (k)) be independent random variables 

in l=t d with independent coordinate variables uniformly distributed in the unit in- 
terval [0, 1]. Then by elementary calculations we see that  the sequence XJ k) (kEN, 

j = l , . . .  , N (k)) is admissible with e = l  and ck=2d 1/2 (kEN). 

In the sequel we always assume the sequence X~ k) ( j = l , . . . ,  N (k), kEN) to 
be admissible. Additionally we make the following assumption on the sequence 

(N(k))keN: 

(5) log(N = o log(N (p 
" k = l  " 
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For example such a sequence may  be defined by N (k) : = ( k + l )  d. 

Now we define a random measure #(w) with support  in K(w) through distri- 
bution of mass in equal portions in every step of a dissection. For this purpose we 
put  

an(',~) : =  * 
k=l \N(  ) 

N(k) 
~(~ k)(w) ( ')) ( m E N ,  w E f~), 

where 5y denotes the Dirac measure in the point yER  d, and * means convolution. 

T h e o r e m  4.3. For every w e ~  the sequence of measures ~,~(w) ( m e N )  con- 
verges weakly to a measure #(w) whose support is carried by K(w). 

Proof. It  is easy to check that  we can write #re(w) as 

(6) 1 1 
N(1) "" N(,~) E ~x~(=)('). 

o ' E D  m 

This implies 
1 1 

f~m(x,w) := N(1) ... N(m) E ei(~'x~(~)>" 
~YCDm 

Using (3), lei(X'Y>-ei<x'z>l<lxlly-zl, and estimating Iftm(X,O.))-ftn(X, O2)l (m,n 
large) we see tha t  the Fourier transforms of the measures #m (W) converge uniformly 
on compact sets. This implies weak convergence. 

The representation (6) shows that  the support  of #(w) must be contained 
in K(w). [] 

In the sequel we use the following form of the Fourier transforms of the measures 

(7) 
m N (k) ( 1 ei~o(O).,.LO(k--1) ) 

k=l j--1 

The usual method to get an upper  estimate for ~t(w) is to est imate E(]~t(x)l 2q) 
(qEN).  This technique was developed by Kahane [8] and Salem [13]. The next two 
lemmas prepare such a mean value estimation. By H a (qEN) we denote the set of 
all permutat ions of {1, ... , q}. 
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L e m m a  4.4.  Let q, k E N ,  xER d and il  ,... , i q , j l , . . .  , jq~{1,. . .  , N(k)}. Un- 
der the assumption 

(8) Vx E Ha: r ( i l ,  ... , iq) # (jl , . . .  , Jq) 

the following estimation holds: 
E [  ie(o) .(k-~)~x ~"~q X(k) X(k)\~ . . . . .  ~ ~ ~o,~[ <e~l~( ~ t e 

./I 

Proof. There exist numbers h i , . . . ,  hN(k)EZ (independent of wC~)  with ]hjl< 
q and 

q N (k) 

n = l  j = l  

From assumption (8) we know the existence of at least one j0 with Ihjol >1. The 
variables XJ k) are admissible and independent. This implies the following estima- 

tion, where ~j,k denotes the characteristic function of xJk): 

N(k) 
E /  i~(o)...~(k-1)lx x-'q_ X!k)_X!k)\ '~l  

~e . . . . .  1 ~o ~ ~  I I  I~J,k(h~Q(~ 
j = l  

< [~jo,k(hjo~(~ ~(k-~)x)l 
cklg (~ ... ~(k-1)x[-~. 

Therefore the assertion of the Lemma is proved. [] 

L e m m a  4.5.  Let q, kEN. If xER d fulfills the condition 

(9) ckq-q(N(k))q <_ (p(o)... y(k-1))~lxl~ ' 

then we obtain the following estimation: 
N (k) 2q 

E -~g ~ e~~176176 -< [N(k)]------~" 
j = l  

Proof. We have the following equality: 

N (t:) 2q 
E (  - ~ - ~ E I  eiO(o)...O(k-~)(x,XJk) ) ) 

j = l  

N(k) 
1 ~ [  iQ(o) ~(k-1)l x X'q X!~)_X!k)~'~ 

: E - -  - - / ~ J , e  "'" , ,z.. , ,~=~ ~ , ~ , )  [N(k)]2q \ 

j l , . . . , jq: l  
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Splitting the sum and using Lemma 4.4 we conclude 

N (k) 2q 
( 1 eie(o)...o(k-1)(x,x~k) ) ) q[ +o..,,~(0) E < 

2 = 1  - -  [N(k)]q ~ , ~  

which implies the assertion of the Lemma. [] 

The following lemma will be the key to establish a as an almost surely lower 
bound for the Fourier dimension of the random set K.  

L e m m a  4.6. Let qEN and 0<0<1 .  Then there exists a bound O(0, q)>0 with 

E(lft(x)]2q) < @]-O,q+l Vx e R d, Ix[ > 0(0, q). 

Proof. Let q and 0 be given. If for x E R  d the condition 

(10) ( max ck)q-q(N(P+l)) q < (6 (0) ...Q(P))~Ixl e 
\ l < k < p + l  

is fulfilled then we can apply Lemma 4.5 for k=l  ,... , p + l .  Because the variables 
XJk) are independent, we get 

N (k) 2q ) E(]ft(x)]2q) < H E ~ ~ eie(~176 ~)) 
k = 2  j = l  

2PqPq 2PqPq 
[g(2) ... N(p+l)]q ~- [N(1)... N(p)]q" 

Now we use a technique developed by Salem [13]. Condition (10) is equivalent to 

P 

(11) log( max ck)-qlog(q)+qlog(N (p+I)) <clog(]xl) -~-  E l o g ( N ( k ) ) .  
\ l < k < p + l  - -  Ol 

k = l  

We choose an x E R d and a p E N such that  condition (11) is fulfilled. Then we assume 
p=p(x) to be chosen maximal to xER  d such that  (11) is true. This guarantees that 
for p(x)+ 1 the opposite inequality of (11) holds. Of course we have the implication 

(12) [x[ --* cr ~ p(x) --+ oc. 

The sequence X (k) ( k e N ,  j=l , . . .  , N  (k)) is admissible, therefore we have the 
asymptotic relation 

log( max ck/) = o  (p-~cc) 
\ l < k < p A - 1  
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(cf. Definition 4.1, (ii)). For the sequence (N(k))keN we made the asymptotic 
assumption (5). Dividing (11) by ( E / a ) ~ = 1  l~ and using the mentioned 
asymptotic relations, we get the existence of a number 0< Op(x)< 1 with 

p(x) 
(13) E l~ ---- Op(x) a log(]xl) 

k = l  

for x large enough and p=p(x). Using the maximality of p(x) and the implication 
(12) we see that  for x large enough Op(~) can be chosen arbitrarily close to one. 

Especially it is possible to have Op(~)>O for all x E R  d with ]xl>e'(O,q ) with a 
certain bound O'(0, q). We conclude 

2P(X)qp(x)q 2P(X)qp(x)q 
E(lfi(x)]2q) <- [g(1)...y(p(~))]q <- ix]O~q VxGRd,  Ixl>O'(O,q). 

Moreover we have the asymptotic relation 

p = o log(N (k) (p --* co). 
X k= 1 

Because of (12) and (13) we are able to find a bound O"(q) with 

p(x) log(2q q) < log(Ixl) Vx e R d, Ix[ > O"(q). 

Now set e(O,q):=max{O'(O,q),O"(q)}. [] 

T h e o r e m  4.7. The Fourier dimension of K is almost surely minorized by a. 

Proof. With Lemma 4.6 in mind the conclusion is standard (cf. Kahane [8, 
Chapters 17-18], resp. Salem [13, p. 360-361]). As usual the estimation of 
E(tft(x) 12q) leads to the almost sure absolute convergence of an appropriate random 
series. [] 

C o r o l l a r y  4.8. The random set K is a random Salem set of dimension a 
in R d. 

Now we will give an example which shows how easily one can construct random 
Salem sets in R d with the help of the random recursive construction method. 

Example 4.9. Fix 0 < a < d ,  set N(k):=(k+l) d, p(k):=(N(k))-l/~ and choose 

random variables X~ k) uniformly distributed in [0, 1] d and independent (as in Ex- 
ample 4.2). Then the random compact set 

K: w ~ K(w) = {X~(w) la e n ~ }  

is a random Salem set with dimension a in R d. 
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5. Sa lem sets  with topological d i m e n s i o n  zero  

In this paragraph we show that  under certain separation conditions on the 
variables XJ k) we get totally disconnected sets K(w) (w E ~). From dimension theory 
it follows that  these sets have topological dimension zero (cf. [6]). 

Instead of a complicated general technical setting we give a concrete random 
recursive construction which leads to totally disconnected Salem sets. It is not 
difficult to adapt the construction to general situations. 

Fix now ~E]0, d[ and set N(k):=(k+l) d and Q(k):=(N(k))-l/~ (kEN). The 

idea consists of constructing an admissible sequence X~ k) in such a way that  the 
resulting sets in every step of the recursive construction (4) have a positive distance 
to each other. We choose independent random variables ZJ k) in R d with inde- 

pendent coordinate variables uniformly distributed in [0, ~ ((k + 1)-1 _ Q(k)) ], k E N, 

j =  1 N (k). For every k e N  we define numbers/~k) ~(k) �9 [0, 1] inductively 
' " "  ' ~ " ' "  ~ ' k + l  

by 

~ - i  " - -  t - ' i - - 1  ~ " ' "  

Now for every k � 9  we have a family of vectors b~k)�9 [0, 1] d (j----i, ... , N (k)) defined 
by 

~ N ( k )  J , . . .  

Then we set 
X~k) ._  (k) (k) N(k)). .--bj +Z~ ( k e N ,  j = l , . . . ,  

By construction the variables XJ k) are independent and uniformly bounded. 

T h e o r e m  5.1. The random variables XJ k) (kEN, j = l , . . .  , N  (k)) are admis- 
sible. 

Proof. By elementary calculations one finds that  conditions (i) and (ii) in Defi- 
nition 4.1 are fulfilled. For details we refer to the author's forthcoming doctoral 
thesis [2]. [] 

T h e o r e m  5.2. The random set K:w~-~K(w)={X~(w)lc~eD~ } has totally 
disconnected realizations. 

Proof. The assertion of the theorem is an immediate consequence of the special 
construction of the sequence XJ k) (kEN, j= l , . . .  , N(k)). [] 
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C o r o l l a r y  5.3. The random set K is a random Salem set of dimension a 
whose realizations have topological dimension zero. 

Proof. Theorems 5.1 and 5.2. [] 

Remark 5.4. In the introduction we mentioned that  under a certain condition 
the images of compact sets under fractional Brownian motion are random Salem 
sets. In a paper of Kahane (cf. [7, p. 153]) we find that  for classical Brownian 
motion these random sets can be chosen to have topological dimension zero. 

6. A n  e x i s t e n c e  t h e o r e m  

Professor KSlzow asked whether it is possible to find sets with arbitrary given 
topological, Fourier and Hausdorff dimension. From a result in [6] it follows that  
the topological dimension is an integer which is always majorized by the Hausdorff 
dimension. For the Fourier dimension the same relation holds. But are there other 
dependences between the three dimensions? The next theorem answers the question 
for R d with d>2  negatively. For the proof it is essential that  we know the existence 
of Salem sets with topological dimension zero (cf. Corollary 5.3.) 

In the sequel we write dimT(K) for the topological dimension of K C R  d. 

T h e o r e m 6 . 1 .  Letd>2, a,/3�9 andm�9 , d - l }  within, a<~3. Then 
there exists a compact set K c R  d with topological dimension m, Fourier dimension 
a and Hausdorff dimension/3. 

Proof. To prove the theorem it is enough to establish the existence of compact 
sets Ks ,  KZ, Km C a d with the following dimensions: 

(i) dimT(Km)=m, d imF(K,~)=0 ,  dimH(Km)=m; 

(ii) dimT(Kc~)=0, dimF(Kc~)=c~, dimH(Kc~)=c~; 

(iii) d imT(K~)=0 ,  d i m F ( K ~ ) = 0 ,  dimH(K~)=r 

Then the set K:=K~UK~UKm is a solution to our problem. 
The existence of sets K,~ with (i) is clear. From the last paragraph we know 

that  there exist totally disconnected Salem sets K~ with dimension a. I f / 3 < d - 1  
choose a compact set K~ c R  d-1 with Hausdorff dimension t3 and topological dimen- 
sion zero. Then K~ :=K~ x {x0 } with a fixed x0 �9 R solves (iii), because the Fourier 
dimension disappears by imbedding. If f l > d - 1 ,  we cannot work with imbeddings. 
Therefore we need another method. 

Let C~ denote a Cantor set in [0, 1] constructed like the ternary Cantor set but 
with ratio 0 < ~ <  �89 If ~-1 is a P.V. number, then it is well known that  the Fourier 
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dimension of Cf is zero (cf. Kechris & Louveau [9]). The Hausdorff dimension of Cf 
is equal to log (2 ) / ( - log ( f ) ) .  From a result of Salem (of. [12, Theorem IV]) there 
are P.V. numbers f - 1 > 2  with dimH(Cf) as close to 1 as we please. Therefore it 
is possible to choose a P.V. number f~-1>2 with d i m H ( C f l ) > f l - ( d - 1  ). Further 
choose numbers f2, . . .  , fd with 

dimH (C~1) +.. .  +dimH (Cr = ft. 

Then from a result in [3, p. 95], it follows that 

fulfills (iii). This concludes the proof. [] 
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