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Non straightenable complex lines in C?

Franc Forstneric(!), Josip Globevnik(?) and Jean-Pierre Rosay(')

Abhyankar and Moh, in [1, (1.6), p. 151], and M. Suzuki, in [11, §5], proved
that if P is a polynomial embedding of C into C2, then there exists 1, a polynomial
automorphism of C2, such that (o P)(C)=C x {0}. The corresponding and much
easier result has been proved for polynomial embeddings of C into C™, for n>4 by
Z. Jelonek [7] (more generally, Jelonek treats the case of embeddings of C* into C?,
for n>2k+2). The case of polynomial embeddings of C into C3 seems open. See
also [8].

The main goal of this paper is to show that the above results do not gener-
alize to holomorphic embeddings of C. Another goal is an interpolation theorem
(Proposition 2 below).

Proposition 1. Let n>1. There exists a proper holomorphic embedding
H:C—C" such that for no automorphism v of C", (¢H)(C)=Cx{0}CC™.

Notice however that it has been proved in [4, (4.1)] that for every R>0 and £>0
there exists 1, an automorphism of C™, such that |(¢oH)(¢)—(¢,0)|<e for every
CeC, |¢|<R. So, compact subsets of the complex line H(C) can be “approximately
straightened”.

The above proposition has been known for some time, for n>>3. In [4, (7.8)]
this is pointed out as being (non stated but) clear in [10]. For n=2, we keep the
same approach as in [10]. But we can now take advantage of the ground breaking
work by Andersén and Lempert [2], as further developed in [4].

1. Proof of Proposition 1

Proposition 1 is an immediate consequence of the following two propositions:
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Proposition 2. Let n>1. Let (oj)jen be a discrete sequence in C™, (i.e.
|aj|—+00 as j—o0). There exists H: C—C™, a proper holomorphic embedding of
C into C", such that a;€ H(C) for every jeN.

The case n>2 is treated in [10] (where in addition it is shown that, for n>2,
the preimages of the points a; can be arbitrarily prescribed), so the result is new
only for n=2. We wish to point out that the technique in the proof of Proposition 2,
without any substantial modification, allows one to embed C* into C™, so that the
image of C* contains an arbitrary given discrete sequence, if 1<k<n.

Proposition 3. (Theorem 4.5 in [9].) Let n>1. There exists a discrete se-
quence (o) jen in C™ such that for no automorphism ¥ of C", 9(a;) €C x {0} (for
all j’s).

In [9], such sequences are called “non tame”. The existence of non tame se-
quences is not immediate. Indeed, any sequence is the union of two tame sequences.
An interesting, more detailed, study of non tame sequences is to be found in [6].
All that is left is therefore to prove Proposition 2.

2. Proof of Proposition 2

As already said, our work depends on an extension of the work of Andersén—
Lempert, as given in [4]. Also, our proof is inspired from [5]. From [4], we shall
need only the following;:

Lemma 1. Let K be a polynomially convex compact set in C™ (n>1). Let p
and geC"\ K. For every £>0, there exists 1, an automorphism of C™, such that
Y(p)=g and [Y(2)—z|<e for every z€ K. In addition we can fix arbitrarily chosen
points p1, ... ,ps i K (i.e. Y(pj)=p;).

Proof of Lemma 1. Let 4:[0,1]>C™\ K be an arc, ¥(0)=p, v(1)=q. Apply
Theorem 2.1 in [4] to the following situation: In Theorem 2.1 replace K by KU{p}
and consider  a sufficiently small neighborhood of KU{p}. Take ®; to be the
identity on K, and to be ®;(2)=2+(y(t)—p) near p. Fixing finitely many given
points is a trivial addition.

Remark. If K is convex, the lemma is very simple to prove with really elemen-
tary tools. Without any intent to look for more generality we now simply state the
following.

Lemma 2. Let K be a polynomially conver compact set in C™. Let H be a
proper holomorphic embedding of C into C™. Let R>0 and Lr={z=H(({):(€C,
IC|<R}. Then the polynomial hull of KULR is contained in KUH(C).
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Proof of Lemma 2. Let peC". Assume that p¢ KUH(C). Let f be a polyno-
mial such that f(p)=1, but |f|<1on K. Let g be an entire function which vanishes
identically on H(C), but such that g(p)#0. (The existence of such a g follows from
Cartan’s Theorem A, but in the application we can explicitly exhibit such a g, a
polynomial. See the remark at the end of the paper.) Now, for N large enough, we
have Ing(p)|>supKuH(C) |f¥gl. So, p is not in the polynomial hull of KULp.

We now begin the proof of Proposition 2 itself.

Proof of Proposition 2. We start with the embedding Hy: C—C", Hy(¢)=
(¢,0) and gp=0. In the j** step of the construction we shall find g; >0, {;€C, and
then construct a proper holomorphic embedding H;: C—C™ such that:

(1) Hj(gl):alv lE{l y oo ’j}?

(i) [H;(O>]oy]-1if |{]>05,

(i) |H;(¢)—H;-1(¢)|<e; <277 for |¢|<p; with €; to be chosen small enough,
depending on previous choices,

(iv) gj>g;-1+1.

Once this is done, we set H=lim H; (uniform convergence on compact sets). The
inequality |H;—H,;_1|/<277 in condition (iii) shows that the sequence of maps H;
does converge, and that the limit H satisfies: |H(¢)—H,;(¢)|<1 for |{|<g;j+1. From
(ii) we get that if o; <|¢|<oj+1, then |[H(¢)|>|aj|—2. So H is proper. And (i)
implies that H({;)=qy, for any .

Finally we have to explain the choice of ¢;, so as to make sure that H is an
embedding. Let R>0, and let G be any holomorphic embedding of C (or of the disk
{|¢|<R}) into C™, and 0<r<R. Then, there exists >0 (depending on G, r and
R) such that if G’ is any holomorphic map from the disk {|¢|<R} into C™ satisfying
|G—G'|<n, on this disk, then the restriction of G’ to the smaller disk {|¢|<r} is an
embedding. In the (j—1)% step of the construction, the radius g;—; and the map
H;_; have been chosen. In the 4t step the radius o; will be chosen first, as will
be explained below. We then apply the above to G=H;_1, R=p;, r=9;_1, to get
n=n;. If for every jEN, Zf:o; €1<nj;, then the limit map H will be an embedding.
Indeed, the restriction of H to any disk {|¢|<g;—1} will be an embedding, since the
inequality |H —H;_1|<n; will hold on the disk {|{|<g;}. A possible choice of ¢; is
therefore: £;=277 min;<;(1,m).

Here is a way to find g;, ¢; and construct Hj:

We already have H;_1(¢)=oq for l€{1,... ,j—1}. If ay=H;_1(C) for some
¢€C, we just take (;=¢, H;=H;_; and p; large enough so that (ii) and (iv) hold.
Otherwise (the general case), we choose g; >p,_1+1 so large that |H;_1(¢)|>|e;]
for every (€C, |¢|>p;. Let F be defined by:

F={zeC":[2|<|a;|-1/2}UH;_1{[¢| < 05}
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The polynomial hull of F does not contain «; since o; ¢ H;_1(C), and according
to Lemma 2. Take ¢; so that H;_;(¢;) does not belong to this hull (it is enough
to take |(;| large enough). By Lemma 1 we can find ¢;, an automorphism of
C", fixing oy ,... ,a;_1, as close as we wish to the identity on F' and such that
¥;(Hj—1(¢;))=0;. In particular we take 1; close enough to the identity on F' so
that the image of the ball {|z|<|a;|—3} contains the ball {|z|<|a;|—1}. So if
[{|>0; then |H;_1(C)|>|a;|, hence |¢;(H;-1(())|>|a;|—1.
We set H;=1;oH;_;. Properties (i)—(iv) are immediate to check.

This ends the proof. We just add the following remark with respect to the
proof of Lemma 2. One has H;=1jo...01p1oHp, and Ho({)=(¢,0). So if Z;, denotes
the k" coordinate function in C™, the functions Zko¢1_1<>...o¢j_1, for ke{2,... ,n},
have precisely H;(C) as their common zero set.

Note. Further examples, related to Proposition 1, have been given by G. Buz-
zard and J. E. Fornaess ([3]). In particular, they give the example of a complex line
embedded in C?, whose complement is hyperbolic.
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