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On removable sets for 
quasiconformal mappings 

Robert Kaufman and Jang~Mei Wu(1) 

Given a closed set E C R  ~, let 

QCH(E) = {homeomorphisms of a n to R ~ which are quasiconformal off E}; 

we call E removable for QCH if every f in QCH(E) is quasiconformal in R n. 
In R 2, the following theorems ([C], [G], [K]) are known: 

T h e o r e m  A. (Carleson, Gehring) If  S C R  1 is compact, then S• [0, 1] is re- 
movable for QCH if  and only if  S is countable. 

T h e o r e m  B. (Kaufman) If  S C R  1 is uncountable, then S• [0, 1] contains a 
graph E which is not removable for QCH. 

In R '~, n>2, Cantor type sets are removable ([HK]): 

T h e o r e m  C. (Heinonen and Koskela) Let E be a closed set in R% Suppose 
that there exist a > l ,  and {rj}, rj--+O as j--*c~, such that at each x E E ,  the annular 
regions { y : a - l r j < l y - x l < a r j }  do not meet E. Then E is removable for QCH. In 
fact, if f is quasiconformal off E, then f has a quasiconformal extension on R n. 

In this note, we prove the following extension of Theorems A and C. 

T h e o r e m  1. I f n > m > 2  and S is an {ak}-porous set in R m with ~ a k = C ~ ,  
then S •  n-m is removable for QCH in R n. I f  S is closed in R 1, then S •  n-1 
is removable for QCH in R n if and only if  S is countable. 

Given {ak}, 0 < a k < l ,  a set SC_R n is called {ak}-porous if there exists a 
sequence of coverings gk -={Bk,j ~B(xk , j ,  rk,j)} of S, by balls with mutually disjoint 
interiors, so that each Bk,j \ S contains a ring Rk,j =-- { x: (1 -- (~k ) rk,j < IX-- Xk,j I < rk,j }, 
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Uc~+~ Bk+I,jC--Uck(Bk,j\Rk,J), and supj rk,j--+O as k--+c~. Here B(x,r)={yER'~: 

ly-xl< }. 
An {ak}-porous set has zero n-dimensionM Hausdorff measure provided that  

~--~ OZk _-- OO. 

Remarks on Theorem 1 are given in Sections 1 and 2. 
The next theorem is related to the previous one, but uses special consideration 

restricted to the plane. 

T h e o r e m  2. Let ~ be an open set in R 2, and E be an {~k}-porous set in 
with ~ ~ : o o .  Let f be meromorphic in ~ \ E  with the spherical derivative 

f*=lf ' l(l+lf21) -1 in L2([%\E). Then f can be extended by continuity to be mero- 
morphic in f~. 

The hypotheses are fulfilled if f is schlicht on ~ \ E ;  the extension will be schlicht 
(possibly taking the value ~ )  on It. 

Koebe has proved that  every planar domain can be mapped conformally onto 
a slit domain whose complement has area zero ([AS, Theorem III.11C]). In [B], 
Bishop raised the question: if E is closed, has positive area and no interior, is there 
a G e C H ( E ) ,  so that  G(E) has zero area? Here 

CH(E)  = {homeomorphisms on R 2, conformal off E}. 

We provide a partial answer. 

T h e o r e m  3. Given any E C R  2 of positive area, there exists GECH(E)  that 
maps a subset F (orE) of positive area to a set G(F) of zero area. 

We conjecture that  in this theorem, F can be chosen to have full measure, and 
that  the answer to Bishop's question in its full generality is negative. 

1. P r o o f  a n d  r e m a r k s  of  T h e o r e m  1 

We shall prove the first statement in Theorem 1 only. The second statement 
regarding the removability of S • R I follows from minor modifications of the proof 
of Theorem A. 

Let ~ c ~ k = o o  and S be an {c~k}-porous set in R m with n > m > 2 ,  and let 
fEQCH(S• In order to show that  f is quasiconformal in R n, we only 
need to verify that  f is ACL--absolutely continuous on lines (IV, Theorem 34.6]). 

Because S has zero m-dimensional Hausdorff measure, it suffices to show that  
f is ACL on almost every hyperplane Rm•  {a}, where a E R  n- '~.  
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When m=n, the hyperplanes are R n, and the set A below should be disre- 
garded. 

Let Q be a ball in R m whose interior meets S but whose boundary does not 
intersect S. After deleting a set A C R  n-m of Hausdorff An-m-measure zero, we 
may assume that  f is in W 1,n on (Q\S)x{a}  (a•A), 

j[(Q If'(x)ln dxl dX2 dxm < C~. 
\S) x{a} 

Fix a~A, let Bk,j, Xk,#, rk,j, Rk,j be retained from the definition of porosity 
for S, and let 

Ak,j = Yak,j x{~} If ' ix)  In dXl ... dxm, 

t 1 7k,j be a sphere in Rkj  concentric to Rk,j of radius rk, j > ~rk,j, on which 

(1.1) f ]f'(x)l "~ do(x) -1 -1 < CAk,jOl k rk,#, 
Jr , j  x (~ }  

where a is the Hausdorff Am-l-measure,  and C is a constant depending on m and 
n only. This is possible because f is quasiconformal in Rk,j • R n-re. 

Denote by Dk,j the ball in R m bounded by 7k,j, by 2 the radial projection 
of the point xEDk,j x {a} to the sphere ~Yk,j x {a}, with (xk,j, a):(xk,#, a), and by 
mk,j the average of f on ?k,j z {a}. 

Define 

f (x )  on (R '~ \  Uj  Dk,y) • {a}, 

fk(x) = 
mk,j-~ IX--(Xk'j 'a)l(f(2)--mkj) on Dk,jz  {a}, for each j .  

r'k,j 

Clearly fk--+f everywhere, and in L n on R m •  {a}. We note that  the derivative of 
fk on R ' ~ x  {a} satisfies 

f I / ~ ( x ) P  dXl ... dxm ~ C f I f ' (~) ln+rk:~l f (~)-mk, j l  n dxl ... dx m 
JD kj • {a} J Ok,j X {a} 

< C~k,jOlk I '~Cr~2 +1 / I f ( x ) - m k , j  I n d~(x) 
- ' _ _ k , j x ( ~ }  

<CAkYa#~+Crk,J f . If'(x)lndc~(x) 
- ' J~k,jx{~ 

< CAk,j~k 1, 
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in view of (1.1) and the Poinca% inequality. Here C denotes constants depending 
on m and n only, with values varying from line to line. Hence for l>k, 

Q I(fk-- fl)t[n dXl ... d~m ~ eOLkl E,~k,j"~CoLll E )~l,i 
x {~ }  j i 

+ ~ L , . j \ s ) x  {~} ,f',n dx, ... dxm. 

Since E a k=c ~  and E k  E j  )~k,j <c~, l i m i n f k ~  a~ -1 ( E j  ,~k,j) =0. Taking a sub- 

sequence of the fk's we find that  IEWI '" (Q•  Thus f is ACL on Q x { a }  
because f is continuous. Hence f is ACL on R ' ~ x  {a}, and f is quasiconformal 
on R ". This completes the proof of Theorem 1. 

The proof is about extension of Sobolev functions, and is still valid for the class 
W1'1; but  it becomes more technical (as is natural) if the hypothesis of continuity 
is omitted. 

In view of the successful application of the concept of a ring-like porous set, 
we may ask the following. 

Question. Can porous sets be defined in a conceptually different way to allow 
more removable sets? Can the porosity be defined to depend on the exponent of 
integrability of If'l? 

The total disconnectedness of S in Theorem I is not essential. We note from the 
proof that  in some situations, the removability for QCH is about the extendibility 
of Sobolev functions. For example, it follows from the Sobolev extension theorems 
of Jones [J] that  if S is a quasicircle in R 2 then S • R '~-2 is removable for QCH in 
lrt n" 

Question. Are the sets S • R n-m in Theorem 1 removable for the class of func- 
tions quasiconformal on R n \ S  • Rn-'~? 

This is a question on homeomorphic continuation of quasiconformal mappings; 
we have no conjecture in general. Martio and Ns [MN] have proved a theorem 
on homeomorphic continuation of quasiconformal mappings defined on domains 
with totally disconnected boundary sets. First applying their theorem to obtain a 
homeomorphic extension, then applying Theorem 1 to show quasiconformMity, we 
arrive at an answer for m=n.  

C o r o l l a r y .  If  n>_2, S is an {ak }-porous set in R ~ with ~ ak=c~, and f is 
quasiconformal on R n \ S ,  then f can be extended to be quasiconformal on R n. 

When r e = n - l ,  we conjecture that  the answer is again positive. This is based 
on the modulus estimation of a certain curve family in the next section. 
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2. M o d u l u s  o f  a cer ta in  c u r v e  fami ly  

Given a family F of curves in Rn, let adm(F) denote the family of Borel mea- 
surable functions ~: R n--* [0, oo] such that  f7 ~ dlx I > 1 for all locally rectifiable vEF.  
We recall that  the modulus of F is defined to be 

f 
m o d ( F ) =  inf ] Q~ dx. 

~Eadm(F) J R n  

Given E, F, G_CR n, denote by A(E,  F;  G) the family of curves with interior in G 
and endpoints on E and F respectively. 

P r o p o s i t i o n  1. Let n>3, S be an {ak}-porous set on Rn- iM{lx l< �89  with 
~-]~C~k=CX~, D be the infinite cylinder { x E R n - i : l x l < l } x R i ,  and ~ be the set 
D \ ( S x R i ) .  Suppose that I={a}x[O,h] is a line segment on S x R  i with aES  
and h>0.  Then 

mod(A(I ,  OD, ~)) > Cnh, 

where Cn is a positive constant depending only on n. 

Let S be the set in Proposition 1, and f be a quasiconformal mapping on 
R ~ \ ( S x  R1). In view of the modulus estimation, the cluster set f ( I )  of a line 
segment I C _ S x R  i consists of more than one point. The conjecture at the end of 
Section 1 is based on this observation. 

The proposition may be derived from the interpretation of mod(F) in terms of 
variational integrals, and the fact that  S x R  i is removable for W i,~ in R ~, which 
we prefer not to elaborate. Instead, we present a direct proof. 

Proof. We retain Bk,j, Xk,j, rk,j, Rk,j from the definition of the porosity for S, 
and assume as we may that  sup c~k _< �89 

After a piecewise linear transformation, we may assume that  a is the origin. 
Let 

F = A(I ,  OD, f~), 

F1 = {7 E F :~, lies on a hyperplane Xn = e for some c E Ri} ,  

and note that  rood(F)>mod(Fa) .  
Let pEadm(F1) with Q=-0 off Dn{O<_xn<h}. We shall modify ~ so that  the 

new ~ is in adm(F2), where 

F2 = {7 E A(I ,  OD, D):  7 is a line segment on which x n =---. C for some C E R1}. 

We denote points in R ~ by x, points in R n-1 by x' and write x=(x ' ,x~) .  
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(2.1) 

and 

Fix a, O<a<h, and define 

)~k,j = f O(x) dx', 
3 Rk,j X {a} 

?7~k, j ~-- / on(x) dx'. 
J -~k,j x {a} 

In each Rk,j, there is a sphere "Yk,j concentric with Rk, j such tha t  

f~ O(x) dot(x) -1 -1 ~_Ca k rk,j)~k,j, 
k,j x {a} 

f~  --1 -1 (2.2) Qn(x) da(x) < Ca k rk,jmk,j , 
~,~ x {,~} 

where a is the Hausdorff An-2-measure,  and C is a constant depending on n only. 
Denote by Dk,j the ball in R n-1 bounded by 7k,j. 

Given s, a line segment with endpoints on ~/k,j=ODk,j, we shall denote by 
the great circle of 7k,j lying on the hyperplane containing Xk, j and the endpoints 
p, q of s. We shall let sl be the shorter arc of ~\{p, q}, or either arc if both  have 
the same length. 

Consider, from now on, only those Bk,j on which 

dist (0, Bk,j) > 5 d iam Bk,j. 

Let xlEDk,j and s be the segment on the line through 0 and x' ,  with endpoints 

on 7k,j. Let w(x') be the unique point on sl satisfying Iw(x')l=lx'l. And define on 

Xn =a~ 

0(w(x ' ) ,a) ,  x' E Dk,j, 
Ck,j (x) = 0, elsewhere; 

(2.3) 

and 

_--l_--nA-lx X I 
c~ k 'l k, j Ak,j, E Dk,j, 

(2.4) Ck,j(x)= 0, elsewhere. 

Let L e r 2 n { x n = a }  and assume tha t  s==-LNDk,j x {a}#~.  If sn (�88 x {a}#  
0, we may find an arc s~ on 3'k,j joining the endpoints p and q of s, such that  

(2.5) f Q(X)[dx I < C  - 1 _ - n + 2 ~  2 -- OZk rk'j k,j, .Is 
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for some properly chosen constant C depending only on n. Define 

81, ifsN(�88215 
(2.6) s ~ = 

82, if 8n(�88 •162 

Here eB is the ball concentric to B of radius c times that  of B. Then 

(2.7) I xl >_ c Q(x) I xl 

To see this, we consider the case sN (�88 Bk,j ) x { a } =0  and the case 8N (�88 Bk,j ) • { a} # 
separately, and use (2.3), and (2.4) and (2.5) respectively. Also we deduce from 

(2.2) and the H51der inequality that  

~C/D ~~ dxt~-e~ on(x) dx'. 
, j  x ( ~ }  ~,j x (~} 

We are now ready to modi fy  ~ on Xn=a. I f  f{x,,=a} ~on(x) dx~=~ we leave 

Q(x) unchanged and let ~o(x)=~(x) on x n = a .  

If f{x~=a} ~n(x) dx'<oc, we denote by Mk=~j  mk,j, thus ~k Mk<CX~. Since 

Y]. ak=eC, there exists a sequence {kq} so that  

Mkqak: < 2 -q f On(X) dx'. 
.1{ Xn:a} 

The measurability of the modified 0 may be insured by choosing kq the smallest 
possible value exceeding kq-a. 

Let d be a covering of S\{0}, consisting of mutually disjoint balls from the set 

Uq> 1 U s { Dk~,5 } satisfying dist (0, Bkq,j) > 5 diam Bkq,j. 
Define on Xn=a, 

f LO(x)q-r if x' E Dk,j and Dk,j EC, 
b.(x) 

~(x), if xt r Uc Vk,j. 

Given LeP2fl{xn=a}, define a new curve / :  in A(I ,  OD, ~) by 

~=U((LADk,jx{a}))U(L\UDk,jx{a}) ,  
C C 
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where ~ of a segment is defined by (2.6). It follows from (2.7) and (2.8) that  

fL O~(x) ldx[ >- C ~ co(x) ldxl >_ C, 

and 

(2.9) 
['{ On(x) dx' < C f{ On(x) dx' +C E Mkq(~: 

xn=a) Xn=a} q> l 

~C  fxn=a} On(x)dx'" 

Now let {~a( x), i f x n = a a n d 0 < a < h ,  

~(x) = 0, elsewhere in R n. 

Thus C~Eadm(F2) for some C>0 .  A standard application of Hhlder's inequality 
shows that  fR~ ~n dx>Ch. Therefore fRn Qn(x) dx>Ch in virtue of (2.9). This 
completes the proof of the proposition. 

3. P r o o f  o f  T h e o r e m  2 

Let zo Ef~ and let r > 0  be so small that B(zo, r)CFt and the integral of f . 2  over 
~21--B(zo,r)\E is less than the surface area of the Riemann sphere. Then f ( f t l )  
omits a set of positive area in the plane. We choose a compact subset K of positive 
area m(K), contained in the omitted set. 

By a theorem of Nguyen Xuen Uy IN], there is a function G of class Lip I in 
R 2, analytic off K,  whose expansion near ec is 

G(w) =w-l+a2w-2+a3w-3+..., Iwl > R .  

Since G is of class Lip 1, 

IG'(w)l C(l+lwl) - 2  for weR2\K. 

Thus F=Gof is analytic on f~l. Since IF'l<Clf*[, we see that  F'eL2(Q1). 
Following the argument in the proof of Theorem 1, with r e = n = 2 ,  we can 

conclude that  F is the restriction to ftl  of a function in W1,2(B(zo,r)). If the 
boundary of B(zo,r) intersects E,  we need to approximate the boundary by a 
smooth curve which avoids E; this is possible because E is totally disconnected. 
Since F satisfies the Cauchy-Riemann equations in il l ,  by Weyl's lemma [AS], F 
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coincides a.e. in B(z0, r) with an analytic function F in B(zo, r). However, F is 
continuous on the open subset f~l of B(zo, r), whence F actually extends F from 
~1 to B. 

In consequence, F = G o f  admits a limit ~0 at z0. There is a number woER2\K 
such that  G(wo)~@. It follows that  w0 is not a cluster value of f at z0; that  
is, h = ( f - w o )  -1 is bounded on B(zo ,r l ) \E  for some 0 < r l < r .  This implies that  
the usual derivative h' is in L2(B(zo,rl)\E).  The previous steps show that  h 
can be extended to be analytic on B(zo,rl). Therefore f can be extended to be 
meromorphic. This completes the proof of Theorem 2. 

4. P r o o f  o f  T h e o r e m  3 

We construct by induction a sequence of quasiconformal mappings gn on a 2 
so that  each gn maps a large portion of gn_logn_2 . . . . .  g l (E)  to a smM1 portion 
of gnog,~_~ ..... gl(E), and the limit function g=limn--.~gn ..... gl is in QCH(E).  
The mappings g~ are approximately independent, therefore elementary ideas from 
probability can be used. In passing to the limit g, there is a certain technical point 
which unfortunately slows the exposition. 

The construction uses the measurable Riemann mapping theorem repeatedly. 
For literature and proofs, see [AB] and [LV]. 

Fix 0 < a < l ,  let K = ( l + a ) / ( 1 - a ) ,  and let A4 be the family of complex valued 
measurable functions on R 2, bounded by c~ and supported in B(0, 1). 

T h e o r e m  D.  There exists p=p(c~)>2, such that given any pEA/t, one may 
find a unique K-quasiconformal mapping f on R 2, with the normalization f ( z ) =  
z §  near oc, that solves the Beltrami equation Of=#Of on R 2 a.e., and 
whose partials satisfy Of E L p and O f -  1 E L p. 

Moreover, there exists A=A(a ,p )>I  so that the areas m(X)  and m( f (X ) )  
satisfy 

(4.1) 

(4.2) 

m ( f ( X )  ) <_ A(m(X)  ) 1-2/p, 

re(X) ~ A(m( f (X) ) )  1-2/p, 

for any X c B ( 0 ,  2), and that 

(4.3) 

(4.4) 

I f ( z1 ) -  f(z2)l ~ Alzl-z211-2/p, 

I f - l ( z l ) -  f - l ( z2 ) l  ~ Alzl-z211-2/p, 

for any Zl, z2EB(0 ,  2). 
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Furthermore, suppose that f~ and f are the normalized solutions of the Beltrami 
equation with Beltrami coefficients #~ and pEA/[ respectively. I f # s - * #  a.e., then 
f~--~f uniformly and f~l__~f-1 uniformly, and Of~- l - -~Of -1  and Ofn--~Of in 
L p, and O f~ l -1 - -+Of - l -1  and ~ f~ l__~f -1  in L p. 

Propos i t ion  2. Let # and v in All, and f and g be the normalized solutions 
of the Beltrami equation with coefficients It and v respectively. Then for any X C_ 
B(0, 1), 

(4.5) Im(f ( X) ) - m(g( X) ) l <_ 1 6 v ~  A( ll O f -Ogllp + llO f -OgHp ), 

where p and A are as in Theorem D. 

Proof. Let f (z )=u(x ,  y)+iv(x, y) and g(z)=s(x, y)+it(x, y), and J / a n d  Jg be 
the Jacobians of f and g respectively. Then 

Im(f (X) ) - m ( g ( X )  ) I < ./~: IJg(z)- Jf(z)l dx dy 

~_ ./'y lUxlIVy--tyl-~ltyllUx--Sxl~-IUyllVx--txl-{-ItxllUy--Syl dx dy 

< 2 v ~ ( m ( f ( x ) ) l / 2  +m(g(X)) l /2)m(X ) (1/2)-(1/p) (ll Of - Ogll p +11 Of - Og lip), 

in view of the quasiconformality of f and g. The estimate (4.5) follows from (4.1). 

The building block in our construction is an elementary function defined in the 
following lemma, whose proof we shall omit. 

L e m m a  1. Let D be a disk with center a and radius b, and let r be a homeo- 
morphism on D defined by 

{ a+~( z -a )  for z e  9 D, 

r a+(9 -8b / l z -a l ) ( z -a )  for z e D \  9 D. 

Then r is 81-quasieonfo~nal on D, conformal on 9 D, and the identity map on OD; 
moreover the Jacobian Jr is bounded between 1 and 9. 

We shall refer to r by Co in the context. 
Here eD is the disk concentric to D of radius c times that of D. 

4O Denote byp  the number p ( ~ )  andA the constant A ( ~ , p ) i n  Theorem D. Let 
C k = 1 0  -5k for k_>l. 

By a point of density argument, we may assume that E is compact, contained 
in B(O, �89 and having area re(E)> 10 -2. 
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Let {D 1} be a finite collection of mutually disjoint closed disks, so that 
diamD 1 <el ,  re(E\ Uj D~)<ei and 

m(END~) > (1-cl )m(D~) for each j. 

Thus 
rn(EpI 9 D~) > (0.81-el)m(END~) for each j. 

Let f l  be the 81-quasiconformal mappings on R 2 defined by 

z, zeR2\UD~, 
f l ( z ) =  CD~(Z), zeDJ fo rsomej ;  

and let t~l be the complex dilatation 0 f l /0 fz  defined a.e. on R 2. Note that Ipzl< ~ ,  

Ilfl-zll~, Ilfl~-Zll~ <E~, 

and that 

(4.6) 

for each j. 

0.001m(DJ) < m ( f l ( E N 9 D 1 ) )  < (0 .01+el)m(f l (EnD)))  

Let So=E, SI-T-EnUj D 1 and Ul={z:O<dist(z, Sz)<61} be a narrow open 
band around $1 (61 will be made more precise later), and let 

L'I = t~l XR2\ul" 

Since $1 is closed, re(U1)--+0 and u1--*#1 a.e., as 61---+0. 
Denote by gl the unique 81-quasiconformal mapping on R 2 normalized by 

gl(z) =z+O(1/z) near oc, which solves 

0g l  ---- P1(;gg1, a.e.,  

and satisfies OglELV(R 2) and Ogl-16LP(R2). Note that gl is conformal on 
(a \UD1)uU1 

Assume that 61 has been chosen small enough so that 

I l g l - - f l l l ~ ,  Iigi-~-fi- l iI~ < c1, 

and that 

IlOfl -Oglllp+ 110fl-09111p < 10-1~ m.in m(D~). 
3 
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Applying (4.5) to f l ,  gl and X = E n 9 D J  and EnD 1, we conclude from (4.6) that  

m(gl(En9DJ))<(O.Ol+2sl)m(gl(EnDJ)) for each j. 

We observe for the future reference that  9 1 9 1 and 1 1 ENi~D j =S~ny6D j END~ =S~NDj. 
Let go be the identity map, EI=TI=S1, 70=1, 71 =1 ,  a o = l  and 

OL 1 = inf{  Igl (z) - g l  (w)l: z, w �9 B(0,  1), Iz- l -> }, 

which is positive in view of the HSlder continuity of g~-l. 
Assume that  for each k ( l < k < n - 1 ) ,  numbers 5k, c~k, 7k, 81-quasiconformal 

mappings gk, collection of disks {D]}j, sets Sk, Uk, Tk and Ek have been con- 
structed so that  the properties A through H below are satisfied. It would be conve- 
nient to regard D], Sk, Uk and gk as sets and function on the kth copy of R 2, and 
Tk and Ek as subsets of E on the first copy of R 2. 

A. {D~ } is a finite collection of mutually disjoint closed disks that  nearly covers 

g k - l ( S k - 1 ) :  

(4.7) max diam D k < min{ ck, ak-1,7k--1 }, 
J 

(4.8) m(gk-l(Sk-1)\UDk ) <6k, 
2 

(4.9) m(gk_l(Sk_,)ND k) > ( i -ok ) re (D) )  for each j. 

Denote by 

(4.10) Sk = gk-1 (Sk-1) N U D k, 
J 

(4.11) Tk = (gk-1 ..... go)-l(Sk), 

the pull-back of Sk in E, and 

(4.12) Uk = {z : 0 < dist(z, Sk) < 5k}, 

an open band around Sk. Note that  TkC_Tk_l. 
B. {D k } are contained in a small neighborhood of gk-i (Sk-1) and do not meet 

the boundaries of k-1 9 k-1 gk_l(D i ) and gk_l(-fgD i ) for any i: 

(4.13) U D~ C_ gk-1 (Sk-1 UUk-1) \ U  gk-1 (OD k-lUO 9 Dk-l~ \ i -10 i 1' 
j i 
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when k ~ 2. The first inclusion is needed in proving that the composition gk . . . . .  gl is 
81-quasiconformal off S instead of 81k-quasiconformal; the second inclusion is used 
to show that certain events are nearly independent. 

C. The pull-back of gk-1 (Sk-1) \  Uj  n ]  is also small: 

(4.14) 

Iyt(Tk_l\Tk):m(gk_ 1 ..... go)-l(gk_l(Sk_l)\UDk ) 
3 

" " - (Sk-IAy~Dj )}, . . . . .  go)  1 

k-1  9 k--1 

when k~2;  and 
m(Tk) > 10 -3. 

D.  gk is 81-quasiconformal on R 2, conformal off [.J D]\Uk, and satisfies 

(4.15) Ilgk-zll~ < min{2ek, 27/k_1}, 

(4.16) II(gk . . . . .  go) - l - (gk_ l  . . . . .  go)-al l~  < 2~k. 

E. gk maps a large portion of SknD k with respect to m(gk-1 ... . .  g0) -1, to a 
small portion with respect to m: 

(4.17) 
m ( ( g k - 1  . . . . .  g0) -1 (Sk n I~D~)) > (0.81--~k)m((gk_l . . . . .  go)- i  (Sk nD~)),  

(4.18) m(gk (SkN9D~))  < (0.01 + 2r 

This is the property on which our probabilistic idea is based. 
F .  Ek is a closed subset of Tk satisfying 

(4.19) m(Tk \Ek ) < (0.985) k, 

and 

(4.20) m(gk .. . . .  gl)(Ek) <_ 5 -k+5. 

G. O<Tlk ~__�89 a n d  

m(gk ... . .  gl (Ek ) + B(O, 4~k)) < 5 -k+l~ 
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H. The number 

(4.21) ak=inf{[gk . . . . .  gx(z)--gk . . . . .  g l ( w ) l : z , w ~ B ( 0 , 1 ) ,  [z-wl_>~k} 

is positive. 

We need to choose {D2}, S~, Un, Tn, En, gn, 5~, ~n and an so that  properties 
A through H hold for k=n. 

Using the fact that  quasiconformal mappings map sets of area zero to sets 
of area zero, and applying the Lebesgue differentiation theorems, and the n-fold 
version of (4.2), we may find finitely many mutually disjoint closed disks {D]} in 
R 2 so that  (4.7), (4.8), (4.9), (4.13) and (4.14) hold for k=n, and that  for each j ,  
(4.22) 

m((gn_ 1 ..... g l )  -1  (gn-l(~n-1)n 9 D~)) > (0.81-Sn)m((gn-1 ..... gl)-l(D~)). 

Choose 5n>0 small, and define Sn, T,~ and Un as in (4.10), (4.11) and (4.12) with 
k replaced by n. 

Since m(E)>10  -2, m(E\T1)<_IO -5 and m(rk_l\Tk)<_lO -hk for 2 < k < n ,  we 
have m(Tn) > 10 -3 . 

Let f,~ be the 81-quasiconformal mapping on R: ,  defined by 

z on l ~ \  U D~, 
fn(Z) = ~)D~(Z) on D~ for each j, 

and note that  

(4.23) [[f~(z)-z[[~ a n d  [[fnl(z)-zlIc~<min{En, Cen_l,l]n_l}. 

Let ~n(Z)=Sfn(z)/Ofn(z) a.e. on R 2, and 

Un = #nXR2\U.. 

And let 9~ be the unique quasiconformal mapping on R 2, which solves 09n=vnOgn 
on R 2 a.e., with gn(z)=z+O(1/z) near co, and 09n and Og~-IELV(R2). Note 
that  gn is conformal in (R2 \U j  D2)UU,~. 

Because of Theorem D, 5~ can be chosen small enough so that  

(4.24) Hfn-gn]]~ < min{en, rln-1}, 

(4.25) }} f~- t _ g g l  ]] ~ < a~_l,  

and 

(4.26) [[Ofn--OgnHp- '~[[Ofn--Ogn][p < 10-1~ -1 m!n m(D~). 
3 
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It remains to verify properties D through H. 
Let k=n. The inequality (4.15) follows from (4.23) and (4.24); and (4.16) 

follows from (4.23), (4.25) and the definition of an-1.  
The inequality (4.17) follows from (4.22) and from the fact that SnND~= 

gn-l(Sn-1)GD~ and that SnN 9 Dy=gn_l(Sn-i)G 9 D~. 
Recall that the Jacobian of fn is bounded between ~1 and 9. Thus it follows 

from (4.9) with k=n that 

0.001m(D~) < m(fn(Snn 9 D~) ) < (O.01+r 

for each j .  Applying (4.5) to fn, g~ and X=S~NgD~ and S,~ND~, we deduce 
(4.18) from (4.26). 

Property E plays a central role in the proof of F.  First we employ partitions 
of Th (l<_h_<n) defined as follows. Let l<q<_h, and let 

and 

q 9 q Because of (4.13), Bh=(gq_l . . . . .  g0) -1 (Uj (Dj\~Dj)) nTh. 
The sets A h, Ah, . . . ,  A h generate a finite Boolean algebra of subsets of Th, say 

~-h. When q=0,  the algebra is the trivial one. 
We need to show that for every set X in ~-qh O<q<h-1, 

(4.27) m ( X n d ~ + l )  > -~m(X). 

Note from (4.13) and (4.17) that 

m(XnAq+l~ _ q+l, > 4"~(x) for each X e 7~ +1 

Then for h > q + l  and X E ~  q+l, 

h-1 
m(XnAh+l) > X naq+l"  m T _,~,( . . . .  q + ~ -  ( ~+~\T~)> ~m(X) ~ ,~(T~\T~+I). 

l=q+l 

Note that 

re(X) > min(n~n{m(gq . . . . .  g0) -1 (Sq+l n 9 D y + I )  }, 

~n{m(gq ..... go)-l(Sq+ln(Dq+l\ 9 vq+l)) })  
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It follows from (4.14) that  m(Tl\Tl+l)<lO-Slm(X) for l>_q+l. This gives 

rn(XNAh+l) >_ ~ m ( X )  for XE.~g +1, 

which is a stronger assertion than (4.27). 
To select the sets E,~, let rq=l on A~ and rq=O on By. Let E,~ be the subset 

of T,~ on which 
r l + . . . + r ~ - ,  > ~ (n-1) .  

We need to verify (4.19) and (4.20). 
Let ~ be the relative Lebesgue measure on Tn, i.e., fft(X)=m(XnTn)/m(T,~), 

and $ the integral with respect to ~ (expectation). Let Uq=rl +...+%, l < q < n - 1 .  
In view of (4.27), we obtain 

$(e-~1/2) < _3~-1/2,_ ! 
- -  4 ~ - - 4  = a i ,  

and 

~(e -un-1/2) < al~(e -un-2/2) ~ a~ -1 . 

Hence 

m(Tn\En)-~ ~ { U n - 1  ~ 2 (~ t -1 )}  _< a~-le (n-l)~3. 

Since ale 1/3<0.985, (4.19) follows. 
As for the measure of gn ..... gl (En), let us consider the algebra "~nn-1 of subsets 

of T~. It has 2 n-1 atoms. Because of (4.18), each atom contained in En is mapped to 
a set of measure <47r(0.02) 2(n-W3. Since (0.02)2/3< ~0 and there are 2 n-1 atoms, 
we obtain the estimate (4.20). 

Since gn ..... gl (En) is closed, we may choose ~]n to satisfy property G. Because 
(gn . . . . .  gl) -1 is HSlder continuous in B(0, 3), the number a s  defined by (4.21) with 
k=n is positive. 

This completes the nth  step of the induction. 
We note from (4.15) and (4.16) that  

g---- lim gn . . . . .  gl 
n - - - +  OO 

and 

h--  lim (g, . . . . .  gl)  -1 
n----> C ~  
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are uniform limits of uniformly continuous functions. Thus h=g -1, and g is a 
homeomorphism on R 2. 

Each gn is 81-quasiconformal on R 2 and conformal off Uj D~\Un" In view of 
property B, 

fH 
D~\Un (gn-1 . . . . .  g0)-l~kl/..~ ]I C-EU(gn-2 ..... go)-l(Un_l)\(gn_l ..... go)-l(Un). 

Since (gn-2 . . . . .  go)- l (Un_l) \ (gn_l  . . . . .  go)-l(Un) are mutually disjoint, gn . . . . .  gl is 
81-quasiconformal in R2 \E .  Therefore g is 81-quasiconformal on R2 \E .  

Let T = N T n  and F = l i m s u p  En=Nq~__l U,~__q En. We recall from property C 
that  r e (T)>10  -3, from (4.19) that  m(T\E, )<(0 .985)  ~ whence ~ m ( T \ E n ) < O c .  
Thus m(F)=rn(T)  >0. 

The estimate (4.20), our choice of ~k and the inequality 

IIg--gn . . . . .  g l  IIc~ < 4/In 

derived from (4.15) show that  ~ m(g(En))<co. Hence g maps F to a set of measure 
zero. 

Finally, let #g-1 be the complex dilatation for g-1 and let �9 be the quasi- 
conformal mapping that  has dilatation # r  on E=#g-1 on R 2 \ E .  

Then G=~ogCCH(E) and it maps F to a set of measure zero. 
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