A quantitative version of Picard's theorem

Walter Bergweiler $(^1)$

Abstract. Let f be an entire function of order at least $\frac{1}{2}$, $M(r) = \max_{|z|=r} |f(z)|$, and n(r, a) the number of zeros of f(z) - a in $|z| \le r$. It is shown that $\limsup_{r \to \infty} n(r, a) / \log M(r) \ge 1/2\pi$ for all except possibly one $a \in \mathbb{C}$.

1. Introduction and results

Let f be a transcendental entire function. Picard's theorem [6] says that there exists at most one value $a \in \mathbb{C}$ such that f(z) - a has only finitely many zeros. Borel's theorem [2] gives a quantitative version of this result by saying that

(1)
$$\limsup_{r \to \infty} \frac{\log n(r, a)}{\log r} = \limsup_{r \to \infty} \frac{\log \log M(r)}{\log r}$$

for all $a \in \mathbb{C}$, with at most one exception. Here n(r, a) denotes the number of zeros of f(z)-a in $|z| \leq r$, counted according to multiplicity, and $M(r) = \max_{|z|=r} |f(z)|$ is the maximum modulus of f. The quantity on the right of (1) is called the order of f and denoted by ϱ .

The "true" quantitative version of Picard's theorem is of course given by Nevanlinna's theory on the distribution of values and by Ahlfors's theory of covering surfaces, see [3], [5]. Here we will use the theories of Nevanlinna and Ahlfors to prove a quantitative version of Picard's theorem whose statement uses only "pre-Nevanlinna" terminology.

Theorem 1. Let f be an entire function of order at least $\frac{1}{2}$. Then

(2)
$$\limsup_{r \to \infty} \frac{n(r,a)}{\log M(r)} \ge \frac{1}{2\pi}$$

^{(&}lt;sup>1</sup>) Supported by a Heisenberg Fellowship of the Deutsche Forschungsgemeinschaft.

for all $a \in \mathbb{C}$, with at most one exception.

The proof will show that there exists an unbounded sequence (r_j) depending only on f such that $n(r_j, a) \ge (1/2\pi - o(1)) \log M(r_j)$ for all except possibly one value of a and $\log \log M(r_j) / \log r_j \rightarrow \rho$ as $j \rightarrow \infty$. Thus Theorem 1 can be considered as a strong form of Borel's theorem for the case that $\rho \ge \frac{1}{2}$.

We note that the character of the problem is different if $\rho < \frac{1}{2}$. A classical result of Pólya [7] and Valiron [9], [10] says that if $0 < \rho < 1$, then

(3)
$$\limsup_{r \to \infty} \frac{n(r,a)}{\log M(r)} \ge \frac{\sin \pi \varrho}{\pi}$$

for all $a \in \mathbf{C}$. Simple examples show that if $0 \le \varrho \le \frac{1}{2}$, then we may have equality for all $a \in \mathbf{C}$ here. Thus for $0 \le \varrho \le \frac{1}{2}$ the constant $1/2\pi$ in (2) has to be replaced by $\sin \pi \varrho / \pi$, and this bound is sharp. (For $\frac{1}{6} < \varrho \le \frac{1}{2}$ this bound is better than $1/2\pi$).

Theorem 1, however, which deals with the case $\rho \geq \frac{1}{2}$, is probably not sharp. Note that for $\frac{1}{2} \leq \rho < \frac{5}{6}$ the estimate (3) is better than (2). It seems likely that the constant $1/2\pi$ on the right side of (2) can be replaced by $1/\pi$. This would be best possible. In fact, we have

(4)
$$\limsup_{r \to \infty} \frac{n(r,a)}{\log M(r)} = \frac{1}{\pi}$$

if $f(z) = \exp z$ and $a \neq 0$. If $\frac{1}{2} \leq \varrho < \infty$, $\varrho \neq 1$, and $f(z) = E_{1/\varrho}(z)$, then (4) holds for all $a \in \mathbb{C}$. Here E_{α} denotes Mittag-Leffler's function. Note that $E_{1/\varrho}$ has order ϱ . Another example (of order 2) is $f(z) = \int_0^z \exp(-t^2) dt$, where (4) holds for $a = \pm \sqrt{\pi}/2$. A function of infinite order satisfying (4) for all $a \in \mathbb{C}$ is the function E_0 considered by Hayman [3, p. 81] and Pólya and Szegő [8, Vol. I, p. 115]. Other examples of infinite order can be obtained from the functions constructed in [1, Theorem 3].

Theorem 1 is an immediate consequence of the following result.

Theorem 2. Let f be an entire function of order at least $\frac{1}{2}$. Then

(5)
$$\limsup_{r \to \infty} \frac{n(r,a) + n(r,b)}{\log M(r)} \ge \frac{1}{\pi}$$

if $a, b \in \mathbb{C}$, $a \neq b$.

In a certain sense Theorem 2 is sharp, because we have equality in (5) if $f(z) = \exp z$ and a=0. But it seems likely that the constant $1/\pi$ on the right side of (5) can be replaced by $2/\pi$ if the order of f is sufficiently large and, in particular, if f has infinite order.

226

2. A growth lemma for real functions

Lemma. Let $\Phi(x)$ be increasing and twice differentiable for $x \ge x_0$ and assume that $\Phi(x) \ge cx$ for some positive constant c and arbitrarily large x. Then there exist sequences (x_j) , (M_j) , and (ε_j) such that $x_j \to \infty$, $M_j \to \infty$, and $\varepsilon_j \to 0$ as $j \to \infty$, $\Phi'(x_j) \ge c/8$, $\Phi''(x_j) \le 2\Phi'(x_j)^2/\Phi(x_j)$, and $\Phi(x_j+h) \le \Phi(x_j) + \Phi'(x_j)h + \varepsilon_j$ for $|h| \le M_j/\Phi'(x_j)$.

Without the claim about $\Phi''(x_j)$, this was proved in [1, Lemma 1]. The proof given there, however, also yields the above version. To see this, let F and v be as in [1, p. 168], and put $D(x)=F(x)-\Phi(x)$. Then D has a local minimum at v. Hence $D''(v)\geq 0$. Since D(v)=D'(v)=0, we deduce that

$$\Phi''(v) \le F''(v) = \frac{2F'(v)^2}{F(v)} = \frac{2\Phi'(v)^2}{\Phi(v)}$$

and the claim made about $\Phi''(x_i)$ follows.

3. Proof of Theorem 2

Let $\Phi(x) = \log T(e^x)$, where T(r) denotes the Ahlfors-Shimizu characteristic of f. Let A(r) = rT'(r), that is,

$$A(r) = \int_{|z| < r} \frac{|f'(z)|^2}{(1 + |f(z)|^2)^2} \, dx \, dy.$$

Then

(6)
$$\Phi'(x) = \frac{A(r)}{T(r)}$$

and

(7)
$$\Phi''(x) = \frac{rA'(r)}{T(r)} - \left(\frac{A(r)}{T(r)}\right)^2$$

where $r = e^x$.

Suppose first that f has infinite order. We choose x_j according to the lemma and define $r_j = \exp x_j$. As shown in [1, p. 171], we have

(8)
$$\log M(r_j) \le (1+o(1))\pi A(r_j).$$

From (6), (7), and the lemma we deduce that

$$\begin{aligned} r_j A'(r_j) &= \Phi''(x_j) T(r_j) + \frac{A(r_j)^2}{T(r_j)} \le \frac{2\Phi'(x_j)^2}{\Phi(x_j)} T(r_j) + \frac{A(r_j)^2}{T(r_j)} \\ &= \left(\frac{2}{\log T(r_j)} + 1\right) \frac{A(r_j)^2}{T(r_j)}. \end{aligned}$$

Thus

(9)
$$r_j A'(r_j) \le (1+o(1)) \frac{A(r_j)^2}{T(r_j)}$$

as $j \rightarrow \infty$.

Suppose now that f has finite order $\varrho \geq \frac{1}{2}$. We shall show that (8) and (9) hold again for a suitable sequence (r_j) . Let $\varrho^*(r)$ be a strong proximate order for T(r), cf. [4, §I.12], and define $\gamma(r) = r^{\varrho^*(r)}$. Let r_j be an unbounded sequence satisfying $T(r_j) = \gamma(r_j)$. Then (r_j) is also a sequence of Pólya peaks (of order ϱ) for T(r)and the arguments of [1, p. 164] show that (8) holds again. Define $x_j = \log r_j$ and $\Psi(x) = \log \gamma(e^x)$. Then $\Phi(x) \leq \Psi(x)$ with equality for $x = x_j$ and thus $\Phi'(x_j) = \Psi'(x_j)$ and $\Phi''(x_j) \leq \Psi''(x_j)$. It follows from the properties of strong proximate orders that $\Psi'(x) \rightarrow \varrho$ and $\Psi''(x) \rightarrow 0$ as $x \rightarrow \infty$. Thus $\Phi'(x_j) \rightarrow \varrho$ and $\Phi''(x_j) \leq o(1)$ as $j \rightarrow \infty$. Combining this with (6) and (7) we see that (9) also holds again.

Define (cf. [3, p. 144], [8, p. 348])

$$L(r) = \int_{|z|=r} \frac{|f'(z)|}{1+|f(z)|^2} \, |dz|.$$

Then

 $L(r)^2 \le 2\pi^2 r A'(r)$

by Schwarz's inequality (cf. [3, p. 144], [8, p. 349]). Together with (9) it follows that

$$L(r_j) \le (1 + o(1))\sqrt{2} \pi \frac{A(r_j)}{\sqrt{T(r_j)}} = o(A(r_j)).$$

Hence

(10)
$$n(r_j, a) + n(r_j, b) \ge (1 - o(1))A(r_j)$$

by the main result of Ahlfors's theory of covering surfaces (cf. [3, p. 148], [8, p. 349, inequality (II')]). Combining (8) and (10) we obtain (5).

228

References

- BERGWEILER, W., Maximum modulus, characteristic, and area on the sphere, Analysis 10 (1990), 163-176. Erratum: Analysis 12 (1992), 67-69.
- 2. BOREL, É., Sur les zéros des fonctions entières, Acta Math. 20 (1897), 357-396.
- 3. HAYMAN, W. K., Meromorphic Functions, Oxford Univ. Press, Oxford, 1964.
- 4. LEVIN, B. J., Nullstellenverteilung ganzer Funktionen, Akademie-Verlag, Berlin, 1972.
- 5. NEVANLINNA, R., Analytic Functions, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- PICARD, É., Sur une propriété des fonctions entières, C. R. Acad. Sci. Paris 88 (1879), 1024–1027.
- PÓLYA, G., Bemerkungen über unendliche Folgen und ganze Funktionen, Math. Ann. 88 (1923), 169–183.
- PÓLYA, G. and SZEGŐ, G., Aufgaben und Lehrsätze aus der Analysis, Fourth edition, Springer-Verlag, Berlin-Heidelberg-New York, 1970/71.
- VALIRON, G., Sur les fonctions entières d'ordre fini et d'ordre nul, et en particulier les fonctions à correspondence régulière, Ann. Fac. Sci. Univ. Toulouse (3) 5 (1913), 117-257.
- VALIRON, G., A propos d'un mémoire de M. Pólya, Bull. Sci. Math. (2) 48 (1924), 9–12.

Received October 20, 1995

Walter Bergweiler Fachbereich Mathematik Technische Universität Berlin Straße des 17. Juni 136 D-10623 Berlin Germany email: bergweil@math.tu-berlin.de