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An asymptotic Cauchy problem 
for the Laplace equation 

Evsey Dyn 'k in(1)  

Abstract .  The Cauchy problem for the Laplace operator 

Au(x, y) = O, 
Ou ~(x,o)=/(x), ~(x,0)=g(~) 

is modified by replacing the Laplace equation by an asymptotic estimate of the form 

Au(x,y)=O[h(lYl)], y--*O, 

with a given majorant h, satisfying h(+O)=O. This asymptotic Cauchy problem only requires 
that the Laplacian decay to zero at the initial submanifold. It turns out that this problem has 
a solution for smooth enough Cauchy data f, g, and this smoothness is strictly controlled by h. 
This gives a new approach to the study of smooth function spaces and harmonic functions with 
growth restrictions. As an application, a Levinson-type normality theorem for harmonic functions 
is proved. 

O. I n t r o d u c t i o n  

I t  is well-known tha t  the Cauchy problem for the Laplace equa t ion  in R d + l =  

R d •  d > 2 ,  which is given by 

(0.1) Au(x, y) = 0, 

(0.2) ~,(x,O)= f(x),  ~ ( x ,O)= g(x ) ,  

is ill-posed. In  par t icular ,  it only has a solut ion u for real -analyt ic  Cauchy da t a  f 

and  g. 

(1) This research was supported by the fund for the promotion of research at the Technion 
and by the Technion V.P.R. fund--Tragovnik research fund. 
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Suppose that  the Laplace equation is replaced by an asymptotic estimate of 
the form 

(0.3) Au(x, y) = O[h(lyl)], 0 

where the majorant h is an increasing function with h(+0)=0.  Instead of requiring 
that  Au vanish, the condition (0.3) demands its decay at a prescribed rate near 
the initial submanifold R d. It turns out that  the asymptotic Cauchy problem given 
by (0.3), (0.2) has a nice solution u for smooth enough Cauchy data f ,  g. The 
degree of this smoothness is strictly determined by the given majorant h. The main 
subject of this article is this connection between the decay of the Laplacian and the 
smoothness of the data, which is a multidimensional analogue for the theory of the 
pseudoanalytic extension (see, e.g., [7]). This connection gives a new approach to 
the study of both harmonic functions and smooth function spaces. 

The article is devoted specifically to the case of Carleman classes of infinitely 
differentiable functions (for the Cauchy data) and rapidly vanishing Laplacians. 

Throughout the paper an admissible solution refers to a function u which is 
continuously differentiable in the whole of R d+l, uniformly bounded together with 
its gradient Vu, and twice continuously differentiable outside R d. 

In Section 1, some necessary preliminary information on the Newton kernel, 
regular majorants and the Carleman classes is given. 

In Section 2, we prove the existence of an admissible solution of the asymptotic 
Cauchy problem (0.3), (0.2) for a regular majorant h when the Cauchy data f and 
g belong to the corresponding Carleman class. 

Of course, the solution of the asymptotic Cauchy problem is not unique. 
In Section 3, the converse theorem is proved, i.e., if the asymptotic Cauchy 

problem has an admissible solution, then the Cauchy data belong to the corre- 
sponding Carleman class. 

In particular, in the C~162 the general constructions of Sections 2 and 3 give 
the complete result: the Cauchy data f and g belong to C~176 d) if and only if there 
exists an admissible function u satisfying (0.2) such that for any N 

z u(x, y) = O(lylN), y 0. 

Sections 4 and 5 are devoted to applications to harmonic functions of rapid 

growth. 

Suppose now that our Carleman class is non-quasianalytic (see, e.g., [9]), which 

in terms of the majorant h means that 

f0 e 1 (0.4) log log ~ dr < +oc. 
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In Section 4 a special reproducing kernel K(~, z) is constructed by means of the 
construction of Section 2. This kernel is a t runcated version of the standard Newton 
kernel. It is compactly supported in 4, harmonic in z, and its Laplacian in ( differs 
from the 5-function by an O(h) term only. 

There is a natural duality between compactly supported solutions u of (0.3) 
and harmonic functions F in R d+l \ R  d satisfying the growth condition 

oE11 (0.5) F ( x , y )  = , y- 0. 

The corresponding coupling is 

(F, u) = f ~ + ~ \ ~  F(z)Au(z) dx dy. 

In Section 5, we apply this duality and the kernel K of Section 4 to the study 
of properties of F.  The possibility of a harmonic extension of F across R d (cf. [2]) is 
the first question under consideration. We prove the following generalization of the 
well-known Weyl lemma [9]: A harmonic function F defined on R d+l \ R  d, which 
satisfies (0.5), has a harmonic extension across R d if and only if 

f F(z) v(z) dy=O, dx 

for any vEnD such that Av(x, y)=O(h([yl) ). This criterion is local, i.e., it acts on 
functions harmonic in any domain G in R d+l intersecting R d. Of course, the test 
function v must be supported in G in this case. 

In the rest of Section 5, a harmonic version of the classical Levinson normality 
theorem is discussed. Let B be an open ball in R d+l, centered at a point of R d. 
Consider the family $- of all harmonic functions F on B, satisfying the estimate 

1 
IF(x,y)[ <_ h(lyl)" 

We consider under which conditions on h the family is normal in the usual sense [1], 
i.e., all the functions in 9 r are uniformly bounded on any compact subset of B. The 
answer is well known for analytic functions in the plane: the family is normal if 
and only if the non-quasianalyticity condition (0.4) holds (with slight regularity as- 
sumptions on h). This is the famous Levinson normality theorem [10]. For harmonic 
functions in the plane the answer is the same, which follows easily from the analytic 
result. However, for harmonic functions of more than two variables the question 
is open. Several proofs of the Levinson theorem have been given (see, e.g., [2]-[6], 
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[8], [10], [1i]). Most of them are of a complex analytic nature, except Domar's 
proof [3], [4] (see also [2]). Domar considers a family of subharmonic functions v in 
B, satisfying the estimate 

v(x, y) < re(M),  

where m is a given majorant,  and proves that  it is normal if and only if 

~0 1 log re(r) dr < +c~. 

In the classical setting of analytic functions in the plane ( d = l )  one can construct 
the subharmonic logarithm v--log IF[ of an analytic function F and apply Domar's 
criterion to the family of such v. In this case re=log l /h ,  giving the Levinson 
theorem. But, in the spatial case there is no analogue of the subharmonic logarithm 
of a harmonic function (or harmonic vector field), and so Domar's proof does not 
work in the multidimensional harmonic setting. 

Our result in the end of Section 5 is as follows: For a regular majorant h, the 
family jr  is normal if and only if the non-quasianalyticity condition (0.4) holds. 
Thus, the answer in the multidimensional harmonic case coincides with the classi- 
cal one. The proof is based on the consideration of the reproducing kernel K of 
Section 4. 

Acknowledgment. I am deeply grateful to V. P. Havin and V. Ya. Lin for nu- 
merous helpful discussions of the subject. 

1. Preliminaries 

1.0. Notation. Points of R d + I = R  d •  will be denoted z=(x ,  y) or (--(~,~/), 
where x, ~ c a  d and y, ~ER,  with dx dy or d~ d~ being the corresponding volume 
element. Let R d+l and R d+l be the upper and lower open halfspaces of R d+l 

given by {z :y>0} and {z :y<0} respectively. 
We consider R d as a subspace in R d+l and so identify x= (Xl, x2 ,... , Xd)ER d 

with (x, 0) E R  d+l. 

We need multi-indices OL=(OL1, OZ2 , . . .  , O~d) o r  OL--(O~I, a 2  , . . .  , Oldq-1) in R d and 
R d+l with the usual notation 

IOtl = 0 ~ 1 - ~ . . . - ~ O ~ d + 1 ,  OL! = Ol1!Or 2] . . .  O~d+l !  , 

0J~l 
V a - -  

Ol 1 Ol 2 �9 �9 �9 Ox 1 0 x  2 Ox~dOy~d+l " 
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Let D~u, for d-index a, denote the corresponding derivative of a function u(x, y) 
in x only, with Axu the Laplacian of the function u on R d+l in the x variables. 

C and c, with or without index, are various constants--not  necessarily the 
same throughout a formula. 

B = B ( z ,  r) is the open ball in R d+l of the center z and radius r. AB, A>0, is 
the ball of the same center but with radius Ar. 

7P is the Schwartz space of all compactly supported infinitely differentiable 
functions. 

Let suppr u be the support of the function u(~, z) as a function of ~ for z fixed, 
this set depends on z. 

A ~ B  means that  the ratio A / B  lies between two positive constants. 
X is a standard cut-off function, that  is, ) I E C ~ ( R ) ,  x ( t ) = l  for I t l< l  and 

x(t)=o for Itl>2. 

1.1. N e w t o n  ke rne l  

The Newton kernel 

k ( z ) =  Wd F ( ( d - 1 ) / 2 )  
izld_ 1 , Wd-- 47rd+1/2 

is the fundamental solution for the Laplace operator in R d+l, i.e. Ak=5.  For any 
compactly supported C2-function u in a d+l 

(1.1) u(z) = f k ( z - ~ ) A u ( ~ )  d~ d~. 

Here we need a slightly more general version of this formula, where u E C  2 outside 
the subspace R d only. 

I f  u is a compactly supported Cl-function in a d+l, u E C  2 outside Lemma i. 
R d, and 

Au(x, y) = O(ly1-1§ > 0, 0, 

then (1.1) holds. 

Proof. Under our assumptions both sides of (1.1) are CLfunctions on R d+l 
(since we can differentiate under the integral sign). Their difference is a CLfunct ion 
which is harmonic outside of RdNsuppu.  Such a singularity is removable (see [1]), 
so the difference is harmonic in the whole of R d+l , and obviously vanishes at infinity. 
Therefore, it is identically zero. [] 

Now we need some estimates of the derivatives of k. 
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L e m m a  2 .  

index 

(1.2) 

Pro@ 

There exists a constant cl depending on d, such that for any multi- 

ID%(z) l  < e ? l ~  ' 1 
- �9 [ z l d _ l + l ~ l  �9 

After an appropr ia te  ro ta t ion and scaling, we may suppose tha t  z =  
(I, 0,... , O)ER d+l. The analytic function in C d+l given by 

f ( ~ l , . . .  , ~d+l) = [(lJr-~l)2-~-~2~-...-F~2+l]-(d-1)/2, f (0)  = 1, 

is obviously bounded  in the ball of radius 1 centered at the  origin. So, by the usual 

Cauehy inequalities, ID~f(0)l_<eonst.41~lc~!. But, f(~)=k(z+r for real ~. [] 

For z =  (x, y ) E R  d+l, consider the Taylor expansion 

n - l /  0 \p ~=(z,o) p! FRn(r z), 
p = 0  \ / 

where C E R  d+x, and Rn(~, z) is the remainder  term. The  following est imates are 
immedia te  corollaries of the  last lemma: 

lY] ~ I~_z[ < 2lyl, IRn((, z)l _< k((-z)+c~ i(_xld_a+~, (1.~) 

and 

(1.5) [R~(~, z)l _< c~ 

Here, c2 depends on d only. 

lYl n 
Ir  I~-zl > 21yl, 

1.2. R e g u l a r  s e q u e n c e s  a n d  m a j o r a n t s  

A positive sequence 

(1.6) Mn = nlmn, n = 0, 1, ... , 

is called regular if 

(1.7) ?Tt 2 < Tnn_lmn~_l,  

1/n -~-0~, (1.8) m n <  mn+l and m n --* 
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(1.9) s u p ( m n + l / ~ T t n )  1/n < -t-oo. 

Thus the ratios r~=m~_ l /m~ ,  n = l ,  2, ..., decrease, and r ~ 0 .  
For a given regular sequence define its associated majorant 

h(r) = inf m~r n, O < r < l, 

and its central index 

N(r) = min{n : h(r) =- m~r~}, 0 < r < 1. 

Because of the convexity condition (1.7), the sequence {m~r ~} is convex for any r, 
it decreases and then increases. Clearly, 

h ( r ) = m p r  p, rp+l < r < r p .  

The initial sequence may be recovered from h by the formula 

h(r) 
(1.10) m ~ =  sup 

O<r< l  r n 

A strictly positive increasing function h on [0, 1], with h(+0)=0,  and with 
logarithm p=log  1/h, is called a regular majorant if 

~(e - t)  is a convex function of t >_ 0, (1.11) 

and 

(1.12) h(r) /r  <_ h(Qor), 0 < r < 1, for some constant Q0. 

It is easy to check that  the associated majorant for a regular sequence is regular in 
this sense. 

Let now h be an arbitrary regular majorant. Define a positive sequence {M~} 
by (1.10) and (1.6), and let h be its associated majorant. 

L e m m a  3. The sequence {Mn} is regular and 

(1.13) h(r) <_h(r) <_h(r)/r, O<r < 1. 

i 

Proof. Step 1. The convexity condition (1.7) is evident, because 

2 h(r) 2 h(r) ~ h(r) h(r) 
m n = sup ~ = sup r n _ l r n + l  <_ sup  ~ .sup r n + l .  
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Because 0 < r < l  in (1.10), mn increases. Because of the strict positivity of h for 
any ro > 0, 

- ~  = sup h(r) > --'htro__2j ' 
r n - -  r~ 

whence (1.8) holds. As for (1.9), we have 

h(r) 
mn+l = sup ~ _< sup h(Qor) < Qonm~. 

r n 

Thus the sequence {Mn} is regular. 
Step 2. The left hand inequality in (1.13) holds since 

h(r) = i n f m , r  '~ = i n f  sup h(s)(r/s) "~ k h(r). 
n 0 < s < l  

Next, for the logarithm ~=log  1/h we have 

~(e -~) = sup inf [n(s - t )  +~(e- t ) ] .  
n t > U  

But ~(e -t) is convex, 
Therefore 

However, 

so there exists A>0  such that  ~(e-t)>~(e-~)+A(t-s). 

~(e -~) > ~(e -~) +sup inf[(n-A)(s-t)]. 
n t > O  

sup inf [ (n -  A) ( s -  t)] -- - {A}s > - s ,  
n t > O  

where {A} is the fractional part of A. Thus, ~(e-S)>qo(e-~)-s. [] 

1.3. C a r l e m a n  c l a s s e s  

Let {Mn} be a regular sequence. The Carleman class C{Mn} on R d is the set 
of all C~-functions f on R d, such that  for some C and A 

(1.14) IV~f(x)l <CAI~IMI~I, x e R  d, 

for any multi-index c~. The C{M,~} class is isotropic, because this definition involves 
the total order Ic~l of the multi-index only. 

As usual (see [9D, the Carleman class is called quasianalytic if it does not 
contain a nonzero function of compact support. The quasianalyticity in our case, 
of isotropic regular classes, does not depend on the dimension d, but on {Mn} only. 
The quasianalyticity condition is given by the classical Denjoy-Carleman theorem. 
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In terms of the associated majorant h, it is as follows (see [2], [5], [6]): the Carleman 
class is quasianalytic if and only if 

f0 
1 1 

log log h - ~  dr = +c~. 

Now, if h is an arbitrary regular majorant,  then it defines the corresponding regular 
sequence {Mn} given by (1.10) and (1.6), and therefore it defines the corresponding 
Carleman class C{M,~}. According to Section 1.2, this correspondence between 
regular majorants and Carleman classes is almost one-to-one. 

2. Asymptotic Cauchy problem: Existence of  solutions 

Let h be a regular majorant ,  and let C(Mn} be the corresponding Carleman 
class as in Section 1.3. Here we consider the following asymptotic Cauchy problem 
in R d+l = R  d • R: 

(2.1) Au(x,y)=O[h(Qly])], y - , 0 ,  

Ou (2.2) u(x,O)=f(x), 

where x E R  d, yER,  and Q is a positive constant. The Cauchy data  f and g are 
given bounded, continuous functions on R d. An admissible solution u must be a 
CLfunct ion on R d+l, which is C 2 outside the R d subspace, and such that  both u 

and its gradient Vu are uniformly bounded. 

Theorem 1. If  f ,  gEC{Mn},  then there exists a solution u of the problem 
given by (2.1) and (2.2), for some Q. This solution is infinitely differentiable on 
R d+l, and all its derivatives are bounded. 

Remarks. 1. If f ,  g are compactly supported, then so is u. 
2. The allowable constant Q depends on the corresponding constant A in the 

C{M=}-condition (1.14) for f and g. 
3. The solution u is in no way unique. In particular, an admissible solution of 

the problem need not be infinitely differentiable in R d+l. 

Proof. Without  loss of generality, we may suppose that  for any a 

ID fl+lD gl MI ,, 

and that  the given h is exactly the associated majorant for the sequence {Mn}. 
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Step 1. We begin with the following partial solutions: 

(2.a) 
L 2- L y2p+l 

un(x, y) = ~-'(-Ax)P f ( x ) ~  +~-~.(-Ax)Pg(x) 
z...., ~zp)~ p=0 (2p+1)! ' p=0 

where L =  In /2 ] -  1. Next, a straightforward calculation gives 

y2L  y2L+l 
Au~(x,y) = --(--Ax)n+l f(x))xT-~--(--Ax)L+l g(x) 

( 2 L + l ) ! '  ~z~), 

and so 

.-,n m ~ i n - 3  (2.4) I A u n ( x , Y ) l  ~ , ~ 1  nlYl  , 

where the constant Q1 depends only on d. 

lyl<l, 

In order to obtain a solution, we sew these partial solutions together with the 
help of an appropriate partit ion of unity. Let Xk E C ~ (0, +oc),  such that  

OO 

I = E X k ,  s u p p x k C [ 2 - k - l , 2 - k + l ] ,  
- - O O  

and 
I~(kP) l <_ c~2 kp, p = 0, 1 , . . . ,  

where cp depends on p only. 
Fix a constant Q2>0, and define the sequence of integers 

nk = N(2-kQ2),  

where N(r) is the corresponding central index. This definition applies for 2-kQ2 < 1, 
i.e., for k>ko= log  2 Q2. Now, set 

(2.5) ~(x,y)= ~ ~k(lYl)~nk (x, Y), ~eR ~, yeR. 
k=ko 

After a suitable choice of Qs, this is our desired solution. 

Step 2. First of all, uEC~ d) because of the local finiteness of the 
sum (2.5). Clearly, supp u is bounded in the y direction, and is compact for com- 
pactly supported f and g. 
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Now, let us estimate the Laplacian of u. If 2 -k < [Yl < 2-k+1, k > k0, then there 
are only two nonzero terms in (2.5), and so 

(2.6) ~(x, y) = u~k_l (x, y )+x~  (lyl)[~nk (x, y ) - u ~  1 (x, y)]. 

Thus, 
(2.7) 

/~  l t  : / \  U?-t k _ l ~-  /~  )~ [~ " ( ' l ink  - -  ~tn k 1 ) "~- 2 V )~ k " V ( l i n k  - -  U n  k --1 ) ~-  ~ k " A ( U n  k - -  U n  k _ l )" 

For the first term here, we have by (2.4) that  

_ f l n k - l m  I . , Inkll-3 IAUnk-1 I < "~1 nk - -1  I 'Yl 

1 - k + l  nk- -1  k - - 1  --1 <_-~rnn~_~(2 Q2) (2 Q1Q2 lyl) ~k-1 

for Q2>Q1. The same estimate holds for the last term in (2.7). Estimates of the 
second and the third term are quite similar. For example, in the second term we 
have 

cons__~t 
IZx~kl _<const-4 k_< lyl2 �9 

Furthermore, by the definition of nk, 

(2.8) 

nk A j ~ lyl2y + A j lyl2j+l 
- ( 2 j + 1 ) !  

j = L k - l + l  

n k  

<- ~ mz(Qllyl) Z 
l = n k - 1  

n k  

<- ~ ml(2-kq2)t(2kQ1Q211yl)Z 
n k  1 

n k  

<_rank 1(2-kQ2) nk-1 ~ (2QIQ~l)  z 
nk- -1  

_< 2rnnk_l (2-k+lQ2)nk-1 = 2h(2-k+lQ2) < 2h(2Q21yl), 

for Q2 >4Q1. Collecting all these estimates, we obtain the desired inequality 

C 3 IzXu(x, y)l <- ,_~h(2Q21yt) <_ ~h(2QoQ~lyl). 
L y l  ~ 
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Step 3. To finish the proof, we have to check the global C~162 of u. 
It is enough to prove the continuity up to R d of any derivative D~u. However, 
if one replaces the Cauchy data  f and g, by, say, Of/Oxl and Og/Oxl, then the 
construction above gives Ou/Oxl. Therefore, we may assume that  D ~ involves 
differentiation in the y direction only. So, we have to check the continuity of Otu/Oy l, 
for l=O, 1, .... 

By (2.6), for 2-k<_ly[<2 -k+l, 
0z 01 0~ 

(2.9) Oyg u = Oy---TUnk_~ + ~ [Xk" (Unk --U,~k_~ )1. 

A straightforward calculation of the first term gives, for, say, l even and l<nk-1, 
0 l 

-5-jCu~k_~ (x, y) = (-A~)~/~ y(x) + n, 

where 

But 

Lk-1 Lk-1 . ly[2j_L+ 1 
IRl_< ~ 2j lyl 2j-l Q1 M 2 j - - +  E Q23M2j 

j=U2+I ( 2 / - I ) !  ( 2 / - 1 + 1 ) !  j=U2 

l! ~k-~ 
<- Q~MIlY]+F~ E mp(2QllYl) p" 

p=/+2 

mp(2Ql[y[)P = mp(2-k+IQ2)P(2Q1Q2 1)p, 

and by the definition of nk_i, the sequence {mp(2-k+lQ2)P } decreases. Therefore, 
if Q2>4Q1, then, for y-~0, 

I v 
IR[ _< const, lY[ + ~ "  2m~+2 (2-k+iQ2)l+2 = O(lyl). 

So, OZ/OyZunk_l tends to the limit (-A~)U2f(x). As for the second term in (2.9), 
very similar estimates show that  it also tends to zero as y--*0. Thus, we have proved 
the continuity of OZu/Oy l up to R d. 

The theorem is proved. [] 

3. Asymptot ic  Cauchy problem: Converse theorem 

3.1. Converse theorem 

We have proved above, that the asymptotic Cauchy problem (2.1), (2.2) has 
an admissible solution if its Cauchy data  belongs to C{M~}. It turns out that  
the converse is also true. Recall that  a solution u is admissible if uECI(Rd+I)N 
C2(Rd+I\Rd), and both u and Vu are uniformly bounded. 
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T h e o r e m  2. If the asymptotic Cauchy problem (2.1), (2.2) has an admissible 
solution u, then its Cauchy data f, gEC{Mn}. 

Remark. Of course, the constant A in (1.14) depends on the corresponding Q 
in (2.1). 

Proof. Fix any point Xo E R d. We estimate the derivatives of f and g at xo. 
Let X be a cut-off function: 

xEC~(O,+cc), x ( t )=l forO<t<l ,  x(t)=Ofort>2. 

Now, for any zER d+l, set 

(z) = u(z)x(Iz- xol). 

Then, the smoothness of ul is the same as that  of u, ul coincides with u in the 
ball B1 =B(xo, 1), and is supported in the ball B2=B(xo, 2). Its Laplacian Au~ is 
uniformly bounded. According to Lemma 1, in B1 we have the representation 

(3.1) 
U(Z) ---- ~ I  tu(~)k(z-~) d~ d?~-~- / AUl (~)k(z-~) d~ d?~ 

J B2\B1 
=v(z)+w(z), 

where k is the standard Newton kernel. The function w is harmonic in B1, and 
bounded by a constant independent of x0. So, for any a,  

ID~w(xo, 0) 1 <_ const, c~ ~] a!, 

where the constant cl depends on d only. As for v, according to (3.1), we can 
differentiate v(x, 0) in x under the integral sign without any restriction because of 
the estimate (2.1). So, v(x, 0) is C cr and Lemma 2 gives, for any multi-index c~ 
in R d, 

ID v(xo)l < C h(Ql l) 1r , 
1 

<cl l!c  h(Qr) 
- o<~<1 ~ -< C(clQ)l~Ilal!ml~l -< C(clQ)I~IMI~I" 

Therefore, f(x)=v(x, 0)+w(x,  0)EC{Mn}. The corresponding estimate for g is the 
same, because we can differentiate (3.1) with respect to y once. [] 
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3 .2 .  R e m a r k s  o n  t h e  COO-case 

Theorems 1 and 2 treat the case of Carleman classes. Now, let f and g be 
compactly supported functions in C~ d) only, i.e., f,  gET)(Rd). Set 

M,~ = max max(ID~f(x)l+lD~g(x)]), 
Io~l_<n x 

and 

? n n  ~ -  Mn/n!, n = 0, 1, . . . .  

Then, define {Y~n} to be the least logarithmically convex majorant of the sequence 
{m~}. It satisfies conditions (1.7) and (1.8), which is enough to apply the main 
construction of Section 2. The construction gives a C~-funct ion u with compact 
support that satisfies the Cauchy initial conditions (2.2), and for any N 

Au(x,y)=O(ly[N),  y-+O. 

Using Theorem 2, and the same argument, it i8 possible to prove the converse 
statement. Thus, we obtain the following C~-result .  

T h e o r e m  3. The asymptotic Cauchy problem in Rd+l:  

(3.2) AU(X,y)=O(lylN), y-+O, for any N>O,  

Ou 
(3.3) u(x ,O)=f(x) ,  ~y(X,O)=g(x), 

has an admissible solution u of compact support if and only if f ,  gETp(Rd). 

4. A r e p r o d u c i n g  kerne l  

Let h be a regular majorant satisfying the condition that 

fo 1 (4.1) log log h - ~  dr < + ~ .  

The corresponding Carleman class C{Mn} is non-quasianalytic (see [2], [5], [6]). 

T h e o r e m  4. For any ball B in R d+l, centered at a point of R d, there exists 
a function KB(~, z) of two variables ( E R  d+l and zEB,  which is infinitely differ- 
entiable unless ~=z, and such that 

(4.2) suppr KB C 16B, 

(4.3) K B ( ~ , z ) = k ( ~ - z ) ,  ( E 2 B ,  

(4.4) AzKg( ( , z )=O,  ( ~ 2 B ,  



and 

(4.5) 
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IA~KB(~,z)I ~Ch(l~l), (~2B. 

Remark. Thus, KB is a truncated version of the Newton kernel. It is compactly 
supported, harmonic in z, and almost harmonic in 4. 

Proof. It is enough to prove the theorem for the unit ball B(0, 1) only. Indeed, 
if K is such a kernel for B(0, 1), then 

satisfies (4.2)-(4.4) for B=B(xo, r), and 

IAcKs(4, z)l<_rd+l --~-, 4#2B. 

Thus, let B be the unit ball. Because of the non-quasianalyticity of C{M,}, there 
is a function ~ on R d, such that: ~=1  on 4BNR d, ~ = 0  outside 8BnR d, and 

ID~I < Clq~l Ml~l, 

where ql, 0<ql <1, will be chosen later. Fix zEB, and define 

(4.6) f(~)=~(~)k(~-z), g(~)=~(~)0-~-~kk(~-z), ~ e R  d. 

We are going to consider f and g as initial data for an asymptotic Cauchy problem. 
They are C ~,  unless ~---z, and by (1.2) we get 

(4.7) ID~I(~)I+ID~ g(~)I < C2ql2~l Ml~l, ~ q~ 2BNR d, 

where q2 depends on ql, and is arbitrarily small for small enough ql. Although the 
estimate (4.7) holds for ~ 2 B  only, we can apply the main construction of Section 2 
to f and g because of its pointwise nature with respect to ~. We obtain a function 
v(~), defined in R d+l for ~=(~,~) such that  ~ 2 B N R  d, vanishing outside of 8B, 
and such that  

Ov 
v(~,0) = f(~), ~--~ (~, 0) = g(~), 

]Av(~, 7) 1 _< Ch(]~l). 
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Let X be the standard cut-off function: 

x e C ~ 1 7 6  x ( t ) = l ,  Itl_<l, x ( t ) = 0 ,  Itl>_2. 

Now define 

(4.8) K(r z) = x(17l/2){;x(I,~l/2)k(C- z) + [1- x(I,~l/2)]v(C) }. 

This is our desired kernel. Let us check this. 
1. If ~@16B, then either 171 >8 or ]~1 >8, and so g( r  z)=0,  which is (4.2). 
2. According to (2.3) and (2.5), v(~, 7) is a linear combination of derivatives 

of f and g in ~, with coefficients depending on 7. In view of (4.6), these are, in 
turn, linear combinations of the derivatives of k(,~-z) and O/07k(~-z) in ~, with 
C~ coefficients depending on z. The multiplier before v in (4.8) vanishes 
for ,~62BNR d. Therefore, K is a C~-funct ion of ~ER d+l and zEB, unless (.=z, 
and it is harmonic in z otherwise. 

3. It remains to check (4.5). Since the estimate (4.5) is a restriction for small 
7 only, we may suppose ]71 <2. Next, if I~] <2, then K((~, z)=k((~-z) is harmonic 
in ~, and if [~[ >4, then K(~, z)=v(r and (4.5) holds. Therefore, we suppose that  
2<[~[<4. Now 

g((~, z) = k((~-z)+ [1-x(l,~l/2)](v(C~)-k((~-z)). 

This means that  

AcK(r z) = [1-X(I,~I/e)]Av(~)+2V[1- ~((1~1/2)] .V(v(~)-k((~-z))  

(4.9) + A [ 1 -  X(I~I/2)]. (v(~)-k((~-z)) .  

The first term above does not exceed Ch(171). The multipliers above containing X 
are bounded. The only term we need to study is the difference v -k .  But 2< I~1 <21, 
and so 

Ok 
i 

Therefore, every partial solution un, given by (2.3), is really the Taylor polynomial 
of the harmonic function k(~-z) ,  centered at ~, of degree 2L+l=2[n/2]-l,  which 
is n - 1  or n - 2 .  In view of (1.5), 

171 n -1  I k (~ - z ) -Un(~ ) l  ~ c~ -1 ]~_zld_2q_ n ~ (C2]71) n-1. 

For 2-k<]71<2 -k+l,  by (2.6) we have 

Iv(c:)-k(C:-z)l  < C(c2171) < 171 nk-1 <_ C'h(171). 

The gradient V ( v - k )  is estimated in the same way. We see that the remaining 
terms of (4.9) are bounded by Ch(17] ) also. [] 
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5. Appl icat ion to harmonic functions 

5.1. An integral representation 

Let G be a bounded domain in R d+l , which intersects R d, and let G• = G N R  d . 
Here, we consider harmonic functions F in G+UG_, i.e., couples F=(F+,F_) of 
harmonic functions in G+ and G_, respectively. 

Let h be a regular majorant satisfying the non-quasianalyticity condition (4.1). 
Define the space ~'(h) consisting of all harmonic functions F in G+ UG_, such that  

const 
(5.1) IF(x,y)I< h(lyl---)' ix, y) Ea§ 

Let B be a ball in R d+l, centered at a point of R d, such that  16BEG. 

Theorem 5. For any FEe ' (h ) ,  and z E B \ R  d, 

(5.2) F(z) = f~o.\~. F(r162 z) d~ d , - / ~ .  F(r < d,, 

where KB is the reproducing kernel from Theorem 4, while vET)(G) and 

(5.3) Av(~, ~?) = O(h(lyI)). 

Proof. Let z = ( x , y ) E B \ R  d. We may suppose y>0.  Let x E C ~ ( R )  be our 
standard cut-off function. Define 

v(r ~ E R  d+l. 

Obviously, vE:D(G) and v coincides with KB for [y[ < �88 whence (5.3) holds. The 
difference KB--V is compactly supported inside G+UG_, coincides with k(~-z )  
near to z, and is C cr otherwise. So, by Green's formula, (5.2) holds. [] 

5.2. Harmonic  continuation across the linear boundary 

Let F E E ( h ) .  Under which condition does F admit a harmonic extension onto 
the whole of G? In other words, when are F+ and F_ harmonic continuations of 
one another? 

Recall that  h satisfies the non-quasianalyticity condition (4.1). 
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T h e o r e m  6. FEJZ(h) admits a harmonic extension onto the whole of G if 
and only if 

(5.4) fG+ c_ F(OAv(O dv = o, 

for any vED(G), such that/Xv(~,~)=O(h(l~l)). 

Remarks. 1. If (4.1) fails, then there is no nonzero function vEI)(G) satisfying 
(5.3). 

2. By the classical Weyl lemma, if F is locally integrable and (5.4) holds for any 
vED(G), then F is harmonic in G. Functions from $-(h) are not locally integrable, 
but this version of the Weyl lemma holds when the integral (4.1) converges. 

Proof. Let B be, as before, a ball in R d+l, centered at a point of R d, such 
that  16BEG. It suffices to prove that  F has an extension onto the whole of B. 
Apply to this case the integral representation (5.2). The second term vanishes by 
assumption, therefore 

(5.5) F ( z ) = f  F(~)AeKB(~,z)d~drl, z E B \ R  d. 
6B\2B 

But, the right hand side is clearly harmonic in the whole of B, because KB is 
harmonic in z. [] 

5.3. A L e v i n s on  t y p e  t h e o r e m  for h a r m o n i c  func t ions  

Consider the family 5C0(h) of all harmonic functions on the whole of G, such 
that  

1 
(5.6) IF(x,y)l < h(lyl~, (x,y) E G \ R  d. 

Under which condition is this family normal, i.e., uniformly bounded on any com- 
pact subset of G? 

T h e o r e m  7. Let h be a regular majorant. The family Yz o (h) is normal if and 
only if the non-quasianalyticity condition (4.1) holds. 

Proof. 1. Let (4.1) hold. As before, let B be a ball in R d+l, centered at a 
point of R d, such that  BEG. It suffices to check the uniform boundedness of ~0(h) 
on B. Apply the representation (5.2). Now, the second term vanishes because F 
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is harmonic in the whole of G. The equality (5.5) holds for any z E B \ R  d, and, by 
continuity, for any z E B  also. Therefore, 

J r ( z ) l < C f ~  1 - 6B\2S h(]~I) h(l~i)d~d~l<-c~ 

The family is normal. 

2. Suppose (4.1) fails. Let G t be the projection of G onto the plane of the first 
coordinate xl and y. Now, G t C R  2, and, by the classical Levinson theorem (see [6], 
[10]), one can construct a sequence of harmonic functions {F~(xl,  y)} in G', such 
that  

1 
IFn(xl, Y)I-< h(lyF~, 

and Fn(x~ for a fixed point (x~ ~. The functions Fn(xl,y) can be 

viewed as harmonic functions in G, not depending on the other coordinates. Thus, 

{Fn} is a subfamily of 5~0(h), and so 9%(h) itself is not normal. [] 
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