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Counting eigenvalues using coherent states 
with an application to Dirac and SchrSdinger 

operators in the semi-classical limit 

William Desmond Evans, Roger T. Lewis, Heinz Siedentop and Jan Philip Solovej 

1. I n t r o d u c t i o n  

Coherent states have been successfully used for obtaining leading order asymp- 
totics for spectral properties of SchrSdinger operators (e.g., Berezin [2], Lieb [11], 
and Thirring [16]) and other systems. They have been used so far mainly to s u m  

the negative eigenvalues, i.e., computing the first Riesz moment, or to evaluate 
traces of other convex or concave functions of the operator using the Berezin-Lieb 
inequalities. Another quantity of interest is the dimension of the discrete spectral 
subspace. At this point we would like to mention the paper of Li and Yau [10] which 
actually does not mention coherent states at all but which may be reinterpreted in 
terms of coherent states. Li and Yau treat  the counting problem for SchrSdinger 
operators H in a compact domain and evaluate the trace of the semi-group which 
requires H to have discrete spectrum only. In some sense our approach is related 
to theirs. 

The purpose of this note is to show that  the counting problem is accessible 
to a coherent states analysis: based on some rudimentary functional calculus we 
roll the problem back to the first Riesz moment. However, instead of developing 
a general theory we demonstrate the usefulness of the technique with a nontrivial 
example, the Dirac operator in the semi-classical limit, but our general result also 
includes the SchrSdinger operator. We shall recover the leading order asymptotics 
of the number of eigenvalues in the spectral gap of the Dirac operator, namely- -  
as predicted by Planck-- the  phase space volume of the corresponding energy shell 
divided by the Planck constant h raised to the power d where d is the underlying 
dimension, which in this case is three. In the following we shall choose the units 
such that the spectrum of the free Dirac operator is (-o c,-I] U [I, ce), namely, in 
physical terms, such that the velocity of light and the rest energy of the electron 
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are both one. 

In the case of a proper subinterval (a,b), with - l < a < b < l  (equality is not 
allowed), of the spectral gap ( -1 ,  1) this result with a strong error term has been 
previously obtained by Helffer and Robert [6]. For any closed subinterval, including 
the whole interval [-1, 1], a first order result was obtained by Levendorskii [9]. 
All of these consider smooth potentials and use pseudo-differential and/or  Fourier 
integral operator methods. However, the approximation method we use also gives 
from their result the first order result for the counting functions for more general 
potentials. 

We consider potentials V EL3/2(R3)AL3(R3). With this minimal regularity 
one cannot expect any error estimates. However, we establish the asymptotics for 
the number of all the eigenvalues in the spectral gap. 

One might question the usefulness of developing another rough first order count- 
ing method for eigenvalues besides the Dirichlet-Neumann bracketing technique 
(Weyl [19], [20], see also Courant and Hilbert [5]). There are, however, important 
examples that  do not easily yield to Dirichlet-Neumann bracketing; the Dirac op- 
erator is one of them. The ability to deal with the Dirac operator, in particular, 
demonstrates the power of the technique. We stress, however, that  the method used 
here is by no means restricted to this example. In fact our main result gives the semi- 
classical spectral asymptotics for the counting function of Dirac and SchrSdinger 
operators. 

We wish to mention some related work by Klaus [8] and Birman and Laptev [3]. 
These papers give the first order asymptotics for the number of eigenvalues entering 
and leaving the interval (-1,  1) in the strong coupling limit. The number of eigen- 
values within (-1,  1), being the difference of these two numbers that  are equal in 
first order, is not determined. Note, however, tha t - - in  contrast to the SchrSdinger 
operator the strong coupling limit for the Dirac operator is not directly related to 
the semi-classical limit. Finally Tamura [15] and Klaus [8] gave, for long range po- 
tentials, the asymptotics of the nmnber of eigenvalues in an interval (a, b) of ( -1 ,  1) 
with - l < a ,  as b--~l. 

2. B a s i c  fac t s  

The Dirac operator to be considered--for convenience we pick units such that  
the electron mass and the velocity of light are one--is a self-adjoint realization in 
[L2(R3)] 4 of 

D := c~-~V+/3+V, 
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where (h/i)V is the momentum operator and a : = ( a l ,  c~2, c~3), and fl are the Dirac 
matrices acting on [~(R3)]4:=[C~(R3)] 4 in the obvious way. We shall take the 
standard representation 

0 ~r,)  
a ,  = u = I, 2, 3, 

O'~, 0 

where the a .  are the Pauli matrices 

a1=(01  10), a 2 = ( ~  % i ) ,  a 3 = (  ~ _01/ 

and 

fl= (1~ ~ i) 0 1 0 

0 0 -i 

0 0 0 1 

For later purposes we note that any pair of different Dirac matrices anti-commntes 
and each Dirac matrix yields the identity upon squaring. 

Under our general assumption, namely V E L 3/2 (R 3) N L 3 (R 3), D is self-adjoint 
with domain [H I (R3)] 4 and [C~(R3)] 4 is a core. Under this hypothesis the spec- 
t rum of D is discrete in ( -1 ,  1) (Weidmann [17, Theorem 10.37]). 

Given a self-adjoint operator H we shall set N(H):=tr[x(-~,o)(H)]. Here and 
in the following we use the convention that the trace of a nonnegative self-adjoint 
operator, which is not trace class, is equal to infinity. The standard inner product 
and norm on [L2(R3)] 4 will be denoted by ( . , . )  and I1" II respectively. 

L e m m a  1. If  V C L3/2(R3)AL3(R3), the square D 2 of the Dirac operator, as 
defined by the spectral theorem for D, is the self-adjoint operator associated with the 
quadratic form (De, De) defined on ~:=[HI(R3) ]  4. Moreover 

(1) tr[x(-1,t) (D)] = g ( D  2-1).  

Proof. Since D is self-adjoint, and hence closed, with domain ~ ,  the non- 
negative symmetric form (D'~, Dr  is closed on ~ and the lemma follows from the 
first representation theorem for sesquilinear forms. [] 

For the reader's convenience we collect some facts from the literature which 
are indeed easy to verify: 

�9 Given a function hELlo c and gEL2(BI(O)) with 119112=1, we denote the dila- 
tion of g by go(x)=g(x/o)/~ 3/2 for any positive Q, and set 

(h/Q(q):=/R3 h(x)(ge(x-q))2dx 
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which we can interpret as the average value of h in the ball of radius ~ centered at 
q with respect to the measure (go(x -q ) )  2 dx. We have: 

1. For any distribution h � 9  the function (h)o is smooth, if g is smooth. 
2. If h�9 3) with p � 9  [1, oc), then II (h)o [Ip-< IlhHp by Jensen's inequality. 
3. For any h�9 3) with p �9  oc) we have (h}o--~h in LP(R 3) as L)--~0. 

�9 Let A be a self-adjoint operator which is bounded from below. Denote by 
A = - X ( _ ~ , o ) ( A ) A  its negative part.  Then the minimax principle implies (see, 

e.g., Weinstein and Stenger [18]) 

(2) - tr(A_) = inf{tr(Ad) lAd �9 61, d self-adjoint, 0 < d < 1} 

where | denotes the trace class operators. Note that  both  sides of (2) can be - o c  
simultaneously: a "minimizer" is X(-oo,0)(A) which is uniquely determined in the 
case of finite infimum up to the projection to zero. 

�9 We write 7 : =  (z, #) := (p, q, #) for a point in the classical phase space, here F : =  
R 3 x a 3 x  {1, 2, 3, 4}. Furthermore assume g to be a spherically symmetric smooth 

function with support  in the unit ball and L2-norm equal to one. Again we denote 
its dilation by go(x)=g(x/Q)/O 3/2 for any positive g. We assume V and ~ to be 
real-valued functions with p, V2ELloc(R3 ). Given these, we define the two 4 x 4  
matrix-valued functions of z =  (p, q)C R 3 x R 3 

(3) O(z) := p2 + 2(V) o( q)(p.a+ B) + (V2-~)  e(q ) 

which will be of relevance for an upper bound on the sum Of eigenvalues and 

(4) U(z) := 

which will be of relevance for the lower bound on the sum of eigenvalues. Note that  
these matrices depend on the three fimctions g, V, and ~ which we shall pick later, 
as well as the parameters  ~ and 5 also to be specified later. For each z each of 
the two matrices have four eigenvalues defining the following phase space functions, 

namely 

(5) o( y) : :  o(z, 

where s ( 1 ) : = s ( 2 ) : = - 1  and s(3) :=s(4) :=1,  are the eigenvalues of O(z) and 

(6) u(7) = ( 1 - 5 ) p  2 - ~ +  V(q)  2 +s(~)21V(q) I x/p 2 +1  
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are the eigenvalues of L/(z).(1) We also pick four orthonormal eigenvectors for each 
of the matrices O(z) and b/(z) corresponding to the above eigenvalues and denote 
them by 0.(z) and uit(z). 

We are now in a position to define the normalized coherent states used here: 

(7) F~ :---- eiPX/h g~(x-q)ot~(z) 

are the states to be used for the upper bound (construction of a trial density matrix) 
and 

(8) F ~  (x) := eiP=/% (x-- q)uit (z) 

will be the states that  we shall use to construct an approximate operator for the 
lower bound. Note that  these functions depend also on h and 0 which we suppress. 
The parameter h is positive, and for later use we set h:=27rh. Note also that  g is 
often chosen not to be a function of compact support, but a GauBian. 

�9 By dft we denote the following measure on the phase space F 

~ ( 7 )  := ~ d a ( 7 ) : =  
dpdq -V-Z' 

It 

i.e., it is the "natural" product measure, namely--up to a f a c t o r ~ h e  Lebesgue 
measure in the first six factors of F (variables z =  (p, q)) and the counting measure 
in the last factor, namely in the variable p (see also the definition of F above). 

�9 We have for any r ~C [L2(R3)] 4 and any set of coherent states, in particular 
the ones defined in (7) and (8), 

(9) (r ~) = s  (y)(r F.y)(F.y, ~p), 

i.e., coherent states are complete. 
�9 Coherent states preserve positivity, i:e., given any function M on the phase 

space with values in an interval [a, b] we have that  the corresponding quasi-classical 
operator d satisfies 

a _< d := f r  a~(~)M(-y)lF~)(Fz] < (10) b 

(1) T h a t  o(v ) and  u( ' / )  are indeed t he  eigenvalues of O(z) and  L/(z) m a y  be ei ther  seen 

direct ly or by us ing  the  a n t i - c o m m u t a t i o n  rela t ions of t he  Dirac matr ices :  set a:----w-a+w4/3 wi th  

w2+w~----1. Because  of the  a n t i - c o m m u t a t i o n  rela t ions of the  Dirac mat r ices ,  we have  a 2 = l  

imply ing  t h a t  the  eigenvalues of  a are •  Since a is t raceless  b o t h  have  mul t ip l ic i ty  two. Now 

note  t h a t  b o t h  O(z) and  L~(z) are j u s t  of  th is  form except  for a mul t ip l i ca t ion  by a scalar  and  a 

shif t  by a mul t ip le  of t he  un i t  m a t r i x  which  proves t he  s t a t ed  formulae.  
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as an operator. (Note that we use Dirac notation to denote projections; in particular 
we pick the scalar product such that it is linear in its second variable but conjugate 
linear in the first one.) 

Finally we give a nonasymptotie bound for the number of eigenvalues which 
is a simple consequence of the Cwicke~Lie~Rosenblum inequality, abbreviated 
henceforth by CLR, (Canceller et al. [4]). 

L e m m a  2. IfVELa/2(Ra)AL3(R 3) and WELa/2(R3), then 

(11) tr)~(_~,0] (D2- I+W)<_4(21 /2 /h )3dcLRs  

where dCLR is the optimal constant in CLR. 

Note that  for W = 0  the left-hand side of (11) equals the nmnber of eigenvalues 
of the Dirac operator D in [-1, 1]. 

Proof. For all r  [C~(R~)] 4 

2 ( ) h h 
( r 1 6 2  ~ . 7 V r  + 2 R e  ~ - T V r 1 6 2  +(r162 

(12) 
2+ (1 

For definiteness we pick e-~.- 1 The result follows on adding the expectation of W 
and using CLR. [] 

3. T h e  s u m  of  e igenvalues  

We begin with an upper bound on the phase space volume fo(~)<od~(7) ap- 
pearing in Lemma 4. 

L e m m a  3. Let VcL3/2(R3)fflL3(R 3) and ?~EL3/2(R3). Then 

~oo 2n/2~ r (~)<0m(7) < ~ ]R3(~(q)+ + r(q)2 +21V(q)l) 3/2 Sq 

Proof. We have 

0(7) = p2 + i v  ~ - ~>~ (q) + 2s (,)I iv> ~ (q) I v / ,  ~ + 1 

_> p~ + ( v  2 - ~> ~ (q) - 21 (v>  ~ ( q ) t -  �89 - 2 (v>  ~ (q)2 
lp2 _> ~ -<~}Aq)+-21<v}Aq)l-(V}~(q) 2. 
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Thus, if 0>0(7), 

p2 < 2((p)o(q)+ + [ (V}o(q) 12 +21 (V}o(q) 1). 

Thus, integration over p and summation over # yields 

dft(7) < ( (~) ~(q)+ + (V) ~( q)2 + 2l (V) ~( q)D 3/2 dq. 
(~)<o - ~ 

Applying Jensen's inequality yields the right-hand side of the claimed inequality. [] 

We now give an upper bound on the sum of the negative eigenvalues. 

L e m m a  4. Assume V~L3/Z(R3)NLS(R 3) and pEL3/2(R3)NLS/2(R3). Set 

:-- fr a~(7)M(7)IF~ (F~ d 

with M:=X{~lo(~)<o}. Then 

- t r ( D 2 - 1 - ~ ) _  < t r [ (D2-1-~)d]  = f  (o(7)+h2[[Vg~l12)d~'~(7) 
Jo (~)<o 

with 0(7) defined by (5). 

Proof. By (2) and (10) 

- tr(D 2 - ( p -  1)_ ~ tr[(D 2 - ~ -  1)d] 

and by (9) 

tr[(D 2 - ~ -  1)d] = fo(~)<0d12 (7)(F ~  (D 2 - ~ -  1)F ~  

with F ~ as defined in (7). We calculate using (12) and get 

(F~ (D2-~-  I)F. ~ 
= 

=o(7)+h llVal?. [] 

We return to this upper bound below, but we now seek a similar lower bound 
for - t r ( D  2 - 1 - ~ ) .  As usual we try to approximate the original operator by an 
operator A having a coherent state symbol. An analysis of A and the remainder 
R:=D 2 - 1 - ~ - A  then produces our estimate. 

For convenience we introduce the notation ~ J : = f - ( f ) o  for the difference of 
a function f and f*g~. 
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L e m m a  5. Define A: [H2(R3)]4--~[L2(R3)]4 by 

A := f r  d~ (-y)u('y)IF U) (F U [ 

and the self-adjoint operator R by the form 

(r R e ) : =  6~2 (~ r  V r  (1-5)h2[I~g~[12(r r  

+ 2Re(O,~o(V)a 'hvo)  +(O, [2~o(V)/3+~o(V2-~)]r 

with form domain [Hi(R3)] 4. Then, 

and D 2 - p - 1  is the sum 
D 2 - ~ - 1  =A+R 

in the form sense. 

Proof. First we remark that R is easily seen to be equal to the Laplacian 
(multiplied by 5h 2) plus an operator with relative--to the Laplacian--form bound 
zero, so that R has form domain [H 1 (R3)] 4. 

It is easy to verify the claimed identities for the corresponding sesquilinear 
forms on C~(R3)4  • C ~ ( R 3 )  4. This, however, is enough, since (V)e and (V 2 - ~ ) e  
and all their derivatives are obviously smooth functions decaying at infinity, im- 
plying that A is just the sum of the Laplacian (multiplied by ( 1 - 6 ) h  2) plus a 
perturbation of relative bound 0. [] 

L e m m a  6. Let VeL3/2(R3)NLh(R3), ~eL3/2(R3)NLh/2(R3). Then 

- t r (D 2 - 1 -  ~)_ _> - f r  u(7)-  d~(7) +tr[Rdmin] 

where R is defined in Lemma 5 and dmin is the projection to the negative subspace 
of D 2 - 1 - p ,  i.e., dmin:=X(_~,o)(D2-1-~). 

Proof. From (12) we have 

9 2 - 1 - ~  > - (h2/4)A - (2IV I + V  2) - (h2/4)A-~ 

and hence 

t r (D 2 - 1 - ~ ) _  < t r ( - (h2 /4 )A - (2IV I + V2))_ + t r ( -  ( h 2 / 4 ) A -  ~)_. 
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Thus ( D 2 - 1 - 9 ) _ E G ~  by the Lieb-Thirring inequality. It follows from (2) and 
the fact that  A is a relatively bounded perturbation of the Laplacian with relative 
bound zero that  
(13) 

- t r(D 2 - 1 - ~ ) _  = inf{tr[(D 2 - 1 - p ) d ] l d  self-adjoint, 0 < d < 1, d, Ad �9 | } 

---- tr[(A-}-R)dmin] 

_> inf{tr(Ad) [d self-adjoint, 0 < d < 1, d, Ad �9 G1}+tr(Rdmin). 

(Note that  A + R  occurring above is to be understood in the form sense.) Further- 
more let r r ..., be any orthonormal basis of the negative spectral subspace of A. 
Then 

tr(A)_ 
V V 

/ ]  

by the Bessel inequality. The stated inequality now follows by inserting this expres- 
sion in (13). [] 

The following estimate of the remainder term in Lemma 6 will be useful later. 

L e m m a  7. Let VEL3/2(R3)NL5(R3), ~cL3/2(R3)NL5/2(R3), and dmin as 

in Lemma 6. Then 

1 - IloeYll~+ll~eYlls/e+ll~e( y - ~ )  -K~2," 

Proof. By completing squares we have the following chain of inequalities in the 
sense of quadratic forms--in particular with regard to the gradient of ~eV--  

+ e ( ~ j ) 9 + ~ ( y  2 - ~ ) - ( 1 - 6 ) h  211vg~N 2 

+ 2(~ ~ v )  z + ~ ~(v ~ - ~ )  - (1-6)  h 211vg~l? 

> ---~-SA- ~ (OeY) h2 2 2 _ 2]OeV[+Oe(V2_~)_(I_6)h2HVge]]2" 
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If R I denotes the first four terms in the last expression we have by (2) 

tr[R'dmin] ~ inf{tr[R'd] 10 < d < 1, d self-adjoint, R'd E ~1} 
const ( 1 > 

using the Lieb Thirring inequality [13]. Also, by Lemma 2, tr(dmin)=O(h-3); thus 
the lemma follows. [] 

4. C o n v e r g e n c e  o f  t h e  d e n s i t y  a n d  t h e  
d i m e n s i o n  o f  t h e  d i s c r e t e  s p e c t r a l  s u b s p a c e  

The above results which bound the sum of eigenvalues suffice already to prove 
a convergence theorem for the density, namely 

T h e o r e m  1. Suppose that VcL3/2(R3)NLS(R3), UEL3/2(R3)NL5/2(R3), 
and WEL3/2(R3)NL~(R3). Denote by D the Dirac operator with potential V and 
by ~,, ~=1, 2, 3, ..., the eigenfunetions of D2-1+ W with negative eigenvalues. We 
write for the sum of the density of these states n(x):=~, 4 E =I 2. Then, 
as h--~O 

(14) ./R3 U(x)n(x) dx 

_ 1  f 
- -  h3 Ja]6 U(q) t r [x (_~ ,o ) (p2+V(q)2+W(q)+2V(q) (p .a+~) ) ]  dpdq+o(h-3). 

Pro@ First we note that  we can without loss of generality assume that U is 
positive: we can always decompose U into its positive and negative parts. Proving 
the theorem separately for these and finally subtracting the resulting equations from 
each other gives the claimed inequality for general U. 

Let d :=x ( - ~ ,0 ) (D  2 - 1  + W ) .  By the minimax principle 

- t r (D 2 - I + W - c U ) _  < tr[(D 2 - l + W ) d ] - c  / U(x)n(x) dx 

and therefore 

c / U(x)n(x) dx < - t r (D 2 - 1+ W)_ + t r ( D  2 - 1 + W - c U ) _  

which implies for positive r the upper bound 

(15) f U(x)n(x)dx<_[-tr(D2-1+W)_+tr(D2-1+W-eU)_]/e 
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and for negative c the lower bound 

(16) / U(x)n(x) dx > - [ t r ( D  2 - 1 + W )  - t r ( D  2 ~ I ~ W ~ ~ U ~ ~ ~ / ~ ~ 

To estimate these traces, we select different functions ~ in (3) and (4) and therefore 
in Lemma 4 and Lemma 6. We choose ~ : = - W  in (3) and ~ : = - W + e U  in (4). 

1. The upper bound (c>0): From Lemma 4 and Lemma 6 we have 

/~ 3 U(x)n(x)dx<- l 

(17) _l { tr[Rdmin]_ h/___5[[Vg[,2 fo(~)<od~,t(7) } 

with 0(7 ) and }t(7 ) as defined in (5) and (6) with ~ replaced by - W  and -W+cU 
respectively. Multiplication by h 3 together with Lemma 7 and Lemma 3 yields 

f 1 f 
h U(x) (x)dx <_ -i -o(7)_ 

(18) 
const 5 5/2 2 5/2 h + ~7~llo~Vll5+llo~Vlls/2 +llo~(V +w-eV)ll5/2 +~ 

and thus 

l imsup ( h 3 / R h ~ 0  3 U(x)n(x)dx) <-1r J r  ( u ~ ( 7 ) - - ~  d~t(7) 
(19) 

const f 1 5 5/2 
+ c - ~  ~ ~Ti lI% VIIs + IIo~VIID/2 +Iio~ + W--cU) II55~20 " 

(Note that we have written o~ and u~ instead of o and u to indicate with these 
subscripts the explicit parameter dependence of these two quantities.) 

Next we take the limit 6--*0 which makes the last term in (19) vanish. Also, 
on choosing a particular subsequence g. tending to zero as ~ tends to infinity, o~ 
can be replaced--using dominated convergence--by o0, its pointwise limit, in the 
resulting inequality. To see this, we first substitute 

into (19), and proceed to prove that 

lira / %(7) -  d•(7) = / r  00(7)- d~(7) 
Q~O J{~l~esupp(oo) } 
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at " least for a subsequence Q. which we are free to choose. Observe that  the left-hand 
side has its support contained in a Q independent set of finite measure, namely the 
support of (oo)_. Furthermore, 

%(7)-  = 

<_l+lIwll  

because (V2)a(q)>_ (V)2(q) by Jensen's inequality. Thus 

<_ 

yielding the integrable dominator. Furthermore, since (V)o converges to V in 
L3/2(R3), (V)o converges in measure to V. Since R 3 with the Lebesgue measure is 
a-finite, there exists a subsequence (Y)o,, u = l ,  2, 3, ..., such that  (Vo.} converges 
pointwise almost everywhere to V (see Bauer [1, Theorems 19.3 and 19.6]). Since 
(%~)_ depends continuously on (V)o ~ and (Y2)o~, the function (%~)_ converges 
pointwise almost everywhere to (Oo)_ which yields the convergence hypothesis of 
the dominated convergence theorem. 

Next take the limit 6--~0 which--again by dominated convergence--simply re- 
places the 6 in u~ by 0. (Note that  we chose to suppress the 6-dependence in our 
notation.) Finally, to perform the e--*0 limit we want to apply dominated conver- 
gence once more. To this end note that  u~=uo-cU and u0=o0. Thus 

(20) 
lc f r  ((u~)- - (o0)_)df t (7)  

_< u(q) + ) 
0(7)_<0 

The first integral on the right-hand side of (20) is independent of s. For s_< 1 
the modulus of the integrand of the last integral is bounded by Ux{r 
uniformly in c. Now, note that  

f0>~o-~V U(q) dft(7 ) < cons t / ( IVI3/2+lVl3+U3/2)Udq 

which is integrable under our hypothesis on U. Thus dominated convergence is 
indeed applicable and the limit ~--~0 gives the desired result. 

2. To obtain the lower bound pick ~ negative, take the liminfh--.0 and repeat 
the argument. [] 
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T h e o r e m  2. Assume that VEL3/2(R3)AL3(R 3) and WEL3/2(R3). Let D be 
the Dirac operator with potential V. Then 

tr X(-~,o)(D2-  I + W )  

= h---g trx(-oc,o)[p2+W+V(q)2+2V(q)(p'c~+~)] dpdq+o(h -3) 
6 

as h~O. 

We note--as for the weak convergence of the densi ty-- that  Theorem 2 can 
be easily generalized to any subinterval of the interval ( -1 ,  1). In fact the proof 
is easier for any subinterval (a, b), - l < a < b < l .  But we restrict again to the full 
interval for the sake of clarity of the presentation. 

Proof. We shall first prove the theorem only when V, W E C ~ ( R 3 ) .  
1. Upper bound: We pick two functions I E C ~ ( R 3 ) ,  A E C ~ ( R  3) such that  
�9 for all x E R  3 the identity I(x)2+A(x)2=l holds, 
�9 supp VUsupp W c s u p p  I, 
�9 distance(supp VUsupp W, supp A) >_ 1. 

We set P:=D2-1 +W-Ih VI I2 - [h VAI  2, PI :=IPI  and PA:=APA. 
Given any nonnegative smooth function 0 not exceeding one the minimax prin- 

ciple implies for the nth  negative eigenvalue en(0) of Po:=OPO that  it is not less 
than the n th  eigenvalue en of P: let 22n-1 denote the linear subspace spanned by 
the eigenvectors of P with eigenvalues e l ,  ... , en-1. Then 
(21) 
e~(0) = sup{inf{(r Por162 E ~ ,  ~ • 22, IIr <- 1}122 c [L2(R3)] 4, dim(22) < n - 1 }  

_ inf{(0r P(Or Ir E ~, ~ • 022n-1, I1r -< 1} 

>_inf{(~,P~) ]'~E~), ~•  I1r <- t } = e n .  

Thus we have 

N ( P A ) < N[h2 ( -  A - ]VII 2 -IVAI2)] = N ( - A - I V I ]  2 -IVA] 2) =: C, 

which is finite because of CLR and independent of h. 
Applying the above argument and a similar one for the case of Dirichlet bound- 

ary conditions and using the fact that  D 2 -  I+W=PI+PA yields 

N ( D 2 + W - 1 )  <_ N(PI)+N(PA) <_ N(PlH~(suppi))+C 

where, given any measurable t 2 c R  3 and any semi-bounded self-adjoint operator B 
with form core [C~(R3)] 4, the symbol BIH~(a) denotes the operator defined by the 
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closure of the quadratic form (~b, B~b) on [C~(ft)] 4, i.e., the operator B acting on 
functions on ~ with Dirichlet boundary conditions on Oft. Again, by the minimax 
principle, the nth negative eigenvalue of PIH~(s,ppI) is not bigger than the nth 
negative eigenvalue of P1 and the nth negative eigenwlue of (P--C)[H~(sup p I) is not 
less than the nth negative eigenvalue of P - c ~ u p p i .  Thus we have for positive c 

1 N(PI) <_ N(Plno(suppi)) < ~{- t r [PIHl (~ppi ) ]  +tr[PIHl(s,wpi ) - r  

_< 1 { _  tr(Px) +tr[(P--eXsuppi)lH~(suppi)] } 
c 

_< _1 {tr ( P d ) + t r ( P -  r z)- } 
c 

where d is as in the statement of Lemma 4 with ~ = - W .  In the last step we 
have used that IdI=d. This follows, since, when Q<�89 gQ(x-q) vanishes for all 
(p, q, #) E supp M and z E supp A. 

To evaluate these two traces we use again Lemma 4 and Lemma 6. In Lemma 4 
we pick ~ = - W ;  in Lemma 6 we pick p=h2]VII2+h2IVAI2-W -G)~supp I. 

We can now follow the corresponding argument in the proof of Theorem 1 step 
by step and obtain, on noticing that the term h2(IVII2+IVAI 2) and the constant 
C can be absorbed at no cost into the error term, 

N(D2-1+W) <_ f~o(.y)<0d~(7)+o(h-3). 

2. Lower bound: by Theorem 1 we have 

N(D2-1+W) >_ f Xs,:,ppVusuppW(X)n(x)dx= J~o(~)<od~(7)+o(h -3) 

where, as previously, uo(7)=p2+W(q)+V(q)2+s(#)lV(q)l(p2+l)i/2 and we use 
that  Uo(p, q,~)>_0 for q ~ s u p p V N s u p p W .  

The general case follows now by approximation and Lemma 2 (see Reed and Si- 
mon [14, Theorem XIII.80], for the analogous argument for Schr6dinger operators): 
Pick 5>0  arbitrary and suppose now V=U+X and W=T+Y with U, T E C ~ ( R  3) 
and IIXIIa+IPx[I3/2+IIYll3/2<_5. Write 

2r U 2 + R  D2-1+W= D2-1+T- 1-r 

where 
N 

Du = ha.v+3+U 
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with h : = ( 1 - e ) h  and 

R : = - ( 2 - e ) e h 2 A + 2 R e  (hV-hU) ~.V +2(V-U)3+V2-U2+W-T+I_ e 

= - ( 2 - ~ ) ~ 2 A + 2 R e  (~V+~X) ~ .V + 2 X g + X ( V + U ) + Y +  I_  ~ 

Now, 

(22) N(D2-1+W) <_N(~)~-I+T- ~--CcU2]+N(R). 

By the estimate that we just proved for smooth potentials we have 

= (27r~) a 2+U(qF+r(q)-(2eU(q)U(1-~))+2~(.)lU(q)lX/p2+l<O df~(7)+~ 

We bound R from below. To this end note that for any 7 , ~ > 0  the first order 
derivative term in R can be estimated as follows 

2ae (~v-~u) ~.v =2Re (x-~u) ~.v _>-T+~h2A-~2h--~U2+~A.~ 

We pick 7:=(1-e)eh2/2 and ~ :=e  and obtain 

R _> -[(1 -~)c~2/2] A - 122-2121-  IXl IV+UI- Igl, 
c 

Thus, R is bounded from below for e small enough and 

eonst f _3/21x13+lx13/2+lxi3/21v+ui3/2+lyi3/2 dq. N(R) <_ ((1_e)eh2)3/2 

Taking first the limit 6--~0 and then e---~0 gives, using dominated convergence as in 
Theorem 1, 

limh__,oSUp[h3N(D2 - 1 +W)]  < Ypf+v(q)2+W(q)+2~(u)lv(q)lx/p2+x< ~ d~t (7) 

which is the desired upper bound. 



280 William Desmond Evans, Roger T. Lewis, Heinz Siedentop and Jan Philip Solovej 

with 

To obtain the reverse bound we reverse the roles and write 

2c U 2 = (  ~ )2 
D ~ r - I + T +  1 - e  T c t . V + ~ + V  - I + W + F  

h D u: = - a 'V +~+U,  D v  : = h a . v + / 3 + V ,  

F := -(2-E)ehA +2 Re [ (U- (1 -e )V)~a .V  l +2(U- V)/3+U2-V 2 

and again h-=(1-e)h,  and repeat the previous argument. [] 

Note that: 
1. The proofs of Theorems I and 2 both yield a weak convergence for the 

density. Similar arguments have been previously used, e.g., by Lieb and Simon [12] 
or Iantchenko et al. [7]. 

2. The proof of Theorem 2 generalizes easily to cover any subinterval (a, b) C 

tr X(a,b)(D 2 - 1 + W )  = JRf6 tr{x(a'b)((c~'P +/~+ V(q))2 - 1 + W(q)) } dp dq+o(h-3). 

C o r o l l a r y  1. Assume D to be a Dirac operator with potential V EL3/2(R3)N 
L3(R3). Then 

tr X(_I,1)(D ) = ~ ~ tr[x(-1,1) (~ 'p+/3+V(q))]  dpdq+o(h-3). 

C o r o l l a r y  2. Assume S : = - h 2 A + W  to be a SchrSdinger operator on H 2 ( R  3) 
with potential W E L3/2(R3). Then 

1 fp dp dq+o(h-3). 
N(S)= ~ :+w(q)<0 

Proof. The claims follow from Theorem 2 by setting W = 0  and application 
of Lemma 1 in the Dirae case and by setting V = 0  and dividing by four in the 
SchrSdinger ease. [] 

We would like to repeat our introductory statement that  these results can be 
obtained also directly from known results by the approximation argument used at 
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the end of the proof of Theorem 2 using the phase-space bounds of Cwickel, Lieb, 
and Rozenblum. However, we repeat also that the main purpose of the article was 
to show that coherent states can be used in this context. 
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