Relative vanishing theorems in characteristic p

Tohru Nakashima

Introduction

In [I], L. Illusie proved a decomposition theorem of the relative de Rham complex for a morphism $f: X \rightarrow Y$ of smooth schemes defined over a perfect field k of characteristic $p>0$, generalizing an earlier result of [DI] which treats the absolute case. He deduced from the theorem several vanishing results for the direct image of line bundles.

Let $f: X \rightarrow Y$ be a k-morphism and E a vector bundle on X. In this paper we introduce the p-cohomological dimension relative to f, which will be denoted by $\operatorname{pcd}(E, f)$, of E. By means of this notion, we extend some of the vanishing theorems obtained in $[\mathrm{I}]$ to the case of higher rank bundles. As in $[\mathrm{I}]$, we need the assumption that f is semistable along a normal crossing divisor $D_{Y} \subset Y$ and f is liftable to $W_{2}(k)$, the ring of length two Witt vectors.

In Section 1, we prove a vanishing of direct image sheaves of vector bundles for a semistable morphism. The cohomology vanishing of the Gauss-Manin systems will be considered in Section 2. In Section 3, we treat the case of open varieties and generalize a theorem in [BK2] to the relative situation.

1. Relative vanishing for semistable morphisms

Let k be a perfect field of characteristic $p>0$. Let X be a smooth scheme defined over k. We denote by $F_{X}: X \rightarrow X$ the absolute Frobenius of X. A vector bundle E on X yields a bundle E^{\prime} on X^{\prime}. Let $F^{n} E:=\left(F_{X}^{*}\right)^{n} E$ denote the bundle on X obtained by the nth iterated pull-back of E by F_{X}.

Let Y be a smooth scheme over k and $f: X \rightarrow Y$ a k-morphism. We define the p-cohomological dimension relative to f of E, which we denote by $\operatorname{pcd}(E, f)$, as the smallest integer $\alpha \geq 0$ such that for every coherent sheaf \mathcal{F}, there exists $n_{0}=n_{0}(\mathcal{F})$ satisfying $R^{k} f_{*}\left(\mathcal{F} \otimes F^{n} E\right)=0$ for all $n \geq n_{0}$ and all $k>\alpha$.

Remark. If $Y=\operatorname{Spec} k$, we simply write $\operatorname{pcd}(E)$ instead of $\operatorname{pcd}(E, f)$. We note that $\operatorname{pcd}\left(\mathcal{O}_{X}\right)$ is identical with $\operatorname{cd}(X)$, the cohomological dimension of X. Furthermore, if $f: X \rightarrow Y=\operatorname{Spec} k$ is a projective morphism, then $\operatorname{pcd}(E)=0$ if and only if E is cohomologically p-ample (cf. $[\mathrm{H}],[\mathrm{K}]$).

In this section we prove a vanishing theorem for the direct image of vector bundles in terms of $\operatorname{pcd}(E, f)$. For this purpose, we recall the decomposition theorem of Illusie. We follow the notation of [I]. Let $f: X \rightarrow Y$ be a k-morphism of smooth schemes. Let $D_{Y} \subset Y$ be a normal crossing divisor and let $D_{X}=f^{-1}\left(D_{Y}\right)$. We denote by X^{\prime} the scheme deduced from X by the Frobenius of Y and let $\omega_{X^{\prime} / Y}^{i}=\omega_{X / Y}^{i} \otimes \mathcal{O}_{X^{\prime}}$. We say that $f:\left(X, D_{X}\right) \rightarrow\left(Y, D_{Y}\right)$ is semistable if, locally for the etale topology on X, f is the product of the following k-morphisms:
(1) $p r_{1}: \mathbf{A}_{k}^{n} \rightarrow \mathbf{A}_{k}^{1}, D_{Y}=\emptyset ;$
(2) $h: \mathbf{A}_{k}^{n} \rightarrow \mathbf{A}_{k}^{1}, h^{*} y=x_{1} \ldots x_{n}$,
where $\mathbf{A}_{k}^{n}=\operatorname{Spec} k\left[x_{1}, \ldots, x_{n}\right], \mathbf{A}_{k}^{1}=\operatorname{Spec} k[y]$ and $D_{Y}=(y)$. If $f:\left(X, D_{X}\right) \rightarrow\left(Y, D_{Y}\right)$ is semistable, we define the sheaf $\Omega^{1}{ }_{X / Y}\left(\log D_{X} / D_{Y}\right)$ to be the cokernel of the natural injection $f^{*} \Omega_{Y}^{1}\left(\log D_{Y}\right) \subset \Omega_{X}^{1}\left(\log D_{X}\right)$. Setting $\omega^{i}{ }_{X / Y}=\bigwedge^{i} \Omega_{X / Y}^{1}\left(\log D_{X} / D_{Y}\right)$, we obtain the complex $\omega_{X / Y}$, which is called the relative de Rham complex with logarithmic poles along D_{X}.

We assume that f, together with D_{X}, D_{Y}, has a semistable lifting over $W_{2}(k)$, the ring of Witt vectors of length two over k. We denote it by $\tilde{f}:\left(\widetilde{X}, \widetilde{D}_{X}\right) \rightarrow\left(\widetilde{Y}, \widetilde{D}_{Y}\right)$. We also assume the existence of a lifting $\widetilde{F}_{Y}: \widetilde{Y} \rightarrow \widetilde{Y}$ of the absolute Frobenius of Y such that $\widetilde{F}_{Y}^{-1}\left(\widetilde{D}_{Y}\right)=p \widetilde{D}_{Y}$. The following result is due to L . Illusie.

Proposition 1.1. ([I, 2.8]) Under the assumptions above, there exists an isomorphism in $D\left(X^{\prime}\right)$

$$
\phi\left(\tilde{f}, \widetilde{F}_{Y}\right): \bigoplus_{i<p} \omega_{X^{\prime} / Y}^{i}[-i] \xrightarrow{\sim} \tau_{<p} F_{*} \omega_{X / Y}
$$

where $D\left(X^{\prime}\right)$ is the derived category of the category of $\mathcal{O}_{X^{\prime}-\text { modules. }}$
Lemma 1.2. In addition to the assumptions above, suppose that f is purely of relative dimension $d<p$. Let M be a vector bundle on X. If

$$
\begin{equation*}
R^{j} f_{*}\left(F_{X}^{*} M \otimes \omega_{X / Y}^{i}\right)=0 \quad \text { for } i+j=n, \tag{*}
\end{equation*}
$$

then we have

$$
R^{j} f_{*}\left(M \otimes \omega_{X / Y}^{i}\right)=0 \quad \text { for } i+j=n
$$

Proof. We follow the argument in [DI, 2.9]. Let M^{\prime} be the bundle induced by the Frobenius base change from M. We have $F^{*} M^{\prime}=F_{X}^{*} M$. By the projection
formula,

$$
R^{j} f_{*}\left(F_{X}^{*} M_{\mathcal{O}_{X}}^{\otimes} \omega_{X / Y}^{i}\right)=R^{j} f_{*}^{\prime}\left(M_{\mathcal{O}_{X^{\prime}}^{\prime}}^{\otimes} F_{*} \omega_{X / Y}^{i}\right) .
$$

We have the spectral sequence

$$
E_{1}^{i j}=R^{j} f_{*}^{\prime}\left(M_{\mathcal{O}_{X^{\prime}}^{\prime}}^{\left.\otimes F_{*} \omega_{X / Y}^{i}\right) \Longrightarrow \mathbf{R}^{i+j} f_{*}^{\prime}\left(M_{\mathcal{O}_{X^{\prime}}^{\prime}}^{\otimes} F_{*} \omega_{X / Y}^{\prime}\right) .}\right.
$$

where $\mathbf{R}^{n} f_{*}$ denotes the nth hyperdirect image and

$$
\mathbf{R}^{n} f_{*}^{\prime}\left(M_{\mathcal{O}_{X^{\prime}}^{\prime}}^{\otimes} F_{*} \omega_{X / Y}\right)=\mathbf{R}^{n} f_{*}^{\prime}\left(M_{\mathcal{O}_{X^{\prime}}^{\prime}}^{\otimes} \tau_{<p} F_{*} \omega_{X / Y}\right)
$$

By assumption $(*), R^{j} f_{*}^{\prime}\left(M_{\mathcal{O}_{X^{\prime}}^{\prime}}^{\otimes} F_{*} \omega^{i}{ }_{X / Y}\right)=0$ for $i+j=n$. Hence Proposition 1.1 yields

$$
\begin{aligned}
\mathbf{R}^{n} f_{*}^{\prime}\left(M_{\mathcal{O}_{X^{\prime}}^{\prime}}^{\otimes} F_{*} \omega_{X / Y}\right) & =\bigoplus_{i} R^{n-i} f_{*}^{\prime}\left(M^{\prime} \otimes \omega_{\mathcal{O}^{\prime}} \omega^{\prime} X^{\prime} / Y\right) \\
& =\bigoplus_{i} F_{Y}^{*} R^{n-i} f_{*}\left(M \underset{\mathcal{O}_{X}}{\otimes} \omega^{i}{ }_{X / Y}\right)=0 .
\end{aligned}
$$

Hence we obtain

$$
R^{n-i} f_{*}\left(M \otimes_{\mathcal{O}_{X}}^{\otimes} \omega_{X / Y}^{i}\right)=0
$$

for all i. This proves the lemma.
Theorem 1.3. Let f be as above and assume further that f is proper. If E is a vector bundle on X with $\operatorname{pcd}(E, f) \leq \alpha$, then

$$
\begin{align*}
R^{j} f_{*}\left(E \otimes \omega^{i}{ }_{X / Y}\right)=0 & \text { for } i+j>d+\alpha, \tag{1.3.1}\\
R^{j} f_{*}\left(E^{\vee} \otimes{\omega^{i}}_{X / Y}\right)=0 & \text { for } i+j<d-\alpha . \tag{1.3.2}
\end{align*}
$$

Proof. Since $\operatorname{pcd}(E, f) \leq \alpha$, we have

$$
R^{j} f_{*}\left(F^{n} E \otimes \omega^{i}{ }_{X / Y}\right)=0
$$

for $i+j>d+\alpha$ and for sufficiently large n. If we apply Lemma 1.2 to $M=F^{n} E$, we obtain (1.3.1) by descending induction on n. Since Grothendieck duality yields

$$
\mathbf{R} f_{*}\left(E^{\vee} \otimes \omega^{d-i}{ }_{X / Y}\right) \xrightarrow{\sim} \mathbf{R H o m}\left(\mathbf{R} f_{*}\left(E \otimes \omega_{X / Y}\right), \mathcal{O}_{Y}\right)[-d],
$$

(1.3.2) easily follows from (1.3.1).

Let $f: X \rightarrow Y$ be a proper k-morphism and $l \geq 0$ a nonnegative integer. A line bundle L on X is said to be l-ample relative to f if there exists $n \in \mathbf{N}$ such that
(1) the canonical map $f^{*} f_{*} L^{\otimes n} \rightarrow L^{\otimes n}$ is surjective;
(2) the fibers of the canonical Y-morphism

$$
X \rightarrow \mathbf{P}\left(f_{*} L^{\otimes n}\right)
$$

are at most l-dimensional.
In the case when $Y=\operatorname{Spec} k$, the above notion coincides with the l-ampleness in the sense of Sommese. By [BK1,5.2], we have $\operatorname{pcd}(L, f) \leq l$ if L is l-ample relative to f. Hence Theorem 1.3 yields the following result.

Corollary 1.4. Let f be as in Theorem 1.3 and $l \geq 0$. If L is a line bundle on X which is l-ample relative to f, then we have

$$
\begin{align*}
R^{j} f_{*}\left(L \otimes \omega_{X / Y}^{i}\right)=0 & \text { for } i+j>d+l, \tag{1.4.1}\\
R^{j} f_{*}\left(L^{\vee} \otimes \omega_{X / Y}^{i}\right)=0 & \text { for } i+j<d-l . \tag{1.4.2}
\end{align*}
$$

2. Vanishing for Gauss-Manin systems

Let $f:\left(X, D_{X}\right) \rightarrow\left(Y, D_{Y}\right)$ be as in the previous section. We define the graded \mathcal{O}_{Y}-module

$$
H=\bigoplus_{i} \mathbf{R}^{i} f_{*} \omega_{X / Y}
$$

Then there exists the Gauss-Manin connection

$$
d: H \rightarrow \omega^{1}{ }_{Y} \otimes H
$$

which leads to the following complex

$$
\omega_{Y}(H)=\left(H \xrightarrow{d} \omega^{1} Y \otimes H \longrightarrow \ldots \xrightarrow{d} \omega^{i} Y \otimes H \longrightarrow \ldots\right)
$$

The Hodge filtration on H can be extended to the following filtration of $\omega_{Y}(H)$:

$$
\operatorname{Fil}^{i} \omega_{Y}(H)=\left(\operatorname{Fil}^{i} H \longrightarrow \omega_{Y}^{1} \otimes \operatorname{Fil}^{i-1} H \longrightarrow \ldots \longrightarrow \omega_{Y}^{j} \otimes \operatorname{Fil}^{i-j} H \longrightarrow \ldots\right)
$$

We denote the associated graded complex by gr $\omega^{\prime}(H)$. In this section we prove a vanishing for the cohomology of bundles of the form $E \otimes \operatorname{gr}^{i} \omega_{Y}(H)$. The following is a consequence of [I, 4.7].

Proposition 2.1. Assume that $f:\left(X, D_{X}\right) \rightarrow\left(Y, D_{Y}\right)$ is proper and semistable and admits a lifting $\tilde{f}:\left(\widetilde{X}, \widetilde{D}_{X}\right) \rightarrow\left(\widetilde{Y}, \widetilde{D}_{Y}\right)$ over $W_{2}(k)$ which is also semistable. If f is purely of relative dimension $d<p$, then there exists an isomorphism

$$
\phi: \bigoplus_{i} \operatorname{gr}^{i} \omega_{Y^{\prime}}\left(H^{\prime}\right) \xrightarrow{\sim} F_{*} \omega_{Y}(H) .
$$

Lemma 2.2. Let f be as above. If M is a vector bundle on Y, then we have for all n

$$
\sum_{i+j=n} \operatorname{dim} H^{i+j}\left(Y, M \otimes \operatorname{gr}^{i} \omega_{Y}(H)\right) \leq \sum_{i+j=n} \operatorname{dim} H^{i+j}\left(Y, F^{*} M \otimes \operatorname{gr}^{i} \omega_{Y}(H)\right)
$$

Proof. By the spectral sequence

$$
E_{1}^{i, j}=H^{i+j}\left(Y^{\prime}, M^{\prime} \otimes F_{*} \operatorname{gr}^{i} \omega_{Y}(H)\right) \quad \Longrightarrow \quad \mathbf{H}^{n}\left(Y^{\prime}, M^{\prime} \otimes F_{*} \omega_{Y}(H)\right)
$$

we obtain

$$
\operatorname{dim} \mathbf{H}^{n}\left(Y^{\prime}, M^{\prime} \otimes F_{*} \omega_{Y}(H)\right) \leq \sum_{i+j=n} \operatorname{dim} H^{i+j}\left(Y, F^{*} M \otimes \operatorname{gr}^{i} \omega_{Y}(H)\right)
$$

On the other hand, Proposition 2.1 yields

$$
M^{\prime} \otimes F_{*} \omega_{Y}(H) \cong \bigoplus_{i} M^{\prime} \otimes \operatorname{gr}^{i} \omega_{Y^{\prime}}(H)
$$

Hence we have

$$
\operatorname{dim} \mathbf{H}^{n}\left(Y, M^{\prime} \otimes F_{*} \omega_{Y}(H)\right)=\sum_{i+j=n} H^{i+j}\left(Y, M \otimes \operatorname{gr}^{i} \omega_{Y}(H)\right)
$$

Thus the desired inequality follows.
Theorem 2.3. Let f be as above and assume further that Y is proper over k. Let $e=\operatorname{dim} Y$. If E is a vector bundle on Y with $\operatorname{pcd}(E) \leq \alpha$, then we have

$$
\begin{align*}
H^{j}\left(Y, E \otimes \operatorname{gr}^{i} \omega_{Y}(H)\right)=0 & \text { for } i+j>e+\alpha, \tag{2.3.1}\\
H^{j}\left(Y, E^{\vee}\left(-D_{Y}\right) \otimes \operatorname{gr}^{i} \omega_{Y}(H)\right)=0 & \text { for } i+j<e-\alpha . \tag{2.3.2}
\end{align*}
$$

Proof. By assumption and Lemma 2.2, we obtain (2.3.1) as in the proof of (1.3.1). Let d be the relative dimension of f. Then

$$
\operatorname{gr}^{i} \omega_{Y}\left(\mathbf{R}^{j} f_{*} \omega_{X / Y}\right)
$$

is Serre dual (with coefficients in ω_{Y}^{e}) to

$$
\operatorname{gr}^{d+e-i} \omega_{Y}\left(\mathbf{R}^{2 d-j} f_{*} \omega_{X / Y}\right)[e]
$$

Hence

$$
H^{n}\left(Y, E \otimes \operatorname{gr}^{i} \omega_{Y}\left(\mathbf{R}^{j} f_{*} \omega_{X / Y}^{\prime}\right)\right)
$$

is dual to

$$
H^{2 e-n}\left(Y, E^{\vee}\left(-D_{Y}\right) \otimes \mathrm{gr}^{d+e-i} \omega_{Y}\left(\mathbf{R}^{2 d-j} f_{*} \omega_{X / Y}\right)\right)
$$

Therefore (2.3.2) follows.
Corollary 2.4. Let f be as in Theorem 2.3. If L is an l-ample line bundle on Y, then we have

$$
\begin{align*}
H^{j}\left(Y, L \otimes \operatorname{gr}^{i} \omega_{Y}(H)\right)=0 & \text { for } i+j>e+l, \tag{2.4.1}\\
H^{j}\left(Y, L^{\vee}\left(-D_{Y}\right) \otimes \operatorname{gr}^{i} \omega_{Y}(H)\right)=0 & \text { for } i+j<e-l . \tag{2.4.2}
\end{align*}
$$

3. The case of open varieties

In [BK2], a vanishing theorem has been proved for line bundles on an open variety whose complement is a divisor with globally generated normal bundle. The purpose of this section is to generalize the result to the relative case.

Lemma 3.1. Let X be a scheme proper over k and L a line bundle on X which is globally generated. Let $f: X \rightarrow Y$ be a proper k-morphism to a scheme Y. Let E be a vector bundle on X with $\operatorname{pcd}(E, f) \leq \alpha$. Then for every coherent sheaf \mathcal{F} on X, there exists $n_{0}=n_{0}(\mathcal{F})$ such that for all $n \geq n_{0}$ we have

$$
R^{j} f_{*}\left(F^{n} E \otimes \mathcal{F} \otimes L^{\otimes m}\right)=0 \quad \text { for } j>\alpha \text { and } m \geq 0
$$

Proof. We proceed by induction on $(m, \operatorname{dim} X)$. Clearly the claim holds if $m=0$ or $\operatorname{dim} X=0$. Since L is globally generated, we can choose a section $\mathcal{O}_{X} \rightarrow L$ which is injective. Let Z be its zero scheme. We have the exact sequence

$$
0 \longrightarrow F^{n} E \otimes \mathcal{F} \otimes L^{\otimes(m-1)} \longrightarrow F^{n} E \otimes \mathcal{F} \otimes L^{\otimes m} \longrightarrow F^{n} E \otimes \mathcal{F} \otimes L^{\otimes m}{ }_{\mid Z} \longrightarrow 0
$$

By inductive hypothesis, we can find n_{0} such that for all $n \geq n_{0}$ and $j>\alpha$, we have $R^{j} f_{*}\left(F^{n} E \otimes \mathcal{F} \otimes L^{\otimes(m-1)}\right)=R^{j} g_{*}\left(F^{n} E \otimes \mathcal{F} \otimes L^{\otimes m}{ }_{\mid Z}\right)=0$, where $g:=f_{\mid Z}$. Hence $R^{j} f_{*}\left(F^{n} E \otimes \mathcal{F} \otimes L^{\otimes m}\right)=0$. This proves the lemma.

Lemma 3.2. Let X be a scheme which is smooth and proper over k and let $f: X \rightarrow Y$ be a smooth and proper k-morphism to a scheme Y. Let $D \subset X$ be a divisor such that the normal bundle $N_{D / X}$ is globally generated and let $U:=X \backslash D$. Let E be a vector bundle on X with $\operatorname{pcd}(E, f) \leq \alpha$. Then for every vector bundle \mathcal{F} on U, there exists $n_{0}=n_{0}(\mathcal{F})$ such that for all $n \geq n_{0}$ we have

$$
R^{j}(f \mid U)_{*}\left(F^{n} E \otimes \mathcal{F}\right)=0 \quad \text { for } j>\alpha
$$

Proof. Let \mathcal{I} be the ideal sheaf of D and let $g:=f_{\mid D}$. By [BK1, 5.4], for every vector bundle \mathcal{F} on X, we have an isomorphism

$$
\mathcal{E} x t_{f}^{j}\left(\mathcal{I}^{m} / \mathcal{I}^{m+1}, \mathcal{F}\right) \cong R^{j-1} g_{*}\left(\mathcal{F}_{\mid D} \otimes\left(\mathcal{I}^{m+1} / \mathcal{I}^{m+2}\right)^{\vee}\right)
$$

for all $j>0$ and $m \geq 0$. Therefore, by Lemma 3.1, we can find n_{1} such that

$$
\mathcal{E} x t_{f}^{j}\left(\mathcal{I}^{m} / \mathcal{I}^{m+1}, F^{n} E \otimes \mathcal{F}\right)=0
$$

for all $n \geq n_{1}, j>\alpha+1, m>0$ since we have $\left(\mathcal{I}^{m} / \mathcal{I}^{m+1}\right)^{\vee} \cong N_{D / X}{ }^{\otimes m}$.
This implies, by Grothendieck duality,

$$
R^{j} g_{*}\left(\left(\mathcal{I}^{m} / \mathcal{I}^{m+1}\right) \otimes \mathcal{F}^{\vee} \otimes\left(F^{n} E\right)^{\vee} \otimes \omega^{d}{ }_{X / Y}\right)=0
$$

for all $n \geq n_{1}, j<d-\alpha-1, m>0$. Putting $\mathcal{G}_{n}:=\mathcal{F}^{\vee} \otimes\left(F^{n} E\right)^{\vee} \otimes \omega^{d}{ }_{X / Y}$, we see that the natural map

$$
R^{j} g_{*}\left(\mathcal{I}^{m+1} \mathcal{G}_{n}\right) \longrightarrow R^{j} g_{*}\left(\mathcal{I}^{m} \mathcal{G}_{n}\right)
$$

is bijective for $n \geq n_{1}, j<d-\alpha-1$ and $m>0$. By [BK1, 3.1], for some m_{0}, we obtain a bijection

$$
R^{j}(f \mid U)_{*}\left(\mathcal{F} \otimes F^{n} E\right) \cong R^{d-j} g_{*}\left(\mathcal{I}^{m_{0}} \mathcal{G}_{n}\right)^{\vee}
$$

for $j>d+\alpha+1$ and a surjection

$$
R^{d-j} g_{*}\left(\mathcal{I}^{m_{0}} \mathcal{G}_{n}\right)^{\vee} \longrightarrow R^{j}(f \mid U)_{*}\left(\mathcal{F} \otimes F^{n} E\right)
$$

for $j=d+\alpha+1$. Then by duality and the assumption on $\operatorname{pcd}(E, f)$, we can find n_{2} such that

$$
R^{j} f_{*}\left(\mathcal{F}\left(m_{0} D\right) \otimes F^{n} E\right)=0
$$

for $n \geq n_{2}, j>\alpha$. If we set $n_{0}=\max \left(n_{1}, n_{2}\right)$, we have for all $n \geq n_{0}$,

$$
R^{j}(f \mid U)_{*}\left(F^{n} E \otimes \mathcal{F}\right)=0 \quad \text { for } j>\alpha
$$

Applying Lemma 1.2 and Lemma 3.2 to $\mathcal{F}=\Omega^{i}{ }_{U / Y}$, descending induction on n yields the following result.

Theorem 3.3. Let $f: X \rightarrow Y$ be a k-morphism which is smooth and proper. Let $D \subset X$ be a divisor such that the normal bundle $N_{D / X}$ is globally generated. Let $U:=X \backslash D$. Assume that $f \mid U: U \rightarrow Y$ is smooth, purely of relative dimension $d<p$ and liftable to $W_{2}(k)$. If E is a vector bundle on X with $\operatorname{pcd}(E, f) \leq \alpha$, we have

$$
R^{j}(f \mid U)_{*}\left(E \otimes \Omega_{U / Y}^{i}\right)=0 \quad \text { for } i+j>d+\alpha .
$$

As a consequence, we obtain the following generalization of a theorem of BauerKosarew [BK2, 6.3].

Corollary 3.4. Let $f: X \rightarrow Y$ be as in Theorem 3.3. If L is a line bundle on X which is l-ample relative to f, then we have

$$
R^{j}(f \mid U)_{*}\left(L \otimes \Omega_{U / Y}^{i}\right)=0 \quad \text { for } i+j>d+l .
$$

References

[BK1] Bauer, I. and Kosarew, S., On the Hodge spectral sequences for some classes of non-complete algebraic manifolds, Math. Ann. 284 (1989), 577-593.
[BK2] Bauer, I. and Kosarew, S., Some aspects of Hodge theory on noncomplete algebraic manifolds, in Prospects in Complex Geometry (Noguchi, J. and Ohsawa, T., eds), pp. 281-316, Lecture Notes in Math. 1468, Springer-Verlag, BerlinHeidelberg, 1991.
[DI] Deligne, P. and Illusie, L., Relèvement modulo p^{2} et décomposition du complexe de de Rham, Invent. Math. 89 (1987), 247-270.
[H] Hartshorne, R., Ample vector bundles, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 63-94.
[I] Illusie, L., Réduction semi-stable et décomposition de complexe de de Rham à coefficients, Duke. Math. J. 60 (1990), 139-185.
[K] Kleiman, S., Ample vector bundles on algebraic surfaces, Proc. Amer. Math. Soc. 21 (1969), 673-676.

Tohru Nakashima
Department of Mathematics
Tokyo Metropolitan University
Minami-Ohsawa 1-1, Hachioji-shi
Tokyo
192-03 Japan
email: nakasima@math.metro-u.ac.jp

