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Integrability of Green 
potentials in fractal domains 

Kaj NystrSm 

A b s t r a c t .  We prove Lq- inequal i t ies  for t he  gradient  of t he  Green  potent ia l  (G f) in bounded ,  

connec ted  N T A - d o m a i n s  in R n, n>_2. T hese  doma i ns  m a y  have  a h igh ly  non-rect i f iable  b o u n d a r y  

and  in t he  plane the  set of  all bounded  s imply  connec ted  N T A - d o m a i n s  coincides wi th  t he  set of  

all quasidiscs.  We get  a res t r ic t ion on t h e  exponen t  q for which  our  inequal i t ies  are valid in t e r m s  

of the  val idi ty of a reverse H61der inequal i ty  for the  Green  func t ion  close to  t he  boundary .  

1. I n t r o d u c t i o n  

In all of the following, let f~ be an open, connected and bounded subset of R n, 
n>2 .  Let G(x, y) denote the Green function of f~ and define for fcL~(f~), a f ( z ) =  
fa G(x, y)f(y) dy. Then Gf(x) is the Green potential of f .  It is a classical fact that  
if Of/is sufficiently smooth then the following inequality is valid for f cLP(f~) with 
1/q=l/p-1/n, n/(n-1)<q<cx~, 

(1) (/f~ iVG flq dx)l/q _c(f/,p) ( L  \l/p < ]fl p dx) . 

The possibility of extending (1) to Lipschitz domains was investigated by Dahlberg 
[6] and he was able to prove the following. 

T h e o r e m .  [6, Theorem 1] Let f ~ c R  n be a Lipschitz domain and put q2=4, 
qn=3 for n>3. Then there exists a number s = s ( f / ) > 0  such that ifn/(n-1)<q< 
qn+C and 1/q=l/p-1/n, then 

( L  IVGflqdx)l/q<-c(a'P)(L IflPdx) 1/p" 

If p=l then, I{xea:lVGf(x)[>)x}l<C(~2)(llflll/)X) n/(~-l). 
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Dahlberg also proved that these results are sharp in the following sense. For 

every q>q~ there exists a Lipschitz domain ~qCR n such that ~Gf~Lq(~q) for 

some f EL~(~q). 
In this paper we study the possibility of proving similar results on even less 

smooth domains. Our results are valid for bounded, connected NTA-domains. We 

recall the definition of NTA-domains (see Section 2). Let in the following d( -, 0~t) 

denote the Euclidean distance to the boundary, c9~, of ~. 

Definition. A bounded domain ~ c R  ~ is called non-tangentially accessible 
(NTA) when there exist constants M and ro such that:  

1. Corkscrew condition: For any QEOft, r < r o ,  there exists A=Ar(Q)Eft such 
that  M-lr< IA-QI <r and d(A, 0~) >M-lr.  

2. (C~) ~ satisfies the corkscrew condition. 

3. Harnack chain condition: If ~>0  and P1 and P2 belong to ~, d(Pj,Ogt)>c 
and ]P1-P2] <Co, then there exists a Harnack chain from P1 to P2 whose length 
depends on C and not on c. 

Let G(x) denote the Green function of ft with fixed pole Xo, d(xo, O~)~ 
diam(Yt). We make the following definition. 

Definition. Let ft be an open, connected and bounded subset of R n, n>2 .  
Then ~EDomain(n ,  M, r0, q) if the following two conditions are fulfilled. 

1. ~ is an NTA-domain with parameters  M and r0, 

2. there exists a constant C=C(~, q) independent of Q and r such that  the 
following reverse Hblder inequality is valid for all QEO~, r<ro, 

J(Q, r, ~,  xo, q) <_ CJ(Q, r, ~, xo, 1), 

where 

1 = \ J~{IB(Q.r)n~lf(Q,~)~a d(~,G(x) ~0~) dx)'~l/~, J(Q, r, 12, xo, a) 

for aE [1, co). Here B(Q, r) denotes an open ball, centered at Q and of radius r. By 
[B(Q, r)Nft] we denote the n-dimensional Lebesgue measure of the set. 

I t  is  important  to note tha t  if ~ is an NTA-domain with parameters  M, r0, 

then ~EDomain(n ,  M, r0, 1 + 1 / ( 1 - / 3 ) )  where/3=/3(M) >0  is a constant describing 
the boundary behaviour of the Green function, G(x) (the constant/3 is the constant 
appearing in Lemma 3.5 below). Tha t  is, for every bounded NTA-domain ~ the 
reverse Hblder inequality stated above is valid with q=2. 

We may now state our main theorem. 
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M a i n  T h e o r e m .  Let ~EDomain(n ,  M, ro, q) where q>n/(n-1).  Then there 
exists a constant C=C ( f~, q) such that if 1/ q=l /p-1/n ,  then the following inequal- 
ity is valid for all fELP(f~), 

( fa 'VG fIq dx) l/q < C( f~  If[P dx) 1/p. 

/ f p = l  then, I {xea :  IVGf(x)I >A}I <_c(ft)(llflll/A) ~/('~-1) . 

There are two questions naturally associated with the statement of this theo- 
rem. The first one is the question of estimating q (of course we want q as big as 
possible) and the second one is the question of finding the sharp exponent. These 
two related questions are addressed in Section 12. Here we just want to give the 
reader an idea of the results of Section 12. Let Wa denote the Whitney decomposi- 
tion of a c R  ". Let Wj:={QeWf~, I (Q)=2-J} ,  where l(Q) denotes the sidelength 

of Q. For q>0  we introduce the number, 

• := Z 2J(q- ) Z a(xQ)  
J>_Jo QEWj 

Here we choose j0 to avoid the pole of G(x) =G(x, xo). The point XQ is the center of 
the cube Q. As a special case of Corollary 12.1 we may now formulate the following 

theorem. 

T h e o r e m .  Let f ~ c R  2 be yon Koch's snowflake. Then the following is true. If 
Iq (f~) < oo then there exists a constant C= C(f~, q) such that if 1/q = 1/p- 1/2, q > 2, 
f ELP(ft), then 

( f~ IVG f] q dx) 1/q <_ C ( ~  ]flP dx) 1/p. 

Furthermore, if Iq(a)=oo, then there exists f e L ~ 1 7 6  such that V a  f CL~(a). 

The difficult part of this paper is the proof of our Main Theorem. Section 3 to 
Section 10 all contain essential contributions to the final proof in Section 11. The or- 
der in which lemmas and theorems are proved follows Dahlberg [6] and we once and 
for all acknowledge our debt to his work. Though the basic philosophy is the same 
as in Dahlberg [6] several other ideas are needed and the sources of these ideas are 
essentially three: Jerison-Kenig [14], Jones [16] and NystrSm [21]. We will briefly 
describe the method used. The methods Dahlberg used are by now classical tools 
in harmonic analysis and are presented in Coifman-Fefferman [4], Muckenhoupt-  
Wheeden [20], Burkholder-Gundy [3], Stein [22], De Guzman [11]. Dahlberg used 
these powerful techniques together with results on harmonic functions and potential 
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theory on Lipschitz domains developed by himself [5], [7], [8]. Several of Dahlberg's 

results were generalized in [14] by Jerison-Kenig to NTA-domains. Their paper 

supplies us with several lemmas on the boundary behaviour of harmonic functions 

which we make frequent use of. The connection to [16] is that our approach con- 

tains extensions of harmonic functions and Green potentials to a neighbourhood 

of our domain i2. In this way we get rid of the difficult geometry of 0ft and may 

then instead work on cubes centered on the boundary. These extensions are defined 

by using both the Whitney decomposition of ft(Wa) and of (C~)~ The 

definition on Q E W(ca)o of a quantity is related to the definition on an associated 

reflected cube Q*CWa. This type of quasiconformal reflection technique is of course 

not unique for [16] but our extensions are in the same spirit. The fourth source of 

ideas is Nystrhm [21] and concerns inequalities for subsets of the Sobolev spaces 
defined on ft. Their deduction is based on non-linear potential theory and the work 

of Maz'ya [18], and the approach involves estimates of capacities. 

The plan of the paper is as follows. There are altogether 12 sections of which 
Section 1 is this introduction. As several of these sections are quite technical we 

usually in the beginning of each such section state the lemmas and theorems that 
will be used later on, i.e. the reader may very well just read those for a start. Still 

we have enumerated the theorems and lemmas in each section in the sequence they 

are proved. That  is why we, for instance in Section 5, start off by stating Lemma 5.1 
and Lemma 5.4. This means that these two lemmas are the only ones to be used 

in other sections, but that  there are still two lemmas in between, Lemma 5.2 and 

Lemma 5.3, which are used only in the proof of Lemma 5.4. 

In Section 2 we define and explain the geometric notions we are working with 
and in Section 3 we present those results of Jerison-Kenig that we will make use 

of later on. Section 4 contains the basic facts about the Whitney decomposition of 

our domain and the reflection principle which we will make use of is presented. In 

Section 5 we define our extensions and prove some lemmas. Section 6 contains the 

proof of some reverse Hhlder inequalities on arbitrary cubes. In Section 7 several 

results on the integrability of the Green function as well as Green potentials are 

presented. The results of Nystr6m [21] used, are contained in this section. In 

Section 8 we present some important lemmas which we need in Section 9 where we 

prove agood-A-inequality for an operator T and a maximal operator K associated to 

our problem. Section 10 contains the last preliminary results before we in Section 11 

present the proofs of the final results. At this level the proofs become quite short. 

In Section 12 we are concerned with the reverse Hhlder inequality for the Green 
function and the question of sharpness. 

Acknowledgement. This work is part of my thesis written at the Department 
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of Mathematics, University of Umes I wish to express my deep gratitude to my 

advisor, Hans Wallin, for his support and advice during this work. 

Notation. We here just give the basic notation used in the paper. Note specif- 

ically the convention on the denotation of constants stated below. 

ft will be an open, connected and bounded subset of R ~ with boundary 0~. 

By B(x,r)  we denote an open ball with center x and radius r. If QEO~2 then 
A(Q, r):=B(Q, r)nOft, w(x, F, ft) is the harmonic measure of FcOf t  relative to ft 

at xEft. G(x,y) will denote the positive Green function of ft with pole at yEft.  

If x c R  ~ and B is a closed subset of R ~ then by d(x, B) we denote the Euclidean 

distance from x to B. If fELP(ft), Gf(x)  is the Green potential of f .  By W'~'P(ft) 

we mean the Banach space of those functions in LP(ft), which have distributional 

derivatives up to order m in LP(ft) normed with the sum of the L p norms of the 
derivatives. As usual, W~'P(ft)  denotes the closure of C~( f t )  in the same norm. 

~ ku  is the vector of all (weak) partial derivatives of u of order k. By m~(E) and 

IEI we mean the n-dimensional Lebesgue measure. All the cubes used are closed 

cubes with sides parallel to a fixed system of coordinate axes. 

Conventions on constants. Most of our constants will depend on f t c R  n. Al- 

though most constants, appearing in the formulation of lemmas and so on, will 
depend on the constant C appearing in the formulation of the reverse H61der in- 

equality for the Green function (see the definition above or Definition 2.1), this will 

not be explicitly stated, c(al, a2 ,... , an) will mean that the constant c only depends 

on the parameters al, a2 ,... , an. By an absolute constant we mean a constant that  
just depends on characteristic data of ft (i.e. on M and C) and the space dimension 

in a non-local way. By A ~ B  we will mean that the quotient of the parameters A 

and B is bounded from above and below by absolute constants. By A < B  we mean 

that A / B  is bounded from above by an absolute constant. If we in a sequence of 

deductions use the same constant c all the time, this means that the original depen- 

dence of c is the same after as before the operations were carried out. Otherwise, 

the constants appearing are usually given with the parameters they depend on or 

are described at the point they appear. 

2. G e o m e t r y  

Let in the following G(x) denote the Green function of ft with fixed pole x0, 

d(xo, Oft)~diam(ft). Here d(- ,  0ft) denotes the distance to the boundary. We make 

the following definition, 
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Definition 2.1. Let ft be an open, connected and bounded subset of R n, n>2. 
Then ft E Domain(n,  M, r0, q) if the following two conditions are fulfilled. 

1. ft is an NTA-domain with parameters  M and r0, 
2. there exists a constant C = C ( f t ,  q) independent of Q and r such that  the 

following reverse Hhlder inequality is valid for all QEOft, r<ro, 

where 

J(Q, r, ft, Xo, q) <_ CJ(Q, r, ft, xo, 1), 

fB a ~/a 
J(Q, r, ft, xo, a) = 1 G(x) dx) , 

[B(Q,r)nftl (Q,~)n~ d(x, Oft) 
for a E [1, e<)). 

In this section we will describe at some length the geometric notions of Condi- 
tion 1 in Definition 2.1. Condition 2 is investigated in Section 12. 

Definition 2.2 [16, p. 73]. f t c R  n is an (c, 6)-domain if for any pair of points 
x, yCft, I x -y  I <~, there exists a rectifiable arc 7 C f t  joining x and y and satisfying 

1. l(7)<lx-Yl/~ , 
2. d(z, aft)> (Ix-zl lY-zl)/Ix-yl for all zeT .  

This condition on ft has been proved useful in extension theorems for function 
spaces defined on ft. See [15], [16]. In [14], Jerison-Kenig defined a class of domains 
which they named NTA-domains. These are the domains we will be working with. 
Their connection to (e, 6)-domains is that  an NTA-domain is an (G oc)-domain 
with an additional thickness condition on the complement of ft. The definition is 
in itself adapted to the s tudy of harmonic functions on ft. Definition 2.3 and 2.4 
below are verbally taken from [14, p. 93]. In the following M will be a fixed constant 
depending on ft C R ~. 

Definition 2.3. An M non-tangential ball in a domain ft is a ball B(A, r) 
in ft whose distance from Oft is comparable to its radius: Mr>d(B(A,r) ,  Oft)> 
M-lr .  For P1,P2cft, a Harnack chain from P1 to P2 in ft is a sequence of M 
non-tangential balls such tha t  the first ball contains P1, the last contains P2, and 
such that  consecutive balls have non-empty intersection. 

Remark 2.1. Suppose u is a positive harmonic function in ft. Then C-lu(P1)< 
u(P2) <Cu(P1), where C depends only on the length of the Harnack chain connect- 
ing P1 and P2 by the Harnack inequality. 

Definition 2.4. A bounded domain f t c R  n is called non-tangentially accessible 
(NTA) when there exist constants M and r0 such that:  

1. Corkscrew condition: For any Q E Oft, r < r0 , there exists A =An (Q) E ft such 
that  M - l r < I A - Q [ < r  and d(A, Oft)>M-lr.  
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2. (C~I) ~ satisfies the corkscrew condition. 
3. Harnack chain condition: If ~>0 and P1 and P2 belong to Ft, d(Pj, 0~)>~ 

and [P1-P2[<Cc, then there exists a Harnack chain from P1 to P2 whose length 
depends on C and not on c. 

Condition 1 is named the corkscrew condition because the union of non-tan- 
gential balls of radius { M - l r ,  as r tends to zero, forms a non-tangential approach 
region tending towards Q, which is a twisting replacement for the usual conical 
approach region for Lipschitz domains. Condition 2 implies that  NTA-domains are 
regular for the Dirichlet problem. Conditions 1 and 3 may be combined to the 
following equivalent condition: 

4. If E>0, P1, P2 belong to ~t, d(Pj,O~)>c, and IP1-P2]<2k~,  then there 
exists a Harnack chain from P1 to P2 of length Mk. Moreover, for each ball B in 
the chain, radius(B) > M  -1 min(d(P1, B), d(P2, B)). 

If It is an NTA-domain then it is also an (~, 5)-domain for all 5<oe  as mentioned 
above. We will sometimes use this description of ~ and we note that  the relation 
between the crucial parameters M and ~ is essentially c =  1/M. 

We will now state three important results. 

L e m m a  2.1. [16, Lemma 2.3] Suppose ~ c R  n, n>2, is an NTA-domain. 
Then mn(O~)=O. 

The second one is more of an observation and tells us that  the important  
parameter M is invariant under dilations of R n. 

L e m m a  2.2. Let ~ c R  n, n> 2, be an NTA-domain with parameters M and to. 
Define ~', x E ~  r ( x - p ) / a G ~ ' ,  for some a > 0  and some p E R  n. Then ~' is an 
NTA-domain with parameters M I and rio, where M I = M  and r~o=ro/a. 

The third result is a geometric localization theorem. 

T h e o r e m  2.1. [171 Suppose ~ c R  n, n > 2 ,  is a bounded NTA-domain. Then 
there exists r0>0  depending only on ~ such that for all QEO~ and all r<ro there 
exists an NTA-domain [IQ,rC~ such that 

B(Q, M - l r ) n a  C aQ,r C B(Q, M r ) h a .  

Furthermore, the constant M in the NTA-definition of [tQ,r is independent of Q 
and r. 

This localization for NTA-domains replaces the local starshapedness explored 
on Lipschitz domains. 

For a discussion of the geometry of NTA-domains in R n, n >2 ,  we refer to [14, 
p. 90 94]. We will briefly just describe the geometry of NTA-domains in the plane. 
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T h i s  short exposition reveals the close connection between NTA-domains and the 
theory of quasiconformal mappings. By a quasicircle is meant the image of a circle 
under a quasiconformal mapping. A domain bounded by a quasicircle is called a 
quasidisc. For the theory of quasiconformal mappings we refer to Gehring [9] and 
Vgis~l~ [23]. 

Remark 2.2. Gehring and V~iss163 [10] have proved that  while the Hausdorff 
dimension of a quasicircle is always less than 2 it can take any value A, l < A < 2 .  

A simple, closed curve in the plane is said to satisfy the Ahlfors' three point 
condition, if for any points Z1, Z2 on the curve and any point Z3 on the arc between 
Z1 and Z~ of smaller diameter, the quotient between the distance between Z1 and 
Z3 and the distance between Z1 and Z2 is bounded by a fixed constant. 

One may prove the following theorem. 

T h e o r e m  2.2. Let f~ be a bounded and simply connected subset of the plane. 
Then the following are equivalent statements. 

(1) t] is a quasidisc. 
(2) 0Ft satisfies the Ahlfors' three point condition. 
(3) ~ is an NTA-domain. 

Proof. (1)<=>(2) is due to Ahlfors [2]. (1)r is due to Jones [151. 

3. H a r m o n i c  f u n c t i o n s  o n  N T A - d o m a i n s  

In this section we summarize the results of Jerison-Kenig [14] that we will 
frequently make use of in the forthcoming sections, f~ C R ~ will all the. time denote 
a bounded, connected NTA-domain with parameters M, r0. The definition of NTA- 
domains was given in Section 2. Recall that  for all QcO~, r<ro, A~.(Q) denotes 
a point in Ft fulfilling M - l r < I A r ( Q ) - Q I < r  and d(A~(Q),O~)>_M-Ir. All the 
constants appearing in the following lemmas only depend on the original value 
of M. ZX(Q, r ) :=B(@r)nOa .  

L e m m a  3.1. [14, Lemma 4.4] If u is a positive harmonic function in f~ which 
vanishes continuously on A(Q, 2r), then u(x)<Mu(AT(Q)) for all xeB(Q,  r)n~. 

L e m m a  3.2. [14, Lemma 4.8] If2r<ro and x e ~ \ B ( Q ,  2r), then 

M_ 1 < w(x, Zx(Q, r), a) < M. 
r~-2a(x,  Ar(Q)) 
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L e m m a  3.3. [14, Lemma 4.10] Let r be such that Mr<to.  Suppose that u 
and v are positive harmonic functions in ~ vanishing continuously on A(Q, Mr) 
for some QEOft. Then, 

M_lu(A~.(Q)) < u(x) Mu(Ar(Q)) 
v(Ar(Q)) - ~ <- v(A~(Q))' 

for all xEB(Q, M- l r )Nf t .  

L e m m a  3.4. [14, Lemma 4.1] There exists f l= /3(M)>0 such that for all 
QEO~, r<ro, and for every positive harmonic function u in ~, such that u van- 
ishes continuously on A(Q, r), the following is valid. If  xC~NB(Q, r) then u(x) < 
M(Ix-QI/r)gC(u) ,  where C(u):=sup{u(y):yeOB(Q, r)nt~}. 

Using these lemmas we may prove the following estimate of the Green function. 

L e m m a  3.5. Let QoE0~. Then there exists a constant C=C(n) such that if 
Cr<ro and xE~\B(Qo ,  Cr), then the following estimate is valid with/~=/3(M) >0 
for all yEB(Qo, r)Nft, 

G(x, y) < C(M, n) d(y, 0a)9 w(x, ~(Qo, r), ~). 
- -  r n - 2 + f l  

Proof. From Lemmas 3.4, 3.1 and 3.2 we have, 

(1) ly-QoiZw~ x A ~  , a(x, y) <__ C(M, n) ~ ~ , ~o,  r~, ~). 

Fix yEB(Qo,r)N~. Then there exists a Whitney cube Qy=Q such that  yEQ. 
Choose pEOt~ such that  d(p,Q)=d(Q, Oft). Then ]p-Qol<Cr where C=C(n). 
Yhrthermore, yEi2NB(p, Cr) and B(p, Cr) C B( Qo, 2Cr). If xEt~ \ B( Qo, 6Cr), we 
get by applying (1) to the ball B(p, Cr), 

d(y, aa), w(x, ~(Q0, r), ~). d(y, Ofl)~ w(x, A(Q0, 2Cr), t~) <~ rn_:+Z G(x,Y) <~ rn_2+f~ 

T h e o r e m  3.1. [14, Theorem 7.9] Let 12 be an NTA-domain and let V be 
an open set. Let K be a compact subset of V. Then there exists a number a > 0  
such that for all positive harmonic functions u and v in ~ that vanish continuously 
on OftnV, the function u(x)/v(x) is Hhlder continuous of order a in K n f t .  In 

particular, limz--+Q u(x)/v(x) exists for all QEKNOt~. 

The next lemma contains two basic estimates of the Green function. The first 
can be found in Wu [25, Lemma 2] and the second part in Widman [24, Lemma 2.1]. 
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L e m m a  3.6. Let ~ c R  n, n> 2, be a bounded and simply connected NTA- 
domain. Then the following is valid. 

1. If  x, yef~, Ix-yi<d(y,  Of~)/2 then 

log d(y, c9~___~) <_ G(x, y) < 5 log d(y, Of~), n = 2 
Ix-yl Ix-yl 

1_ x yl -n+2 < G(x, y) < Ix-y] -~+2, n > 3. 

2. G(x ,y)<C(n) ix-yI  -~+1 i fx ,  yEB(z,  1) for some zEf~ and n>2. 

We will also make frequent use of continuity properties of Riesz potentials. 
Define for 0 < a < n ,  

1 [~ f(y) 
I~f(x)  := ~/(~) ~t~ Ix-yl  n-" dy. 

T h e o r e m  3.2. [22, p. 119] Let 0 < ~ < n ,  l<p_<q<oc,  1/q=l/p-o~/n.  Then 

1. [[Ic~fllq<_Ap,qllfllp, 
2. suppose f E L l ( a )  and 1/q=l-c~/n,  then I{x:li~f(x)l>a}l<_A,,~(llfll/X)~. 

4. W h i t n e y  c u b e s  and  o t h e r  c u b e s  

In this section we gather the information about the behaviour of the Whitney 
decomposition of an NTA-domain with parameters M and r0 needed in the ex- 
tension procedure carried out in the next section. As pointed out in Section 2, an 
NTA-domain f t c R  n is an (c, 5)-domain for all 5<oc  with c = l / M .  We let 5=a<<ro 
be one fixed such 5. In the following we work with closed cubes with sides parallel 
to a fixed system of coordinate axes. By xQ we mean the center of the cube Q and 
by kQ, where k>O, we mean the cube Q dilated with respect to XQ by a factor k. 
By l(Q) we mean the sidelength of Q. We start with the Whitney decomposition. 

T h e o r e m  4.1. [22, p. 16] Let f~ be an open subset o f R  n. Then 

1. =Uk=l Qk, 
2. Q nQ~ if jCk, 
3. there exists cl, c2>0 so that cll(Qk)<d(Qk, Cft)<c21(Qk). 

We denote by W~ the Whitney decomposition of f~. Define W1 := W~, W2 :-- 
W(C~)o, W3 :={QEW2 :I(Q) <a}. The constant C in the following lemmas depends 
at most on n and M. 

L e m m a  4.1. [16, Lemma 2.4] If  QjEW3 then there exists a cube SkCWl such 
that 

l(S~) 
1_</(--Q~j) _<4, (Qj,Sk)<_Cl(Qj). 
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For each QjEWa we fix SkcW1 according to Lemma 4.1 and define Q~:=Sk. Q~ 
is called the reflected cube associated to Qj. 

L e m m a  4.2. [16, Lemma 2.6] If SkEW1 then there are at most C cubes Qj, 
QjEW3, such that Q~=Sk. 

L e m m a  4.3. [16, Lemma 2.7] If  Qj, QkEW3 and QyNQk~O, then 

d(Qj, _< Cl(QD. 

We will also make use of the following consequence of the definition of NTA- 
domains. 

L e m m a  4.4. Let Q be a cube such that QNO~O,  l(Q)<ro. Then there exists 
a cube Q. c Q  such that either Q . c ~  or Q.c(C~) ~ and such that l(Q.)>Cl(Q). 

We always denote by Q.  the largest such cube. In the forthcoming sections we 
will be working with arbitrary cubes Q with sides parallel to the coordinate axes 
and lying in a band of the boundary. We will split the class of cubes into several 
subclasses depending on whether Qc~,  Q c  (C~) ~ or QNO~O.  In the first and the 
second case we will also distinguish between the two cases l(Q)< ~d(Q, 0~) and 
l(Q)> ~d(Q, 0~). The three types of cubes may be referred to as "small" cubes, 
"large" cubes and "boundary" cubes. The analysis on "large" and "boundary" 
cubes will in general be the same, but the analysis on the "small" cubes will often 
be quite different. Lemma 4.5 4.9 below all contain trivial but  very important facts 
about this splitting and we will refer to these results frequently. 

L e m m a  4.5. Suppose Q c ~  or Qc(C~) ~ Then the following is valid. 
1. If l(Q) < ~d(Q, 0~), then d(x, 0~)~d(Q, 0~) for all xeQ. 
2. If l(Q) > ~d(Q, 0~2), then d(xp, 0~)~l(Q). 

17~ ND~:~J~ Lemma 4.6. Let l (Q)<~d(Q,a~) .  Define W ~ ( Q ) : = { p j e w ~ : ~  5 ~ 
W 17 if Q c ~  and W2(Q):={Qje 2:~QjNQ~O} if Qc(~2) ~ Then (CWl(Q)<<C and 

4r with C=C(n). Furthermore, if QjEWI(Q) or QjEW2(Q), then 
l(Qj) ~d(Q, 

L e m m a  4.7. Let Qc~2 or Qc(C~) ~ be such that I(Q)> ld(Q,O~).  Then 
there exists a cube Q', Q' EW~ or Q' EW2, such that l(Q')~l(Q) and m~(Q'NQ)~ 

L e m m a  4.8. Let Q be a cube such that Q c ( ~ )  ~ I(Q)> IA6d(Q,O~), or QN 
0 ~ .  Then QN(~)~  CI(Q)) for some pEOn2 and C=C(n). Suppose Q~E 
W3 and ~Q~NB(p, Cl(Q))~O. Then Q~cB(p,C*I(Q))N~* where C*=C*(M,n) 
and Q~ is the reflected cube associated to Qj. 
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L e m m a  4.9. Let QNO~tr Fix A > I .  Then there exists a constant Co= 
Co(M,n,A)>O such that ifQjEW3, ~Qjl~ N { R ~ \ C o Q } r  then QjN* AQ=O. Here 
Q~ is the reflected cube associated to Qj. 

Proof. Suppose Q~NAQr Then by Lemma 4.1 we have I(Qj)<~AI(Q) and 
17 n R n C d(Qj,Q)<AI(Q). But this contradicts the assumption that  y~Qy { \ 0Q}~0 

if we just choose Co sufficiently large. 

5. E x t e n s i o n s  o f  h a r m o n i c  f u n c t i o n s  a n d  p o t e n t i a l s  

In this section we extend positive harmonic functions u(x) defined on ~t, the 
Green function of ~ and Green potentials to a band around ~. Of course our 

extended function Eu will not be harmonic but the reflection principle, described 
in Lemmas 4.1 4.3, which is the crucial technique, will ensure that  the Harnack 

inequality is preserved in a strong sense. We remind the reader that  ~ c R ~ denotes 
an NTA-domain with parameters  M and ro. Recall that  WI:=W~, W2:=W(C~)o, 
W3:={QEW2:I(Q)<_a}. This notation was introduced in Section 4. Let {~pQj} 
denote a parti t ion of unity associated to W3 such tha t  for all Qj E W3 we have 
e p b E C ~ ( R n ) ,  suppeQj  17 C~Qj and ~QjEW3 e Q j ( x ) = l  for all xEUpEw3 Q. Let 
in the same way {pQ~ } be a parti t ion of unity associated to W1. 

Definition 5.1. Let u(x) be a positive harmonic flmction defined on ~. We 
define an extended function Eu(x) for all xE~UUpcw 3 Q in the following way. 

Eu(x)  := x (x)u(x) +x(c )o (x) u(xQ;) Q3 (x), 
Q jEW3 

where Q~ is the reflected cube associated to Qj as described in Lemma 4.1. 

We will also define an extended "Green function". To do this in a way that  fits 
our purpose we introduce for all QEW3 the following sets 

B(Q) := {Qj E W1 : Qj NQ* r 0}, A(Q) := W~ \B(Q). 

The interpretation of the sets B(Q) and A(Q) for a fixed cube QEW3 is that  B(Q) 
denotes the Whitney cubes in ~ which are close to the reflected cube Q*. A(Q) is 
just the complementary set. 

Definition 5.2. Let y E ~  and xE~UUQEw 3 Q. We define the extended "Green 
function" as follows, 

EG(x,y) :=X~(x)G(x,y)+x(Ca)o(X) ~-~ ep~(x)d(xQ~,y), 
Q1EW3 
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where 

A(xQ I'y) := E ~Q2(Y)aQI,Q2(Y), 
Q2 C W1 

aQ1,Q2(y ) := V(xQ~ , y) if Q2 E A(Q1), 

aQ1,Q2 (Y) := 1/d(y, Oft) n-2 if Q2 �9 B(QO. 

The extended potential  is defined EG f ( x ) := f~ EG ( x, y ) f ( y ) dy for all f cL ~ ( ft ) , 
supp fCf~  and xE~UUQew 3 Q. 

We note that  EGf(x) is continuous on ~ u U Q c w  3 Q if f � 9  On f~ this 

is trivial as EGf(x)=Gf(x)  if x � 9  and Gf(x) is continuous. See Helms [13, The- 
orem 6.22]. If xE(Cft) ~ then by definition 

E G f ( x ) =  E r 
Q1CW3 

which of course is a continuous flmction. What  therefore remain in the proof of 
the continuity of EGf(x) is to prove that  if Q � 9  and xj�9 ~ xj--+Q, then 
EGf(xj) ~0. But this follows immediately from the definition. 

The definition of the extended "Green function" is such that  the properties of 
the Green function G(x, y), as x is not si tuated too close to the pole y, are preserved 
under the extension. In the critical case, tha t  is when x �9149  and y�9 we have 
defined EG(x,y) as a truncation of G ( . , y )  near y at an appropriate level. This 
implies that  EG(x, y) is bounded on (Cft) ~ in the following way. The proof is 
presented below. 

L e m m a  5.1. Let y �9  Then for all x �9  3 Q the following is valid, 

EG(x, y) < 
d(y, 0~) ~-2" 

The definition also implies the following. 

L e m m a  5.4. Let Q�9 Let Q--~Q* by reflection. Then for all f � 9  
f>_O and supp f C ~  the following is valid, 

fQ EGf(x) n/~-~dx<C fQ Gf(x) n/n-1 
d ( x ,  Oft)  - d( x, OR) dx, 

for some constant C=C(n, M). 

The rest of this section is devoted to the proof of Lemma 5.1 and Lemma 5.4. 
Lemma 5.2 and Lemma 5.3 below, are used in the proof of Lemma 5.4. 
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Proof of Lemma 5.1. For all x, y the number of nonzero terms in the definition 
of EG(x, y) is bounded by a constant C=C(n) by the underlying properties of the 
Whitney decomposition. So what we have to prove is that  if y E Q2 E Wl, Q1 E W3 and 
Q2 NQI=0,* then G(XQ~ ,y)<C(n)/d(y,O~) n - 2 . _  But this follows from Lemma 3.6 
and the maximum principle. 

L e m m a  5.2. Let ye~ and define Sy:--{QEW1 :~Q(y)~0}. Suppose Q1, Q2e 
W3, Q1NQ2~O. Then 

1. C(xQ~, y)~c(xq~, y) if sy cA(QI)nA(Q2), 
2. C(xQ~,y)>C(M,n)/d(y,O~p -2 ~fSynB(Q2)r and S~nB(QI)=O. 

Proof. We start with the conclusion in 1. The conclusion is trivial if Q~ NQ~ 50. 
We therefore assume that  Q1NQ2 - 0 .  Let B denote a ball centered at y and of radius 
Cll(Q2), where c~<<1 is a constant to be fixed later on. G(x, y) is then a positive 
harmonic function on ~ \ B  as a function of x. As ~t is an (c, 5)-domain there exists 
a curve 7(t) connecting ~/(0)=xQ~, "~(1)=xQ~ such that  by Lemma 4.3, 

(1) l(~) < Mlxq~ -xQ~l <_ C(M, n)l(Q~). 

Furthermore for all zE~/we have, 

1 IxQ~-zl IXQ~-zl 
(2) d(z, a~) > M tXQ~ -XQ~[ 

Define tl :=inf{t0:7(t) ~Q~, Vt>to} and t2 :=inf{t0:7(t) EQ~, Vt~to}. Then for all 
z=7(t) ,  with tE [tx, t2], we get from (2), Lemmas 4.1 and 4.3 that  

(3) d(z, 0~) > C(M, n)l(Q2). 

If {2/(t):te[tl,t2]}NB=O then we leave 7(t) unchanged. If {~/(t):te[h,t2]}nB# 
then define t3:=inf{to:~/(t)~B, Vt<_to} and t4:=inf{to:~/(t)~B, Vt>to}. Then 

{7(t) :re [0, t3)U(ta, 1]}NB=0. Replace {~/(t):te [t3, t4]} with one of the arcs on OB 
defined by the points 7(t3) and 7(t4) and denote the modified curve by ~* (t). Choose 
C~--C(M, n)/2 where C(M, n) is the constant in (3). This construction has lead us 
to a rectifiable arc 7*(t), connecting xQ; and XQ~, such that  l(~*)<_C(M, n)l(Q2), 
d(z, 0~) > C(M, n)l(Q~) and d(z, y) > C(M, n)l(Q2) for all z e~*. Covering 7* with 
balls of size ~/(Q2) and applying the Harnack inequality completes the proof. 

We now prove the conclusion in 2. By assumption there exist cubes Q3 ~ W~ 
and Qa~W~ such that  Q3~Q4~0, Q3~Q~O, ~Q~(y)~O and SyNB(Q~)=O. It 
follows from Lemma 3.6 and the Harnack inequality that  

c(~) 
(4) inf G(x,y) > xeQ~ - d(y, Oft) ~-~" 
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Fix xoeQ~ such that Ixo-yl>l(Q~)/4. By the same argument as in the proof of 1, 
we get that G(XQ~, y)~G(xo, y). The conclusion then follows from (4). 

We now define an auxilary mapping Q E W3--*Q* E W1 in the following way. Let 
x E Q. Then 

Z(Q*), , 
~)Q,Q* (x) -~ ~ X - - Z Q ) ~ - X Q * .  

By this map Q is mapped bijectively onto Q*. 

L e m m a  5.3. Let xEQEW3, yG~. Then 

EG(x, y) < CG(~p,Q. (x), y), 

for some constant C=C(M, n). 

Proof. Define W(Q)={QjEWa:QjNQr Fix yC~ and define Sy={QiEWI: 
~Q, (y) r Then by Definition 5.2 we have 

(1) EG(x, y) = E E CQJ (X)pQ, (y)aQj,Q~ (y). 
Qj cW(Q) Q~cS~ 

Suppose 

Then (1) reduces to 

N A(Qj). 
Qj cW(Q) 

(2) Ea(x,y)  = Cqj(x)V(xQ;,y) 
Qj cw(o) 

As r it follows from Lemma 5.2 and (2) that, 

(3) EG(x, y) <_ C(M, n)G(xQ., y). 

But as SycA(Q) we get by the Harnack inequality that 

(4) G(XQ., y) <~ min G(z, y) <~ G(~Q,Q. (x), y). 
zcQ* 

Combining (3) and (4) completes the proof in this case. Suppose 

Qj ~W(Q) 
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This implies that  there exists QJo cW(Q) such that  Sy N B(Qjo)7~O. By Lemma 5.2 
we always have EG(x, y)<_C(n)/d(y, 0a)  n-2 so what we have to prove is that  

(5) min G(z, y) > C(M, n)/d(y, Oft) n-2. 
zEQ* 

If SvNB(Q)r this is trivial. If SyNB(Q)=O, (5) follows from part 2 of Lemma 5.2. 
This completes the proof. 

Proof of Lemma 5.4. As l(Q)~l(Q*) by Lemma 4.1, all we have to prove is 
that  

/Q [EG f (x) [n/n- l dx <~ /Q. [G f (x) l~/~- l dx. 

But EGf(x)<~Gf(~Q,Q.(x)) by Lemma 5.4. A simple change of variables then 
completes the proof. 

6. R e v e r s e  Hhlder  inequal i t i e s  on  c u b e s  

In this section we prove Theorem 6.1 and Lemma 6.1 below. 

T h e o r e m  6.1. Let f~CDomain(n, M, ro, q). Let Qo be a cube centered at XoE 
Oft such that l( Qo )=5, where 5<<r0 is a fixed number. Define S := { QC_ Qo, Q cube}. 
Then the following inequalities are valid with C=C(M, n, q) for all QES and all 
positive functions u, u harmonic in ftAB(xo,l(Qo)Co) and vanishing continuously 
on A(Q0, Col(Qo)). Here Co=Co(M, n)>>l. 

1. If Qcf~ then 

dx) < u(xq) 
d(x, Oh) - d(xq, Oh) d(x, oh) 

2. If Qc(Cn) o 

3. If QnOftr 

where Q . c Q is the 

then 

Eu(x) q dx'~ 1/q < 
d(x, oft) ) 

then 

q 1/q mu(x) dx) <- 

- -  d x .  

cube existing by Lemma 4.4. 

Eu(xQ,) < 1 /Q Eu(x) 

E~(xQ) 1 s Eu(x) 
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Remark 6.1. E is the extension operator defined in Definition 5.1. 

Define a measure ~ on Q0 by 

A Eu(x) n/(n-1) 
.~(A) = d(x, Of~) dx for A C Q0. 

The next lemma shows that  k is a doubling measure on cubes. 

L e m m a  6.1. Let OCQo be a cube such that aQgQo. Then there exists a 
constant C=C(M, n, a) such that )~(aQ)<_ CA(Q). 

The rest of this section is devoted to the proof of Theorem 6.1. Lemma 6.1 is 
a simple consequence of Theorem 6.1. 

Proof of Theorem 6.1. We star t  with the case Q c f t  and divide the proof into 
two subcases depending on whether or not l(Q)<d(Q, Oft)/lO. 

In case l(Q)<d(Q, Oft)/lO the proof follows immediately from the Harnack 
inequality. Suppose therefore that  l(Q)>_d(Q, Oft)/lO. Take pEOft, d(Q, Oft)= 
d(p, Oft). Then for some C=C(n) we have diam(Q)+d(Q, Oa)<_CI(Q). Put  

Bo = B(v, c l(Q)) ,  

t~ 1 = B(p, M2CI(Q) ) \ B(p, CI(Q) ), 

where M is the constant appearing in Lemma 3.3. By Definition 2.4 there exists 
x l E B l n f t  such that  d(xl, Oft)~,,l(Q) . By Lemma 3.3 the following is valid for all 

xEBoNft, 

U(X) U(Xl) 
(1) g(X, XO) ~ C(Xl, Xo)' 

where x0 denotes the fixed pole used in the s tatement  of the reverse HSlder in- 
equality for the Green function (see Definition 2.1). Using (1) and our assumption 
on ft~ 

(2) 

1 u(x) 
IQI/Q d(x, Oa) 

1 s a(x,  xo) ~ u(x) 

C(x, xo) ~ 
< u(xl)  q'l~'fnBolqlJ~ d(x, Oft) dx C(xl, x0) 
< U ( X l ) q ( [ @ ~  / a  G(X'Xo) ) q 
~ a(x~, xo) ~ o  d(x, Oa) dx . 
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We now examine the integral 

a(x, x0) 
I := d(x, Ogt) dx. ABo 

Define Ay := {Qi E W~: l(Qi) = 2-Y, Qi N Bo r 0}. Then by the Harnack inequality 

(3) • ~ ~ 2~(1-~)IG(xQ~,Xo)I. 
J=Jo QicAj 

By Lemma 3.2 we have 

(4) G(XQ~, xo) "~ w(xo, Ai, ~)2 j(~-2), 

where Ai:=O~NB(pi, c2 -j) for some piEO~, c=c(n), d(pi, Qi)=d(Qi, On). Fur- 
thermore, for all xEOn, 

(5) Z ~ (x) < c = c(~) 
Q~EAj 

Let A=A(p ,  Cl(Q)). Using estimate (4) and (5) in (3), 

I ~  E E 2J(1--n)w(XO'/\i'n)2J(n--2) 
J=Jo QicAj (6) oo 

~< ~(xo, ~, a) Z 2-~ ~< ~(xo, ~, a)2-Jo. 
j =jo 

But 2 -50,-~l(Q). Using this we can conclude from (6) that 

(7) 15  w(xo, A, ~)l(Q). 

Using (2), (7), Lemma 3.2, the Harnack chain condition on ft and the fact that  by 
Lemma 4.5, l(Q)~d(xQ, 0n), we get the conclusion. 

We now prove the inequality in the opposite direction. By Lemma 4.7 there 
exists a cube Q~c W1 such that  

l(Q')~l(Q) and m,~(QnQ')~m~(Q). (s) 

We get, 

i := ~ d(x, oe--~ dx > ~ nQ, d(x, on) 
> 1 ?Ttn(QNQ' ) ~t(xQ) 
~ IQI Z(Q) ~(xQ,)>d(xQ,an), 

m d x  
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by (8). 
We now deal with the case Q c ( C ~ )  ~ i.e. case 2. Suppose first that  I (Q)< 

d(Q, 0~)/10.  Let W(Q):={Qj �9  :supp @Qj n Q ~ 0 } .  By Lemma 4.5, 

(9) #W(Q) <_ C, l(Qy) ,-~ d(Q, a~) for all Qj �9 W(Q). 

Fix one j0 such that  QJ0 � 9  By (9), the definition of Eu, Lemma 4.3 and the 
Harnack inequality it follows that  for all x�9 we may deduce, 

(10) Eu(x) ~ u(xQ~ o), d(x, a~t) ~ d(xq, hi2). 

That  is, by (10) 

fQ Eu(x) q ~lQI U(XQJ~ q IQI E~(XQ) q 
d( x, 0~ ) dx d(xQ, a~) d-(~Q, ~5) ' 

which completes the proof in this case. 

Now suppose that  l(Q)>d(Q,O~)/lO. Take pEOn, d(Q,O~)=d(Q,p). Let 
as above W(Q):={Qj EW3:supp@Qj n Q r  It follows from Lemma 4.8 that  if 
Qj �9 W (Q), then Q~ c B (p, C1 (Q)) n ~ for some C = C (M, n). Using Lemma 4.2 and 
the Harnack inequality we therefore get 

(11) 1 /Q Eu(x) qdx 1 ~ u(x) q 
IQI d(x, aVt) ~ ~ nB(p,Ct(Q)) d(x,a~) dx. 

In the same way as the case Qc7 / ,  l(Q)>_d(Q, 0~) /10  was analyzed, we may there- 
fore conclude that 

(12) 1 f Eu(x) qdx~ u(xl) q 
[QI JQId(x, 0~) l(Q) 

for some X le ~ ,  d(Xl,Ogt)~l(Q). We have l(Q)~d(xQ,O~) by Lemma 4.5. Let 
SQ:={QjEW3:r Fix QjoESQ. Then Eu(xQ)~U(XQ;o). It follows 
from the reflection principle and Lemma 4.5 that  

(13) d(xQ;o , O~t) ~ d(xQjo , 0~ ) ~ d(xQ, O~t) ~ l( Q ) 

and IXQ;o-Xll~/(Q ). By the Harnack chain condition we therefore get, Eu(xQ)~ 
U(XQ~ ~ ),.~u(xl) and we are through. The proof of the other inequality is similar to 

the proof in the case Qcgt, l(Q)>d(Q, 0~)/10.  
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Left is now just case 3, i.e. the case QnO~#O. By Lemma 4.4 there exists 
Q, cQ such tha t  either Q , c ~  or Q , c ( C ~ )  ~ Furthermore, l(Q)~l(Q,). Using 
this, case 1 and 2 we get 

1 [ Eu(x) 
I0,1JQI d(x, 0a) 

dx>_ m m IQ.I 1 fQ Eu(x) Eu(xQ.) 
IQI IQ.I . ~ dX>d(xQ.,Oa) " 

Left to prove is the other inequality. But  in the same way as in the analysis of the 
case Qc(Cf~) ~ l(Q)>d(Q, 0f~)/10 we have 

1 ] ;  Eu(x) q ~1 f~ u(x) q 
I@ d(x, Oa) dx< , ~.(p,c~(Q)) d(x, Oa) dx, 

where pcOf~ and c=e(M, n). Redoing the deduction made in the case Qc (Cf~) ~ 
l(Q) >_d(Q, 0 a ) / 1 0  then completes the proof. 

7. Integrabil ity of  t h e  G r e e n  funct ion 

In this section we prove several results on the integrability of the Green flmction 
and Green potentials on f~cR ~, where f~ is a bounded NTA-domain. We start  
by stating the results of this section that  we will make use of in the forthcoming 
sections. 

T h e o r e m  7.1. Let Y~cR ~, n> 2, be a bounded, connected NTA-domain with 
parameters M and to. Let yEf~, d(y, Of~)<<ro. Then 

ffl G(x, y) n/(,~-l) 
d( x, OR) dx <_ C, 

~here C=C(M,  to, ~, diam(~), n) (6 is the ~ of Theorem 6.1). 

L e m m a  7.1. Let Qo be a cube centered at XoCO~ with l (Qo)=5>0 .  Put 
S:={QC_Qo:QNf~#O, Q cube}. Then the following is valid for all QES if Co= 
Co(M, n) is sufficiently large, 

f~ G(x, y) n/(n-1) 
\CoQ ~eQeasup d(x, Of~) dx <_ C(M, ro, ~, diam(f~), n). 

The following lemma is needed in Section 8. 
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L e m m a  7.2. Let Qo and S be defined according to Lemma 7.1. Take Q j E S  
and let bj E L 1 (Q j) ,  by > 0 and supp by C_ Qj N fL If Co = Co (M, n) is sufficiently large 
then 

Q EGbj(x) n/(n-1) KYlIh. II n / ( n - 1 )  
o\CoQj d(x, Oft) dx < ~ll~3 ULI(Qj) , 

where EGbj (x) is the extended potential defined in Definition 5.2 and C=C(M,  ro, 
(5, diam(ft), n). 

T h e o r e m  7.3. Let f t c R  n, n~2 ,  be a bounded NTA-domain. Then there 
exists a constant C=C(M,  ro, diam(ft), n) such that if fEL2(f t)  then 

Gf(x)  2 
id(x, Oft) dx<_C s Ifl2d(x, Of~)2 dx. 

The rest of this section is devoted to the proofs of these results. 

Proof of Theorem 7.1. Let yEQEWfl  and define jo by I (Q)=2 -j~ Choose 
pEOa, d(p, Q)=d(Q, Oft). Let for simplicity ro=2  -io for some io. Let k(n)>O be 
the smallest integer such that  QcB(p ,  2k2-J~ Let a(n) be the smallest integer such 
that  2a_>C(n), where C(n) is the constant appearing in Lemma 3.5. Assume io< 
j o -  1 -  a - k .  This can always be arranged if we restrict y to be situated closer to Oft. 
Define I : =  {io, io + 1,. . .  , Jo - 1 - a -  k}. Define further for each i E I,  B i :=  B (p, 2 - i )  \ 
B(p, 2-(i+1)). Define also Bo:=B(p, 2-(J~ ftl =ft \B(p ,  2-i~ Then 

f t : ( B o N f t ) ( U ( ~ i ~ f t ) ) U f t l .  
\iEI / 

Let 5, Co be the constants appearing in Theorem 6.1. Pu t  to=5/4Co. Define 

fro := {x E f t l :  d(x, 0fl) _> to = 6/4Co}, 

ft~ := {x �9 BiMft : d(x, Oft) >_ (5/4Co)2-~}, 

for all iEI.  Define 

/ ( E ) : =  f [ G(x,y) n/(n-1) dx for EC~-~. 
JEI d(x, oft) 

We have I(ftl)=I(fto)+I(ftl\fto). We may cover f t l \~O by N=N(Co,diam(~), 
n ,5)=N(M,  n, diam(f~),5) cubes with sidelength ~t0  and apply Theorem 6.1 on 
each of these cubes. This gives us, 

N 
/ ( a  1 \aO) < C E a(Xk' y)n/(n-1) for some X k E al.  

k=l 
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But by Lemma 3.5, G(xk, y) <_C/r~ -2+~, i.e., Z(a  1 \~~0) ~C(M,  n, 5, diam(ft),  r0). 
Furthermore, it is trivial tha t  I(ao)<C(M, n, 5, diam(ft) ,  r0). Left to estimate is 
I ( f ~ \ ~ l ) .  Dilate f~ in the following way: x~Ef~ ~ *v 2-J~ Now the Green 
function on f~, G~(x t, y~), is related to the Green function of f~ in the following way, 

G'(x', y') = 2-J~176 +p, 2-J~ +p). 

Using this with r = 2  - j~  we get, 

a ( x , y )  n / (n -1 )  

I ( E ) : =  d( x, Oft) dx JE  

E G(rJ+p,  ryl+p) n/(~-l) 
(1) = , d(x', Of~') r '~-~/(~-1) dx 

E G'(x',y') n/(n--1) 

= , d ( x ' ,  012 ' )  dx, 

i.e., the integral is dilation invariant in the sense described in (1). By Lemma 2.2 we 
know that  ft ~ is an NTA-domain with the same parameter  M as ft. This means that  
Theorem 6.1 is valid on f~t with a constant independent of the dilation parameter  
r = 2  -jo.  Furthermore,  Lemma 3.5 is valid for G~(X t, y~) with the same constants 

as for G(x,y). Put  Ei:=BiNf~\~2i for iEI. Left to est imate is I(Ei), I(f~i) and 
I(BoNa). By Lemma 3.5 we have for all x'EE~Uf~, 

1 (2) a'(x', y') �9 

We may cover E~ by N = N ( M ,  n, 5) cubes of sidelength t0 2jo-i and apply The- 
orem 6.1 to each of these cubes as G~(x t, yt) is a positive harmonic function in 
a "Co-neighbourhood" of these cubes. Applying (1), (2) we therefore get, .as 
d(x', Oft')>t02 j~ - i  for all x ' e  a~ and jft~l <c2(Yo-~)~, 

I ( E i U ~ )  <_ c2(J~176 -(j~ 
(3) C2-(jo-i)/3n/(n-1), 

where C=C(M,  n, 5),/3=/3(M). Summing the estimates in (3) we get 

(4) ' (U (B iN~) )  ~_ C ~ 2 -(jO-i)l~n/(n-1) ~ C. 
\ i E I  ~ iEI 

Left to estimate is I(BoN~). Let y-~y' by the dilation. By (1) and Lemma 3.6 we 

have 
1 

X(B(y, d(y, 03 ) /2 ) )  < / JB(y',d(y',oa')/2) Ix~--Y~I ~-1 dx' < C. 
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By a covering argument of Oi2nBo as above, an application of Theorem 6.1, (1) 
and the fact that  by the maximum principle and Lemma 3.6, G'(x', y')<_C=C(n) 
for all x'�9 d(y', 0•')/2),  we may complete the proof. 

Proof of Lemma 7.1. Fix x�9 If l(Q)<d(Q, Ot2)/lO then it follows 
from the Harnack inequality that  if C0=10, then G(x, y)~G(x, yQ) for all y�9 
The result then follows from Theorem 7.1. If l(Q)>_d(Q, 0 a ) / 1 0  or QNOa#O then 
it follows from Lemma 3.1 that if Co=Co(M, n) is sufficiently large, then G(x, y)< 
G(x, yo) for some y0�9 and for all y�9 An application of Theorem 7.1 completes 
the proof. 

Proof of Lemma 7.2. Put  Uj:=Qo\CoQj. We divide the proof into the cases 
Qjc~ and QjAO~tSO. As by Lemma 2.1, mn(O~t)=O, we have 

/u EGbj(x) n/(n-1) Gbj(x) n/(n-1) 
d(x, O~t) dx = na d(x, 0~) dx 

+ /vjn(Ca)o EGbj(x)~(x,O~) ~/(~-1) dx. 

But 

fuj Gbj(x) n/(n-1) r'Hh.Hn/(n-l) 
na d(x, 0~) dx ~_~ ~Ht,3 IILI(Qj) , 

by Lemma 7.1. Left to estimate is 

(1) f iEabj( ) 

Let Qj c~t. We first suppose that  l(Qj) <d(Qj, 0~)/10.  Define W(Qj):={Qk �9 Wa: 
supp ~Qk NQj SO}. W(Qj) denotes the Whitney cubes close to or intersecting Qj. 
We also define an associated set AW(Qj) by 

AW(Qj) := {Qm E Wa : 3Qk �9 W(Qj) such that  QmnQk S 0}. 

Then AW(Qj) consists of W(Qj) and all the Whitney cubes that  have at least one 
neighbour in the set W(Qj). We define two more sets of cubes. 

(2) 
(3) 

B(Qj) := {Q E W3: QNUj S O, Q* E AW(Qj)}, 
G(Qj) := {Q E W3 :QNUj $0, Q* ~AW(Qj)}. 
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Then B(Qj) consists of those Whitney cubes QcW3, QAUjT~O, such that  their 
associated reflected cubes Q* are close to Qj in the sense explained above. G(Qj) 
is just the complementary set. Using this notation we get 

Q EGbj(x) ~/(~-1) /Q EGbj(x) ~/(~-1) 
(4) I<_ E ~(x,-~) dx+ E d(x, Oa) dx=Ii4-I2" 

QEB(Qy) QcG(Qj) 

We first es t imate /2  in (4). By Lemma 5.4 and Lemma 4.2 we have 

(5) ~ JQf* ~bj(x) n/(n-1)dx 5 Jf't f d(x,Gbj(x)o~) hi(n--l) dx, I2 5 4(x, oa) \a(o,~) QeG(Qj) 

where f~(Qj):=~Q..~AW(%) Q.~" But if xEft\ft(Qj), then by the Harnaek inequal- 
ity, 

(6) 

Combining (5), 

n/(n--1) n/(n-1) Gbj(x) < G(x, yQj) h n/(n--1) 
d(x, af~) ~ d(~, a~) ~J L~(Q~) �9 

(6) and Theorem 7.1 we get the required estimate of /2. Left 
is to estimate /1 in (4). As l(Qj)<d(Qj,O~)/lO we know by Lemma 4.5 that 
r C(n) and that  all cubes in AW(Qj) have size comparable to d(Qj, 0~). 
Using Lemma 4.2 we may conclude that •B(Qj)<_C(M, n) and that  if QEB(Qj) 
then l(Q)~d(Qj, 0~). Using this we get the estimate 

(7) 
1 n/(n-1) f n/(n--1) 

I1 <~ d(Qj, Oa) ~ JQ EGbj(x) dx. 
QCB(Qj) 

By Lemma 5.1 the following is valid for all yEQj, 

(8) Ea(x, y) <_ 

Combining (7) and (8) we get 

(9) 

But 

(10) 

c(.) c(~) 
d(y, 0~) n-2 d(Q~,aa)n-2" 

Ii~d(Qj,O~)-~/(~-l)-In-2)~/(~-l)( ~ IQI) h. n/(,~-l) v? LI(Qj) . 
-QcB(Qj) 

IQI g d(Qj,a~t)~#B(Qy) 5 d(Qy,aft) n. 
QcB(Qj) 
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This completes the proof in the case Qj c a  and l(Qj)<d(Qj,Of~)/lO. 
We now examine the case l(Qy)>_d(Qj, 0Ft)/10. Let us fix a constant A>>I 

to be determined later on. By Lemma 4.9 there exists a constant Co=Co(A, M, n) 
such that if Q E W3 and supp CQ M {R ~ \ Co Qj } # 0, then Q* n AQj = 0. Using this we 
get quite painlessly that 

(11) 

i := /ujn(Ca)o Eabj(x) - Eabj(x) - ~ ( X ~ )  n/(n 1)dx=~{Qo\CoQj}N(Cf~)o d(x, Oe) n/(n 1)dx 

< ~ JQI d(x, Of~) dx < JaxAe, I d(x, Oa) dx 
QCW3 

QN{Qo\CoQj }#0 

by Lemma 4.2 and Lemma 5.4. Choosing A=A(M,  n) sufficiently large we get 
by Lemma 3.1 for some yoEf~, a(z,y)<~a(x, yQj) for all xcaXAQj and yEQj .  
Combining this with Theorem 7.1 completes the proof. 

The case QjNO~2#O is analyzed similarly to the previous case. 
We will close this section with the proof of Theorem 7.3. The material presented 

here may be found in NystrSm [21]. We can prove the following. 

T h e o r e m  7.2. Let f ~ c R  ~, n>2 ,  be a bounded NTA-domain. Then there 
exists a constant C= C ( M, r o , diam(ft), n) such that for all u e Wg'2 ( ft ) , 

u(x) 2 
fa d(x, Oa) dx<-C falVul2dx" 

Proof. Using [21] all we have to verify is that  f~ satisfies a uniform capacity 
condition in the following sense. Let QEWa and let d(pp,Q)=d(Q, Of~) where 
pQCOft. Define CQ to be the smallest cube centered at pQ and containing Q with 
sides parallel to the axes. What  we then have to prove is that  

(i) inf CI,po(CQn(C~~) ~ >_ CI(Q) n-p~ 
QEWa 

for some Po e (2n/(n+2), 2) and some C=C(M,  ro, diam(a) ,  n, p0). Here Cl,po (E) 
denotes the Bessel capacity. For its definition, see [1], [19]. As ft i s a  bounded and 
connected NTA-domain we may conclude that  for every Q E Wa there exists a ball 
BQ C Cp N (Cf~) ~ with radius at least 

(2) 
C(M, to, n) 

diam(ft) I(Q)=CI(Q). 
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Using this, 

(3) 61,po (CQ ~'1 (C~)o) ~ 61,po (BQ) ~_ Cl (Q)n--po 

by the monotonicity of the capacity and the fact that  C~,p o (B(x, r))~r  n-po. The 
conclusion in (1) is therefore established and Theorem 7.2 proved. 

Using Green's  formula we have the following consequence of Theorem 7.2. 

C o r o l l a r y .  Suppose ueWJ'2(gt )  and AueL2(gt) .  Then 

u(x) 2 f dx < C j~ IAul2d(x, 0 a )  2 dx, 
I d(x, 0~)  

where C is the constant given in Theorem 7.2. 

Theorem 7.3 is now a simple consequence of this corollary as if fELe(gt), then 

A G f = - f  in the sense of distributions and GfEWJ'2(~).  

8. C o m p a r i s o n  o f  p o t e n t i a l s  a n d  h a r m o n i c  f u n c t i o n s  

In this section we present the essential lemmas needed in Section 9 where we 
establish a good-A-inequality which is at the heart of the method we are using. 
Lemma 8.1 and Lemma 8.2 below could have been formulated in just one lemma, 
but we believe that  the way these very crucial steps are presented will make it a 
bit easier for the reader to follow the ideas. Lemma 8.2 should be considered as 
a dilated version of Lemma 8.1. Though the proof of Lemma 8.2 is identical in 
spirit to the proof of Lemma 8.1 we present it to be able to point out the dilation 
invariances we are using. Fur thermore,  Lemma 8.1 and 8.2 are proved just to be 
able to prove Lemma 8.3. The dilation argument  is needed to avoid the constants 
in Lemma 8.3 to blow up for small cubes. We star t  by formulating the lemmas 
and then complete the section with the proofs. All the cubes appearing have sides 
parallel to a fixed system of coordinate axes. 

L e m m a  8.1. Let ~eDomain(n,M, ro,q), q>n/ (n-1) .  Let Qo be a cube cen- 
tered at xo eO~ with l(Qo)=5. Let u(x) be a positive harmonic function on ~ which 
vanishes continuously on A(Qo,ro)  and is such that u ( x l ) = l  for some XlE~NQo 
ful Uing d(xl,0a)>_l(Qo)/4. De ne Ml(Qo):={QC_Qo:l(Q)>_l(Qo)/lOOv , Qn 
~t~O}. Pick QEMI(Qo) and let fELl(Q) ,  f>O, suppfC_QN~t and fQ f ( x )dx< 
m,~ ( Q ) ~5 n . Then there exist constants a = a ( M ,  n) and C=C ( M, ro, 5, n, diam(~),  

dimloc(O~)) such that 

/E Eu(x) n/(n-1) dx C ( / Q  f(x)  ~ 
d(x, 0~) <- dx/  , 
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where E:={xeQ:EGf(x)>Eu(x)}.  

We now formulate Lemma 8.2 which is a dilated version of Lemma 8.1 and 
deals with cubes in M2(Qo):={Q:QC_Qo, l(Q)<l(Qo)/lOOx/~; Qnon~o or Q c  
n, l(Q)>d(Q, 0n)/ lO}.  Choose QEM2(Qo) and associate a cube AQ centered at 
pQ EcOf~ and defined as the smallest cube with sides parallel to the coordinate axes 
and containing Q. Here d(pQ, Q)=d(Q, On) in case l(Q)>_d(Q, 0n) / lO,  Q c n, and 
pQEQNn if QNon~r Then I(AQ)~I(Q). Associate a dilation factor rQ to Q by 
rQ=l(AQ)/l(Qo). We now dilate n with respect to r=rQ and p----pQ to get ~' .  
If G' is the Green function of n ' ,  then G'(x',y')--rn-2G(rx'+p, ry'§ Define 
E'G'(x',y')=rn-2EG(rx'§ ry'+p). That  is, in extending G'(x',y') to R ~ for 
fixed y~ c n ~, we just make use of the fact that  we have extended G(x, y) to EG(x, y). 
We furthermore define, q(x')=Eu(rx'+p)/Eu(xQ1), where QI=Q if QNon=@ and 
Q1 = Q .  if QNon~o. Here Q.  is the cube existing by Lamina 4.4. Put  

k(x') := ] q(x') 
d(x', con') 1). 

Let by the dilation, AQ--+A~Q. Define for E' cAB, 

A'(E') : = / E ,  k(x') dx'. 

L e m m a  8.2. Let n, Qo and u(x) be as in the statement of Lemma 8.1. Let QE 
M2(Q0), where M2(Qo):={Q:QC_Qo,I(Q)<I(Qo)/IOOv/-~; QNon~o or both Qc  
~t, l(Q)>d(Q, Of~)/lO}. Let Q--+Q' by the dilation described above. Define E':= 
{x' cQ' :E'G'F(x')>q(x')} where FeLI(Q'), F>_O, supp FC_Q'Ngt' and fQ, F dx' < 
rn,~(Q')~5 n. Then 

A'(E') < C F(x') dx' , 
! 

where C and a are the constants described in Lemma 8.1. 

Lemma 8.1 and Lemma 8.2 are important  in the proof of Lemma 8.3. 

L e m m a  8.3. Let ~, Qo and u(x) be as in the statement of Lemma 8.1. Then 
there exist constants C and a as in Lemma 8.1 and CI=CI(M, n, 5) such that the 
following is valid. If 7C(0, C1) and if fcLI(Q),  f>O, s u p p f C Q N n  for some 
QC_Qo, QNnr fulfills 

fQf dX<'y(/Q Eu(x) ~/(~- ' d( x, on) dx/  
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then 
Eu(x) n/(n--1) fQ Eu(x) n/(n-1) 

d(x, Of~) dx <_ C7 ~ d(x, Oft) dx, 

where E:={xEQ:EGf(x)>_Eu(x)}. 

Proof of Lemma 8.1. Put  ?=fQ fdx. There is no loss of generality to assume 
that  Q is a dyadic cube. Consider Q as our universe and take the Calder6n- 
Zygmund decomposition of f with threshold A=I  (see [41, pp. 1~19]).  That  is, 

f(x)=f~(x)+ f2(x) where, 

(1) f2(x)=Ebj(x) ,  suppbj_CQjn~ ,  Qjnar Qj~Q, 

Here C=C(n) and {Qj} is a disjoint collection of cubes. As f1_<1 a.e. on Q we 
have 

/Qf~ dx<_ fQfl  dX=% (3) 

Define 

)k(E) :z f E Eu(x) n/(n-1) 
d(x, Oft) dx, E c Q. 

P u t  e~:={x~Q:Eaf~(x)>_Eu(x)/2} for i = 1 , 2 .  T h e n  EcEIuE2. 
lemma we intend to prove that  

To prove the 

(4) A(Ei) <_ Ci~/~, i = 1, 2, 

with C~ and ai as in the statement of the lemma. We start to estimate A(E1). We 
have that  

A(E1) < fQ EGfl(x) - d(x, Oft) n/(n--1) dx 

< [ ] afl(x) nl(n-1) dx+[  o EGfl_(x) nl(n-1) dx" 
- JqnnI d(x, Oa) JQn(:~) d(x,0a) 

But by Lemmas 5.4 and 4.2 we have 

JQn(Cn)o EGfl(x) - dx. n/(,~ 1) dx< f Gfl(x) ./(.-1) 
d(x, Oft) d( x, Oft) 
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Therefore by the H61der inequality, 

( f I Gfl(x) 2 dx~/(2n-2) 
A(EI) < C(M, diam(f~)) 

- n'  \ J a l  d ( x ,  0 a )  ] " 

As flEL2(ft) we get from Theorem 7.3 and (3) that  

A(E1) _< CO' ~/(2n-2), 

which completes the estimate in this case. 
We now estimate A(E2). Let Co be the constant appearing in Lemma 7.2. Put  

U:=Q\[.J CoQj. Using Lemma 7.2 and the Minkowski inequality we get 

( r E ) ( n - - a ) / n  EGf2(x) n/(~-l) dx 
A(E2 AU) (~-~)/n < d(x, OFt) 2C7U 

<- d( x, Of~ ) 2AU 
(5) 

<_z_i,\jQ\CoQ~lJ--(x,~ff, [ IEab"(x) n/(n-1) dx)(n-1)/n 

_< C E Ilbj [[L~(Qj) < C7. 
J 

By Lemma 6.1 we get 

J J 

as {Qi} is a disjoint collection. There are never any problems connected to the ap- 
plication of Lemma 6.1 as we may if necessary just choose a smaller initial cube Q0. 
Let Ac_Q and let q>n/(n-1) be a q for which the reverse H61der inequalities of 

Theorem 6.1 are valid. We then get, 

(7) A(A) <-ClAIl-n/(qn-q)[QIn/(q~-q) d(XQ1 ,Eu(xQ1)O~) n/(n-1), 

where Q1 = Q  or Q1 = Q , ,  depending on whether or not QNOVt:/:O. By assumption 
l(Q),.~6. Therefore using (7), 

(8) A(A) _~ C [ A l l - n / ( q n - q ) l ( Q ) n 2 / ( q n - q ) - n / ( n - 1 ) [ E u ( X Q l ) [  h I ( n - l )  �9 
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But Eu(xQ~ )~u(xl)-= 1, so may conclude that  there exists a constant C=C(M, n, 5) 
such that  

(9) A(A) _< VIAl ~-n/(q~-q). 

Combining (2), (6) and (9) completes the proof. 

We now present the proof of Lemma 8.2 to help the reader understand how 
we use the fact that  the results of Section 6 and 7 are valid with uniform constants 
for arbitrary small cubes. It turns out that  the extra weight in the inequMity of 
Theorem 7.3 is crucial. 

Proof of Lemma 8.2. Put  V=fQ, F(x')dx'. Choose just as in the proof 
of Lemma 8.1 a Calder6n-Zygmund decomposition of F=FI+F2, F2=~Bj, 
suppBjC_Q}Nf~', ~~fQ,j [Bj[ dx'<_cv, [UQ}]<_cT, Fl(x ')_<l a.e. on Q'. Again we 

have E'cE~uE~, where E~:={x'CQr:E'G'Fi(x')>_q(x')/2}. Again we want to es- 
t imate Ar(E~), A'(E~). We first estimate A~(E~). Define f l  by 

E' a' F1 ( x') = Ea f l (rx'-t-p). 

Then fl (Y) -~FI(Y-P/r ) / r  2 and we get 

(/Q EGfl(rx'+P) n/(n-1) ) 
A'(E~) < , d(x', 0~') dx' 

EGfl(rx'+p) dx') 
<- , d(x', 0~' )  

(1) 

(fQ f/(2n-~) = r ( 2 _ n ) n / ( 2 n _ 2 )  EGfl (x) 2 dx 
d(x, 0~) 

<C(M,n)r(2_n)n/(2n_2) ~ f Oil(x) 2dx)n/(2n-2) 
- \J~l d(x, o~) 

as before. But by Theorem 7.3, 

2 
(2) ~ Gfl(x) <C dx d(x,O~) dx_ /Q~alfl(x)12d(x, Oa)2 
as suppf~CQA~t.  As QcM2(Qo) we always have d(x,O~t)<C(n)l(Q) for all xE 
QA~. Combining (1) and (2) we may conclude that  

(/Q //\n/(2n-2) 
(3) Ar(E~) <- Cr(2-~)~/(2~-2)l(Q) ~/(~-1) Ifll ~ dx) . 
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But 

(4) /Q ]fl[2 dx=rn-4 /Q, [Fl(x'),2 dx' <_rn-4",/. 

Combining (3) and (4) we obtain 

(5) A'(E[) _< Cr(2-n)~/(2n-2)l(Q)n/(~-')r(n-4)n/(2n-2)Tn/(2n-2). 

But r~l(Q)/l(Qo)=l(Q)/& Therefore, A'(E[)<C7 ~/(2'~-2), with C as in the de- 
duction of Lemma 8.1. 

We now estimate A'(E~). Put U'=Q'\U CoQ~j, where Co is the constant of 
Lemma 7.2. Define bjELI(Qj) by 

E'G'Bj(x') = EGbj(rx' +p). 
Then bj(y)=Bj((y-p)/r)/r 2 by the scaling law for the Green function described 
above. We have by Lemma 7.2 

A'(E2NU')(n-1)/n < r2-n T (fQ\CoQjl d(x, Oft) n/(n- 1) dx/n-1)/~)~ 

<_ Cr ~-n ~_, Ilbj IIL~(Q~). 
J 

But fo. Ibjl dx=r  n-2 fQ, IBjl dx' and Ej  fQ~ IByl dx' <c~ which give us 

X' (E;nU') <_ c~ n/(~-~). (6) 

Again 

(7) 

Let A' C_ Q'. Then 

fQ q "xn/(qn-q) (8) A'(A') _< IA'I 1-n/(qn-q) , d(x',q(x')oa') dx') . 

But 

f I q(x') q "Xr~l(qn--q) 
JQ, Id(x',Oft') dx'jl 

1 _ Eu(xQI)n/(n 1) Q/Q, Eu(rx'+P)d(xt, Of~,) qdxt) n/(qn-q) 

n/(n--1) ) n/(qn--q) 
_ 1 r(q_n)n/(qn_q)(f EU(X) qdx 

Eu(xQ1) ~j Q~ d(x, 0a) 
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Using Theorem 6.1 we may continue our estimate, 

(9) (/Q, q(xO q dx~) n/(q~-q) d(x', 0~') < r(q_n)n/(qn_q)iQin/(qn_q) 1 z(Q)~/(n-1) 

But r~l(Q)/5. Combining (7), (8) and (9) we get the required estimate with 

the same constant as in Lemma 8.1. This completes the proof. 

We now apply these lemmas to prove Lemma 8.3. It is necessary to carry out 
a dilation argument to get uniform constants. 

Proof of Lemma 8.3. We divide the proof into two cases: 
1. Qc~, l(Q)<d(Q,O~)/lO, 
2. Qc~, l(Q)>_d(Q, Oft)/lO or QAO~O. 

In each case we will carry out a dilation argument but with different dilation factors. 

In case 1 we put r=d(Q, Oft), p=xQ. In case 2 we put, if l(Q)<l(Qo)/lOOv/-n, 
r=l(AQ)/l(Qo)~l(Q)/l(Qo) and pEO~ as above. If l(Q)>_l(Qo)/lOOv~ we do not 
carry out any dilations. In case 1 the dilation implies that Q--~Q~, where Q~ is 

situated at unit distance from 0~  ~. In case 2, Q~ will be a cube of the same size 

as the initial cube Q0, i.e. l(QO~5. In case 2 we will only present the proof in the 

case l(Q)<l(Qo)/lOOx/~. The proof in the case l(Q)>l(Qo)/lOOv/~ just differs in 
the sense that we then use Lemma 8.1 instead of Lemma 8.2. As before ft--~fY, 

Q--*Q' under the dilation and q(x')=Eu(rx'+p)/Eu(xQ~). Here QI=Q if Q c f t  
and Q I = Q .  if QAc~f~0.  Let 

k ( ~ ' ) . =  q(x ' )  - " d(x', 0~') ,~/(n 1). 

We get 

(1) fE Eu(x) n/(~-l) I d~,O~ dx:  Eu(xql)'~/('~-l)r~-~/(n-1) J~, k(~') dx' 

That is, what we have to prove is that 

(2) rE, k(x') dx' < c7 ~ fQ, k(x') dx', 

where E':={(x-p)/r:xEE}. We now rephrase the assumption in its dilated form. 

As before, EGf(rx'+p)=E'G'F(x'), where F(x')=f(rx'+p)r 2. By the assumption 
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we have 

(3) 

fQ, F(x~)dx~=r2_n/Qf(X)dx<~/r2_n(/Q_ ~Eu(x) ~/('~-l) dx)(n-1)/n 

=Tr2-nEu(XQ1)r(n-n/(n-1))(n-1)/n(/Q, k(xt) dS) (n-1)/n 

=~/Eu(XQ1)(/Q,k(x')dx') (n-l)/n 

by (1). Define h(x')=F(x')/EU(XQ~). We get E':={(x-p)/r:xeE}={x'�9 
E'G'F(x') > Eu(xQ1)q(x')}={x' �9 >q(x ' )} .  After these changes to the 
dilated scale we may formulate our problem as follows. Show that ,  

(4) 

(5) 

(6) 

E' = {x' �9 Q': E'G'h(x') > q(x')}, 

\(n-1)/n 

supp h _C QtNft/, 

imply, 

(7) s  k(x') dx' <_ c< s  k(x') dx'. 

We now treat  case i and case 2 separately. First case 1. In this case Q c fL Therefore 
no extension operators are involved. In this case Q'  is at unit distance from Oft'. 
By the Harnack inequality, q(x')>C and k(x')<C for all x'EQ', with C=C(n). 
This gives us E'C{x'EQ':G'h(x')>C}. By Lemma 3.6, G'(x', y')<_C(n)[x'-y'l 1-n 
for all x',y'cQ'. Therefore, E'c{x'�9 Using this together with 
Theorem 3.2 and (5) we may deduce 

fE h(X ) dx' <_ CIE' I <_ I{x' �9 :Ilh(x') >_ C}I 
! 

~ (J; h(xl) dxt~/(n-1)~C,-,/n/(r~-l)s ~(xt)dx' , 

which completes the proof in this case. 

We now examine case 2. We just supply the proof when QNOftTkO as this is 
the only case when the extension is involved. In this case we get from Theorem 6.1 
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and (1) that  

/Q k(Xt) dxt = 1 n/(n-x) fQ Eu(x) n/(n-l) 
(8) ' EU(XQ1 ) r-nWn/(n-1) d(x, O~) dx 

IQI 1 Eu(X_Q1) n/(n-1) 
EU(XQ1)n/(n_l) rn_n/(n_l) d(xQl,Ot~) ~C(M,n, 5) 

by our choice of r in this case, i.e., fQ, kdx'<_C(M,n, 5) in this case. Restrict 7 to 

(0, C1), where C1 =m~(Q')(1/C(M, n, 5))(n-~)/~hn(1/C(M, n, (~))(n-1)/~. Then 
using (5) we have 

(9) [ h(x') dx' < ?Ttn(Q' ) ~,~ ~n. 
JQ t 

(9) in combination with Lemma 8.2 and (5) give us 

/. , k(x') dx' < C , h(x') dx' 

<- C~/a (/Q k(x') dx') a(n-1)/n /Q <_ C7 ~ < C7 ~ k(x') dx', ! 

as by (8), fQ, k(x') dx'~C(M, n, 5). This completes the proof of Lemma 8.3. 

9. P r o o f  o f  a g o o d - A - i n e q u a l i t y  

In this section we deduce a good-A-inequality for an operator Tf(x) and an as- 
sociated maximal function Kf(x). We then integrate this to get norm inequalities. 
We ask the reader to refresh his/her knowledge of the extensions made in Defini- 
tions 5.1 and 5.2. In the following Q0 will always denote the initial cube centered at 
XoeO~ with l(Qo)=5 which we have used before, u(x) will be a positive harmonic 
function fulfilling the requirements that  u vanishes continuously on O~NB(xo, ro) 
and U(Xl)=l  for some XlE~toQ0 such that  d(xl, Ot2)>l(Qo)/4. 

As usual we start by summarizing the results of the section and then supply 
the proofs at the end. 

Definition 9.1. Let fEC~(~). Define 

�9 = x (x) G f ( x )  Tf(x). u(x) +X(C~)o(x) 

if xE(~UUQ~w 3 Q))n2Qo and 

i fxc~QoAOQ.  

EGf(xQ) 
Q~w~ Eu(xq) CQ(x) 

Tf(x) = lim Tf(xj) 
xj---+x,xjC~ 
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L e m m a  9.1. Let f~_O, fEC~(Ft). Then T f  is a continuous function on Qo. 

This is a crucial lemma, as we will see below, because it implies that  the set 
Q~A{Tf(x)>A} is an open set for all ) ,>0 to which we may apply the Whitney 
decomposition. In the proof of our main results, presented in Section 11, we may 
by an approximation argument assume that f E C ~  (~t), f >0. We may therefore all 
the time assume that  f has these smooth properties. The proof of Lemma 9.1 relies 
on the fact that  if fcC~(Ft), f > 0 ,  then Gf(x) is a positive harmonic function in 
a small neighbourhood of OFt. 

Let Co=Co(M, n)>>l be the constant defined in Lemma 9.3 below. Let Q1 be 
a cube with the same center as Qo but with sidelength l(Qo)/bCo. 

Definition 9.2. Let f>_O, feLl(Rn) ,  supp fGFt.  Pu t  Mx:={Q:x~Q, Q~Qo}. 
Define 

Kf(x)  := sup f f dx/A(Q) (n-1)/n, 
QEMx JQAI2 

where 
Eu(x) ~/(~-1) 

A(Q) : = / Q  d(~,O~) dx. 

L e m m a  9.2. Let f>_O, f EC~(Ft), suppfCQ1MFt,  where Q1 is defined above. 
Then there exist constants a=c~(M, n), f l=f l (M, n) and C=C(M, n, 5, to, diam(Ft)) 
such that if QCbQt and if T f ( x ) ~ l  for some xeQ, then for all ~e(O, C1), C1= 
CI (M, n, 5), we have the following good-A-inequality 

A{x e Q: Tf(x) > fl, Kf(x)  <_'7} ~ C~/~A(Q). 

Integrating this we will prove the following. 

L e m m a  9.4. For all q such that the reverse Hblder inequalities of Theorem 6.1 
are valid, there exists a constant C=C(M,n, 6, ro,q, diam(Ft)) such that if f>_O, 
f eC~(f~) and s u p p f c Q 1  (Q1 is the cube described above), then 

with d#q (x)= IEu(x)/d(x, Off)]qdx. 

The important thing is that  if xEQ1Mfl then 

Gf(x) q, 
ITf(x)[qd#q(x)= ~ ax. 
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The rest of this section is devoted to the proof of these results. 

Proof of Lemma 9.1. As fEC~(Q) there exists a ~'>0 such that  Gf(x) is a 
positive harmonic function in B ,  := {x E 3Q0 M ft:d(x, Oft) < T}. As ft is regular for 
the Dirichlet problem we further know that  Gf(x) vanishes continuously on Oft. 
See Helms [13, Lemma 6.24]. It  therefore follows from Theorem 3.1 tha t  Tf(x) is 
well defined on O[~N3Qo. By the same theorem it also follows that  Tf(x) is Hhlder 
continuous in B~UOf~ for some Hhlder exponent c~. Tha t  Tf(x) is contimlous at 
xEftN(Qo\B~) is trivial as for these points, u(x)#O and Gf(x) is continuous on 
~. See Helms [13, Theorem 6.22]. To prove the continuity of Tf(x) on Q0 all we 
therefore have to do is to prove that  if pEQoNOft then, 

(1) lira _ o T f(xj) = T f ( p ) .  
Xj  ----~p,Xj E (IJ~'~) 

We star t  by proving that  the limit in (1) actually exists. Put  N~ := {x E ft:d(x, Oft) < 
7-/10}. Let rj be a sequence of numbers, to be fixed later on, such tha t  rj--+O as 
j--+ec and rj+l <rj. Define ftj := (Cft)~ rj) and 

My := sup Tf(x), my:= inf Tf(x), 
xEf~j xEt2j 

Aj : = { Q E W 3  : supp CQNfty r  

Let Aj---*A~ by the reflection principle described in Section 4. We prove that  
My/mj----~l as j - - * ~ .  By Lemma 4.1 there exists a C=C(M, n) such that ,  

(2) U e c B(p, Cry)nr~. 
QeA; 

Choose r l  so that  M2Crl<<T/IO. By Theorem 2.1 we know that  there exists t2~ 
such that  t2~ is an NTA-domain with the same parameter  M as t2 and such that  

(3) B(p, Cry)rift c ft~ c B(p, CM2rj)nfL 

Take x E ftj and put S~ := {Q E Aj: ~r (x) r  By the definition we get 

EGf(xQ) EGf(xQ) 
(4) Tf(x) <_ m a x  Tf(x) > m i n  

Q ~ x  E u ( x Q )  ' Q~s~ E u ( x Q )  " 

Define 
M f  := sup Tf(x), rn~ := inf xea; xEa; T f (x). 
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We now examine the definitions of Eaf  (x) and Eu(x) a bit closer. Let Q E Aj. Then 

Eu(xQ)=U(XQ.). Furthermore, EGf(xQ)= fa\B" EG(xQ, y)f(y)dy. But Q* cN~. 
By Definition 5.2, EG(xQ,y)=G(xQ.,y) for all yEa\B,. Therefore EOf(xQ)= 
af(xQ.). (4) may therefore be restated as, 

Gf(xQ.) Gf(xQ.) 
(5) Tf(x) < max - -  Tf(x) > min - - .  

- o, u ( x Q , )  ' -QeS  u ( z Q . )  

From (2), (3) and (5) we get that  Mj<_Mj, mj>_m;, i.e., Mj/mj-l<_Mym;-1.  
Put  rj+l =M-lrj, where M is the NTA-constant  of ft. Using Theorem 3.1 it follows 
that  M]/m~- 1--+0 as Gf(x) and u(x) are positive harmonic functions in B~. This 
proves that  the limit in (1) exists. Tha t  the limit value is Tf(p) is obvious. 

Proof of Lemma 9.2. Recall that  Q1 =Qo/5Co, where Co is the constant ap- 
pearing in Lemma 9.3 below, Co=Co(M, n). By the assumption, CoQC_Qo for all 
QC_Q1. Let Q be a fixed cube such that  Tf(xo)<_l for some xoEQ. Put  g(x)=f(x) 
if xECoQ and g(x)-O otherwise. Put  h(x)=f(x)-9(x). By Lemma 9.3 below we 
get 

(1) sup Th(x) <~ i n f  Th(z) < C(M, n)Tf(xo) < C(M, n). 
xEQ EQ 

Let e > 0  be a constant to be fixed below. By (1) it follows tha t  there exists /3= 
/3(M, n, e) such that  

{xEQ:Tf(x) >/3, Kf(x) <_7}C_ { x C Q : T g ( x )  >e, Kf(x) <_7}:=E. 

Assume E r  and take XlEE.  Then 

(2)  CoQ 9 dz = JcoQ f dx <_ A(CoQ)(n-1)/nK f(xl) < ",/A(CoQ) (n-1)/n. 

We note that  if C o Q M a = 0  and if f l=/3(M, n) is sufficiently large, then E = 0  by (1). 
We may therefore assume that  CoQNFt~=O. By Lemma 8.3 we get 

(3) a({x e CoQ: E@(x) >_ Eu(x)}) _< 

&(CoQ)<_C&(Q) by Lemma 6.1. What  remains to prove is that  EC{xEQ:EGg(x)>_ 
Eu(x)}.  Tha t  is, what we have to prove is tha t  there exists e=e(M, n) such that  
if zEQ and Tg(x)>e, then EGg(x)>_Eu(x). We note that  it is enough that  this is 
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true for all xEQ\Ogt as IO~l=o. If x � 9  then this is trivial of course. Let x�9 ~ 
Then 

EGg(xQ) 
Tg(x)= Z CQ(x) Eu(xQ) 

QEW3 

"~ ]Eu(x)]-I E CQ(x)EGg(XQ) = ]Eu(x)I-1EGg(x), 
QEW3 

which completes the proof. 

We note that  the lemma implies that  if U>0 and Tf(x)<~ for some xEQ, then 

~{x �9 Q: Tf(x)  > Z~], Kf (x)  <_ ~71} <_ C~/~)~(Q). 

L e m m a  9.3. Let Qo be our original initial cube centered at XoEO~. Let Qc_ 
Qo. Then there exists a constant Co=Co(M, n) such that if h �9  and supp h~ 

CoQ=0 then, 
sup Th(x) < C(M, n) inf Th(x). 
xEQ xEQ 

Proof. We divide the proof into three cases: 

1. Qc~;  
2. Qc(C~)~ 
3. QnO~#O. 

In the first case we have Th(x)=Gh(x)/u(x) if x�9  The result therefore follows 
easily from the fact that if yE~\CoQ, Co=Co(M, n) sufficiently large, then 

G(x,y) 
G(x, y) < C(M, n) inf (1) sup 

x~q u(x) - x~Q ~(x) 

If l(Q)<d(Q, 0~t)/10 then (1) follows from the Harnack inequality with C0=10. If 
l(Q) >d(Q, 0~) /10  then (1) is a consequence of Lemma 3.3. 

In the second case 

EGh(xQ~) , , , Th(x)= Z 
Qj E W3 

Put  W(Q):={QyEW3:SuppCQjNQ~O}. Suppose l(Q)<d(Q,O~)/lO. Then by 
Lemma 4.5, 

QJo �9 W(Q). 
for all xEQ, 

(2) 

#W(Q)<_C and l(Qj)~d(Q,O~) if QjEW(Q). Fix j0 such that 
Then by the reflection principle and the Harnack inequality we have 

1 E CQj(x)EGh(xQ~). 
Th(x) ~ Eu(xQ~ o) q,~w(Q) 
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So what we have to prove is that,  

(3) max EGh(xQj) <~ min EGh(xQj). 
Q jeW(Q) Q~eW(Q) 

This follows if we can prove that  if yEFt then, 

max EG(xQj,y)~ min EG(xQj,y). 
Qj eW(Q) Qj eW(Q) 

But this is proved in the same way as Lemmas 5.2 and 5.3 were proved. 
We now suppose that  l(Q)>d(Q, 0~) /10 .  Choose pEOn, d(p, Q) =d(Q, OFt). 

As before there exists C=C(M,n) such tha t  if QjEW(Q) then QjcB(p, Cl(Q)) 
and Q~cB(p, CI(Q)). Therefore, by the definition of EGh(x), there exists Co = 
Co(M, n) such that  if supp hDCoQ=O and xeQ then 

(4) inf Gh(xQ;) <Th(x) < sup Gh(xQ;) 
Qjew(Q) U(XQ;) - -QjeW(Q) U(XQ;) ' 

The conclusion 

(5) inf Gh(xQ;) ~ sup Gh(xQ;) 
QjeW(Q) u(xQ;) QjeW(Q) U(XQ;) 

follows in the same way as (1) was proved if we just choose C0--C0 (M, n) sufficiently 

large and supp hNCoQ=O. 
Left is the proof in the third case, tha t  is when QNOft#O. Let pEQNO~. By 

the same argument as above we get if Co=Co(M, n) is sufficiently large, 

Gh(x) 
(6) sup Th(x) <~ sup 

xeQ xeB(p,CZ(Q)) u(x) 
ah(x) 

- - ~  inf ~ inf Th(x). 
xEB(p,CI(Q)) U(X) xeQ 

The deduction in (6) completes the proof. 

We end this section by proving Lemma 9.4. It  is well known that  Lemma 9.4 
is a consequence of Lemma 9.2 but we supply the proof for completion (see e.g. [4], 
[20]). 

Proof of Lemma 9.4. As we may assume Q1 to be a dyadic cube we may 
adjust a dyadic net {~j} on R n to Q1 so tha t  Q1ETrj for some J=j(Q1). Let 
B(xQ~, 10/(Q1)) be an open ball. By Lemma  9.1, the set 

(1) B, := {x: Tf(x) > ~}nB(xq,,  101(Q,)) 
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is an open set. Let Wv be a Whitney decomposition of By such that  d(Qj, CBv)/4< 
l(Qj) for all Qj EWv. Put  

We have 

Ev := Q~ n{x : r f(x) > r]}, 
S v := Q1M{x: Tf(x) >/~r]}, 
r v :--- Q~ n{x :  r f (x)  >/~r], Kf(x) < 7r]}. 

/Q1 ITflq d,q(x) = 9qq ]ff ,~(S,)~ ~-1 d~ 
f 

(2) ,] u 

< ~qq fo~pq(T,~)r] q-1 drld-C(%/3, q) JQ~ IK fl q dpq(X). 

We will use Lemma 9.2 to estimate the first integral in (2). We first note the 
following. Suppose T~or for some ~0E(0, oc). Choose xoEf~NO(3Q1) such that 
d(xo, cOf~)~/(Q1). Then 

a(xo, A) fQ (3) Tf(xo) - Gf(xo) < M f(y) dy 
u(xo) - ~(xo) 

by Lemma 3.1, where AeQ1. As T ,0 r  we get for some pET~o , 

T f (xo ) < M G ~ A  ) A( Q1)(~_ a )/n K f (p) < C( M, n)~/G(U@o)) .~( Qa )(n_ l)/~]o. 

But G(xo, A)<I/I(Q1) ~-2 by Lemma 3.6 and 

A(QI)(~-~)/n < IQll(~-~)/~u(xo)/l(Q~) 

by Theorem 6.1 and the Sarnack inequality, i.e., Tf(xo) <_ C(M, n)Tr]o. If we restrict 
~/to (0, 1/C) we therefore get 

(4) T f(xo) <r]o. 

(4) implies that  if QjMEvT~O and QjEWv, then QjCQ1 , and by properties of the 
Whitney cubes, there exists pjE5Qj such that Tf(pj)<r]. This is valid for all 
rlE(0, oc). As S,IC_E v we get a covering 

S v C U 5Qj. 
QjEI/V,7,QjC_ Q1 
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As furthermore, TvC_Sv, we may deduce that  

(5) pq(Tv) < ~ pq(5QynTv). 
QjCW,,QjC_Q1 

Theorem 6.1 implies that  d#qEA~(dA). See [4, Lemma 5]. 
Lemma 6.1 we therefore get the following for some c=c(q )>0 ,  

Using (2), 

By Lemma 9.2 and 

~q(f,,) S c <  ~ Z ~q(SQ.) 
Qj ~w,,Q~ _CQ1 

-< c~ ~ Z ,q(Qj): c < % ( E , )  
Qj CW~ ,Qj C_Qi 

/Q1 ITfrq dttq(X) ~ c/3qq~ ~ ]QI ITf[ q d~q(x)+C(~) ]Q1 IIC ftq dt~q(X). 
f f 

Choosing 7<70,  where C/~qqT~= �89 and taking the restrictions on 7 into account, 
we may complete the proof. 

10. An  inequal i ty  for the  maximal  funct ion  

In this section we present the last two lemmas before we in the next section 
prove the final results. 

L e mma 10.1. Let the cubes Q1 and Qo be as in Lemma 9.4. Let q>n/(n-1)  
and suppose that for all cubes QC_Q0 we have 

1 Eu(x) dx~ 1 
d(x,oo) ] - < N ~  d(x, o o ~  dx, 

with N=N(M,n ,q)  as in Theorem 6.1. Then for all fEC~(12), supp fcQ1,  f>_O 
we have 

/Qlna Gf(x) q d(x, Oa) dx <_ CII/II q, 

where 1/q= 1/p-  1/n and C=C(M, n, q, ro, 6, diam(a)) .  

The next lemma is a weak type estimate for p = l .  
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L e m m a  10.2. Let f and Q1 be as in Lemma 10.1. Let t>0 .  Then there exists 
C=C(M, n, q, to, 5, diam(ft)) such that 

I{x e Q1na:  a f (x) > td(x, 0a)}l _< C(l l f l l l / tF  I(~-1). 

Proof of Lemma 10.1. By Lemma 9.4 we have 

iQ Gf(x) q dx< iQ 'Tfiqd#q(X)<C~cc iKfiqd#q(X)" lnald(z, Oft) - 1 - Q1 
To prove the lemma all we have to prove is that  

(1) (iQ~ IK flq dpq(X)) '/q ~ C(SQ1 ..%1/p Ill p dx)  . 

The way (1) is proved is a kind of standard deduction for maximal functions in- 
volving a Besieovitch type covering and Marcinkiewiez interpolation theorem. The 
details are carried out in Dahlberg [6, Lemma 11]. 

Proof of Lemma 10.2. This proof follows the same lines as the proof in [6, 
Lemma 12]. Take the Calderdn Zygmund decomposition of f with threshold z>  
Ilflll/mn(Q~). Then f =fl+ f2, f2=~bj,  suppbjC-QjC-Q1, suppbjC_Qjnfl, fl <_z 
a.e. on Q1, 2 j  fQj bj(x)dx<-CHfN1 and l UQjl<_cllflll/Z. Put  Ei:={xEQlrGfl: 
Gfi(x) >td(x, 0ft)/2}. Using Lemma 10.1 with q>n/(n-1), 

SQ 1 Z q(1-1/p) C af~(x) qdx~Ciifliiq <C t q ][fHql/p. (2) IEll <_ ~ ~n~ d(x, Ofl) - - -  

Let U=QI\U CoQj, where Co is the constant appearing in Lemma 7.2. Then 

( [  [ Gf2(x) n/(n-1) dx)(n-1)/r'<E(Su-- Aft d(x,Gbj(x) n/(n-1) dx) 
\dunal d(x, OFt) (a) 

_< Cy~" Ilbj IIL~(Qj) _< CIIflI1. 
J 

(3) implies that 

(4) 

We further have 

(5) 

(llfll 7 / ( n - l )  IE2nUI < C 

[E2r-I(QI \U)I <_C UQj  ~ c I I f l l i / z .  

prom (2), (4) and (5) we may therefore conclude that, 

C / q/p zq(l-e/p) (Hf[[l ~n/(n--1) _l - I[fl[z 
IE[ <_ [EIIq-iE2I < t l lf l l l  ~ + - t - - 7 - )  - 7 - )  

-1/0~-1) completes the proof. Choosing z=t~/(~-1) IIflll 
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11. P r o o f  o f  t h e  m a i n  t h e o r e m  

As IVGf(x)l <C(f~)(Ilf(X)+Gf(x)/d(x, 0f~)) if f>_O, it follows that  our Main 
Theorem is a consequence of Theorem 11.1 below and Theorem 3.2. 

T h e o r e m  11.1. Let f } c R  n, n>2, fulfill the requirements of the Main The- 
orem. Then there exist a constant C=C(~2, q) such that if, 1 /q=l /p-1/n ,  then the 
following inequality is valid for all f ELP(f}), 

Gf  x q 1/q \l/p 

/ f p = l  then [{xe~:  [Gf(x)[>td(x, Of})}[ <_C([[f[[1/t) n/(n-1) . 

Proof of Theorem 11.1. We note that  by an approximation argument we just 
have to prove the theorem for f_>O and fEC~(f}).  Let as before Q0 be our initial 
cube and let Q1 be the cube associated to Qo as described at the beginning of 
Section 9. Let Q2 be a cube with the same center as Q1 and sidelength I(Q2)= 
l(Q1)/Co, where Co=Co(M, n) is such that  if v(x) is a harmonic function on QINf} 
vanishing continuously on OfloQ1, then 

(1) d(x, Oa) dx<ClQ2l d(x2,09) 

for some x2 c Q2 N f}, d(x2, Of}) >_ CI(Q2). That  this always can be arranged follows 
from Theorem 6.1. Let Qk be a covering of Oft with cubes centered at xk ~0f~ and 
such that  each Qk is related to a cube Q~ in the same way as Q2 is related to Q1. 
Let f~0:=f~\U Qk. We may assume that  d(f~0, Of})>el(Q2). Then 

f l as(x) f laf(x)  dx+E s af(x) 
(2) ]al d(x, Oh) dx_< Jaol d(x, Of}) k nQk d(x, Of}) dx. 

The first integral in (2) is estimated by Lemma 3.6 and Theorem 3.2. Fix k and 
let ~eC~ (Qk) such that  ~ ( x ) = l  on ( 1 - e ) Q  k for some small e. Pu t  g k ( x ) = ( 1 -  

~(x))f(x) and hk(x)=~(x)f(x). Then 

/ft Cf(x) q fa  Chk(x) q '  f Cgk(x) q 
(3) nek d(x,Oa) dx<_ ne~ d(x, Oa) ax-~ja~e ~ ~ dz. 

Call the integrals I1 and /2 .  Using Lemma 10.1 we get, 

(4) I1 <_ CIIhkllqLp <_ CIIfllqLp. 

Using (1), 

(5) & _< Cl@k(xk) l  ~ --< CIIgkll~, < CIIfll~,~. 
This completes the proof of the first part. The second part follows from Lemma 10.2 
and the weak-type estimate for Riesz potentials stated in Theorem 3.2. 
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12. Sharpness and geometry 

In this section we t ry  to disentangle the condition imposed on ~ in the sense 
that  we t ry  to rephrase it in a condition which is more easy to handle. We also 
address the question of sharp conditions for the validity of our main theorem. It 
is important to note, as mentioned before, that  by using Lemma 3.5 and a simple 
calculation, it follows that  if gt is an NTA-domain with parameters M, r0, then 
~EDomain(n ,  M, r0, 1+1 / (1 - /3 ) )  where /3=/ ) (M)>0 is the constant appearing in 
Lemma 3.5. That  is for any bounded NTA-domain there exist q>2,  such that the 
requirements of our main theorem are fulfilled. 

In this section we assume for simplicity that  diam(gt)=l.  If ~ is a bounded 
NTA-domain with Green function G(x)=G(x, xo), d(xo, Of~)~diam(ft) we define 
for all QEOFt, r<ro, 

A(Q, r, ft, xo, q) = J(Q' r, ~, Xo, q) 
J(Q, r, ft, xo, 1)' 

where as before, 

J(Q, r, ~, Xo, a) = 1 G(x) dx) , 
IB(Q,r)nal (Q,,-)na d(x, Oa) 

for aE[1,oc).  Let Wa denote the Whitney decomposition of f~. Let Wj:={QE 
Wa : / (Q)=2-J  } where l(Q) denotes the sidelength of Q. For q>0 we introduce the 

number, 

Iq(a) : = E 2 J ( q - n )  E G(x)q" 
j>_4 QEWj 

Take QEO~, Mr<ro, where M, r0 are the NTA parameters of ~. According 
to Theorem 2.1 there exists an NTA-domain ~Q,~. with the same NTA-constant 
as ~ and such that  B(Q,r)N~C~Q,r.  F~rthermore, there exists xQ,rE~Q,,, such 
that  d(xQ,r,O~)~d(xQ,~,O~tQ,~)~r and XQ,~AB(Q, Mr)=O. Define Vt~, r in the 
following way, 

x* E gt~,~ if and only if rx*+xQ,~ E ~Q,~. 

Let GQ,~(x)=GQ,r(x, xQ,~.) be the Green function of ~Q,~ with pole at XQ,,.. Let 
furthermore GQ,~(x)--GQ,r(x, xQ,,.) be the Green function of f~Q,r with pole at 
x~2,r. Then with the notation introduced above we get using Lemma 3.3 and the 
dilation invariance of the quantity A, 

A(Q, r, f~, x0, q) ~ A(Q, r, ftQ,r, XQ,r, q) ~ A(Q*, 1, f t , , r ,  x~,r, q). 
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17~,r is now an NTA-domain with diameter ~1 ,  having the same NTA-parameter  

M as 12. In particular we have, 

(/B , , q ) l / q  , . [cq,r(x, xQ, ) dx 
A(Q*, 1, f~Q,,, XQ,~, q) ~ (Q*,l)nn5,~ I d(x---~, Oft*Q,~----~ 

We now make the following definition. 

Definition 12.1. ft is said to be selfsimilar of order q if f~ is a bounded NTA- 
domain and if there exists a constant C=C(f~, q) such that  for all QcOft, Mr<to ,  
the following is valid, 

_< 

where ~Q,r is defined above. We denote this class of domains by SF(q). 

To say that  f lESF(q) is a way of quantifying that  the geometry on the small 
scale looks like the geometry on the global scale. To be more precise, the condition 
is actually a condition on the localization property in the following sense. If we 
may choose the localized domains, ~Q,~, as perfect copies of 17, then the condition 

in Definition 12.1 is trivially fulfilled as we then essentially have fl~7,~=ft. Through 
the deductions made above we have proved the following theorem. 

T h e o r e m  12.1. Let f~ER n and 12ESF(q). Then the following is true. If 
Iq(f~)<oc, q > n / ( n - 1 ) ,  then the conclusion of the Main Theorem is valid. 

In other words, if 17 E SF (q) we are able to rephrase the reverse HSlder inequality 
condition in terms of a sum over Whitney cubes. To determine, for different values 
of q, the finiteness of that  sum you probably need to use a computer,  something we 

have not spent any t ime doing. 
In the following we will need the following lemma, which may be deduced from 

the results in NystrSm [21] in the same way as Theorem 7.2 was deduced. 

L e m m a  12.1. Let f~cR n be a bounded NTA-domain. Then there exists a 
constant C=C(~ ,q)  such that if ueW~'q(17) then 

~t(X) ~l/q 
�9 

T h e o r e m  12.2. Let f t E R  n be a bounded NTA-domain. Let Iq(~2)=oc. Then 
there exists f eL~(~t)  such that V G  f ~ Lq(~). 

Proof. Let f be the characteristic function of Q o c ~ ,  d(Qo, O~)~diam(~).  
Suppose that  Iq(~t)=c~ and tha t  GfEWI 'q(~) .  As ~t is regular for the Dirich- 
let problem and as ~ is an (s, 5)-domain (i.e. an extension domain for Sobolev 
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spaces [16]) we get by using the Spectral synthesis for Sobolev spaces (see Hed- 
berg [12]) that  GfeW~'q( f~) .  Using Lemma 12.1 we have 

c~> IVu(x)lqdx>_C d(x, Oa) dx>CIq=oC. 

We have reached a contradiction and the theorem is proved. 

We may formulate the following corollary, 

C o r o l l a r y  12.1. Let f~ER ~, f tESF(q).  Then the conclusion of the Main The- 

orem is valid if and only if  Iq ( f t )<oc .  

It  is obvious that  a domain like the snowflake domain fulfills the requirement 
of Corollary 12.1. We may therefore conclude that  the theorem for the snowflake 
stated in the introduction is true. 

R e f e r e n c e s  

1. ADAMS, D. R. and HEDBERG, L. I., Function Spaces and Potential Theory, Springer- 
Verlag, Berlin Heidelberg, 1996. 

2. AHLFORS, L., Quasiconformal reflection, Acta Math. 109 (1963), 291-301. 
3. BURKHOLDER, D. L. and GUNDY, R., Distribution function inequalities for the area 

integral, Studia Math. 44 (1972), 527 544. 
4. COIFMAN, R. R. and FEFFERMAN, C., Weighted norm inequalities for maximal func- 

tions and singular integrals, Studia Math. 51 (1974), 241 250. 
5. DAHLBERG, B. E. J., Estimates of harmonic measures, Arch. Rational Mech. Anal. 

65 (1977), 149 179. 
6. DAHLBERG, B. E. J., Lq-estimates for Green potentials in Lipschitz domains, Math. 

Scand. 44 (1979), 149-170. 
7. DAHLBERG, B. E. J., On the Poisson integral for Lipschitz and Cl-domains, Studia 

Math. 66 (1979), 13-24. 
8. DAHLBERG, B. E. J., Weighted norm inequalities for the Lusin area integral and 

the non-tangential maximal function for harmonic functions in a Lipschitz 
domain, Studia Math. 67 (1980), 297-314. 

9. GEHRING, F. W., Characteristic Properties of Quasidisks, S@m. Math. Sup. 84, Univ. 
Montr@al, Montr@al, Que., 1982. 

10. GEHRING, F. W. and V~ISJ~Ls J., Hausdorff dimension and quasiconformal map- 
pings, J. London Math. Soc. (2) 6 (1973), 504-512. 

11. DE GUZMAN, M., Real Variable Methods in Fourier Analysis, Notas Mat. 75, North- 
Holland Math. Studies 46, North-Holland, Amsterdam-New York, 1981. 

12. HEDBERG, L. I., Spectral synthesis in Sobolev spaces and uniqueness of solutions of 
the Dirichlet problem, Acta Math. 147 (1981), 237-264. 

13. HELMS, L. L., Introduction to Potential Theory, John Wiley & Sons, New York, 1969. 



Integrability of Green potentials in fractal domains 381 

14. JERISON, D. S. and KENIG, C. E., Boundary behaviour of harmonic functions in 
non-tangentially accessible domains, Adv. in Math. 46 (1982), 80-147. 

15. JONES, P. W., Extension theorems for BMO, Indiana J. Math. 29 (1980), 41 66. 
16. JONES, P. W., Quasiconformal mappings and extendability of functions in Sobolev 

spaces, Acta Math. 47 (1981), 71-88. 
17. JONES, P. W., A geometric localization theorem, Adv. in Math. 46 (1982), 71-79. 
18. MAZ'YA, V. G., Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg, 1985. 
19. MAZ'YA, V. G. and HAVIN, V. P., Non-linear potential theory, Uspekhi Mat. Nauk 

27:6 (1972), 67-138 (Russian). English transl.: Russian Math. Surveys 27:6 
(1972), 71-148. 

20. MUCKENHOUPT, B. and WHEEDEN, R. L., Weighted norm inequalities for fractional 
integrals, Trans. Amer. Math. Soc. 192 (1974), 261-274. 

21. NYSTROM, K., Smoothness Properties of  Dirichlet Problems in Domains with a Frac- 
tal Boundary, Ph.D. Dissertation, Ume&, 1994. 

22. STEIN, E. M., Singular Integrals and Differentiability Properties of Functions, Prince- 
ton Univ. Press, Princeton, 1970. 

23. Vs J., Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in 
Math. 229, Springer-Verlag, Berlin-Heidelberg, 1971. 

24. WIDMAN~ K.-O., Inequalities for the Green function and boundary continuity of the 
gradient of solutions of elliptic differential equations, Math. Scand. 21 (1967), 
17-37. 

25. Wu, J. M., Content and harmonic measure; An extension of Hall's lemma, Indiana 
Univ. Math. J. (2) 36 (1987), 403-420. 

Received October 19, 1995 Kaj Nystr5m 
Department of Mathematics 
University of Umes 
S-90187 Umes 
Sweden 
Current address: 
Department of Mathematics 
The University of Chicago 
5734 University Avenue 
Chicago, IL 60637 
U.S.A. 
emaih l~uj @mat h.uchicago.edu 


