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On regularization in Banach spaces 

Thomas  StrSmberg 

1. I n t r o d u c t i o n  

In the present paper  we propose a regularization procedure for functions defined 
on Banach spaces admitt ing equivalent locally uniformly rotund norms the dual 
norm of which are also locally uniformly rotund. We demonstrate  that  with any 
bounded below lower semi-continuous (1.s.c.) proper function f defined on such 
a Banach space X can be associated a family of C 1 functions approximating f 

from below and enjoying favorable properties from the viewpoint of minimization. 
Our method reduces in the case where X is a Hilbert space to the one that  was 
introduced and investigated by J. M. Lasry and P. L. Lions in their joint paper  [10]. 
Their approach has subsequently been further explored by other authors, notably 
in [3] and [5], but never before outside the Hilbert space setting. 

The Lasry-Lions method is based upon Moreau-Yosida approximation. Given 

f ,  an extended-real-valued function defined on a Hilbert space X,  the Moreau- 
Yosida approximates of f are the functions ft, t>0 ,  tha t  carry each x E X  to 

In the case where f is convex, ks .c ,  and proper, the envelope functions f t  possess 
Lipschitz continuous Fr6chet differentials (in symbols: ft  EC 1'1) and ft--~f, at least 

pointwise, as t~0. There is even convergence, in certain senses, of the differentials dft 
to the subdifferential Of. ~hrthermore,  the infimal value of f together with the set of 
minimizers, as well as the stat ionary points and values, are preserved. The convexity 
hypothesis can actually be weakened; it suffices to assume that  f + ( 2 T ) - l l l  .]]2 is 

convex for some T > 0  in which case f t E C  1'1 etc. when rE(0, T). 
In order to extend at least some of these results to non-convex functions, 

Lasry and Lions introduced a two-parameter  family of approximates by putt ing 
f t ,~=-( - f t ) s ,  0 < s < t .  Let us, for simplicity, assume that  f is bounded from below 
which guarantees that  the functions ft,8 are all real-valued. It  was proved in [10], 
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[3], without any convexity hypothesis on f ,  that  ft,~ enjoys C 1,1 smoothness when 
0 < s < t ,  that  ft,~---*f pointwise as 0 < s < t l 0  if f is 1.s.c., and that  the convergence is 
uniform if f is uniformly continuous. However, the techniques used in the seminal 
paper [10] and also in subsequent papers seem to depend on the specific properties 
of the Hilbertian norm and therefore to fail to carry over to a richer class of Banach 
spaces. The objective of the work reported here is to show that  these problems can 
be overcome by using an approach by means of one of the chief tools in convex anal- 
ysis, namely the Legendre-Fenchel transformation. The result is a regularization 
method having advantageous variational properties. 

It deserves to be mentioned that  one can view the Moreau-Yosida process as 
a regularization by way of the Cauchy problem 

Ou(x,t)/Ot+lldxu(x,t)l[2/2=o, x ~ x ,  t > 0 ,  

u(x, o) = f(x), x �9 x .  

In fact, when X = R  ~ and f is 1.s.c. and bounded from below, the viscosity solution 
to this initial-value problem is given by the Lax-Oleinik formula 

x 

We refer to [11, Proposition 13.1] for a proof. Furthermore, we prove below (Propo- 
sition 3) that  when X is an arbitrary Hilbert space and f+(2T)-lll-II z is convex, 
where T is some positive real number, then, as indicated by a formal applica- 
tion of the method of characteristics, the function u(x, t ) = f t  (x) satisfies the above 
Hamilton-Jacobi equation at each point (x, t) in X x (0, T). Also, if we define 
S(t) f=ft ,  t>0 ,  and S(O)f=f, for 1.s.c. bounded below functions f ,  the family 
(S(t))t>o forms a semigroup of operators (on the cone of all bounded below 1.s.c. 
proper functions on X) with S(t)f--~ f pointwise and with respect to the epi-distance 
topology as t+0. 

The Lasry-Lions approximates can be written ft,s=E(s)S(t)f where (E(s))s_>0 
is the semigroup defined via 

) 

The inequality E(s)S( t ) f<S( t - s ) f  is always true as long as 0 < s < t ,  while the 
equation E(s)S( t ) f=S( t - s ) f  ("time-reversal") holds when O<s<t<T if and only 
if f + ( 2 T ) - l l l  �9 II 2 is convex; see Proposition 2. 

At this stage we would like to remark that  our method, outside the Hilbertian 
case, is not directly connected to Hamilton-Jacobi equations. 
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The paper is organized in the following way. Section 2 contains background 
material mainly on convex functions. The definition of the approximates and the 
statement of Theorem 1, the corner-stone of the paper, are given in Section 3 while 
the proof of the theorem can be found in Section 4. Theorem 1 summarizes the 
main results; several of the properties of the Lasry-Lions approximation process are 
shown to extend to the broader framework of functions defined on Banach spaces 
satisfying the above mentioned rotundity hypotheses. Also the epi-distance topol- 
ogy, which has received attention over the last years, is considered. In Section 5 
approximation by twice G~teaux differentiable C 1,1 functions in separable Banach 
spaces is examined. A combination of our Theorem 1 with techniques used in the 
papers [8], [13] yields a variant of certain results obtained in [13]. These authors have 
focused on convex functions which are bounded on bounded sets, whereas we relin- 
quish convexity and consider functions which are uniformly continuous on bounded 
sets. Last on the agenda, the Lasry-Lions approximates of functions f (defined on 
Hilbert space) which are locally convex up to a positive multiple of the square of 
the norm are investigated in Section 6. We prove, firstly, that  the derivatives of the 
approximates dft,s converge, in certain senses, to the Clarke subdifferential Of and, 
secondly, that  the stationary points and values of f are preserved. 

2. Pre l iminar i e s  

We shM1 adopt some terminology and notation which are of a common use in 
the field of convex analysis. First of all, the conjugate function or Legendre-Fenchel 
transform of an arbitrary function f :X- -~ [ -oo ,+oo]  is the extended-real-valued 
function f*  on X*,  the topological dual space of X,  that  assigns to each {EX* the 
number 

f*  (~) = sup ((x, ~ ) - f ( x ) ) .  
x 6 X  

Symmetrically, for ~ defined on X*,  p*: X- - - [ -oo ,  +co] sends each xEX to 

~*(x) = sup ( ( x , ~ ) - ~ ( ~ ) ) .  
~CX* 

The biconjugate f * * = ( f * ) *  is equal to ~-6f, the greatest convex 1.s.c. minorant of 
f ,  provided f admits a continuous aiYine minorant. 

The notation F (X)  signifies the set of all convex 1.s.c. proper functions on X. 
Recall that  f is termed proper provided it is somewhere finite and nowhere - c o .  

The set of points at which a proper function f is finite is called the effective domain 
of f and is denoted by d o m f .  We write i n f f  for inf{f(x);xEX} and a r g m i n f  
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for the possibly empty  set of minimizers {xEX;f(x)=inf  f}. Moreover, we te rm f 

demi-convex if f + (~/2) 11" 112 is convex for some a_> 0. 
The infimal convolute f[7 9 of two proper extended-real-valued functions f and 

g on X is defined by 

fDg(x) =infx(f(y)Wg(x-y)) for all x E X .  

Frequently, (X, II II) stands for a Banach space having the proper ty  that  I1" II 
as well as the canonical dual norm II-II, are locally uniformly rotund. Let us make 
precise the notion of (local) uniform rotundity. The norm I1.11 is called locally 
uniformly rotund (LUR) provided I1" II 2 is a locally uniformly convex function, that  
is, to each point xEX there exists a non-decreasing function Ax on [0, +oc) with 
A x ( u ) > 0  if u > 0  such that  

(2) ii(x+y)/2112 2 _  llxll + llyll2-  (llx-yll) for all yEX. 

It  is well known that  local uniform rotundity of II-II, forces II'ii to be Fr~chet dif- 
ferentiable on X \ {0}. This is actually a particular case of Lemma 4 below which 
we shall employ later on. 

The norm II" II is uniformly rotund (UR) if there exists a non-decreasing function 
A defined o11 [0, +oo) with A ( u ) > 0  when u > 0  such tha t  

(3) II(x+y)/211  lllxlli+ llyll - (llx-yll) when x, y X, IIxJl l. 

The functions Ax and A are sometimes tacitly used in the sequel. 

In part  of Theorem 1 the 1.s.c. proper functions on X will be endowed with the 

"epi-distance" topology which we proceed to define. Let A and B be two nonempty 
subsets of a Banach space Y. The excess of A over B is the number 

E(A, B) = sup{d(a, B) ;a E A} 

where d(a, B)=infbEB Ila-bll . For ~>0  we write 

HQ(A, B) = max{E(QUAA, B), E(~UnB, A)} 

where U stands for the closed unit ball in Y. The quantity Ho(A , B) is called the 
Q-Hausdorff distance between A and B. A closed nonempty subset A of Y is the 
limit, with respect to these distances, of a net of closed nonempty subsets (Ax)x~A 
if HQ(A, Ax)--*O for each ~>0. 
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We shall in this paper only consider convergence of epigraphs of proper 1.s.c. 
functions X---~(-cxD, +oo]. If f and g are such functions, then we write, for no- 
tational simplicity, Ho(f,g) instead of H0(epi f ,  epig) where the latter is defined 
with the convention that Y = X |  be equipped with the box norm H(x,c~)ll = 
max{llxll , Ic~l}. The resulting function space topology is called the epi-distance 
topology. One reason for the interest in this topology is the fact that  with respect to 
it the Legendre-Fenchel transformation is a homeomorphism of F(X)  onto F* (X*). 
Another reason is that  the convergence in the epi-distance topology implies the con- 
vergence of epigraphs in the sense of Kuratowski-Painlev@, and the latter plays a 
prominent role in variational analysis. For a recent exposition consult [4]. 

For Ac_X, 3a stands for the indicator function of A: 

0 if xEA, 
3A(X)= +oo i f x ECA .  

If f :  X - + R ,  the sum f+3A is the "restriction" of f to the subset A. 
Finally, B(x, r) denotes the closed ball centered at x and of radius r. 

3. The approximates  and main results 

We proceed to our choice of approximation. 

Definition. Suppose f is an extended-real-valued function on a real Banach 
space X. For positive real numbers s<t, ft,, is defined by 

* ll['[[~]*(x/s)-~--~llxl[2, xEX. 

A dual formulation in terms of infimal convolution is provided by the following 
proposition. 

Propos i t ion  1. Let f be a proper bounded below function on X, 0 < s < t ,  xcX .  
Then 

(4) ft,s(x)= inf FK6(f + ~1 2) . XL \ _II.II ( y ) + - -  

Proof. Put  

1 1 2] 
1/ -1/t2 -111xl5 

1 1 
and h =  1/s_1/~211.112; 
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with conjugates 

g*=(f+~-~l l . l127( . I t  ) and h * = (  1 ~ ) 1  
- 711.11~,. 

Using the convex duality formula (g*+h*)*=gDh, which indeed is available since 
g, her(x) and h is real-vMued and strongly coercive, we find that  

f~, . (x)+l l l~ l l  ~ = (g* +h*)* (x /s )  = ~[]h(x/s)  

: i n f  
~ e  x L \ z t  

i x  l 
1 / s -  1/t 2 

The asserted formula (4) clearly follows on substituting tw=y.  [] 

Without any further preparations we turn to the formulation of our main the- 
orem. 

T h e o r e m  1. Suppose X is a Banach space whose norra and dual norm are 
both LUR. Let f : X - - * ( - o c , + ~ ]  be proper, l.s.c., and minorized. I f  0 < s < t  then 
assertions (i)-(iv) concerning ft,s hold: 

(i) ft,s is continuously differentiable and Lipschitz continuous on bounded sets; 
(ii) dft,~ is uniformly continuous on bounded sets (respectively, globally Lip- 

schitz continuous) if I1" I1. is UR (respectively, J=dll. 112/2 is globally Lipschitz con- 
tinuous); 

(iii) ft,~< f , inf ft,~=inf f , and argmin ft ,~=argmin f;  
(iv) ft ,s+(2s)-lil . l l  2 is convex. 
Moreover, when 0<s< t~0 ,  
(v) ft,~--~f pointwise, and provided I1"11 is UR in the epi-distance sense too; 
(vi) ft,~--~f uniformly on bounded sets when I1" II is UR and f is uniformly 

continuous on bounded sets. 

We emphasize that  we impose no convexity assumptions whatsoever upon f .  
The assertion (iii) expresses that  the approximation is from below and, which 

is more important, that  the method has the pleasant feature that  it preserves the 
infimum of f and the associated set of minimizers. 

We conclude this section with a list of corollaries to Theorem 1. It shows 
in particular that  certain known results on approximation of uniformly continuous 
functions and on partitions of unity can rather easily be derived from Theorem 1. 

Even specializing to indicator functions in Theorem 1 yields something non- 
trivial. This illustrates the advantage of the admissibility of the function value +c~. 
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C o r o l l a r y  1. Let X be a Banach space whose norm and dual norm are both 
LUR. To any closed nonempty subset A of X there corresponds a demi-convex C 1 
function r such that r  when xEA  and r  when xECA. 

If the dual norm is UR rather than merely LUR, r may be chosen so as to 
have a differential de that is uniformly continuous on bounded sets. 

Proof. To say that  A is closed and nonempty means the same as to say that  
~A is 1.S.C. and proper. Fix 0 < s < t  and let r be the approximate (~A)t,8. Accord- 
ing to Theorem 1, CECI(X),  i n f r  and argminr In 
addition, r  -111" II 2 is convex. 

When II" ]]* is UP, de  is uniformly continuous on each bounded subset of X. [] 

We say that  X admits C 1 partitions of unity if for any open covering (9 of 
X there exists a C 1 partition of unity which is subordinated to (9. It was proved 
in [17, Theorem 2.1] that  X, subject to the hypotheses of Corollary 1, admits C 1 
partitions of unity. We present next, in particular, a proof based upon Corollary 1. 

C o r o l l a r y  2. Suppose X has an LUR norm whose dual is also LUR. 
(i) X admits C 1 partitions of unity; 
(ii) To any locally finite open covering (O~)~eA of X there exists a family of 

non-negative C 1 functions (~)~eA such that p~-l(0, +oc)=O~ for each AEA and 

~ e A  ~ ( x ) = l  for all xEX.  

Proof. Let Ol(X) be {r +oc);r  r Statement (i), concern- 
ing an arbitrary Banach space X, is equivalent to 

(i') If A C B C X ,  where A is closed and B is open, there exists OE(91(X) such 
that  ACOCB.  

Consult for instance [6, Chapter VIII, Lemma 3.6] for a proof. In our case, (i') 
is certainly met since, by Corollary 1, (91 (X) consists of all open subsets of X. 

(ii) Choose C 1 functions r  such that  r if and only if xEO),, and 
define 

= / 
These functions will serve the purpose. [] 

Remark. Let k be a positive integer or oc. The following conditions relative 
to a Banach space X are known to be equivalent (see [15, Proposition 2.1] and [6, 
Chapter VIII, Theorem 3.2]): 

(a) Every real-valued Lipschitz continuous function on X can be locally uni- 
formly approximated by C k functions; 

(b) To every continuous S: X-+Y, where Y is a Banach space, and every con- 
tinuous p: X--~(O, + ~ )  there exists a TECk(X,  Y) such that 

[[S(x)-T(x)[ I<p(x) for aUxEX;  
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(c) X admits C k partitions of unity. 
Recent contributions to the area of smooth partitions of unity appear in [9] 

and [12]. 

We show next that  pointwise approximation of arbitrary 1.s.c. proper functions 
is always possible in our setting. 

C o r o l l a r y  3. Suppose X is a Banach space with an LUR norm the dual norm 
of which is LUR. Then every l.s.c, proper extended-real-valued function f on X can 
be approximated pointwise by continuously differentiable functions. 

Proof. Let F ( x ) = e x p  f ( x )  if x E d o m f ;  F ( x ) = + o o  otherwise. The function F 
maps X into (0, +oo] and is lower semicontinuous. The approximates Ft,8, 0 < s < t ,  
are C 1 and >0. Indeed, if infFt ,8=0,  then argminFt,~=argminF=O since F is 
nowhere 0 [Theorem l(iii)]. Therefore, log Ft,~ is C 1 and clearly log Ft,~ (x)--*f(x) 
when 0 < s < t $ 0  for each x E X  [Theorem l(v)]. [] 

By a similar argument we find the following variant of [14, Theorem 1]. 

C o r o l l a r y  4. If  the norm of X and its dual norm are both UR, every real- 
valued function f on X which is uniformly continuous on bounded sets can be ap- 
proximated uniformly on bounded sets by differentiable functions the differentials of 
which are uniformly continuous on bounded sets. 

4. P r o o f  o f  T h e o r e m  1 

In the proof of Theorem 1 we shall use some auxiliary notation and definitions. 

Notation 1. Unless otherwise stated, X will denote an LUR Banaeh space 
whose dual is also LUR. We introduce K: X2--*R by putting 

/ ( (x ,  y) = 1 2 1  llxll + llyll2-(y,J(x)) for all (x,y) e X  2, 

where J denotes the duality map J=dl[ .  112/2 mapping X into X*. 

If X is a Hilbert space, J is simply the identity operator in X and K(x,  y) is 
nothing else but ]lx-Yl]2/2. 

L e m m a  1. The following hold: 
(i) K(x , x )=O for all x E X ;  
(ii) For any x E X ,  

K(x,y) Ax(llx-Yll) for all y X, 
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where Ax is the function in (2); 
(iii) If II" II is UR rather than just LUR, 

K(x,y)>o2A(llx-yl]/O) if o>O, xCB(O,~), a n d y e X ;  

for the meaning of A study (3). 

Proof. Part (i) translates to the familiar identity: (x, J(x)}=]lxll 2. 
(iii) It suffices to consider the case in which Q=I since K is homogeneous of 

second degree. Bearing inequality (3) in mind, 

K(x,y)  - -  1 1 y 2 - llxll2+ fl rf-(y,J(x)) 
-> II (x+y)/2ll  2 +A(l lx-y l l ) -2((x+y) /2 ,  J(x)} + (x, J(x)} 

>_ Ir (x + y) /2ll~ + A(llx-yllD- 2( �89 ll (x + y) /2112 + �89 llxll~) + llxll 2 
= A(llx-yl l)  

provided xEB(O, 1) and yCX. 
Assertion (ii) admits an analogous proof. [] 

We turn to yet another auxiliary definition. 

Notation 2. Let f and g be extended-real-valued functions on X, s and t be 
positive real numbers. We define ft and g~ by the formulas 

f t (z )= inf z c  X, 

Obviously, f t < f  and gS>g. Also, it is clear that  if X is a Hilbert space, then 
ft  is the Moreau-Yosida approximate of order t while g~ equals - ( - g ) ~ .  

We observe that  

Our interest in these constructions stems from the fact that  they provide a 
decomposition of ft,s which will prove useful in the demonstration of Theorem 1. 
They also show that our approximates coincide with those of Lasry and Lions when 
X is a Hilbert space; namely, 
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L e m m a  2. ft,s=(ft) 8 when 0 < s < t .  

Proof. The sum 

(ft)8(x)+ ~-~llxN 2 

equals 

s~ [,x~ ~,z,, ( ~  ~)*,~,~,~, (1_1)lz~ 1 
su~[,x~,~,, (~l i,~,z,~, (l ~)~,z,~ ] 
?up . [ (x / s , , }__( f  + l * 1 1 1 2 

and the last expression is ft,s(x)+(28)-lllxll 2. In this string of equalities we have 
used the identity II z ]1 = ]1 J(z)]l* and the density of the range of J (the Bishop-Phelps 
theorem); the latter in conjunction with the continuity of the concave function 

* 1 ~. ~/x~.,/-(~,,.,,~)/.~/-(~-~)~,,,,,~. 
The proof is complete. [] 

L e m m a  3. Let f be a proper extended-real-valued 1.s.c. bounded below function 
on X .  For any t > 0  it holds that 

(i) ft is a real-valued minorant of f; 
(ii) inf f t=inf f; 
(iii) arg min ft =arg min f .  
Also, when t l0 ,  
(iv) ft--* f pointwise; 
(v) ft--~f with respect to the epi-distance topology provided I1" II is UP; 
(vi) ft--+f uniformly on bounded sets when f is uniformly continuous on 

bounded sets and I1" II is UP. 

Proof. Parts (i) and (ii) are immediate. 
(iii) The assertions (i) and (ii) jointly imply arg min f C a r g  min ft. To establish 

the reverse inclusion, suppose x minimizes ft and let (yj) be a minimizing sequence: 

f ( y j )+~K(x ,  yj)--~ f t (x )=in f  f, j - - ~ .  
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Evidently K(x, yj)---*O and hence yj---*x as j--*oc [Lemma l(ii)]. 
continuity we find that 

f(x)+ tK(x, x) <_ inf f, 

which says f(x)_<inf f .  
(iv) Choose xEX. Of course, 

By lower semi- 

lim ft(x) = sup ft(x) < f(x). 
t$0 t>0 

The reverse inequality supt>o ft(x)>f(x) is immediate if supt>o ft(x)=+c~. Sup- 
pose instead that S:=supt> o ft(x)ER. Let 0<e ta0  as t l 0  and select Yt such that 

(5) f(yt)+~ g(x, Yt) <_ ft(x)+et < S+et. 

Then yt~x as tJ.0; otherwise there would exist a 5>0  and a sequence tj ~0 such 
that [Ix-ytj II >5 which would imply, again applying Lemma l(ii), 

f(ytj)+~jK(x, ytj)_>inf/+lAx(5)ty ~ + e c ,  j - -*ec ,  

contradicting (5). Thanks to the inequality I(Yt)<_ft(x)+et and the lower semi- 
continuity of f ,  

I(x) <_ limt;0inf (ft (x) +s t )  = l~/n00 ft (x). 

(v) Fix 0, an arbitrary positive real number. Let U represent the unit ball in 
X |  with respect to the box norm: U={(x,a)EX| [a]_<l}. Since ft 
minorizes f we have E(epifNoU, epi f t )=0 .  Therefore, 

Ho(I, ft) = E(epi ftMoU, epi f )  

(6) =sup{d((x,a),epif);(x,a) E epif t ,  Ilxll _< 6, and lal _< 0}. 

We claim that there exists a positive function t~-*r(t) with r(t)--*O as t l 0  such 
that 

(7) ft(x)= inf (f(y)+lK(x,y)~ yeB(x,r(t)) 

whenever xEB(0,  6) and ft(x)<_Q. In fact, 

r(~) ---- ~o A - 1  ( t ( o - i n f  f+l)/o 2) 
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will do. (We may and do assume that A has a continuous inverse function.) Indeed, 
if Ilxll_<L) and IIx-yll >r(t) ,  by Lemma l(iii), 

f(y)+~K(x,y) >_ inf f +lo2A(r(t)/g)=g+l 

implying (7) provided ft (x)<_ O, and r(t) tends to zero as t$ 0, establishing the claim. 
To estimate Ho(f, ft ) [see (6)] let (x,a)Eepift, Ilxll_<~, and I~l_<~. In par- 

ticular, ft(x)<_Q so that formula (7) for ft(x) is valid. Fix t > 0  temporarily, choose 
~>0, and pick yEB(x,r(t)) such that 

f(y)+~K(x, y) < ft(x)§ 

Then f(y) <ft(x)+c<c~+c and thus (y, c~+c) Eepi f .  Consequently, d((x, ct), epi f )  
is at most the norm of (x, c~)-(y, c~+e): 

d((x, a), epi f )  < max{llx-yll, c) < max{r(t),  r 

Therefore, e being arbitrary, d((x, a), epi f) <_r(t) from which it follows that 

He(f, ft) <_ r(t). 

We conclude that ft--~f for the epi-distance topology since r(t)--~O as t;O. 
(vi) Let us verify that 

sup If(x)-f,(x)l= sup (f(x)-ft(x)) 
x~B(O,~) ~eB(O,o) 

approaches zero as t ;0 .  We can find R>O such that 

/ 1 \ 
(8) S t ( x )  = inf [f(y)+~K(x,y)]  when t E (O, 1], x C B(O, o). 

yeB(O,R) 

To see this notice that f is bounded on B(0, g) by say M, and that K(x,y)> 
(IlYll-Nzll)2/2. Applying these observations we find that for arbitrary xEB(O, ~), 
tE (0, 1], 

f(y)+~K(x,y) >_ inf f + l  (iiy[[-[[x[[)2 >_ M+ 1 

provided liy[[ > g +  [ 2 ( M + l - i n f  f)]1/2 =:R; whence (8) as claimed. 
With m being a modulus of continuity for f[B(0,R); in other words, 

If(x)-f(y)l ~m(llx-Yll) for all x,y~B(O,R), 
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where m is continuous, non-decreasing, subadditive, with m(0)=0,  we have 

s u p { f ( x ) - f t ( x ) ; x  E B(0, ~))} 

= s u p { f ( x ) - f ( y ) - t - l K ( z ,  y) ;x �9 B(O, ~), y �9 B(O, R)} 

<_ sup{m(l lx -y l l  ) - t - l o 2 A ( l l x - y l l / O ) ; x  �9 B(0, ~)), y �9 B(0, R)} 

= sup{re (u ) - t - lQ2A(u /p ) ;u  �9 [0, R +  ~)]} 

--*0 a s t ~ 0 .  

A proof of the elementary statement "--40" is omitted. [] 

The following lemma, which exploits the duality between differentiability and 
uniform convexity (for convex functions), will be utilized in the proof of smoothness 

of ft,s. 

L e m m a  4. Suppose h�9 where X is a Banach space. Suppose moreover 
that h*(~)/ll~ll,--++oc when II~ll,--~+oc and that h* is locally uniformly convex. 
Then h is Lipschitz continuous on bounded sets and C 1. I f  h* happens to be uni- 
formly convex on bounded sets, then the differential dh is uniformly continuous on 
bounded sets. 

The assumption that  h* be locally uniformly convex means that  to each ~ �9  
dom h* there should exist a function p~ on [0, +ec) such that  

h*((~+~)/2) < 1 * _ 7h (~ )+ �89  for all r l � 9  

and p~ (u)>0 if u>0.  The concept of "uniform convexity on bounded subsets" is 
defined similarly. 

The contents of the lemma are essentially classical, see for instance [1], [18], 
but for the sake of completeness we include a proof. 

Pro@ The strong coerciveness of h* clearly implies that  h is bounded and 
hence Lipsehitz continuous on bounded subsets of X. 

Let x;xo,x l , . . ,  be elements of X such that  IIx-xjll- 0 as Choose 
~EOh(x) and ~jEOh(xj),  j � 9  The differentiability follows if we establish that  
IIr To this end we make use of the identities 

Ix, ~} = h(x)+h*(~) ,  Ixj, ~j) = h(x j )+h*(~j )  for all j �9 N. 

These equations imply 

2h* ((~+~j)/2) - h* (~) - h* (~j) 

> 2({ (x+xj ) /2 ,  ( ~ + ~ j ) / 2 } - h ( ( x + x j ) / 2 ) ) - h * ( ~ ) - h * ( ~ j )  

> - ( x - x j , ~ - ~ j } / 2 - - - * O  when j --~ oc, 
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from which it follows, thanks to the local uniform convexity of h*, that  I]~-~j II * --*0. 
Hence h is C 1. 

Replacing xj, ~, and ~j by y, dh(x), and dh(y), respectively, we find that 

1 (9) h*((dh(x)+dh(y))/2)-lh*(dh(x))- �89 >_ -~(x-y, dh(x)-dh(y)).  

Assume h* is uniformly convex on bounded subsets, choose t)>0, and let L be a 
Lipschitz constant for h lB(0,o). By assumption there exists a non-decreasing function 
p such that  

(10) h*(({_~_?])/2)< 1 * 1 �9 _ ~h ( ~ ) + ~ h  (r / ) -p(I]~-~] l , )  if II~]]*-<L, Ilrl]], _< L, 

and p(u)>0 if u>0.  The inequalities (9) and (10) imply 

4p(lldh(x)-dh(y)]]. ) <_ Ilx-y]l Ildh(x)-dh(y)ll. when x, yE B(O, ~), 

since Ildh(x)ll.<_L for all xEB(O,p). The preceding inequality forces dh to be 
uniformly continuous on B(0, 6). [] 

Now we are ready to prove Theorem 1. 

Proof of Theorem 1. (i) To begin we observe that 11"112. is locally uniformly 
convex since II. II, is locally uniformly rotund by hypothesis. The function 

�9 1 

is strongly coercive and locally uniformly convex for the sum of a convex function 
and a locally uniformly convex function is again locally uniformly convex. Invoking 
Lemma 4 it is then clear that  

is C 1 and Lipschitz continuous on bounded sets. 
(ii) Again by Lemma 4, dft,s is uniformly continuous on bounded sets if I]" II* 

is UR. 
The infimal convolute 9[]h is C 1,1 provided g e t ( x ) ,  and h is convex, C 1'1, 

h(x)/llxll ~oc  when Ilxll--*ee; s e e  for instance [13, Proposition 2.5]. As a particular 
case, ft,~ is C 1'1 provided 11"112 is C 1,1 [see (4)]. 

(iii) With y=x in the infimum (4), ft,s(x)<_f(x). Evidently, ft,~=(ft) s >_f t, see 
Lemma 2. The established inequalities ft<_ft,s <_f imply, by virtue of the equality 
inf ft =inf  f [Lemma 3(ii)], that  

inf f = inf ft <_ inf ft,s <_ inf f.  
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On the other hand, taking into account the identity a r g m i n f t = a r g m i n f ,  from 
Lemma 3(iii), it follows that  

arg min f = arg min ft D arg min ft,~ D arg min f .  

Assertion (iv) is obvious. 
(v), (vi) The inequalities ft<_ft,~<f and the pointwise convergence ft--+f 

[Lemma 3(iv)] together imply the pointwise convergence ft ,~-+f.  Arguing similarly, 
with "pointwise convergence" replaced either by "convergence in epi-distance" or 
by "uniform convergence on bounded sets", the remaining assertions follow with 
the aid of Lemma 3(v), (vi). [] 

5. A r e m a r k  o n  s e c o n d - o r d e r  s m o o t h n e s s  

Unfortunately, the method in this paper need not provide approximates enjoy- 
ing second-order differentiability, even if the underlying space X is finite-dimension- 
al. In fact, the following elementary example shows that  we cannot expect more 
regularity than C 1'1 smoothness and that  it hence becomes necessary to combine 
the method with another one in order to achieve second-order differentiability. 

Example 1. Let f be  defined on the line by the assignments 

0 if x < 0 ,  

f ( x ) =  x2/2 if x > 0 .  

Then f is C 1,1 and convex but fails to be twice differentiable at the origin. A 
straightforward computation yields ft,~ = (1 + t -  s ) -  1 f ,  0 < s < t. Regularity is thus 
neither gained nor lost. 

In this connection it should be noted, as pointed out in [14] and [13], respec- 
tively, that  

(a) There exists on 12 a C 1'1 function f that fails to be uniformly approximable 
by functions with two uniformly continuous derivatives (although 12 admits C ~176 
partitions of unity); 

(b) Certain separable Banach spaces have norms such that the associated du- 
ality maps J are Lipschitz continuous yet admit no C 2 bump functions. 

Nevertheless, if X is a Banach space with the properties in (6), then every 
convex f :  X--+R which is Lipschitz continuous on bounded sets can be approximated 
uniformly on bounded sets by twice Ggteaux differentiable C 1,1 convex functions; 
s tudy [13]. As we shall see in this section the convexity assumptions are superfluous 
which will be made clear by combining our Theorem 1 with results in [8], [13]. 
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Accordingly, let us briefly describe the approach of these authors. Suppose that  
X is a separable Banach space and that  f :  X--+R is convex and C 1'1. To approx- 

imate f by twice Gs differentiable convex functions whose first differentials 
remain Lipschitz continuous we may proceed as follows. Fix el, e2, ..., a sequence 

which is dense in the unit sphere of X.  For 0 < r  with r e ( t ) d t = l  put 
Cj (t) =2Jr and 

f r  = l i m  / f(x-~j~=ltyey)l-Iy~=lCy(tj)dr1 dt2 ... dtn, x �9 X.  
JR n 

It  turns out that  the functions f r  have the desired regularity and that  f r  
uniformly on bounded subsets of X as supp g)-+{0}. 

Recall that  a function g: X - + R  is said to be twice Gdteaux differentiable at 
x � 9  if g is Gs differentiable in some neighborhood of x, and if 

g"(x)(h ,  k) = 

exists for each (h, k ) c X  2 making g"(x)  a continuous symmetric  bilinear form. 

T h e o r e m  2. Let X be a separable Banach space. I f  X admits an equivalent 
smooth UR norm H'II such that J=dH.II2/2 is globally nipschitz continuous, ev- 
ery bounded below f: X - + R  which is uniformly continuous on bounded sets can be 
approximated uniformly on bounded sets by twice Gdteaux differentiable functions 
whose first differentials are globally Lipschitz continuous. Moreover, the approxi- 
mates may be chosen as differences of convex functions. 

Proof. Theorem 1 implies that  f can be approximated uniformly on bounded 
sets by C 1'1 functions g - q  with the functions g convex and the functions q positive 

multiples of I1' 112/2. According to the preceding considerations (for. details see [8, 
Theorem 3.1] and [13, Lemma 2.6]) such convex functions g and q can, in turn, be 
approximated uniformly on bounded sets by convex functions enjoying the asserted 
regularity. [] 

6. A p p r o x i m a t i o n  in Hilbert  spaces 

Henceforth X will be a Hilbert space with scalar product (. I ' ) .  A function 
f on X will be called locally demi-convex if to each x E X  there correspond c and 
r, positive reals, such that  f + ( 2 c ) - l l l  .[I 2 is convex on the ball B(x,  r). We shall 

demonstrate  that  the continuous locally demi-convex real-valued functions on X 
fit the regularization scheme like a glove. In the process, various properties of the 

Moreau-Yosida approximates will be discussed. 
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We remark that  R. T. Rockafellar (see [16]) showed that  a continuous func- 
tion f :  Rn--~R is locally demi-convex if and only if it is lower-C 2 which means, 
somewhat loosely, that  f can be expressed locally as a pointwise maximum of C 2 
functions. To be precise, it is required that  with each x0 there may be associated a 
function F: X • where 2~ is an open neighborhood of x0 while ~ is a compact 
space, which along with its first and second derivatives is jointly continuous, that  is, 
(x, y) H ( F ( x ,  y), F~(x, y), F~(x,  y)) is continuous, and such that the representation 

f(x)=m~z~F(x,y), x E X ,  

holds. 
The lower-C 2 functions were singled out by Rockafellar for their nice properties 

with respect to subgradient optimization. 

Notation 3. Let f be an extended-real-valued function on X and t>0 .  By 
C(t)f  we understand the function 

C(t)f = ~ 6 ( f +  (2t)  -1  I1 II - (2 t )  - 1  I1 II 

The following proposition will prove useful in what follows. It is of independent 
interest too. 

P r o p o s i t i o n  2. Let f be an l.s.c, extended-real-valued function on X.  
(i) ft,s=[C(t)f]t_s when 0 < s < t .  
(ii) If T>O and fT is real-valued, the followin 9 conditions are equivalent: 

(a) ft,~=ft_8 for all O<s<t<_T; 
(b) f + ( 2 T )  -1 I1" II 2 EF(X) .  

Proof. (i) Equation (4) may be recast in the desired form 

i 2 1 iix_yll2] 
ft,s(x) = y~inf k [ c 6 ( f + l l l ' l l 2 )  (y ) -  z~ + 2~- s )  ] 

by applying the identity 

i 2 1 1 x 2_1 s 
 /llyll ~ 1 / s - 1 / t 2  -~ Ilxll2-L2(t-s) IIx-yll 2, 

which holds true when II. II is the canonical norm of a Hilbert space. 
(ii) The implication (b) ~ (a) follows at once from (i). 
Assume (a) so that ,  in particular, [C(T)f]T_~ =fT-~ when 0 < s < T .  By letting 

sTT we find that  C(T) f=I ,  which is a reformulation of (b). [] 

We investigate next the local behaviour of C(t)f  for small values of t and 
functions f that  satisfy certain local convexity conditions. 
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L e m m a  5. Suppose that f is bounded from below, xoEX, and that f+  
(2c)-lll.l[ 2 is convex on the ball B(xo, R), where c ,R>0.  Assume moreover that 
f satisfies, on B(x0, R), a Lipschitz condition of rank L. Let 0 < r < R  and 

T = min{ ( R -  r) 2 [2 ( f  (Xo) - inf f + RL)] - 1, c}. 

Then 
C(t)f(x) = f(x) when x � 9  B(xo,r) and t � 9  (O,T]. 

Proof. Let xeB(xo,r) and ~EOf(x). Let tC(0, T]. It suffices to show that 
~+t-lx is the "slope" of a continuous affine minorant of f + ( 2 t ) - l l l .  II 2 which is 
exact at x. 

If yE~B(xo, R), 

( f (y) + 1 [[y[[2)- ( f (x) + 1 [ ]x] [2) - (y-x[~+t-Xx)  

= f(y)-f(x)+~lly-xl l  2-(y-xl~) 

> inf f -  (Lr+f(xo)) + l[]y_x]] 2_ ][y-x[[n 

_> inf f -  (Lr + f(xo)) + ~ (R-r)  2-  (R-r )L  >_ 0 

since t<_ ( R -  r) 2 [2(f (Xo) - i n f  f +RL)]-I. 
If yEB(xo, R), 

1 2 ( f (y)+~, ,y , ,  ) -  ( f ( x ) + l  ,,x[, 2) - ( y - x , ~ + t - l x )  >0 

by the assumed convexity. [] 

It is well known that  the derivatives of the Moreau-Yosida approximates dft 
converge to Of if f c F ( X ) .  We aim to prove that  dft,s---~Of if f is a locally demi- 
convex continuous function. To reach this goal we start with demi-convex functions. 

Notation 4. If C is a nonempty convex closed subset of X, we denote by [C]0 
the element of minimal norm in C. 

P r o p o s i t i o n  3. Suppose f + ( 2 T )  -1[[. [I 2 e r ( x )  where T>0.  
(i) Assume Of(x) is nonempty. Then dft(x)-~[Of(x)]o when t$O. 
(ii) Assume Of(x) is nonempty. Then ft(x)=f(x)-(t/2)[l[Of(x)]o][2+o(t) as 

tlo. 
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(iii) At each (x, t) EX • (0, T), 

o f~(x) /Ot + Ildf~(x)112 /2 = o. 

(iv) For arbitrary O<t<T, xEX,  

f t ( x ) = f ( x )  ~ dft(x)=O .: '. of(x)  ~ o. 

Pro@ Denote by g the function f+(2T)  -11['112; thus gE t (X) .  
(i), (ii) It is readily verified that 

T x )  1 
(11) f t(x)=gtT/(T-t)  ~ 2(T_t-------~ll<l 2, O < t < T ,  x E X .  

In particular, ft is C 1,1 when 0< t<T .  Using convex duality, 

tT II~llJ 
-- 2 T ( r - t )  ~Ex (xl~)~ 2 (T- t )  ( -  " 

These minimization problems have unique solutions denoted ~t which are equal to 
dgtT/(T_t)(Tx/(T-t)) ,  O<t<T, by classical convex analysis. Letting 

tT 1 �9 (~) =g*(~)-(xl~) ,  v(~) = ~l l~-T-lxl l  2, ~ ( t ) -  T - t '  

the minimization problems read 

~(~(~)+~(t)v(~)). 

Observe that arg min ~=Og(x) is nonempty. Viscosity methods are now applicable: 
since OEF(X), V is convex, continuous, strongly coercive, non-negative, and such 
that rs--*r / weakly and V(rs)--~V(r/) implies Ibj-711-~0, we have, according to [2, 
Theorem 5.1], 

(a) ~t--+~0 where ~oEargmin~5; 
(b) V(~o)=min{V(~);~Earg min ~}; and 
(c) min(O+e(t)V)=min ~5+t min{V(~);~Earg min ~}+o(t).  
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Because arg rain ~ = 0 g ( x ) ,  (a) and (b) imply that  ~t--~o, ~o EOg(x), and 

lifo -T- lx I I  = min{ II~-T-lxII;~ e Og(x)} = min{ II~]ll ; r] e Of(x)}. 

Differentiating (11) and passing to the limit, 

dft(x) = ~ -~ t (~ t -T - l x )  - -*~o-T- lx  = [Of(x)]o when t$ 0, 

as asserted in (i). 
The asymptotic development (c) implies (ii) since a direct calculation reveals 

that  

min(gp +r - m i n  ~5 = f ( x ) - f t ( x ) .  

(iii) Equation (11) implies that f t+ [2 (T- t ) ] - l l l . I I  2 is convex when 0 < t < T ,  
while - f t + ( 2 t ) - l l l . I I  2 is convex for all t>0 .  On the one hand, by (ii) and the 
semigroup property ( f t ) h ~ - f t W h ,  

lim ft+h(X) -- ft(x) = lim (ft)h(X)-- ft(x) = _1 ildft(x)112. 
h~O h hlO h 

On the other hand, - - ( - - f t )h=f t_h  when O<h<t<T [Proposition 2(ii)]; hence, 

lira f t(x)--ft-h(X) =l im (--ft)h(X)--(--ft)(X) _ 1 
hS0 h hS0 h --  - ~ l l d ( - f t ) ( x ) l l 2 '  

For a proof of assertion (iv) see [7] or [3]. [] 

Our final theorem gives results on the convergence of the differentials dft,~ to 
Of, and on the preservation of stationary points and values. In this connection we 
accentuate the fact that  stationary points, in contrast to minimizers, need not be 
preserved by the approximation process. 

Example 2. We consider three functions neither of which is locally demi-convex 
(lower-C2). 

(a) Let f : R - - ~ R  be the concave C 1 function defined via f ( x ) = 0  if x<0 ,  
f ( x ) = - x  3/2 if x>0 .  An elementary calculation shows that dft,~(O)<O when 0 < s < t  
whereas evidently dr(0)=0.  

(b) Let g ( x ) = m i n { 0 , - x }  for all x e R .  Then dgt,8(O)=-i if 0 < s < t / 2  and 
09(0)=[ -1 ,0190 .  

(c) Let n be an arbitrary positive integer. R. T. Rockafellar exhibited in [16] 
a Lipschitz continuous function h on R n whose subdifferential Oh(x) is equal to 
[-1,  1] n at every x C R  ~. For this h every point x E R  n is stationary in the sense that  
Oh(x) 90. But dht,s is not identically equal to zero for any 0 < s < t .  Otherwise some 
ht,s would be constant which in turn would force h to be constant, a contradiction. 
Indeed, ht,~=k, k being a real constant, implies argminh=argminht,~=R n and 
inf h= in f  ht,s =k according to Theorem 1. 

In Theorem 3 we use a localization argument to obtain the promised results. 
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T h e o r e m  3. Let X be a Hilbert space and f: X - ~ R  be bounded from below, 
continuous, and locally demi-convex. 

(i) To each xoEX there exist r>O and T > 0  such that 

f ,8(x) = 

= f(x)  - (t-s)II [Of(x)]o 112/2+~/(x, t - s )  

> f ( x ) -  ( t - s )L2/2  

for all xEB(xo, r) and O<s<t<T, where ~/(x, u)/u--~O as u~O and n is a Lipschitz 
constant for flB(xo,2r); 

(ii) dft,8--~Of in the sense of Kuratowski Painlevg convergence of graphs as 
0 < s < t ~ 0 ;  

(iii) limo<s<t~0 dft,s (x) = [Of(x)]o for every xEX; 
(iv) (Preservation of stationary points and values.) The following conditions 

relative to an arbitrary point x E X  are mutually equivalent: 
(a) Of(x)~O; 
(b) dft,~(x)=O for all sufficiently small 0 < s < t ;  
(c) for all sufficiently small 0<s<t. 
Proof. We observe first that in the definition of f~(x) [see (1)] it is sufficient 

to restrict the infimum to yEB(x,r) ,  that  is to say 

fA(X)=yCB(x,r)inf ( f ( y ) +  ~--~llx-yll2), 

provided 

(12) [2),(f(x) - i n f  f)]112 < r. 

We proceed by analyzing the "domain of dependence" of ft,8 upon f .  Choose posi- 
tive real numbers r, c such that f+(2c)-111 - II 2 is convex and Lipschitz continuous 
on the ball B(xo, 3r). By Lemma 5 there is TE (0, c] such that 

(13) C(t)f(x)  = f(x)  when x �9 B(xo, 2r) and t �9 (0, T]. 

Moreover, by if necessary decreasing T we can assume that when xEB(xo, r), 0< 
s<t<T,  we have 

(14) [C(t)f]t_~(x)= inf (C( t ) f (y )+ 1 )  Hx-yll and 

(15) f t_~(x)= inf ( f ( y ) +  1 ) 
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Here we have restricted the infima to yEB(x, r) which is possible for all sufficiently 
small 0 < s < t  since C(t)f and f are both bounded from below on X and from 
above on B(Xo, 2r). (Indeed, the expression [...]1/2 in (12) goes to zero uniformly 
over xeB(xo, 2r) as )~10.) Thus from (13)-(15) and Proposition 20) it follows that  

(16) ft,s(x)=ft-8(x)=(f+fl~)t-8(x) when xeB(xo,r) ,  O<s<t<_T, 
with B=B(xo, 2r). 

By (16), for O<s<t<_T, 

sup (f(x)-ft ,8(x))= sup ( f (x)- f (y)-2-1( t -s) - l l lx-y l]2)  
xEB(xo,r) xCB(xo,r) 

yCB(xo,2r) 

_< sup (Lu-2  -1 ( t - s ) - lu  2) = L2(t-s)/2. 
u>_O 

Also, by Proposition 3(ii) and (16), 

ft,~ (x) = f(x) - ( t -  s)[[ [Of(x)]o ]12/2 +7(x,  t -  s) 

where 7(x, u)/u--+O as uS0 for every xEB(xo, r), concluding the proof of (i). 
(ii) It is known that  the derivatives of the Moreau-Yosida approximates dg~ 

converge to Og in the sense of Kuratowski Painlevd convergence of graphs provided 
g is demi-convex and 1.s.c., see [3, Theorem 3.4]. An application of this fact to 
the particular case g=f+3ts implies the assertion because of (16) and the local 
definition of the Clarke subdifferential. 

Off) By (16) it holds that  

dft,~(xo)=d(f+3t3)t-~(Xo), O<s<t<T,  
while it follows from Proposition 3(i) that  

lim d(f +3B)t-~(Xo)= [O(f +3t3)(xo)]o = [Of(xo)]o. 
0<s<tJ,0 

(iv) Use (16) and Proposition 3(iv). [] 

Note that  the assumption that f be locally demi-convex is also necessary for (i). 
Simply observe that  the formula fT,8 = [C(T)f]T-~ together with (i) implies, by let- 
ting sTT, that  C(T)f(x)=f(x) for all xEB(xo, r) so that  f+(2T)-Xll  �9 II 2 is neces- 
sarily convex on B(x0, r). 

We close the paper by remarking that  under the hypotheses of Theorem 3, 
the Moreau-Yosida approximate ft is C 1,1 near a given point x0 for all sufficiently 
small t. Actually, there exist positive real numbers T and r such that ft is smooth 
on B(xo, r) when te(0,  T) and 

Oft(x)/Ot+ Ildft(x)112/2 = 0 at each (x, t) �9 B(xo, r) • (0, T). 

Also, ft--*f locally uniformly while dft--~Of in the sense of parts (ii) and (iii) in 
Theorem 3. Furthermore, obvious analogues of (i) and (iv) are true. 
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