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Expansions for Eisenstein integrals 
on semisimple symmetric spaces 

Erik P. van den Ban and Henrik Schlichtkrull 

1. I n t r o d u c t i o n  

Let G/H be a semisimple symmetric space. Related to the (minimal) principal 
series for G/H there is a series of Eisenstein integrals on G/H. These are K-finite 
joint eigenfunctions for the G-invariant differential operators on G/H. Here K is a 
maximal compact subgroup of G. The Eisenstein integrals are generalizations of the 
elementary spherical functions for a Riemannian symmetric space (and more gen- 
erally of the generalized spherical functions in [9, w and of Harish-Chandra's 
Eisenstein integrals associated to a minimal parabolic subgroup of a semisimple Lie 
group. 

In this paper we develop a theory of asymptotic (in fact, converging) expan- 
sions towards infinity for the Eisenstein integrals. The theory generalizes Harish- 
Chandra's theory (see [8, Thm. IV.5.5], and [13, Thm. 9.1.5.1]) in the two cases 
mentioned above (see also [9, Thm. III.2.7]). The main results are Theorems 9.1 
and 11.1. The first of these states the convergence on an open Weyl chamber of 
the series expansion whose coefficients are derived recursively from the differential 
equations satisfied by the Eisenstein integrals. The sum Oh of the series is an eigen- 
function which behaves regularly at infinity but in general is singular at the walls 
of the chamber. The basic estimates which ensure the convergence of the series 
also provide an estimate for ~x, which is a generalization of Gangolli's estimates 
([7]) in the Riemannian case. As in Gangolli's case, our estimates are derived by a 
modification of the Oh with the square root of a certain Jacobian function. 

The second main result expresses the Eisenstein integral as a linear combination 
of the Oh; the coefficients are the c-functions (defined in previous work by one of 
us) related to the Eisenstein integrals. 

The results of this paper are used for the Plancherel and Paley-Wiener type 
results obtained in [5] for the Fourier transform corresponding to the minimal prin- 
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cipal series, just as Gangolli's estimates in the Riemannian case play a crucial role 
in Helgason's and Rosenberg's work for the spherical transform (see [8, w 
In the case of a semisimple Lie group, considered as a symmetric space, estimates 
sufficient for the application to the Paley-Wiener theorem are given in [1]. The 
present, stronger, estimates were in this case obtained in [6]. 

Acknowledgement. The completion of this paper was carried out while both 
authors were visiting the Mittag-Leffler Institute for the 95/96 program, Analysis 
on Lie Groups. We are grateful to the organizers and the staff for their hospitality. 

2. N o t a t i o n  

Widening the generality a bit let G/H now be a reductive symmetric space of 
Harish-Chandra's class, that  is, G is a real reductive Lie group of Harish-Chandra's 
class, a an involution of G, and H an open subgroup of the group G ~ of its fixed 
points. Let 0 be a Cartan involution of G commuting with or, and let ~=re@p=~Gq 
be the +1 eigenspaee decompositions of the Lie algebra g of G, corresponding to 0 
and ~r, respectively. Let K=G ~ then K is a maximal compact subgroup of G. As 
usual, the Killing form on [1~, g] is extended to an invariant bilinear form B on g, 
for which the inner product  (X, Y} : = - B ( X ,  OY) is positive definite, and which is 
compatible with a, that is, B(aX, Y)=B(X, aY) for all X, YEg. 

Let aq be a fixed maximal abelian subspace of pNq, E the root system of aq in 1~, 
and W the group NK(aq)/Zg(aq), which is naturally identified with the reflection 

* and * denote the real and complex linear dual spaces of %. group of E. Let aq aqc 
The inner product {., �9 } on aq is transferred to real and complex bilinear forms on 

aq* and aqc* by duality. 
Let Aq=expaq and let ~a(Aq) denote the set of parabolic subgroups P= 

MANp (with the indicated Langlands decomposition) whose Levi part M1 =MA is 
the centralizer in G of aq. Let ml, m and a denote the Lie algebras of M1, M and A, 
then iI=(an0)@aq, aq=aNq, and with m a : = m +  (aNl?) we have m l = m |  
Notice that  M is invariant under both involutions 0 and a, and hence that  the quo- 
tient M/MNH is a symmetric space. It follows from the maximality of aq that this 
quotient space is compact. 

There is a natural bijective correspondence Q H E ( Q )  of the set P~(AQ) with 
the set of positive systems for E. We denote by A = A ( Q )  the set of simple roots 
corresponding to a given ~+ =E(Q) ,  by ~)= ~)Q E aq the corresponding half sum (with 
multiplicities) of the positive roots, by a + = a  + (Q) the corresponding positive cham- 
ber in aq, and by A+=A~(Q) the set expa~. Let NACaQ denote the set of linear 
combinations u = ~ e A  u~c~ with coefficients us in N ={ 0 ,  1, ...}. 
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Let (T, V~) be a fixed finite dimensional unitary representation of K.  A V~- 
valued function f on G/H is called T-spherical if f(kx)=T(k)f(x) for all kEK, xE 
G/H. The space of smooth T-spherical functions on G/H is denoted C~176 T). 
Notice that  if fEC~(G /H:  T), then f restricts to a smooth vMnKnH-valued func- 
tion on AQ. Here V MnKnH is the space of MMKMH-fixed vectors in Vr. 

3. R a d i a l  c o m p o n e n t s  o f  d i f f e r en t i a l  o p e r a t o r s  

Let D(G/H) denote the algebra of G-invariant differential operators on G/H. 
In particular, these operators act on C~(G/H:T).  In this section we recall the 
concept of the T-radial component of the elements in D(G/H) (eft [2, w 

Let QEP~,(AQ) be fixed and let +-- + Aq--Aq (Q) as above. From the Cartan de- 
composition (see for example [3, w it follows that  KA+H is an open subset of G, 
and that  the map (k, h, a)~--+kah induces a diffeomorphism from K • MnKnHH • A,~ 

onto KA+H. Let T l =TQ l be the restriction map f~--+fiA +, then 

co~(A+ VMnKnH~ ~_ C~(Aq)|  MnKnH. T~: C ~(G/H: T) --+ ~ ,._q, . "1" / 

We define the map 

T T _ TT. ~oo ta+ ~ ~ 1 / M M K A H  

by 
(a) suppTTfcKA+H for fEC~~176 (Aq) | 162  MNKAH., 
(b) T* oTT--I. 

If DED(G/H) then one readily checks that  

H~(D) = HQ,~(D) := T ~ oDoT$ 

defines an element of the ring 

(1) C ~ (AQ) | S (aq) | End(V MnKnH) 

of differential operators on Aq +, with coefficients in C ~ (A~)| The 
operator H~ (D) is called the T-radial component of D on A +. It is easily seen that  
II~ is an algebra homomorphism from D ( G / H )  to the ring (1). 

Let U(g) be the universal enveloping algebra of the complexification ~c of g, 
and let U(~) H be the subalgebra of H-fixed elements. There is a natural  map r 
from V(g) H to D(G/H) defined by (r(X)f)olr=Rx(foTr) for fEC~176 here 
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7r: G--*G/H is the natural projection and R denotes the right regular representa- 
tion on C~(G). The map r induces an isomorphism of algebras U(g)H/[u(g)HN 
U(~)O]--~D(G/H), which we also denote by r. In the following we shall sometimes 
abuse notation by identifying an element D E D (G/H) with any X E U(g)H for which 
D=r(X). In particular, for XEU(~) H, we write H~(X) for H~(r(X)).  Thus we 
also view H~ as an algebra homomorphism from U(~) H to the ring (1). 

Algebraically the map II~ can be described as follows. We denote ug=Ad(g)u 
for uEU(g),  gEG. Let XEU(~) H and assume (cf. [2, Lemma 3.2]) that  we have an 
expression for X as a finite sum 

X-Ek(a)u~-~vi  modulo U(~)O, 
i 

for all aEA~, where fiEC~(A+), uiEU(~) MNKNH and viEU(aq). Then it is easily 
seen from the definitions above that 

(2) HT(X) = E fiv(r(ui) E C~(A+)|174 
i 

Here it should be noted that  for uEU(~) MnKnH the operator T(u) on V~ preserves 
the subspace V MnKnH, and that  we henceforth are abusing notations by letting 
T(u) denote the induced endomorphism of V MnKnH. 

Let log: Aq---+aq denote the inverse of explaq. Then for aEAQ, AEaqc we write 

a)~=e ;~(l~ Moreover, we define the function e~: Aq--~C by 

(3) e~(a)=a ~. 

Let E be a finite dimensional linear space. We are interested in E-valued 
functions on A + which admit a series expansion of the form 

(4) E c~a-~ (aEA+)  
v E N A  

with coefficients cvEE, and where A=A(Q). For ~----~-~ez~ ~ a E N A  and z= 
(z~)~ez~EC A we put 

II  (zo) 
o~EA 

The map a~--~(a-~),~e/, maps A + onto ]0, 1[ zx. Hence the series (4) converges if and 
only if the E-valued power series ~ c N A  C,Z" converges on the polydisc DA; here 
D denotes the complex unit disk. 
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4. The  radial  componen t  of the  Laplace ope ra to r  

Let flEU(9) be the Casimir element associated with the bilinear form B, and 
let L=r(~)  denote its image in D(C/H) ,  then L is the Laplace-Beltrami operator 
associated with the natural pseudo-Riemannian structure on G/H induced by B 
(cf. [8, Exercise II.A.4]). We shall now compute the T-radial component of L. 

For aEE,  let 9a--fla| + - denote the decomposition of the root space ~ into 
4- �9 4- +1 and -1  eigenspaces for (r0, and put m a =dlmlJa. For each space 9~ (c=+),  

we fix a basis X~, i (i=1,. . .  , m~), orthonormal with respect to the positive definite 
inner product ( . ,  . ). Moreover we require that Xe_~,i =-0X~,  i. Let Ha denote the 
element of aq determined by c~(Y)=(Y, Ha} (YEaq), then 

(5) [X~,i, X~_a,i] = Ha. 

Let ~r,, EU(m~), ~mkEU(mM~) and ~=qEU(aq) denote the 'Casimir elements' of 
m~, mA~ and aq, respectively, defined by means of the restriction of B (i.e. if 
X1,.. .  , Xm is a basis for m~ then ~m, = ~ i , j  giJXiXj, where gij is the inverse of 
the matrix B(Xi,  Xj); ~mk and gtaq are defined in the same way). Then we have 

(6) ~=~t~ .+~t~q+ E (X~,iX~-a,{+X~-a#X~#)" 
a>O, ~=-~- 
l<i<mea 

Put 

( 7 )  Y L ~  1 ~ ~ ~ 1 ~ = ~(Za,i+X_~,i) and Z~,i= ~(X~,i-X_a,i).  

Notice that Y+~EpMq, Ya,iEpMI1, Z+#E~Nb, and Z~,~E~Mq; this follows from the 
fact that aXe, i=-eX~_a,i. 

Define, for ~ = +  and c = - ,  the element L~EU(~) by: 

X-"(Z ~ )2 
i = l  

Since MMKMH acts orthogonally on the space (ga Ot~_~)n~, for which the elements 
x/~Z~,i, ( l< i<m~) ,  form an orthonormal basis, we have L~eU(e) Mngng. 

L e m m a  4.1. Fix a=exp Y EA. Then modulo U(g)[} we have 

~'~ ~ ~ m k  + ~aq + E [m+ coth a(Y) +m/~ t anh a(Y)]Ha 
a>O 

+ E  [ sinh-2 c~(Y) (L+)~-~ -cosh-2 a(Y)(L~)~-~ ]. 
a>0  



64 Erik P. van den Ban and Henrik Schlichtkrull 

Proof. Since m~ Ct~+0 we have f~m~ =~-~mk modulo  U(g)b.  Hence it remains  to 
consider the  s u m m a t i o n  t e r m  in (6). 

F rom (7) we ob ta in  

(8) ~ ~-~ (z~#) = 

which together  wi th  (7) gives 

and  

l f p - a ( Y ) y r  . - -pa (Y)Ye  .1 

X~, i : sinh -1 a ( Y )  [ea(Y) z~,i-- ( Z~,i) a- ~ ] 

Xe o~ i = s inh-1  a(Y)  [e-a(Y)zc (Z ~ ~a-11 
- -  , L a , i - - ~  c~,il j " 

Hence,  taking into account  t ha t  + Z~#ED, we ob ta in  t h a t  

X~,iX_,~,i+X_~#X,~,~+ + + + -  2s inh-2a(Y)[-eosha(Y)Z+#(Z+#)  ~-~ +( (Z~ , i )  ) +  2~-~  ], 

modu lo  U(g)b.  Now 

r a -1 

(9) [z~,~,(z .#)  ] : [~(x~,~-x_~,~) ,  l ( ~ - - ( ~ ) x ~ , ~ - ~ ( ~ ) x  ~_ ~#)] 

= - �89 sinh a(Y)[X~,i, X!a,i] = - 1 sinh a(Y)Ha,  

and we obta in  

(10) X+~,iX+_~,i+X+_~,iX+~,i-cotha(Y)H~+2sinh-2 a(Y)((Z+,i)2) ~ ~. 

From (7) and (8) we ob ta in  

X ~ ,  i : cosh -1  oz(Y)[ea(Y)Y~, iq-(Z~, i )a-1  ] 

and 

X~_a,i = cosh -1  o~(V) [e -a (Y )  Yd, i -- ( Z~, i )a-1]  . 

Hence,  taking into account  t ha t  Y~i E b, we see t ha t  

X~,iX_~,i + X Z~#X~, i - - 2  cosh -2 a(Y)  [sinh a(Y)  Y~i( Z~,i) a 1 +( (Z~#)2 )a -1 ] .  
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In analogy with (9) we have 

c a -1 1 cosha(Y)H~, ] = - 3  

and hence 

(11) X~,~XZ~,i+Xz~,iX~# =-tanha(Y)H~-2cosh -2 a(Y)((Z~,i)2) ~-1. 

The lemma now follows from (10) and (11) applied to (6). [] 

From Lemma 4.1 and (2) we obtain 

H~ (L) = ~aq +~-(~mk)+ E [m+ coth a+m~ tanh a]g~ 
(12) 0>0 

+ E [sinh-2 a T(L +) - eosh  -2 c~ T(L/~)], 
a>0  

where the hyperbolic functions cosh c~, sinh a etc. are viewed as functions on A + by 
means of (3). 

5. T h e  r ecu r s ion  f o r m u l a  

Let TM=TIMAK denote the restriction to M N K  of the representation T, and 
let C~(M/MAH:  TM) denote the space of ~-M-spherical smooth functions on the 
symmetric space M/MNH.  It is easily seen (aft [4, Lemma 1]) that  the evaluation 
map fF-+f(e) yields a linear isomorphism 

(13) C r162 (M/MNH: TM) --~ V MnKnH. 

Via this isomorphism, we view V MngnH as a D(M/MnH)-module. 
Following [4, w let 

'#, it: D(G/H) -~ D(M/MNH)| 

be the algebra homomorphisms defined by the requirement 

D -  '#(D) e nQU(9)+U(9)O 

for DED(G/H),  and by 

#(D: )~) = '#(D: )~+OQ) e D(M/MNH) 
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for )~Eaqc; here nQ is the Lie algebra of NQ. The map '# depends on the choice of 
the parabolic subgroup Q, whereas # is independent of it. 

For A C aqc we denote the endomorphism by which #(D: A ) E D ( M / M N H )  acts 
on V~ MnKnH by re(D: A). We shall investigate formal End(V~MnKnH)-valued solu- 
tions �9 ~ to the differential equation 

(14) H~ (L)~ ,  = ~ o t t ( L :  ~) 

on A~. Here )~ is a parameter in aq~, and we assume that r is represented by a 
formal series 

(15) ~ :~(a )=a~-~  E a-~r ' ( )~)  (aEA~) ,  
L, E N A  

with F~(A)EEnd(V Mngnn) for ~,ENA. The application of II~(L) to ~ in (14) is 
formal. In particular, differentiations are taken term by term. By (12) the resulting 
formal series is of the same form as (15). The motivation for studying exactly this 
equation (14) will be clear from Theorem 11.1 below (cf. also Remark 11.2). 

The differential equation (14) will yield a recursive relation for the coefficients 
F~(A), which will enable us to conclude that for generic A the power series 

(16) E z~F~(A) 
~ E N A  

actually converges for z E D A. 
As in [7] it is profitable to consider the shifted (at first formally defined) function 

~,(a)=J(a)l/2O),(a) (aeA+), (17) 

where 
J(a) -- I I  [2 sinh a(log a)] m+~ [2 cosh a(log a)] ra~ 

a~O 

is the Jacobian function associated with the G=KAqH decomposition (cf. [11, 
p. 149]). Write 

J(a)l/2=aQ E c~a-~' J(a)-l/2=a-~ E b~a-~' 
~ENA ~ENA 

with coefficients cr br E R,  then Co =b0 = 1. It is easily seen that the coefficients be 
and cr have at most polynomial growth in ~ (in fact the cr are bounded). For 
~ E N A  define 

(18) F ' ( ~ ) =  Z q r ' - d ~ ) "  
~ENA 
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Here we let F~=0 for ~ c Z A \ N A .  Then the sum (18) is finite. It follows that 
formally we have 

v c N A  

Agreeing to write also F~=0 for ~ c Z A k N A  we have the finite sum 

(19) F~(A)= E b~F._~(A), 
~ c N A  

analogous to (18). Put  

(20) d(a) = J(a)-l/2Ftaq [J(a) 1/2] (a e A+). 

L e m m a  5.1. Let a=expYEA~. Then 

J(a) 1/2 IIr(L)~ -1/2 ---- ~aq -d(a)  q-T(~mk) 

+ E [sinh-2 a(r)r(L+) - c~ a(Y)T(L[~)]. 
c~>0 

Proof. The lemma follows from equation (12) combined with the following ex- 
pression: 

J(a) 1/2 [~aq -~- ~>o[m + coth a(Y)+rn~ tanha(Y)]H~]oJ(a)-l/2 : ~aq-- d(a). 

We shall prove this expression in the following equivalent form 

(21) J(a)-l/2~-~aqO J(a)1/2 _- ft~q + E [m+ coth a(Y) +rn~ tanh a(Y)]H~ +d(a). 
c~>0 

~ n To prove (21), fix an orthonormal basis H1,... Hn for aq. Then a q = ~ j = l H  2, 
and we obtain 

(22) f~aqOJ(a)l/2=g(a)l/2f~aq+2EHy(J(a)l/2)Hj+gtaq(J(a)l/2). 
j = l  

Now 

(23) 
J(a)-ll2Hj ( J ( a ) 1 / 2 )  = �89 (log J(a)) 

1 -- ~ E [m+ coth a(Y) +m~ tanh a(Y)la(Hj), 
(~>0 
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n H and since Y~j=I a (Hj)  j = H a  we conclude that 

n 

2 E Hj (J(a)'/2)Hj = J(a) V2 E Ira+ coth (~(Y)+m~ tanh a(Y)] Ha. 
j = l  o~>0 

Inserting this expression in (22) and using (20) we obtain (21). [] 

The function d(a) has a converging power series expansion of the form 

d(a)= E d~a-~ (a�9 
~eNA 

with d~ � 9  Notice that from the asymptotic behavior of J it follows that 

(24) do = (y, ~). 

Later we shM1 give an explicit expression for the coefficients d~, see (36). 
We also have the converging expansions 

sinh -2 c~(Y) -- 4 A.~ ~ na-2~' cosh -2 a(Y) ---- - 4  E (-1)nna-2nc~" 
n = l  n = l  

Inserting these expansions in the equation of Lemma 5.1 we obtain: 

J(a)l/2IIT(L)~ - E d~a-~+7(amk) 
(25) ~eN~ 

+4 E E niT(L+) + (--1)nT(L/~)]a-2~% 
c~>O n = l  

Let the operator "yEEnd(End(VynKnH)) be defined as the commutator 

(26) ~/= [~-(~mk)," 1, 

then we have the following: 

P ropos i t i on  5.2. Let A�9 and suppose that ~ is a formal solution (15) to 
the equation (14). Then for every u �9  we have: 

~cNA\{0} 

--4 E E n[~(L+) + (-1)'~T(L~)]F'-2n~ (A)" 
c~>0 n_>l 

For the proof of this proposition, we need the following lemma. 
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L e m m a  5.3. Consider VT MNKNH as a D(M/MnU)-module as before. Then 
on  Y~ M A K A H  we  have: 

#(L: A) = ~-(~tmk)+ (A, A} -(Q, 6}. 

Proof. Using (5), it follows straightforwardly from (6) that 

~- ~tmk + ~ q  -- ~ rn, H ,  
a>0 

modulo nQU(9)§ Hence '#(L) equals the right-hazld side of the above con- 
gruence, and it follows that 

p(L: A) --  r (~mk) - [ - (~  , ~ } -  (Q, Q>, 

where r indicates that the image in D ( M / M N H )  has been taken. One readily veri- 
fies that r(~tmk) acts on V MnKnu in (13) by the same endomorphism as V(gtmk). [] 

Proof of Proposition 5.2. In view of the above lemma it follows from (14) that 

II T (L)(I) A _- 0/ko [T(~'~mk ) + <)~, ~) -- <~, ~)]" 

In view of (17) and (24) this leads to: 

[j1/2 Hz (L)o j-i~2 _ (A, A} q-d0]~k ---- ~PA oT(amk). 

Using (25) we finally obtain that 

a , q - I A ,  A)+'~- ~ d~a-~+4~_,~n[~-(L+~)+(-1)nT(L~)]a - 2 ~  ~ = 0 .  
~eNA\{0} a>0 n = l  

By insertion of the series for ~ ,  the proposition now follows from a comparison of 
coefficients, since (~ta u -  (A, A})e ~-v= (y-2s  y)e ~-v. [] 

6. The  s ingular set S 

Let t be a Cartan subalgebra of mN~, E+(t)CiF a positive system for the 
root system of t in (mAC)c, and ~t the associated half sum of the positive roots. 
Moreover, let A(~-)Cit* be the set of infinitesimal characters, viewed as a subset of 
the set of dominant weights in it*, of the (mn~)-types which occur in TM and have 
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a non-zero (mM~M0)-fixed vector. Then T(ftmk) diagonalizes on VT I"VINKnH with the 

eigenvalues ( ~ -  0t, ~ -  Ot), ~ E A(~-). 
It follows that the commutator "y in (26) diagonalizes and has the following set 

of eigenvalues: 

N : =  { (~1 - Qt, ~1 - Qt) - (~2 - ~t, ~2 - ~t) 1~1, ~2 �9 A ( T ) }  C R .  

Notice that A T = - N .  
When A�9 is outside the set 

S := {A �9 aqc I~(~' �9 N A \ { 0 ) ) :  (u-2A,  u) �9 

the formula in Proposition 5.2 allows the recurrent determination of all the coeffi- 
cients F~(A), once F0 (A) is given. We shall now investigate this singular set. 

We first notice that S is the countable union of the hyperplanes 7-/,,d in %r 
defined by 

7-/,,d = {A �9 aqr I (u-- 2A, u) = d}, 

for u e N A \ { 0 } ,  d�9 
We shall need the following notation. If u = ~ e A  u,~a�9 we write 

By equivalence of norms on RA,  there exists a constant cl >0  such that 

(27) Cl?n(/]) ~ I/]l ~ c11m(/ ] )  

for all u E R A .  For R E R ,  let 

~q(Q, R) = {A c aqc IRe(A, a) _< R for a E E(Q)}. 

Moreover, let XR be the subset of N A \ { 0 }  defined by 

(28) XR = {u e N A \ { 0 }  I1.12-2Rm( ,) <_ maxN} .  

Notice that Xn is finite, in view of (27). Finally, if R E R  and u E N A \ { 0 } ,  let 

(29) AFn,, = {d e Af I ]ul 2 - 2Rm(u) <_ d}, 

then uEXR if and only if A/'R,~r 
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L e m m a  6.1. Let R E R  and AEfiQ(Q,R). If (u-2A, u>=d for some y E N A \  
{0} and dEAf, then vEXR and dEAfR,,. In particular, the set SN~Q(Q, R) equals 
the intersection of ~q(Q, R) with the finite union of the hyperplanes Tl,,d, where 
,EXR,  dEAfR,~. If R<_ �89 minAf, then XR and SN~Q(Q, R) are both empty. 

Proof. Since Re(A,a><R for all aEA,  we have 

(30) .> > I.I 

for all vENA. Assume that ~E~-~v,d for some ~ENA\{0} and dEAf, then we see 
immediately from (30) that dEAf R,. and YEXR. This proves the first statement. 
The assertion about SMfiq(Q, R) is an easy consequence. 

Finally if R_<�89 minAf, then R~0,  hence 1~]2--2Rm(L,)>--2R>_maxAf for all 
vENA\{0},  and we have XR=~. Hence also SN~q(Q, R)=0, by the previous as- 
sertion. [] 

Remark 6.2. Notice that when ~- is the trivial K-type, then Af={0}, and it 
follows from Lemma 6.1 that SN~Q(Q, 0)=0. Moreover, when G/H is split, that is 
when aq is a maximal abelian subspace of q, then mC [~ so that A(~-)={pt} and the 
same conclusion holds, for all T for which vMnKnH~{0}. In particular this is the 
case when G/H has rank 1 or is of 'K~-type' (see [10] for the latter notion). 

7. The  fundamenta l  e s t ima te  

Let R E R  be fixed, and let the set XR be defined by (28). 

L e m m a  7.1. Let ~ENA\(XRU{0}),  and let ~/EEnd(End(VynKnH)) be the 
commutator given by (26). Then the operator [(~-2)~, y}+~/]-i depends holomor- 
phically on ik in a neighborhood of ~q(Q, R). Moreover, we have the following 
uniform estimate for its operator norm: 

II((--2A,-} +7) -1 ]] ___ (I-[ 2 -2Rm( . )+minAf )  -1 (A E aq(Q, R)). 

Proof. Let AEaqc. The operator (~-2A, ~}+'y diagonalizes with respect to an 
orthonormal basis of End(VMnKnH), with eigenvalues (v-2)%y}+d, dEAf. For 
AEfiq(Q, R) we obtain from (30) the estimate 

Re((v-2A, , ) + d )  _> ]vl 2 - 2Rm(v)-maxAf.  

Since u ~ X a  the right-hand side of this inequality is positive, and the result fol- 
lows. [] 
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If u E N A \  {0}, we define the following polynomial function of )` C a~c: 

p~()`)= II (<.-2)`,.>+d), 
d E,N'.~, v 

where AfR,. is the set given in (29). Notice that p . = l  if uCXn, since then AfR,.=0. 

Corol lary  7.2. Let ueNA\{0} .  Then the End(End(VynKnH))-valued ex- 
pression p.()`)[@-2)`, .)+7] -1 depends holomorphically on )` in a neighborhood of 
gq(Q, R). Moreover, there exists a constant C>0 such that 

Ip~()`)111(<--2)`, .>-4-7) -~ II ~< c(1+1)`1) d ~ "  ()` e ~q(Q, R)). 

Pro@ If uCXR, then p , = l ,  and the result is an immediate consequence of 
the previous lemma. On the other hand, if ,EXR ,  then it follows from the above 
mentioned fact that @-2),, u)+7 is diagonalizable with eigenvalues ( , -2)` ,  u)+d, 
dEAf, that 

(31) )` F-+ H ( ( . -  2)`, . )+d) [ ( . -2 ) ` ,  u)+7]-1 
d 

is holomorphic on a neighborhood of gq(Q, R), where the product is taken over 
those dEAf for which (u-2)` ' ,u}+d=0 for some )`'Egq(Q,R). By the definition 
this implies that )`'cS, and hence by Lemma 6.1 that dEAfR,~. Thus the product 
term in (31) equals p~, and the corollary follows. [] 

We define the polynomial function PR on aqc by 

p-()`)= I-[ p~()`)= II (<.-2)`,.>+d), 
uCXR uCXR 

then by Lemma 6.1 we have SMaq(Q, R)=p~l(O)Mgtq(Q, R). 

L e m m a  7.3. Let the endomorphisms 1~,()`) of V y  nKnH be defined by the 
recursion formula of Proposition 5.2 with F0()`)=IvMnKnH, and let the endomor- 
phisms F,()`) be given by (19). Let u E N A  be fixed. The functions ),Hpn()`)r.(),) 
and )`~-+PR()`)F,()`) are holomorphic on a neighborhood of gq(Q, R), and moreover 
there exists a constant C>0 such that for all )`Eaq(Q, R). 

IpR()`)I IIr~()`)ll_< C(l+l) , l)  degpR and [PR()`)I IIr~()`)ll _< C(I+I)`D degpR. 
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Proof. By (19) it suffices to prove the statements for F,(A). For u c N A  we 
put: 

q~(s : 1-I P~()~)" 
~eN/X\{0} 

Then every q~ is a divisor of the polynomial PR- Therefore, it suffices to prove the 
estimate 

]qu(A)I IIFu(A)JI <C( l+ IA] )  degq- (Aefiq(Q,R)) ,  

with C a constant independent of ),. We will prove this estimate by induction 
along the natural ordering ~ on NA.  Since by definition F0=I  and q0=l  it clearly 
holds for u=0.  Therefore, let u r  and suppose the estimate has been established 
for all elements ~ E N A  strictly smaller than u. From the recurrence relation in 
Proposition 5.2 it follows that q,(A)F,(A) can be written as a finite sum of terms 
of the form 

q~(~) 
pu(A)q,(A) ~vu(A)((u-2A, p) +7)-1]A• [q,(A)F,(A)], 

where ~ 6 N A ,  U-<u, and where A,6End(End(V~MnKnH)) is independent of A. The 
rational factor in front is a polynomial of degree degq~,-degp~,-degq,7; therefore 
the required estimate follows from the induction hypothesis combined with Corol- 
lary 7.2. [] 

The constant C in the above estimate can in turn be estimated uniformly in 
the parameter u. 

T h e o r e m  7.4. Fix R E R ,  and let F,(A) and F,(A) be as above. There exist 
constants C, • > 0 (depending on % R ) , such that 

(32) IPR(A)I IIr (A)ll _< C(l+lul)~(l+[)~])  d'gp" 

and 

(33) ]pR(A)I IIF.(A)]] < C(l+]ul)X(1-i-iAi)degp% 

for all u E N A  and AE~q(Q, R). 

Notice that the existence of C and x such that (32) holds is equivalent to 
the existence of C and x such that (33) holds, by the polynomial estimates of the 
coefficients in (18) and (19), and the fact that  the number of terms in (18) and (19) 
is bounded by a polynomial in ]p]. The estimate (33) is proved in the following 
section. 
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(34) 

Proof. Recall (20) to motivate the following calculation. Let H1 ,... , Hn be an 
orthonormal basis for aq, then 12aq--)-~j H 2. Write Y = l o g  a and recall from (23) 

that  
1 l(o~ 1/2 E [m+~ coth a(Y) + m[~ tanh  a(Y)]a(Hj). Hj(J(a) U2) = -~,~j 

c~>O 

H2( J(a)U2) = 1j(a)U2 (~>o[m+ coth~(Y)+m~ tanh c~(Y)]a(Hj))2 

(351 
1 x / 2  + + ~J(a) E [ m a  coth'  a(Y)+m~ tanh '  a(Y)]a(Hj) 2. 

s>O 

Let k + k - M ~ = m s + ( - 1  ) m s for a C E  +, k E N .  Using the power series 

OO OO 

coth a = 1+2 A..,V" e -2ks, tanh  a = 1+2 E ( - 1 ) k e  -2ks,  
k = l  k = l  

for coth and tanh, we obtain 

+ coth a + m ~  tanh a = m s  + 2 2.., 1v1~ e = 2 m s  2_, )~ k lv l  ~ e 

k = l  k=O 

where for simplicity we have introduced the notation Xk:=�89 if k = 0  and Xk:= l  
otherwise. Moreover, by differentiation 

OO 

I - t --4 V TM kMke -2ks m s + coth a + m  s tanh  a = A.., s �9 
k = l  

We insert these expressions in (35) and sum over j .  Since ~ j  c~(Hj )~(Hj )=(a ,  ~}, 
we conclude 

k l - - 2 k s - 2 l ~  J(a)-l /2a,q(J(a)l /2)= ~_~ (a,/~) XkxzM2M}a 
s ,~>O "k,/=O 

- - 2  Oz, O~ tClv l~a  . 

s>O k = l  

8. P r o o f  o f  T h e o r e m  7.4 

The following two lemmas will be needed in the proof of Theorem 7.4. 

L e m m a  8.1. There exists a constant c2>0 such that for all N c N \ { 0 }  

E Id~'l <- e2g. 
m ( u ) = N  

Hence 



Hence 

(36) 
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a,flEE +, k,l>O aEE +, k>l 
2ko~+21fl=v 2ko~=u 

Since for each pair (a,/3) the cardinality of the set 

{(k, l) E N 2 12kin(a)+2/m(Z) = N} 

is at most linear in N, the lemma easily follows. [] 

L e m m a  8.2. There exist constants m 0 E N  and c3>0 (both depending on R), 
such that for all AEfiq(Q, R) and v E N A  with re(v)>__too we have: 

53 
(37) 1t(</2__2~,/j)_}_~)--i II -~ 7yt(/2)---" ~ "  

Proof. This is an immediate consequence of (27) and Lemma 7.1. [] 

Proof of Theorem 7.4. Let rn0 be as in Lemma 8.2. Then by Proposition 5.2 
we have, for AEaq(Q, R) and m(v)>_mo, 

(38) IIF~(A)II-< Id~l IlF~-e (A)II+c4 E nllF--2n~(A)ll , 
a>0 
n>l 

where c4 = 4  max,>0 (IIT(L +) II + IIr(L:~) I I). 
From Lemma 7.3 it follows that there exists a constant C > 0  such that 

IPR()~)I IiFv()~)ll ~ C(l+])~l) degpa, 

for AE~q(Q, R) and v with m(v)<mo. This implies, for any x>_0, the estimate 

(39) IPR(A)I IiFv(A)ll g C(1+m(p))X(l+lAI) degpR, 

for AE~Q(Q, R) and v with m(v)<mo. 
Under the assumption that 

(40) x >_ 2c3 (c2 + �89 , 

we shall now prove the estimate (39) for all v, using induction on re(v). Here c2, 
c3 and c4 are the constants of (34), (37) and (38), respectively. Theorem 7.4 is an 
immediate consequence. 
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Fix m>mo, suppose that  (39) has already been established for all u with 
rn (v )<m,  and suppose a u with m ( u ) = m  is given. We claim that  (39) holds for 
this u, with unchanged constant C. By (38) and (39) we have 

<m-----(~ Id~l(l+m(u-~));*§ E n(l+m("-2n~ (l+lAI)degPn 
kO-<~-'<v ~>0, n > l  

2nc~_~v 

< ~ E ( l + m - N ) "  Idol +c41E+l (I+IAI)deNPR 
N = I  rn(~)=N 

x c  
<- ~ N(I+m-N)~(I+I"XI) d~pR, 

N = I  

where the last estimate has been obtained using Lemma 8.1 and (40). From 

m (?Tt § 1) ~-f_ 1 ( m + l ) ~  f N ( l + m - N ) ~ < - m E N ~ < - m d o  "~+lt~dt=m x + l  <- 2m2 x ' 
N = I  N = I  

we obtain (39). [] 

Remark 8.3. As mentioned in Remark 6.2 we have Snaq(Q, 0)=0 in several 
important cases. In these cases it follows that  p 0 = l  and the estimates in The- 
orem 7.4 are simplified. In particular, in the special case where H=K and 7- is 
trivial, these estimates were obtained by Gangolli ([7, Lemma 3.1]--in fact, when 
adapted to this case, our proof simplifies slightly that  of [7]). For the group case, [1, 
Lemma 5.1] gives a weaker estimate with an exponential bound in v, instead of the 
polynomial bound in (32). For this case the polynomial estimates were obtained 
in [6], 

9. T h e  f u n c t i o n s  ~ 

The estimate we have obtained for the coefficients in the series (15) has the 
following consequence for the sum of the series. 

T h e o r e m  9.1. Let the coefficients Fv()~) in the series (15) be defined as 
in Lemma 7.3. For AEaqc\S this series converges and represents an analytic 
End(VynKnH)-valued function (P~ on A +, satisfying the radial differential equa- 
tion (14). Moreover: 

(a) If aEA +, then the function A~-~pR(A)~(a) is holomorphic in an open 
neighbourhood of ~q(Q, R), for all R E R .  In particular, A~-+~(a) is meromorphic 
in aqc. 
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(b) Fix R E R .  There exist constants C, x > 0  (depending on % R), such that 

In 1 (41) IPR(-X)[ II~'~,(a)ll <- C(I+IAI) degp~ (1 - a - a )  a Re'x-~ 
,-o~E A -, 

for all aEA + and AEfiQ(Q,R). In particular, given ~>0, there exists a constant 
C ' > 0  (depending on T, R and c), such that 

(42) IPR( )I II  ,(a)ll < C'(l+lAI)degp'a Re~'-a 

for all )~Ehq(Q, R), and all aEAq with c~(loga)>c (VaEE+). 

Proof. From Theorem 7.4 we derive, for )~!tS, the convergence of the power 
series (16) for zED A. This implies the first assertion of the theorem. Assertion (a) 
follows from the observation that the convergence of the series for pR(A)O;~(a) is 
locally uniform in the variables ~ E hq (Q, R) and a E A~. 

To see that  (b) holds, notice that  (41) implies (42) with C'=C(1-e -~ )  -~IAI. 
Thus it remains to prove (41). To obtain this from Theorem 7.4 it suffices to prove 

(43) E ( l + l r ' l ) ~ a - ' - < c F l - I  ( 1 - a - a ) ]  ' 
uENA LaEA 

for suitable constants C, ~>0 .  Let A = { a l  ,... , an}. Then by (27) we may estimate 
the left-hand side of the above inequality by a constant times 

E ( l + m ( u ) ) ~ a - ' =  E ( l @ / ] l @ ' " @ U n ) ~ a - ( ' l a l + ' " +  . . . .  ) 
~,ENA ~'EN ~ 

_< . . . a  . . . . .  

yEN ~ 
O 0  

aEA k=O 

We may assume that x is a positive integer. Then (l+k)~<_(k+>c)!/k!, hence 

E ( l + k ) ~ a - k a  <,. . . ,  ~ .  a = x ! ( 1 - a - a )  -~ -1 ,  
k=0 k=0 

and (43) follows. [] 

The functions O~ are defined by means of the series (15) where the coefficients 
are recursively obtained from Fo()~)=IvM~Z~n. The following lemma describes the 
sum of the series obtained from using a different first term. 
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L e m m a  9.2. Fix A E E n d ( V y  nKnH) and AEaqc\S. Assume "y(A)=0. Let the 

endomorphisms F~(A) of V~ MngnH be defined by means of the recursion formula of 
Proposition 5.2 starting from F~(A)=A, and let the endomorphisms F~(A) be given 
as in (19). With these coefficients the series a x-e ~,eNz~ a -~ r ' (~ )  converges for 
all aEA~(Q); let O~(a)EEnd(V MngnH) denote its sum. Then 

�9 ~(a) = ~ ( a )oA .  

Proof. Obviously F~()~)=F~()~)oA for all y. The lemma follows easily. [] 

The functions ~ are constructed as eigenfunctions for the radial component 
of L, but in fact they are joint eigenfunctions for the radial components of all the 
invariant differential operators (cf. [8, Prop. IV.5.4], in the case H = K  and T = I ,  

and [13, Thm. 9.1.4.1], in the group case): 

Corol lary  9.3. Let ~Eaqc\S. Then for all DED(G/H):  

(44) H ~ ( D ) ~  = ~ oit(D: )~). 

Proof. Let DED(G/H)  and consider the function 

�9 ~ := H~(D)O~ 

defined on A~. It follows from the commutativity of D(G/H)  that r satisfies 
the same differential equation (14) as does Oh. Moreover, since term by term 
differentiations are allowed in the series (15) for ~ ,  the function ~ has a converging 
series of this type as well. It follows from [5, Lemma 12.2], that the coefficient in 
the a ~-e term is tt(D: )~). The identity (44) now results from Lemma 9.2 by noting 
that "~(tt(D: ~))=0, el. Lemma 5.3. [] 

The singularities of ~ lie along hyperplanes of the form (A, ~} =c, where ~E 
NA\{0}  and cER. Using the full system of differential equations in Corollary 9.3 
we can now show that only root hyperplanes occur, that is, hyperplanes of the above 
form, but with ~EE. 

P ropos i t ion  9.4. Assume ~ - * ~  is singular along the hyperplane (/k, y0)--c, 
where L,0ENA\{0} and cER. Then ~o is a multiple of a root GEE. 

Proof. Inserting the series (15) for ~ in (44) and using [5, eqn. (98)], one 
obtains a recursion formula for the F~(A) of the following form: 

(45) it(D: A - , ) o F ,  (~)-F,(A)oit(D: , )  = E A , r , (~ )  
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for all DED(G/H), vENA and AEaq~\S. Here the A s are endomorphisms of 
End(V MngnH) which depend on D, ~ and A. Moreover, the dependence on the 
latter is holomorphic and extends as such to aqc. 

Let bCq be a Cartan subspace for G/H containing aq, and write b=bkOaq 
with bk= bN~. The complexified dual spaces b~c and aqc are viewed as subspaces of 
b c in the obvious fashion. It follows from [4, Lemma 4], that there exists a finite set 
L~ C b~ such that the endomorphisms tt(D: A) are simultaneously diagonalizable for 
all DED(G/H) and AEaq~, with eigenvalues of the form "y(D: A+A), AEL~. Here 
7: D(G/H)-*S(b) W(b) is the Harish-Chandra isomorphism; W(b) is the reflection 
group of the root system E(b) of b~ in go. 

Let A be a generic element of the singular hyperplane (A, L'0)=c in aq~, and pick 
~ENA\{0} minimal such that F.(A) is singular at A. Then the right-hand side of 
the expression (45) is regular at A, and it follows from the joint diagonalization of 
_~(D: A) that there exist A1, A2EL~ such that 

~/(D: A1 +A-~)  = v(D: A2 +A) 

for all DED(G/H). Hence 

AI+A-z~-- s(A2+A) 

for some sEW(b). The fact that A is generic on the hyperplane (A, vo)=c in aqc 
now implies that s leaves the orthocomplement of v0 in aqc pointwise fixed. Hence 
s is a product of reflections in roots of E(b) orthogonal to this subspace, that is, 
roots belonging to b~| One of these roots must have a nontrivial restriction 
to aq, since otherwise s would leave aq fixed and b k invariant, forcing s),=~ and 
~--AI-sA2Eb~,  a contradiction. Hence there is a root /3 in the restricted root 
system E which is proportional to v0. [] 

10. T w o  l e m m a s  

In the following section we shall express the Eisenstein integral in terms of the 
c-functions and the functions ~ of the previous section. The result below is the 
first step towards this goal. Let QEP~(Aq) be fixed, and let the notation be as in 
the previous section. 

L e m m a  10.1. Let )~Eaqc\S, and suppose that the formal series 

r  E a)~-~-~'v~' (aEA~) 
vENA 
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with coefficients v. �9 V~ MnKnH is a v~MnKnH-valued eigenfunction for II~(L). As- 
sume moreover that vor Then the series converges and we have: 

r (aEA~). 

Proof. Let cEC be the eigenvalue given by H~(L)r162 Consider the shifted 
series 

r162 E a~-'v'" 
z/ENA 

Then exactly as in the proof of Proposition 5.2 one obtains the recurrence relations: 

(46) [(u-2A, u> +%]~,  -- E d ~ _ ~ - 4  E E n[T(L+)+(-1)n'r(L[~)]v~-2~' 
~}0 a > 0 n _ > l  

where 7cEEnd(Vr MnKnH) is the endomorphism #(L: A ) - c I .  For ~=0  this yields 

(47) [p__(L: A) - c I]~0 = %~0 = 0, 

hence, since ~;o=vor c is an eigenvalue for the action of #(L: A) on V MnKnH. The 
eigenvalues of % are therefore contained in A/', and since A ~ S it follows that ( v -  
2A, ~}+% is invertible for all , E N A \ { 0 } .  Hence the ~, are uniquely determined 
by v0 and the recurrence relations. On the other hand, it follows from Lemma 5.3 
that 

7(A) = [~-(amk), A] = [_p_(L: A), A] = [%, A] 

for all AEEnd(V~MnKnH), and hence by (47) we have 7(A)~0=%(A~o). Thus 

for all ~ENA.  By application of both sides of the equation in Proposition 5.2 to 
v0 it now follows that the coefficients ~:=F.()~)~0 satisfy (46). Since v~=v0 we 
conclude that v.-'---v~ for all v, hence q~=~(a)~0,  and the result follows. [] 

Remark 10.2. Let r be as above, and let c E C  be the eigenvalue given by 
II~(L)r162 If it is known a priori that  c is an eigenvalue for the action of p(L: A) 
o n  VT MngnH, then the assumption that VoW0 is not needed in the above proof. The 
conclusion, if v0=0, is then that r  for all aEA +. 

The End(V~MnKnH)-valued function ~ on A~(Q) depends on the given para- 
bolic subgroup QEP~(Aq). To express this we also denote it by OQ()~:. ), and we 
denote its expansion coefficients by FQ,. (/~). 
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Let WENK(aq) and consider the involution wa: X~----~WO'(w--lxw)w -1 of G. The 
group wHw -1 is an open subgroup of the fixed point group G ~ ,  and we have the 
decomposition g=Adw(O)NAdw(q) of ~ in 4-1 eigenspaces for wa. Moreover wa 
commutes with 0. In particular, aq is a maximal abelian subspace of pNAdw(q). 
Hence there are functions A+(Q)---~End(V MnKn~H~'-l) defined by series expan- 
sions as the ~ in Theorem 9.1, but with respect to the pair (G, wHw-1). We shall 
use the notation 

�9 Q,w (A): Aq (Q) --~ End (V~ MAKAwHw -1 ) 

for these functions, with the understanding that  ( ~ Q : ~ Q , e  as originally defined. It 
is easily seen that ~)Q,~ depends on w only through its coset in NK(aq)/NKnH(aq). 

L e m m a  10.3. Let QEP~(Aq) and wENK(aq). We have for generic AEaq~: 

�9 Q,~o()~: a) =~r(w)o~-lQ~,(w-lA: w-law)o~-(w -1) (a E Aq(Q)). 

Here it should be noted that  ~-(w) maps V y  nt~nH bijectively to V~ MnKn~H~-I 
with inverse T(w-1), SO that  the right-hand side of the above expression yields an 
element of End(VMnKn~H~-~). 

Proof. For f :  A~(w-lQw)~End(Vy nKnH) we define a map ~f  from A+(Q) 
to End(V MnKn~Hw-1) by Wf(a)=~-(w)of(w-law)ow(w-1). Let 

then the claim is that  ~Q,~=~.  
It follows easily from the expansion (15) for O~-lQ~(W-1),: a), aEd~(w-lQw), 

that  ~(a) has an expansion of the form required for ~Q,~ (A: a), a E d~ (Q), with first 
term a ~-eQ I. We claim that  

(48) [HQ,~ (L ~) @] (a) = �9 (a) ott(L~: A), 

where L ~ is the Laplace-Beltrami operator on G/wHw -1, and HQ,=(L w) and 
p(L~:A) are defined with respect to the pair (G, wHw-1). Since tt(L~:A)E 

End(V MnKn~H~-l) is diagonalizable the lemma is an immediate consequence of 
Lemma 10.1 and (48). 

The right multiplication by w naturally induces a map R~ from C ~ (G/H) to 
C~(G/wHw -1) which intertwines the actions of L and L ~. Using this fact it can 
be seen that  

nQ,~ (L ~) (~f) = ~ [n~-i  Q~,~ (L) (f)] 

for any smooth End(VMnKnH)-valued function f on A + (w-lQw). 
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Furthermore we have 

= 

by Lemma 5.3, because Ad w(gtmk)=~tmk. Since 

(49) it(L: w-1)~) = It(L: A) 

by the same lemma, the claimed identity (48) easily follows. [] 

11. Eisenste in  integrals and their expans ions  

We first recall (from [4, w some notation related to the Eisenstein inte- 
grals associated with the K-representation ~-. We fix a set 143 of representatives 
in NK(aQ) for the double quotient ZK(aq)\Ng(aq)/NKnH(aq); the image of ]/Y in 
W is then a set of representatives for W/WKMH, where WKM H is the subgroup 
NKnH(aq)/ZKnH(aq) of W. We denote by 1 the representative in 147 of eWgnH. 

Notice that the space M/w(MMH)w -1 is a compact symmetric space for all wE 
14] (cf. [4, Lemma 1]). For wE1/Y we denote by ~176176 
the space of TM-spherical functions on M/w(MMH)w -1. By loc. cit. the evaluation 
at e maps this space isomorphically onto the space VT MMKNwHw-1, in particular 
~ (T) is hence finite dimensional. We then define the space ~ by the following 
formal sum: 

(50) @ 
wEYY 

The Eisenstein integral E(P: r A) is defined for PET'~(Aq), CE~ and generic 
AEaqc (see [4, eqn. (29)]); it is a smooth ~--spherical function on G/H, and it 
depends meromorphically on A E aqc. 

The Eisenstein integrals are D(G/H)-finite functions on G/H. More precisely 
we have 

(51) DE(P: r A) = E(P: p(D: A)r A) (D E D(G/H), r E ~ 

Here #(D: A)EEnd(~ is the endomorphism defined in [4, above eqn. (43)]. In 
particular its restriction to ~ MnKnH coincides with the endomorphism 
tt(D: A) defined earlier. It follows (for details, see [4, w that E ( P : r  A) allows 
a converging asymptotic expansion along any parabolic subgroup Q E P~ (Aq) of the 
form 

(52) E(P: r A)(maw) = E E aS~-eQ-'~~ p,~(s: A)O]w(m) 
sEW ueNE(Q)  
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for wE}~', mEM, aEA'~(Q). Here pqip,.(s: A)EEnd(~ and [-]~ indicates that  
the w-component of an element in (50) has been taken. The terms corresponding 
to v--0 in this expansion are denoted as follows: 

CQIP(S: )~ ) := PQIP, o( S: A) E End(~ 

These are the c-functions associated with the minimal principal series for G/H. 
We shall now relate the above expansion (52) of the Eisenstein integral to the 

functions O~ defined in the previous sections. Let weld2. Recall from Lemma 10.3 
that we have 

(53) (I)Q,~(A: a) = T(w)or w-law)oT(W) -1 E End(Vy nKn~"~-') 

for aEA~(Q), where OQ,~ has been defined in the lines preceding the lemma. Then 
we have the following. 

T h e o r e m  11.1. Let P, QEP~,(Aq), wE14;. Then for every CE~ we have 

(54) E(P:r E ~Q,w(s'X:a)[CQIp(8:~)~]w(e) (aEA~(Q)), 
sEW 

as a meromorphic Yv MnKNwHw-1 -valued identity in )~E aqc. 

Proof. By sphericality we have for the left-hand side of (54): 

(55) E( P: r )~)(aw) = T(w)E( P: r )~)(w-t aw). 

It follows from [4, Lemma 7], that  

[cQ,p(s: (r E 

Using this identity as well as (53) we obtain the following expre~ion for the right- 
hand side of (54): 

(e). 
sEW 

Replacing w-ts  by s in the sum we obtain that  this equals 

7(w) E Ow-~Qw(SA: w-law)[Cw-~Qwl P(s:/~)r (e). 
sEW 

Combined with (55) this shows that it suffices to prove the theorem for w--1 and 
Q arbitrary. 
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By linearity we may assume that ~b belongs to one of the components of ~ 
in (50), say ~ MnKn~H~-~ . Now ~-(v) maps V MnKnH onto the latter space, 

and applying once more loc. cit., Lemma 7, we have 

[CQIP( 8: )~)~2] 1 (e) - -  [CQiv-l Pv (By: v-1)~ )T(v) -  l r 1 (e) 

for r  nKn~H~-~. On the other hand, by loc. cit., eqn. (69), we have 

E( P: r )~ ) = E(v- l pv: T(V)--I@: V--1/~). 

Combined with the above this shows that  it suffices to prove the theorem for CE 
~ (~-) and P arbitrary. 

We now have CE~ MnKnH. By linearity we may also assume that  ~b 
is a joint eigenvector for all p(D: ;~), DED(G/H), )~Ea~c (cf. loc. cit., Lemma 4). 
Fix such an eigenvector r and let "y()~) denote the corresponding eigenvalue of 
it(L: ~). Then #(L: )~)r162 and if Ucaqc is a non-empty open set on which 
the map )~-*E(P: r )~) is holomorphic for all P,  then LE(P:  ~b: ,k)='y(),)E(P: r ),) 
for all/~EU (cf. (51)). Taking restrictions to A+(Q) we have that  f=  T~ E(P: r )~) 
satisfies the differential equation 

(56) IIQ,~(L)f ='y(A)f 

on A~(Q), for all ~EU. 
Notice that  both sides of (54) are meromorphic in ~. Hence it suffices to 

establish this identity for ~ in U, or any nonempty open subset thereof. Shrinking 
U if necessary we obtain from (52) that  

( h T )  E(P:~:~)(a)= E E a*~-eQ-~)QIP,~(S:A)~]I(e) 
sEW vENE(Q) 

for all P, Q E P~ (Aq) and ~ E U, with absolute convergence for a E A~ (Q). Moreover, 
we have 

(58)  OQiP,0(s: (e) = [CQjp(s: (e) 

Consider the inner sum in (57): 

~QIP(S:A)(a) := E a~X-~Q-'~gQIP, ~(s:A)~b]l(e) 
~ENE(Q) 

We claim that  

(a E A + (Q)). 

(59) q2Qig(S:)~)(a)=eeQ(S)~:a)~vQiP, o(S:~)~]l(e ) (aEA~(Q)) 
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for all ~ in a non-empty open subset of U, and for all P,  Q and s. Once this claim 
has been established the theorem is immediate from (57) and (58). 

From [3, Lemma 13.9], it follows that  we may assume (by shrinking U) 

(60) [s~ + z~]  n [t~ + z~]  = 0 

for all AEU and s, tEW, s~t. Since the action of IIQ,~(L) on the series (57) may be 
computed by insertion of (12) with te rm by te rm differentiations, we see from (60) 
that  each of the functions q!Qip(s:)~), sEW, AEU, QEPa(Aq) ,  satisfies the same 

differential equation (56) as T~ E(P: r A). 
Shrinking U again we may also assume tha t  sA does not belong to the singular 

set S for any sEW. Now fix ),GU and let c=~y(A). Then by definition c is an 
eigenvalue for it(L: )~) on V y  nKnH. The claimed identity (59) now follows from 
Lemma 10.1 (with A replaced by sA) and Remark  10.2 (notice that  It(L: s)~) has the 
same eigenvalues as p(L: )~) by (49)). This completes the proof. [] 

Remark 11.2. By [4, eqn. (73)], we have 

CQiP(S: ,k)o#(D: T: ~) - -# (D:  T: sA)oCQip(S: ,~) (D E D(G/H)). 

Combining this with Corollary 9.3 we see tha t  each of the summands in the expres- 

sion (54) for w = l ,  9QiP(S:lb: A)(a):=~O,(sA:a)[CQip(S: A)!b]I(e)EV~_ MngnH, satis- 
fies the same system of differential equations on A~(Q) as does the sum (cf. (51)), 
that  is, 

HQ,~(D)gQIp(S: ~: ~) = ~'Qip(S: p(D:  ~)~: ;~) (P E D(G/H)). 
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