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Expansions for Eisenstein integrals
on semisimple symmetric spaces

Erik P. van den Ban and Henrik Schlichtkrull

1. Introduction

Let G/H be a semisimple symmetric space. Related to the (minimal) principal
series for G/H there is a series of Eisenstein integrals on G/H. These are K-finite
joint eigenfunctions for the G-invariant differential operators on G/H. Here K is a
maximal compact subgroup of G. The Eisenstein integrals are generalizations of the
elementary spherical functions for a Riemannian symmetric space (and more gen-
erally of the generalized spherical functions in [9, §II1.2]), and of Harish-Chandra’s
Eisenstein integrals associated to a minimal parabolic subgroup of a semisimple Lie
group.

In this paper we develop a theory of asymptotic (in fact, converging) expan-
sions towards infinity for the Eisenstein integrals. The theory generalizes Harish-
Chandra’s theory (see [8, Thm. IV.5.5], and [13, Thm. 9.1.5.1]) in the two cases
mentioned above (see also [9, Thm. I11.2.7]). The main results are Theorems 9.1
and 11.1. The first of these states the convergence on an open Weyl chamber of
the series expansion whose coefficients are derived recursively from the differential
equations satisfied by the Eisenstein integrals. The sum @) of the series is an eigen-
function which behaves regularly at infinity but in general is singular at the walls
of the chamber. The basic estimates which ensure the convergence of the series
also provide an estimate for ®,, which is a generalization of Gangolli’s estimates
(I7]) in the Riemannian case. As in Gangolli’s case, our estimates are derived by a
modification of the ®, with the square root of a certain Jacobian function.

The second main result expresses the Eisenstein integral as a linear combination
of the ®,; the coefficients are the c-functions (defined in previous work by one of
us) related to the Eisenstein integrals.

The results of this paper are used for the Plancherel and Paley—Wiener type
results obtained in [5] for the Fourier transform corresponding to the minimal prin-
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cipal series, just as Gangolli’s estimates in the Riemannian case play a crucial role
in Helgason’s and Rosenberg’s work for the spherical transform (see [8, §IV.7]).
In the case of a semisimple Lie group, considered as a symmetric space, estimates
sufficient for the application to the Paley—-Wiener theorem are given in [1]. The
present, stronger, estimates were in this case obtained in [6].

Acknowledgement. The completion of this paper was carried out while both
authors were visiting the Mittag-Leffler Institute for the 95/96 program, Analysis
on Lie Groups. We are grateful to the organizers and the staff for their hospitality.

2. Notation

Widening the generality a bit let G/H now be a reductive symmetric space of
Harish-Chandra’s class, that is, G is a real reductive Lie group of Harish-Chandra’s
class, o an involution of G, and H an open subgroup of the group G? of its fixed
points. Let § be a Cartan involution of G commuting with o, and let g=tSp=Hdq
be the +1 eigenspace decompositions of the Lie algebra g of G, corresponding to 8
and o, respectively. Let K=G?, then K is a maximal compact subgroup of G. As
usual, the Killing form on [g, g] is extended to an invariant bilinear form B on g,
for which the inner product (X,Y):=—B(X,8Y) is positive definite, and which is
compatible with o, that is, B(cX,Y)=B(X, oY) for all X,Y eg.

Let aq be a fixed maximal abelian subspace of pNq, X the root system of a4 in g,
and W the group Nk (a,)/Zk(aq), which is naturally identified with the reflection
group of ¥. Let aj and a. denote the real and complex linear dual spaces of aq.
The inner product (-, -) on a4 is transferred to real and complex bilinear forms on
ag and ag, by duality.

Let Aq=expay and let P,(A,) denote the set of parabolic subgroups P=
M ANp (with the indicated Langlands decomposition) whose Levi part My =M A is
the centralizer in G of aq. Let m;, m and a denote the Lie algebras of My, M and A,
then a=(anh)®aq, a,=0Ng, and with m,:=m+(anh) we have m; =mda=m, Da,.
Notice that M is invariant under both involutions § and ¢, and hence that the quo-
tient M/MNH is a symmetric space. It follows from the maximality of aq that this
quotient space is compact.

There is a natural bijective correspondence Q—X(Q) of the set P,(Ay) with
the set of positive systems for 3. We denote by A=A(Q) the set of simple roots
corresponding to a given %+ =%(Q), by 0=0q €a;, the corresponding half sum (with
multiplicities) of the positive roots, by af=a/ (Q) the corresponding positive cham-
ber in a4, and by AF=AZ(Q) the set expaf. Let NACag denote the set of linear
combinations v=3" A Vo with coefficients v, in N={0,1,...}.
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Let (7,V;) be a fixed finite dimensional unitary representation of K. A V-
valued function f on G/H is called T-spherical if f(kz)=7(k)f(x) for all ke K, x€
G/H. The space of smooth 7-spherical functions on G/H is denoted C*°(G/H: ).
Notice that if f€C>®(G/H:7), then f restricts to a smooth VM ENH yalyed func-
tion on A,. Here VMNENH is the space of MNKNH-fixed vectors in V;.

3. Radial components of differential operators

Let D(G/H) denote the algebra of G-invariant differential operators on G/H.
In particular, these operators act on C*°(G/H:7). In this section we recall the
concept of the 7-radial component of the elements in D(G/H) (cf. [2, §3]).

Let Q€Ps(Aq) be fixed and let AT=A!(Q) as above. From the Cartan de-
composition (see for example [3, §1]) it follows that K A{H is an open subset of G,
and that the map (k, h, a)—kah induces a diffeomorphism from K X prnrng H X AL

onto KA} H. Let leTé be the restriction map fr f| A then
T :C™(G/H: 1) — C® (AL, VMNENH) o 0 (AL)@VMNENH,
We define the map
T =T): C (A @VMOKNE 0 (G/H:7)
by
(a) suppTTfCKALH for feCP(A})QVMNENH,

(b) T oTT=L
If DeD(G/H) then one readily checks that

I, (D)=Mg (D) :=TteDoT"
defines an element of the ring
1) 0°°(43)®S(aq) @End(VMKNH)

of differential operators on AY, with coefficients in C*(A)®End(VMKNH) The
operator I, (D) is called the 7-radial component of D on A}. It is easily seen that
IL; is an algebra homomorphism from D(G/H) to the ring (1).

Let U(g) be the universal enveloping algebra of the complexification g of g,
and let U(g)¥ be the subalgebra of H-fixed elements. There is a natural map r
from U(g)¥ to D(G/H) defined by (r(X)f)or=Rx(for) for feC>(G/H); here
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m:G—G/H is the natural projection and R denotes the right regular representa-
tion on C*(G). The map r induces an isomorphism of algebras U(g)¥ /[U(g)# N
U(g)h]—=D(G/H), which we also denote by r. In the following we shall sometimes
abuse notation by identifying an element D€D(G/H) with any X €U (g) for which
D=r(X). In particular, for Xe€U(g)¥, we write IL,(X) for II,(r(X)). Thus we
also view II, as an algebra homomorphism from U(g)# to the ring (1).

Algebraically the map II, can be described as follows. We denote u9=Ad(g)u
for ueU(g), g€G. Let X€U(g)¥ and assume (cf. [2, Lemma 3.2]) that we have an
expression for X as a finite sum

X=Y"fi@yud v modulo U(g)h,

for all ac A, where f;€C®(A{), u;cU®)MNENH 5nd v;€U(ay). Then it is easily
q q q
seen from the definitions above that

(2) I (X)= Z fivit(u;) €C™ (Ag)®S(aq)®End(VTM”KnH)_

Here it should be noted that for ucU(€)MMENH the operator 7(u) on V, preserves
the subspace VMNENH ' and that we henceforth are abusing notations by letting
7(u) denote the induced endomorphism of V,MNKNH

Let log: Aq—ay denote the inverse of explq,. Then for a€ Ay, A€a;, we write

a*=e*(1°89) Moreover, we define the function e*: A;—C by

(3) eMa)=a’.

Let E be a finite dimensional linear space. We are interested in E-valued
functions on A} which admit a series expansion of the form

(4) Z aa™” (a€Ay)

veENA

with coefficients ¢, €E, and where A=A(Q). For v=>" Voa€NA and z=

(2a)aca €C* we put
2V = H (za)7=.

a€A

aEA

The map a—(a~*)aea maps A onto ]0,1[*. Hence the series (4) converges if and
only if the E-valued power series ), qa €v2” converges on the polydisc DA here
D denotes the complex unit disk.
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4. The radial component of the Laplace operator

Let Q€U(g) be the Casimir element associated with the bilinear form B, and
let L=r(Q)) denote its image in D(G/H), then L is the Laplace-Beltrami operator
associated with the natural pseudo-Riemannian structure on G/H induced by B
(cf. [8, Exercise I1.A.4]). We shall now compute the 7-radial component of L.

For a€X, let g, =g} ®g, denote the decomposition of the root space g, into
+1 and —1 eigenspaces for ¢, and put mI=dimgZi. For each space g5 (e==),
we fix a basis Xg, ; (i=1,... ,m&), orthonormal with respect to the positive definite
inner product (-, -). Moreover we require that X¢ , ;=—6X¢ ;. Let H, denote the

-,

element of a, determined by a(Y)=(Y, Ha) (Yeaq)’, then
(5) (X%, X o] =Ha.

Let Qm, €U(m,), Qmx€U(mNE) and Qq, €U(aq) denote the ‘Casimir elements’ of
mg, mNE and a4, respectively, defined by means of the restriction of B (i.e. if
X1, , Xm is a basis for m, then Qu =3, ; g X; X;, where g/ is the inverse of
the matrix B(X;, X;); Qmxk and §2, are defined in the same way). Then we have

(6) D=0, +Q+ Z (XaiXEa,itXE i X5 0)-
a>0,e=1%
1<i<mg,

Put

(7) Yoi= %(Xi,i“*'xs—a,i) and Zg ;= %(X;,i_Xia,i)‘

Notice that Y, €png, Y, ,€pnh, Z7 ctnbh, and Z_ ;€tNg; this follows from the
fact that o X ,;=—eX¢

—ot

Define, for e=+ and e=—, the element L, €U (¥) by:

mg
Lg =2 Z(qu,i)z-
=1

Since MNKNH acts orthogonally on the space (g5, &g ,)NE, for which the elements
V27 ;, (1<i<mg,), form an orthonormal basis, we have LE €U ()MNKNH,

Lemma 4.1. Fiz a=expY €A. Then modulo U(g)h we have

Q=i+ Qg +Z [m{, coth a(Y)+m tanh o(Y)]H,
a>0

+3 [sinh 2 (Y )(LE)? T —cosh 2 e(Y)(L)* ]

a>0
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Proof. Since m, Ct+8 we have Qy, =, modulo U(g)h. Hence it remains to
consider the summation term in (6).
From (7) we obtain

(8) (Z)" =3l *MXg —ex X

—a,i]’

which together with (7) gives
X =sinh ™ oY) [ 28, —(25,) ]

and

1

€ i =sinh™ ! a(Y) [e_a(Y)Zi,i— (Z;,i)a_ 1

-,
Hence, taking into account that Z(LEEL we obtain that

1

X} X o+ X2, X2 =2sinh ™2 oY) [~ cosha(Y) Z2 (22 ) +((Z2)D° ],

modulo U(g)h. Now

(22, (250" | = [M(XS = X% q.), e @MXE ,—edM X2 )]
— — Lsinh oY) XS, X ] =~} sinh a(Y) Ha,

o, L —

9)

and we obtain

(10)  X7IX*, . +X*t, Xt =cotha(Y)He+2sinh 2 a(Y)((Z2,)%)*

From (7) and (8) we obtain
X& ;=cosh " a(Y) [ea(y)Y;i—i—(Zgyi)“_l]
and
Xt i=cosh™ ' a(Y)[e *M)YE, - (ngi)“_l] .

Hence, taking into account that Y ;€h, we see that

—1

X i X gt X g Xss=—2cosh™2a(Y)[sinh (Y)Y, (Z5,)*  +((Z5)%)* ]

-, a,i
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In analogy with (9) we have
VS (25)* 1= —4 cosh a(Y) Ha,
and hence

(11) X5 XZoi+X 2, X, =tanho(Y)H,—2cosh™? a(Y)((Z,;)%)"

The lemma now follows from (10) and (11) applied to (6). O
From Lermma 4.1 and (2) we obtain

I, (L) = Qaq +7(Qmk) + Z [mf coth a+m tanh o] H,
a>0

+ Z [sinh ™2 a7(L})—cosh™? a (L)},
a>0

(12)

where the hyperbolic functions cosh , sinh « etc. are viewed as functions on A} by
means of (3).

5. The recursion formula

Let my=7|mnk denote the restriction to MNK of the representation 7, and
let C°(M/MNH:7y) denote the space of my-spherical smooth functions on the
symmetric space M/MNH. It is easily seen (cf. [4, Lemma 1]) that the evaluation
map f f(e) yields a linear isomorphism

(13) C™(M/MNH: 1) ~ VMNENH,

Via this isomorphism, we view VMNENH a5 a4 D(M/MNH)-module.
Following [4, §3], let

‘p, p:D(G/H) - D(M/MNH)®5(aq)
be the algebra homomorphisms defined by the requirement
D—"u(D) enqU(g)+U(g)h
for DeD(G/H), and by

p(D:X) ="u(D: \9q) e D(M/MNH)
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for A€ag,; here ng is the Lie algebra of Ng. The map ‘i depends on the choice of
the parabolic subgroup @Q, whereas y is independent of it.

For A€aZ. we denote the endomorphism by which p(D: \)eD(M/MNH) acts
on VMNKENH by 1(D: X). We shall investigate formal End(VM"KNH).valued solu-

tions @, to the differential equation
(14) I (L)®y = ®xop(L: A)

on A!. Here A is a parameter in a., and we assume that ®, is represented by a
formal series

(15) ®y(a)=ar"¢ Z a”"T,(A) (a€Ay),
vENA

with T, () €End(VMNENH) for yeNA. The application of I (L) to ®, in (14) is
formal. In particular, differentiations are taken term by term. By (12) the resulting
formal series is of the same form as (15). The motivation for studying exactly this
equation (14) will be clear from Theorem 11.1 below (cf. also Remark 11.2).

The differential equation (14) will yield a recursive relation for the coefficients
T',(A), which will enable us to conclude that for generic A the power series

(16) DT 0N

veENA

actually converges for z€ D>,
As in [7] it is profitable to consider the shifted (at first formally defined) function

(17) By (a)=J(a)/?®r(a) (a€Al),

where
J(a) = [ [2sinh a(log a)]™* [2 cosh a(log a)] ™=
a>0

is the Jacobian function associated with the G=KAyH decomposition (cf. [11,
p. 149]). Write

J(a)Y/? =a® Z ceaé, J(a)yV?=ae Z bea™¢,
¢eNA ¢eNA

with coefficients c¢,be €R, then cy=by=1. It is easily seen that the coefficients b,
and c¢ have at most polynomial growth in £ (in fact the ¢ are bounded). For
vENA define

(18) L) = Y eelue).

£ENA
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Here we let I'r=0 for EZA\NA. Then the sum (18) is finite. It follows that
formally we have

veNA
Agreeing to write also fg:O for £eZA\NA we have the finite sum

(19) L) =Y by (M),

£ENA

analogous to (18). Put
(20) d(a)= J(a)"lmflaq [J(@)'?] (a€ Ad).
Lemma 5.1. Let a=expY €A}. Then

J(a)/? 11, (L)oJ (a) Y2 = Qag —d(@) +-7(Qmi)
+ Z [sinh ™2 a(Y)7(L}) —cosh™2 a(Y)7(L3)].

a>0

Proof. The lemma follows from equation (12) combined with the following ex-
pression:

J(a)/? [Qaq + Z [mE cotha(Y)+m], tanh a(Y)]Ha} oJ(a)™1/2 = Qo —d(a).
a>0
We shall prove this expression in the following equivalent form

1) J(a) M?QuqoJ(a) /2 = Qe+ > [mf cotha(Y) +m, tanh oY )] Hy +d(a).
a>0

To prove (21), fix an orthonormal basis Hy, ... , H, for a;. Then Qaq:Z;;l sz,
and we obtain

(22) QugoJ(@)/? = J(a)1/29aq+2iHj(J(a)l/Q)Hj +Qqq (J(a)'/?).
Now
J(a)™"?H;(J(a)"/?) = 1 H;(log J(a))

= 13 I coth a(¥) +m tanh a(¥ )Ja(H;),
a>0

(23)
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and since Y7, a(H;)H;j=H, we conclude that

2 2": H;(J(a)?YH; = J(a)'/? Z[mg coth a(Y)+4my tanh oY) H,.

=1 a>0
Inserting this expression in (22) and using (20) we obtain (21). O
The function d(a) has a converging power series expansion of the form
d(a)= > dea™ (acAy)
£eNA

with d¢; €R. Notice that from the asymptotic behavior of J it follows that

(24) do = (0, 0).

Later we shall give an explicit expression for the coefficients dg, see (36).
We also have the converging expansions

oo

o0
sinh™ % a(Y) =4 Z na~ 2, cosh 2 a(Y)=—4 E(—l)”na_2n"‘.
n=1 n=1

Inserting these expansions in the equation of Lemma 5.1 we obtain:

J(a) /P (L)eJ(a) 2 = Qaq— Y, dea™ +7(Qum)
£eNA

+43°3 T nlrLY) + (-1 r(Ly)lae

a>0n=1

(25)

Let the operator y€End(End(V"KNH)) be defined as the commutator

(26) v =7 (i), -],
then we have the following:

Proposition 5.2. Let A€ag, and suppose that O is a formal solution (15) to
the equation (14). Then for every veENA we have:

(=22, ) +T ()= Y delue(N)
£eNA\{0}

—43 Y L)+ (=) (L) Togna(X)-

a>0n>1

For the proof of this proposition, we need the following lemma.
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Lemma 5.3. Consider VMNEN g5 o D(M/MNH)-module as before. Then
on VMOKNH ye have:

(LX) =7 (Qumi) + (A, A) — (e, 0)-
Proof. Using (5), it follows straightforwardly from (6) that

0= +Qag— Y _ MaHa

a>0

modulo noU(g)+U(g)h. Hence ‘u(L) equals the right-hand side of the above con-
gruence, and it follows that

(LX) =7 (Qumi) +(A, A)— (e, 0),

where 7 indicates that the image in D(M/MNH) has been taken. One readily veri-
fies that r(Quy) acts on VMNENH i (13) by the same endomorphism as 7(Qpy). O

Proof of Proposition 5.2. In view of the above lemma it follows from (14) that
I (L)@x = xo [7(Qmic) +{A, A) = e, 0)]-
In view of (17) and (24) this leads to:
[JY2 1L, (L) o J Y2 — (A, A) +do] @5 = @ 07 (Qumk)-
Using (25) we finally obtain that
Qag—AN+y— D dea 44> i n[r(L)+(=1)"r(L;)]a" 2" | &, =0.
¢ENA\{0} a>0n=1

By insertion of the series for ® a, the proposition now follows from a comparison of

coefficients, since (Quq — (A, X))}V =(r—2),v)e}". O

6. The singular set S

Let t be a Cartan subalgebra of mng, L+(t)Cit* a positive system for the
root system of t in (mN¥)., and p; the associated half sum of the positive roots.
Moreover, let A(7)Cit* be the set of infinitesimal characters, viewed as a subset of
the set of dominant weights in it*, of the (mN¥)-types which occur in 7y and have
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a non-zero (mNeNp)-fixed vector. Then 7(Qmy) diagonalizes on VMNKNH with the

eigenvalues (£ —o(, E—o01), E€A(T).
It follows that the commutator - in (26) diagonalizes and has the following set
of eigenvalues:

N:={{&1—ot,&1—00)—(E2—0, E2—01) | §1,62 € A(T)} CR.

Notice that N'=—N.
When A€ag, is outside the set

S:={re€a}.|Ir e NA\{0}): (v—2),v) N},
the for~mula in Proposition 5.2 allows the recurrent determination of all the coeffi-
cients I',,(A), once T'g(A) is given. We shall now investigate this singular set.
We first notice that S is the countable union of the hyperplanes H, 4 in ag.

defined by
Hya={A€ai. | (v—2)\v)=d},

for ve NA\{0}, deN.
We shall need the following notation. If v=3 A Vaa€RA we write

m(v) :Z Vel

By equivalence of norms on RA, there exists a constant ¢; >0 such that
(27) em(v) < v < e 'm(v)
for all veRA. For ReR, let
a;(Q, R) ={X€ay. |Re(A,a) <R for a € 2(Q)}
Moreover, let Xg be the subset of NA\{0} defined by
(28) Xr={veNA\{0}||v|>-2Rm(v) < max N}
Notice that Xg is finite, in view of (27). Finally, if ReR and veNA\ {0}, let
(29) Nr,={deN|[v]*-2Rm(v) <d},

then v€ Xg if and only if Ng, #0.
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Lemma 6.1. Let RER and A€a3(Q, R). If (v—2X,v)=d for some vENA\
{0} and deN, then ve Xg and dENR,,. In particular, the set SNa;(Q, R) equals
the intersection of a3(Q, R) with the finite union of the hyperplanes H,q, where
veXg, deNg,. If R<iminN, then Xp and Snaj(Q, R) are both empty.

Proof. Since Re(\, o) <R for all €A, we have
(30) Re{v—2\,v) > |v|>—2Rm(v)

for all veNA. Assume that AeH, 4 for some vENA\{0} and dEN, then we see
immediately from (30) that deNg, and v€Xg. This proves the first statement.
The assertion about SNaZ(Q, R) is an easy consequence.

Finally if R<min /N, then R<O0, hence |v|>—2Rm(v)>—2R>max N for all
v€NA\{0}, and we have Xp=0. Hence also SNa;(Q, R)=0, by the previous as-
sertion. [

Remark 6.2. Notice that when 7 is the trivial K-type, then N'={0}, and it
follows from Lemma 6.1 that SNag(Q,0)=0. Moreover, when G/H is split, that is
when a, is a maximal abelian subspace of q, then mCH so that A(7)={¢} and the
same conclusion holds, for all 7 for which V¥NKNH £{0}. In particular this is the
case when G/H has rank 1 or is of ‘K.-type’ (see [10] for the latter notion).

7. The fundamental estimate
Let ReR be fixed, and let the set Xg be defined by (28).

Lemma 7.1. Let veNA\(XgU{0}), and let y€End(End(VMNENH)Y) pe the
commutator given by (26). Then the operator [(v—2\,v)+v]~! depends holomor-
phically on X\ in a neighborhood of a%(Q,R). Moreover, we have the following
uniform estimate for its operator norm:

(=2, 2)+7) 7 < (v =2Rm(v)+min M) (A€ d5(Q, R)).

Proof. Let A€aZ.. The operator (v—2X, v)++ diagonalizes with respect to an
orthonormal basis of End(VM¥NENH) with eigenvalues (v—2\,v)+d, deN. For
A€ag(Q, R) we obtain from (30) the estimate

Re((v—2\,v)+d) > |v]> —2Rm(v) —max N.

Since v¢ X g the right-hand side of this inequality is positive, and the result fol-
lows. O
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If veNA\{0}, we define the following polynomial function of A€ a,:

pN= [[ (w=2\v)+d),

deNR,.

where Ng, is the set given in (29). Notice that p, =1 if v¢ X, since then Ng , =0.

Corollary 7.2. Let veNA\{0}. Then the End(End(V.¥"KNH))_yalued ex-
pression p, (A)[{(v—2X,v)+7]|~! depends holomorphically on X in a neighborhood of
a:(Q, R). Moreover, there exists a constant C>0 such that

s Wy =2, 2)+7) 7 S C(A+ANEP (A€ y(Q, R)).

Proof. If v¢ Xg, then p,=1, and the result is an immediate consequence of
the previous lemma. On the other hand, if v€ Xg, then it follows from the above
mentioned fact that (v—2X\,v)++ is diagonalizable with eigenvalues (v —2A, v)+d,
deN, that

(31) A [[w=2xv)+d)[(v—2X, v)+7] 7!
d

is holomorphic on a neighborhood of a}(Q, R), where the product is taken over
those deN for which (v—2),v)+d=0 for some X €a}(Q,R). By the definition
this implies that A€ S, and hence by Lemma 6.1 that deNg,. Thus the product
term in (31) equals p,, and the corollary follows. O

We define the polynomial function pg on aj. by

pr) =[] p.)= [ ((v—2x\v)+d),
vEXR veEXgp
deENR,,

then by Lemma 6.1 we have SNaZ(Q, R) zpﬁl(O)ﬂﬁg(Q, R).

Lemma 7.3. Let the endomorphisms T',(\) of VMOKNH pe defined by the
recursion formula of Proposition 5.2 with f0(>\)=IVTMﬂK0H7 and let the endomor-
phisms T', (X} be given by (19). Let vENA be fized. The functions A—pgr(A)T,(A)
and A—pr(MT,(A) are holomorphic on a neighborhood of a:(Q, R), and moreover
there exists a constant C>0 such that for all A€al(Q, R):

pRVIIT, W < CLHIN)*EP and  [pr(N]IT, (V)] < C(L+|A)*=P7,
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Proof. By (19) it suffices to prove the statements for I~‘l,()\). For veNA we
put:
o= [ P

£eNA\{0}
£=v

Then every ¢, is a divisor of the polynomial pr. Therefore, it suffices to prove the
estimate

le MIIT (V] S CA+HA)ES  (Aeai(Q, R)),

with C a constant independent of A\. We will prove this estimate by induction
along the natural ordering < on NA. Since by definition I'y=I and go=1 it clearly
holds for v=0. Therefore, let v#0 and suppose the estimate has been established
for all elements neNA strictly smaller than v. From the recurrence relation in
Proposition 5.2 it follows that g, (AT, ()) can be written as a finite sum of terms
of the form

) g ) (20 ) ) Ay g, (O ()

P N&M P B
where neNA, n<v, and where A, €End(End(VMNKNH)) is independent of A. The
rational factor in front is a polynomial of degree degq, —degp, —deg gy; therefore
the required estimate follows from the induction hypothesis combined with Corol-
lary 7.2. O

The constant C in the above estimate can in turn be estimated uniformly in
the parameter v.

Theorem 7.4. Fix ReR, and let T',(N\) and f,,()\) be as above. There exist
constants C, >0 (depending on 7, R), such that

(32) IR(M)] T, (V)| < C(L+[w]) (1+]A])deePr
and
(33) R IT (VI < CAH P (L+|A)EP=,

for all vENA and A€ay(Q, R).

Notice that the existence of C' and s such that (32) holds is equivalent to
the existence of C and s such that (33) holds, by the polynomial estimates of the
coefficients in (18) and (19), and the fact that the number of terms in (18) and (19)
is bounded by a polynomial in |v|. The estimate (33) is proved in the following
section.
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8. Proof of Theorem 7.4

The following two lemmas will be needed in the proof of Theorem 7.4.

Lemma 8.1. There exists a constant ca>0 such that for all NeN\{0}

(34) > ldu|<caN.

m(v)=N

Proof. Recall (20) to motivate the following calculation. Let H , ... , H, be an
orthonormal basis for aq, then Qa,=>"; H?. Write Y=loga and recall from (23)
that

H;(J(a)'/?)=1J(a)'/* Y "[mi coth a(Y)+m tanh a(Y)]o( Hj).

a>0
Hence
H}(J(a)/?)=1J(a)"/? (Z [m} coth a(Y")+m;, tanh a(y)]a(H,-)>
(35) >0
+1J(0)/2 ) " [mf, coth’ o(Y)+m tanh’ a(Y)]a(H;)*.
a>0

Let M*=m?+(~1)*m; for a€X+, keN. Using the power series

o0 o
cotha=1+226_2k°‘, tanhoa =142 2:(—1)"“(3_2’“3‘7
k=1 k=1

for coth and tanh, we obtain

o0 [e o)
mf cotha+m_ tanh a=my+2 Z Mke2ke =2 Z xpMFEe=2ke,
k=1 k=0

where for simplicity we have introduced the notation in'—‘% if k=0 and xx:=1
otherwise. Moreover, by differentiation

o0
m coth’ a+m, tanh’ a = —4 Z kMFe=2he
k=1

We insert these expressions in (35) and sum over j. Since }_; o(H;)B8(H;)=(w, B),
we conclude

J@) 200 (J(@) ) = 3 (a [

o,3>0

_22 a, Ol i k —2ko_
k=1

a>0

leMle —2ka—2I13

nMg
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Hence

(36) dy= > xeaMiMia.B)— > 2kME(a,q).
o,Bext k,1>0 acnt k>1
2ko+2l8=v 2ka=v

Since for each pair (o, 8) the cardinality of the set
{(k,1) e N2 | 2km(a)+2Im(B8) =N}

is at most linear in N, the lemma easily follows. [
Lemma 8.2, There exist constants moEN and c3>0 (both depending on R),
such that for all \€a3(Q, R) and vENA with m(v)>mq we have:

(37) (=220 49) M < s

Proof. This is an immediate consequence of (27) and Lemma 7.1. O

Proof of Theorem 7.4. Let mg be as in Lemma 8.2. Then by Proposition 5.2
we have, for A€a;(Q, R) and m(v)>my,

38) (LI S%L Do el Tl +ea Y nlTo-2na M|

eNA\{0} >0

where cs=4 maxaso([|T(LYI+[ITT)HI)-
From Lemma. 7.3 it follows that there exists a constant C'>0 such that

lprRV)|IT, (W) < C(1+|A|)dee P,
for )\Eﬁ;(Q, R) and v with m(v)<my. This implies, for any >0, the estimate
(39) PRI IE, (V]| < CA+m(w))*(1+[Al)er=,

for A€a}(Q, R) and v with m(v)<my.
Under the assumption that

(40) x> 2c3(co+1es[TF)),

we shall now prove the estimate (39) for all v, using induction on m(v). Here cg,
c3 and ¢4 are the constants of (34), (37) and (38), respectively. Theorem 7.4 is an
immediate consequence.
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Fix m>myg, suppose that (39) has already been established for all v with
m(v)<m, and suppose a v with m(v)=m is given. We claim that (39) holds for
this v, with unchanged constant C. By (38) and (39) we have

PRV T

<5 [Z |de|(1+m(r =) +ea Y n(l+m(v—2na))* | (1+[A)4EPn

m(y) 0<E<v a2>0,221

na=<v

c s » N
< 2 (1Fm=N) [ > |dg|+c41>:+|3]<1+|A|>dem

m(£)=N

wC &
< 2= N(1+m—N)*(1 degpr
_mZ(+m ) (1+|AD )

where the last estimate has been obtained using Lemma 8.1 and (40). From

m+1 sx+1 F%

1 1

E:N1+mN mE:N”<m/ 7 dt = (m++)1 §2m2(ﬂ;—)
N=1

we obtain (39). O

Remark 8.3. As mentioned in Remark 6.2 we have SNaj(Q,0)=0 in several
important cases. In these cases it follows that pp=1 and the estimates in The-
orem 7.4 are simplified. In particular, in the special case where H=K and T is
trivial, these estimates were obtained by Gangolli ([7, Lemma 3.1]—in fact, when
adapted to this case, our proof simplifies slightly that of [7]). For the group case, [1,
Lemma 5.1] gives a weaker estimate with an exponential bound in v, instead of the
polynomial bound in (32). For this case the polynomial estimates were obtained
in [6].

9. The functions &)

The estimate we have obtained for the coeflicients in the series (15) has the
following consequence for the sum of the series.

Theorem 9.1. Let the coefficients T',(\) in the series (15) be defined as
in Lemma 7.3. For A€aj \S this series converges and represents an analytic
End(VMNENH ) yalued function ®x on A}, satisfying the radial differential equa-
tion (14). Moreover:

(a) If a€ A}, then the function A—pr(M)®@x(a) is holomorphic in an open
neighbourhood of a3(Q, R), for all RER. In particular, A—®»(a) is meromorphic
in age
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(b) Fiz ReR. There exist constants C, >0 (depending on 7, R), such that

@ OB @) <CHAy e | T] (1-a7e)| amere

aEA

for all a€ A} and )\eﬁ(’;(Q,R). In particular, given £>0, there exists a constant
C’'>0 (depending on 7, R and €), such that

(42) PRV |82 (a)]| < C(1+|A[)deePrgReA—e

for all \ea}(Q, R), and all a€ Aq with a(loga)>e (Va€L").

Proof. From Theorem 7.4 we derive, for A¢S, the convergence of the power
series (16) for z€ D®. This implies the first assertion of the theorem. Assertion (a)
follows from the observation that the convergence of the series for pr(A)®a(a) is
locally uniform in the variables Aeag(Q, R) and a€ A.

To see that (b) holds, notice that (41) implies (42) with C'=C(1—e~%)~*IAl.
Thus it remains to prove (41). To obtain this from Theorem 7.4 it suffices to prove

(43) ) (1+|v|>”a—"sé[H (1—a—°‘)]_ ,
veNA acA

for suitable constants C, 57>0. Let A={ay , ... ,an}. Then by (27) we may estimate
the left-hand side of the above inequality by a constant times

3 (hm@)a = 3 (Lo Ta e

veNA vEN™
<D AT (L4w) e g
veEN™
= [ Sohate.
a€A k=0

We may assume that s is a positive integer. Then (1+k)* <(k+)!/k!, hence

[o¢] oo '
Z(1+k)"a_ka < Z (k;'}f)'a‘k“ =sxl(l—a"®) "1,
k=0 k=0 ’

and (43) follows. O

The functions @, are defined by means of the series (15) where the coefficients
are recursively obtained from FO(}\):IVTMHKHH. The following lemma describes the
sum of the series obtained from using a different first term.
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Lemma 9.2. Fiz A€End(VM"KNH) and Aeaf \S. Assumey(A)=0. Let the

endomorphisms f{,()\) of VMNKNE pe defined by means of the recursion formula of
Proposition 5.2 starting from T)(A\)=A, and let the endomorphisms T, ()) be given
as in (19). With these coefficients the series a2 .naa™“T),(A) converges for
all a€ A} (Q); let ®) (a) eEnd(VMOKNH) denote its sum. Then

T, (a) = B (a)o A.

Proof. Obviously I",(A\)=T,())oA for all v. The lemma follows easily. [

The functions ®, are constructed as eigenfunctions for the radial component
of L, but in fact they are joint eigenfunctions for the radial components of all the
invariant differential operators (cf. [8, Prop. IV.5.4], in the case H=K and 7=1,
and [13, Thm. 9.1.4.1}, in the group case):

Corollary 9.3. Let A€a; \S. Then for all DED(G/H):

(44) T, (D)® = ®xop(D: A).

Proof. Let DeD(G/H) and consider the function
L =T11,(D)®)

defined on Af. It follows from the commutativity of D(G/H) that ®) satisfies
the same differential equation (14) as does ®,. Moreover, since term by term
differentiations are allowed in the series (15) for ®,, the function ® has a converging
series of this type as well. It follows from [5, Lemma 12.2], that the coefficient in
the a*~¢ term is u(D: X). The identity (44) now results from Lemma 9.2 by noting
that y(u(D: A))=0, cf. Lemma 5.3. O

The singularities of @, lie along hyperplanes of the form (), v)=c, where ve
NA\{0} and ceR. Using the full system of differential equations in Corollary 9.3
we can now show that only root hyperplanes occur, that is, hyperplanes of the above
form, but with veX.

Proposition 9.4. Assume A—®, is singular along the hyperplane (A, vp)=c,
where vy€NA\{0} and ceR. Then vy is a multiple of o root BEX.

Proof. Inserting the series (15) for @y in (44) and using [5, eqn. (98)], one
obtains a recursion formula for the I, ()) of the following form:

(45) p(D: A=), (A) =T, (N)op(D:v) =Y AgTp(N)

n=v
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for all DED(G/H), v€NA and A€aj \S. Here the A, are endomorphisms of
End(VMNKNH) which depend on D, v and A. Moreover, the dependence on the
latter is holomorphic and extends as such to ag.

Let bCq be a Cartan subspace for G/H containing a4, and write b=bi.®aq
with by=bNE. The complexified dual spaces by, and a; are viewed as subspaces of
b% in the obvious fashion. It follows from [4, Lemma 4], that there exists a finite set
L. Cbj such that the endomorphisms pu(D: A) are simultaneously diagonalizable for
all DeD(G/H) and A€aj, with eigenvalues of the form y(D: A+)), A€L,. Here
v:D(G/H)—S(6)"®) is the Harish-Chandra isomorphism; W (b) is the reflection
group of the root system 3(b) of b in ge.

Let A be a generic element of the singular hyperplane (A, v9)=c in a5c, and pick
v€NA\{0} minimal such that T, (}) is singular at A. Then the right-hand side of
the expression (45) is regular at A, and it follows from the joint diagonalization of

1(D: )) that there exist Ay, A2€ L, such that
Y(D: A1+ A—v) =~(D: Ay + )
for all DeD(G/H). Hence
M+A—v=s(Ag2+))

for some s€W(b). The fact that X is generic on the hyperplane (A, vp)=c in aZ,
now implies that s leaves the orthocomplement of vg in aj. pointwise fixed. Hence
s is a product of reflections in roots of £(b) orthogonal to this subspace, that is,
roots belonging to b ®Ruy. One of these roots must have a nontrivial restriction
to aq, since otherwise s would leave af fixed and by invariant, forcing sA=X and
v=A;—sAy€bj,, a contradiction. Hence there is a root 3 in the restricted root
system ¥ which is proportional to vo. O

10. Two lemmas

In the following section we shall express the Eisenstein integral in terms of the
c-functions and the functions ®) of the previous section. The result below is the
first step towards this goal. Let Q€P,(A,) be fixed, and let the notation be as in
the previous section.

Lemma 10.1. Let A€a.\S, and suppose that the formal series

Pla)= Y a* Vv, (a€A})

veENA
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with coefficients v, is a VMNEOH yalued eigenfunction for TL(L). As-
sume moreover that vo#0. Then the series converges and we have:

= VTMﬂKﬂH

#(a) =Pr(a)vo (a€ AY).

Proof. Let ceC be the eigenvalue given by IL.(L)¢=c¢. Consider the shifted
series

$la) =T (a)p(a)= Y "D,

veENA

Then exactly as in the proof of Proposition 5.2 one obtains the recurrence relations:

(46)  [(r=2X\ )+l = debue—4) > nlr(LE)+(-1)"7(La)]—2na;

£-0 a>0n>1
where . €End(VMNENH) is the endomorphism p(L: A)—cI. For v=0 this yields

(47) [p(L: A) —cTI]to =00 =0,

hence, since fip=vp#0, c is an eigenvalue for the action of y(L: X) on VMNENH  The
eigenvalues of 7, are therefore contained in A/, and since A¢.S it follows that {(v—
2X, V) +7. is invertible for all v NA\{0}. Hence the @, are uniquely determined
by ¥ and the recurrence relations. On the other hand, it follows from Lemma 5.3
that

’Y(A) = [T(ka)a A] = [H(L: >‘)’ A] = ['707 A]
for all A€End(VMNENH) and hence by (47) we have y(A)To=".(A%). Thus

7(1—‘1/ ()‘))’50 = ’)’C(FV ()‘)50)

for all ve NA. By application of both sides~0f the equation in Proposition 5.2 to
g it now follows that the coefficients ¥),:=T",(X\)9, satisfy (46). Since 0 =%, we
conclude that ¥/, =19, for all v, hence ¢=x(a)p, and the result follows. [

Remark 10.2. Let ¢ be as above, and let ¢€C be the eigenvalue given by
I, (L)¢=c¢. If it is known a priori that c is an eigenvalue for the action of pu(L: \)
on VMNKOH 'then the assumption that vo#0 is not needed in the above proof. The
conclusion, if vp=0, is then that ¢(a)=x(a)vo=0 for all a€ A}.

The End(VMM 0 H)_valued function ®x on A}(Q) depends on the given para-
bolic subgroup Q€P,(Aq). To express this we also denote it by ®g(A:-), and we
denote its expansion coeflicients by T'g ,(}).
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Let w€ Nk (aq) and consider the involution wo: z—wo(w™tzw)w ™! of G. The
group wHw™! is an open subgroup of the fixed point group G¥?, and we have the
decomposition g=Ad w(h)NAdw(q) of g in +1 eigenspaces for wo. Moreover wo
commutes with 0. In particular, a, is a maximal abelian subspace of pNAdw(q).
Hence there are functions A (Q)—End(VMNKMwHw™) defined by series expan-
sions as the @, in Theorem 9.1, but with respect to the pair (G, wHw™!). We shall
use the notation

Bq.0(N): A} (Q) — End (VMNKNwHw ™)
for these functions, with the understanding that ®o=%®¢ . as originally defined. It
is easily seen that ®g,,, depends on w only through its coset in N (aq)/Nrnw(aq).

Lemma 10.3. Let Q€Py(Aq) and we Nk (aq). We have for generic A€al,:
®g.w(Aa) =T(W)ody-10, (W N w taw)or(w™) (a€ AZ(Q))-

Here it should be noted that 7(w) maps V.Y XNH hijectively to VTMﬂKﬂwHw_l
with inverse T(w‘l), so that the right-hand side of the above expression yields an
element of End(VMNKNwH w‘l)'

Proof. For f: A{(w™'Quw)—End(VM"KNH) we define a map “f from A}(Q)
to End(VTM”K”“’Hwkl) by “f(a)=7(w)e f(w™law)or(w™!). Let

P ="[®,,-10,(w )],

then the claim is that ®g ,=®.

It follows easily from the expansion (15) for @,,-10, (w™!A: a), a€ A (w1 Qw),
that ®(a) has an expansion of the form required for ®q 4, (\: a), a€ A%(Q), with first
term a*22 1. We claim that

(48) (Mg, (L)) (a) = 2(a)op(L": A),

where L* is the Laplace-Beltrami operator on G/wHw™!, and Il .(L*) and
u(L*:X) are defined with respect to the pair (G,wHw™'). Since p(L¥:))e
End(VMNENwHw™Y i5 diagonalizable the lemma is an immediate consequence of
Lemma 10.1 and (48).

The right multiplication by w naturally induces a map R,, from C*(G/H) to
C>®(G/wHw™"') which intertwines the actions of L and L*. Using this fact it can
be seen that

g - (L*)(“f) =" [My-1qu, (L) (f)]

for any smooth End(V;Y"¥"H)-valued function f on Af(w™!Qu).
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Furthermore we have
W(L: A) = (w)ep(Ls N)or(w™)
by Lemma 5.3, because Ad w(Qpx) =k Since
(49) p(Liw™ A) = p(L: A)

by the same lemma, the claimed identity (48) easily follows. O

11. Eisenstein integrals and their expansions

We first recall (from [4, §2]), some notation related to the Eisenstein inte-
grals associated with the K-representation 7. We fix a set W of representatives
in Ng(aq) for the double quotient Zx (aq)\Nk (aq)/Nrnu(8q); the image of W in
W is then a set of representatives for W/Wxnpy, where Wiy is the subgroup
Ninu(ag)/Zrna(aq) of W. We denote by 1 the representative in W of eWgnn.

Notice that the space M/w(MNH)w™! is a compact symmetric space for all we
W (cf. [4, Lemma 1]). For weW we denote by °C,,(17)=C>(M/w(MNH)w™: 1)
the space of Ty-spherical functions on M/w(MNH)w™!. By loc. cit. the evaluation
at e maps this space isomorphically onto the space V¥ mKr‘“’H“’_l, in particular
°Cw(7) is hence finite dimensional. We then define the space °C(7) by the following
formal sum:

(50) "C(r) =P “Culn).
weW
The Eisenstein integral F(P:1: ) is defined for PeP,(A,), 1 €°C(T) and generic
A€ag, (see [4, eqn. (29)]); it is a smooth 7-spherical function on G/H, and it
depends meromorphically on A€ag,.
The Eisenstein integrals are D(G/H )-finite functions on G/H. More precisely
we have

(51) DE(P:9y: \)=E(P: u(D: \)¢: ) (DeD(G/H),y€°C(1)).

Here p(D: A)€End(°C(7)) is the endomorphism defined in [4, above egn. (43)]. In
particular its restriction to °Ci(r)~VMMKNH coincides with the endomorphism
u(D: X) defined earlier. It follows (for details, see [4, §4]) that E(P:¢: ) allows
gconverging asymptotic expansion along any parabolic subgroup Q€P,(Aq) of the
form

(52) E(P:y: N)(maw) =" Y a7 [pgip,(s: \lw(m)

SEW veENZ(Q)
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forweW, me M, a€ A{(Q). Here pg|p,(s: \)€End(°C(7)), and |- ],, indicates that
the w-component of an element in (50) has been taken. The terms corresponding
to ¥=0 in this expansion are denoted as follows:

Cqp(s: A):=pgpo(s: ) € End(°C(7)).

These are the c-functions associated with the minimal principal series for G/H.

We shall now relate the above expansion (52) of the Eisenstein integral to the
functions ®, defined in the previous sections. Let weW. Recall from Lemma 10.3
that we have

(53) Pgw(Xa)=T(w)oPy-10n(w A w law)oT(w) ! € End(V,MnKn“’H“’_I)

for a€ A} (Q), where ®¢ ., has been defined in the lines preceding the lemma. Then
we have the following.

Theorem 11.1. Let P,Q€P,(A,), weW. Then for every y€°C(r) we have

(54)  B(P:¢:A)(aw)= Y ®qu(sh:a)[Cop(s: NYlule) (a€ A5(Q)),

SEW
as a meromorphic VMOEMWHW™ yalued identity in A€al.
Proof. By sphericality we have for the left-hand side of (54):
(55) E(P:: M) (aw) =7(w)E(P: : M) (w law).
It follows from (4, Lemma, 7], that

[Cqip(s: \)Y)w(e) = T(W)[Coy-1Quip(w ™ s: A)pl1(e) (P €°C).

Using this identity as well as (53) we obtain the following expression for the right-
hand side of (54):

7(w) Z Doy Qu(w ™ s A w T aw)[Cyp-1Quip (w81 A1 (e).
seWw

Replacing w~!s by s in the sum we obtain that this equals

T(w) Y Bu-1qu (X w ™ aw)[Ch-1guip(s: A (e).
seW

Combined with (55) this shows that it suffices to prove the theorem for w=1 and
Q arbitrary.
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By linearity we may assume that ¢ belongs to one of the components of °C(1)
in (50), say °C, (1) VMNKMwHv™ Now 7(v) maps VMOENH onto the latter space,
and applying once more loc. cit., Lemma 7, we have

[Coip(s: Nvl1(e) = [Copo-1po(sv: v A)T(v) " 4l1(e)
for weVTM“Kan”_l. On the other hand, by loc. cit., eqn. (69), we have
E(P::\)=E(@ 'Pu:r(v) M0 N).

Combined with the above this shows that it suffices to prove the theorem for &
°C1(7) and P arbitrary.

We now have €°C;(7)=VMKNH By linearity we may also assume that 1
is a joint eigenvector for all u(D:\), DED(G/H), A€ag, (cf. loc. cit., Lemma 4).
Fix such an eigenvector ¥ and let y()\) denote the corresponding eigenvalue of
p(L:A). Then p(L:A)yp=+(A)y, and if UCaZ, is a non-empty open set on which
the map A— E(P:4: A) is holomorphic for all P, then LE(P:4: A)=~(AYE(P: ¢ )
for all A€U (cf. (51)). Taking restrictions to Af(Q)) we have that f= Tcl2 E(P:y:X)
satisfies the differential equation

(56) g (L) f =y(N)f

on A} (Q), for all A€U.

Notice that both sides of (54) are meromorphic in A. Hence it suffices to
establish this identity for A in U, or any nonempty open subset thereof. Shrinking
U if necessary we obtain from (52) that

(57) E(P:y:N)(a)=)_ Y a7 [pgp,(s: Ai(e)

sEW veENT(Q)

for all P,QeP,(Ay) and AeU, with absolute convergence for a€ Af(Q). Moreover,
we have

(58) [pqipo(s: NY]i(e) =[Cqp(s: A1 (e).

Counsider the inner sum in (57):

Yoip(s: A)(a):= Z aSA_QQ_”[meV(s:A)¢]1(e) (a€ A3(Q)).

veNZ(Q)

We claim that

(59) Yqip(s: A)(a) = Ro(sA:a)[pgipo(s: NYli(e) (a€Ag(Q))
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for all A in a non-empty open subset of U, and for all P, Q and s. Once this claim
has been established the theorem is immediate from (57) and (58).
From [3, Lemma 13.9], it follows that we may assume (by shrinking U)

(60) [SA+ZE]N}A+ZE] =0

for all AeU and s,teW, s#t. Since the action of IIg (L) on the series (57) may be
computed by insertion of (12) with term by term differentiations, we see from (60)
that each of the functions W p(s: A), seW, AeU, Q€P,(Ay), satisfies the same
differential equation (56) as T(g E(P:1: )\).

Shrinking U again we may also assume that s\ does not belong to the singular
set S for any s€W. Now fix A€U and let c=+()\). Then by definition c is an
eigenvalue for u(L:A) on VMNKOH  The claimed identity (59) now follows from
Lemma, 10.1 (with A replaced by sA) and Remark 10.2 (notice that pu(L: sA) has the
same eigenvalues as p(L: A) by (49)). This completes the proof. O

Remark 11.2. By [4, eqn. (73)], we have
Cqp(s: X)opt(D: 7: X) = u{D: 7: 5X)oCyp(s: A) (D eD(G/H)).

Combining this with Corollary 9.3 we see that each of the summands in the expres-
sion (54) for w=1, Wqp(s:¥: \)(a):=Pq(sk: a)[Cq(p(s: \)9p]1 (e) e VMNEOH gatis-
fies the same system of differential equations on AJ(Q) as does the sum (cf. (51)),
that is,

I, (D)Wqp(s:¥: ) =Ugp(s: u(D: Ny A) (D e D(G/H)).
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