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The negative discrete spectrum of the operator 
in L2(R d) for d even and 21_> d 

Mikhail Sh. Birman,  Ari Lap tev  and Michael Solomyak 

Abstract .  We study the asymptotic behaviour of JV'(c0--the number of negative eigenvalues 
of the operator (--A)I--o~V in L2(R d) for an even d and 2l>_d. This is the only case where 
the previously known results were far from being complete. In order to describe our results we 
introduce an auxiliary ordinary differential operator (system) on the semiaxis. Depending on 
the spectral properties of this operator we can distinguish between three cases where .N'(c~) is 
of the Weyl-type, Af(c~) is of the Weyl-order but not the Weyl-type coefficient and finMly where 
JV'(c~)----O(c~q) with q>d/21. 

0. I n t r o d u c t i o n  

0.1.  We consider in L 2 ( R  d) the selfadjoint opera tor  

(0.1) A(a )  = ( - A )  t - a V ,  l e N,  c~ > 0. 

Here V is the opera tor  of mult ipl icat ion by a real funct ion (potential)  V(x);  the  

parameter  a is a coupling constant .  T he  opera tor  (0.1) is accurately  defined by its 

quadrat ic  form (see Subsection 3.1). It  is assumed tha t  V has a qualified convergence 

to zero at infinity, so tha t  the negative spec t rum of the opera tor  A(a )  is discrete 

and, moreover, finite for all a > 0 .  Let us denote  by Af((~) the number  of negative 

eigenvalues of the  opera tor  (0.1). Es t imates  of the funct ion N(c~) and especially its 

asymptot ics  as a--~c~ is our main  interest. More specifically, we consider the case 

(0.2) 2 1 > d ,  d even, 

which, in a sense, happens  to be the most  complicated.  If  V is a bounded  and 

rapidly decreasing function, then for all l and d the asymptot ics  is of the  Weyl- type  

(0.3) l im  ~-x.hf(c~) = Cd / V.~ dx, x =- d/2l, 
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where V+=max{V, O} and 

(0.4) Cd = (27r) -d vol{x e Rd:  Ixl < 1}. 

On the other hand the order of growth of A/'(c~) can be arbitrarily greater than a~  
(for reference see [BSh]) when V decays slowly; it is also possible that  H ( a ) = o o  
for all c~>0. The "Weyl-type case" can be separated from the others very simply if 
21<d. Here the sufficient (and for V=V+ even necessary) condition for (0.3) to be 
true, is the inclusion 

(0.5) Y e L~(Rd).  

(For /=1 this is based on the well-known Rosenblum-Lieb-Cwikel estimate [R1], 
[R2], [L], [C]; see [RS]. For l>  1 the corresponding estimates were obtained in JR1], 
[R2] and are actually contained in [C]. The case l>  1 was discussed in [BS3].) On the 
contrary, it is well known that  if 21 > d, then the inclusion (0.5) does not imply (0.3). 
Moreover, one cannot even guarantee the estimate 

For an odd d and 21>d, a sufficient condition for (0.3) to be true was pointed out 
in [BSh] (YEG(d,l), see below Subsection 3.3). Here the local conditions on V 
are minimal, i.e. VcLl,loc, but it is unlikely that  the global condition VEG(d, l) is 
necessary. However counterexamples are not constructed so far. 

Added in proof. The problem mentioned above was investigated in the recent 
paper by K. Naimark and M. Solomyak [NS]. The case d=l=l was considered, 
then x-~.-1 In particular, a criterion for A/'(a)=O(a 1/2) was given there. The 
corresponding class for V is wider than G(1, 1). This confirms the conjecture made 
above and provides one with the desired counterexamples. 

0.2. In the case (0.2) the condition VEG(d,I) does not provide (0.3). The 
present paper is concerned with the explanation of this fact and discussions of the 
various possibilities. It was preceded by the papers [$2], [$3] and [BL] where some 
observations have already been collected. The special role of the behaviour of the 
operator (0.1) on functions depending only on Ixl became clear in the case 21=d. An 
auxiliary ordinary differential operator on the semiaxis R+ with effective potential 

1 fs V(r,w)dw, r - - Ix l ,  w=x/r Q(r)- meas sd_l  ~-1 

was considered. It was clarified that  the spectrum of this operator is responsible 
for possible failure of (0.3). In [$3] this was done on the level of two-sided spectral 
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estimates and in [BL] on the level of spectral asymptotics. In particular, it was 
shown in [BL] that  for 2 / = d = 2  (then x = l )  there exist potentials V such that  
Af(a)~cc~ q for any q > l .  Moreover, there are examples where Af(c~)~cc~ is of the 
Weyl-type order but  the coefficient c is greater than c2 f V+ dx. 

Using the scheme of the paper [BL] we consider here similar problems in the 
general case (0.2). The following new facts become clear. (1) The possible violation 
of (0.3) is caused by the behaviour of an auxiliary differential operator of order 21 
on R+ acting on vector-valued functions. Its description is closely connected with 
singling out a "special" subspace of functions where the standard Hardy inequality 
fails (see [S1]). (2) The case �89 is very similar to the case 2 / = d = 2  which was 
studied in [BL]. Here an active competition between the Weyl-type asymptotics 
(0.3) and the contribution given by the auxiliary operator is possible. The new fact 
here is a possibility to reduce the auxiliary operator in the case 1 > 1 to its lowest 
order part which is an operator of the second order. Only this lowest order part 
of the operator on the semiaxis is responsible for a possible contribution to the 
asymptotic formula. (3) If l>d the situation is somewhat different. The Weyl-type 
order .h/'(a)=O(a ~) can also be violated, but only for potentials V irregular at 
infinity (for example, lacunary). A slight additional regularity condition on V in 
the case l>d gives the asymptotics (0.3). 

0.3. We use the variational approach in coordinate representation. By using 
the standard method the study of A/'(c 0 is reduced to a study of the eigenvalue 
distribution function of a compact operator (spectrum of a variational quotient). 
We present our results in these terms. The return to Af(c~) is automatic. Therefore 
we rarely duplicate the statements, with the exception of Theorem 4.7 which is a 
translation of our main Theorem 4.2 into the language of the function A/'(c~). The 
latter theorem has a "semieffective" character: a conclusion about the asymptotics 
of the spectrum for the studied variational quotient depends on the asymptotics of 
the spectrum of an auxiliary operator acting on the semiaxis. The operator on the 
semiaxis needs a special study since it is not included in the well-known standard 
cases. We were forced to extract these discussions in a different paper [BLS]. On 
the basis of the results obtained in [BLS] we succeeded in giving Theorem 4.2 a 
concrete analytical form (Theorems 6.3 and 6.6). 

Let us notice that  the problem considered in this paper is of some interest, for 
example, in the study of a periodic Schrhdinger operator perturbed by a decreasing 
potential. There (0.1) can appear as a model operator. 

The structure of this paper is as follows: In Section 1 we collect preparatory 
material, mainly of an operator-theoretical character. In Section 2 we discuss some 
necessary facts from real analysis, in particular, the Hardy inequality. In Section 3 
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the operator (0.1) is accurately described, and the problem of the behaviour of 
Af(a) is reduced to the one concerning the spectrum of the operator generated by 
an appropriate variational quotient. The main Theorem 4.2 is proved in Section 4. 
In Section 5 we give information about the spectral properties of a vector problem on 
the semiaxis, borrowed from [BLS]. Finally in Section 6, the results from Sections 4 
and 5 are combined and this completes the paper. 

0.4. The necessary notation is introduced throughout our paper. Here we only 
mention some of the most frequently used notation. In what follows N is the set 
of positive integers, Z+={0}UN;  R + = ( 0 ,  c~), l~d-- - -ad\{0} ,  BR={xead:]x]<R} 
and [Vtu12:=~]Z]=z(l!/t3!)lDnul 2. Let g t ( ~ )  be the Sobolev space in a domain 

~tC_R d, H~(~) be the closure of C~(~t)  in gl(f~).  By C and c we denote different 
constants whose values are unimportant.  Sometimes C is supplied by a subindex 
which coincides with the number of the formula where this constant appeared for 
the first time. The symbol • denotes a two sided estimate. 
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1. Prel iminary information 

1.1. We begin with notation concerning numerical sequences. The distribution 
function of an arbitrary sequence h =  {by }, j E Z+ of complex numbers is defined as 

n(A,h)=#{j:[hj]>A}, A>0.  

Given q>0, we define IIh[Iq--[[hl[l q and 

(1.1) l lhll.,~ = sup A(n(A, h)) 1/q. 
A>0 

The space lq,~ (by another terminology the "weak/q-space", lq,~) is defined as 

lq,~ = {h: Ilhllq,~ < oc}. 
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This is a complete linear quasinormed space with respect to the quasinorm (1.1). 
The space lq,~ is nonseparable. 

The following (nonlinear) functionals are finite and continuous on lq,o~ 

Obviously 

The set 

Aq (h) = lim sup )~qn(A, h), 5q (h) = lim inf )Jn(A, h). 

0 ~ ~q(h) < Aq(h) ~ IIhllqq,~. 

lq,~~ .=. { h E / q , ~ : A q ( h ) = 0 }  

is a linear closed separable subspace in lq,~. The set of sequences with a finite 
number of nonzero elements is dense in this subspace. 

1.2. Here we present some important facts from the elementary theory of 
Hilbert space. By B=B(2)) and C(g)) we denote the spaces of all bounded and 
all compact linear operators, acting in a Hilbert space ~. Furthermore C~={TEC: 
T = T* } and C + = {T E Csa :T_> 0}. The sequence of singular numbers of an operator 
TEC is denoted by s(T)={sk(T)} and the sequence of positive eigenvalues of an 
operator TECta is denoted by )~+(T)={A+(T)}. Multiplicities are taken into ac- 
count in both cases. Moreover A-(T) :=J~+(-T) .  We write A(T) instead of A+(T) 
if TEC +. Obviously )~(T)=s(T) for TEC +. 

The respective distribution functions are denoted by 

(1.2) n(A, T) := n(A, s(T)), T E C, 

(1.3) n• :=n()~,)~+(T)), TECsa. 

For TECta we obviously have n()~, T)=n+(A, T)+n_ ()~, T). The classes Cq and the 
"weak classes"Cq,~ are introduced for an arbitrary q>0 as 

(1.4) Cq = {T E C: s(T) E lq}, Cq,~ = {T E C: s(T) E lq,~}. 

The quasinorms in Cq and Cq,o~ are induced by the definition (1.4) 

IiTiiq :--Iis(T)[iq, IITIIq,~ := Iis(T)iiq,cr 

The set 

is a closed separable subspace of the nonseparable space Cq,~. 
0 The set of all finite rank operators is dense in Cq,~. 

Clearly Cq CCqO, cx~. 
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Put 

(1.5) Aq(T):=Aq(s(T)),  6q(T):=6q(s(T)) f o r T e C q , ~ ,  

and 

(1.6) Aq~(T) :----Aq(A• 6~q(T):---(~q(A:t:(T)) for TeCsaACq,oc. 

The next useful statement is systematically used throughout the paper; see its proof, 
e.g. in [BS4, Theorems 11.6.6 and 11.6.11]. 

P r o p o s i t i o n  1.1. The functionals defined in (1.5) and (1.6) are continuous 
in the topology of the space Cq,~. Moreover, they are continuous in the topology of 
the quotient space Cq,~ / C~ . 

Let us explain the meaning of the last statement. The functionals (1.5) and 
(1.6) do not change when we add an operator from the class C~ to T (by lemmas 
of K. Fan and H. Weyl). Thus they are well defined on Cq,~/C~ The conti- 
nuity means that Aq(Tn-T)--~O implies Dq(Tn)--~Dq(T), where Dq is any of the 
functionals (1.5) and (1.6). 

1.3. It is convenient to define and study selfa~tjoint operators in ~) with the help 
of quadratic forms. By ( . , - )  and 11" 11 we denote the scalar product  and the norm 
in ~. Let a[u] be a quadratic form defined on a linear set 0=0[hi dense in ~. Let us 
assume that  aid] is semibounded from below and closed in ~. (Closedness means 
the completeness of the Uilbert space 0 with respect to the metric form a[u] +7]]u]] 2. 
Here -/ is chosen in such a way that  7 + r e ( a ) > 0 ,  where re(a) is the lower bound 
of a.) By Friedrichs' theorem a unique selfadjoint semibounded operator A in 
can be associated with a. Let EA be its spectral measure and 

N(A) := rank EA (R_) .  

The function J~f(a) introduced in Section 0, coincides with N(A(a)),  where A(a) is 
the operator given by (0.1). 

Let now b[. ] be a real quadratic form defined on 0In]. Let us assume that  the 
form b is compact in 0[a]. In other words, the operator generated by the form b in 
the Hilbert space ~ is compact. 

P r o p o s i t i o n  1.2. Let the form a[u] be nonnegative and closed in ~. Let a 
real form b[u] be compact with respect to the metric defined by the form a[u] + [[u[[ 2. 
Then for any a>O the form 

(1.7) a(a) :=a-~b ,  O[a(~)]=O[a], c~>0 

is semibounded from below and closed in ~). The negative spectrum of the corre- 
sponding operator A(~) is discrete. 
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1.4. Let us now assume that  a>0,  i.e. a[u] >0 for uE~\{0}. We denote by ~(a)  
the Hilbert space obtained by completion of ~ with respect to the metric defined 
by the form a. In order to avoid complications in the following statements we shall 
assume that  the topologies in ~ and in ~)(a) are compatible (in our applications 
this will always be the case). Let us assume that  the form b[. ] can be extended by 
continuity to a compact form in ~(a).  The notation for the extended form remains 
the same. Denote by T(a, b, ~(a)) the operator generated by b in 2)(a). According to 
the variational principle the distribution functions (1.2) and (1.3) can be expressed 
in terms of the "variational quotient" 

(1.8) b[ul/a[u], ue$5(a). 

So 

(1.9) n+(A,T(a,b,~(a)) = max dim{St C 2)(a): +b[u]/a[u] > )~ for u E 5r\{0}}. j: 

The eigenvalues ;~in(T(a , b,Y)(a))) coincide with the sequential maxima of the quo- 
tient +b/a. Notice that  here, as well as in (1.8) and (1.9), we can replace g)(a) by 
any of its a-dense subsets (for example, by ~)). 

We often use (in intermediate calculations) the simplified notation of the type 

n• (/~, (1.8)) = n~: (A, T(a, b, ~(a))),  

A~((1.8)) = A~ (T(a, b, 2)(a))), 

11(1.8)llq,~ = HT(a,b,2)(a))llq,~. 

This notation is sufficiently expressive and convenient. 
The following statement, as well as Proposition 1.2, was obtained by Bir- 

man [B]; see also an exposition in [BS6]. 

P r o p o s i t i o n  1.3. Let a > 0  be a closed form in ~ and b be a real compact form 
in ~(a). Then the negative spectrum of the operator A(a), generated by the form 
(1.7), is finite. The following identity is fulfilled 

(1.10) N(A(o~)) = n+(c~ -1, T(a, b, 2)(a))). 

1.5. One has sometimes to consider variational quotients of the type (1.8) 
independently of the original space 2). It is often convenient to speak about a vari- 
ational triple (a, b, T/), where T/is a complete Hilbert space, a > 0  is a form defining 
a metric in ~ which is equivalent to the original one and b is a compact form in 7-/. 
The selfadjoint operator corresponding to the quotient b[u]/a[u], uET-I is denoted 
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by T = T ( a ,  b, TI). Sometimes we shall write A~(a,  b, 7-l) instead of A~(T(a ,  b, 7-/)) 
etc. In particular, the notion of variational triple is useful when one perturbs the 
forms a or b, or replaces 7-I by a wider or a narrower Hilbert space. Here we give 
two statements which allow one to compare the spectral characteristics of the corre- 
sponding operators. The first of these propositions is a reformulation of Lemma 1.2 
from [BS2] (see also [BS3, Lemma 1.15]), the second one is a reformulation of 
Lemma 1.16 from [BS3]. 

P r o p o s i t i o n  1.4. Let us consider a pair of variational triples (a, b,?-/), 
(al, bl, ~1)  and let their respective operators T,  T1 be compact. Assume that there 
exists an operator FEB(7-/, ~1) ,  such that 

(1.11) b[ul=bl[ru], ue*t, 

and for some t > 0  

(1.12) a[u] >_ tal [Fu]. 

Then for any I > 0  

(1.13) n+(A, T) < n• T1). 

P r o p o s i t i o n  1.5. Let (a, b, ~ )  be a variational triple. Let al be a form on 
TI, such that al [u]>0 for uET-/\{0}. Assume that the form a - a 1  is compact in 7-l. 
Then the forms a and al define equivalent metrics on 7-l. Besides 

Aiq (a,b, 7-l)=Aiq (al,b, Tl) and 6iq (a,b, T l )=6~(a l ,b ,  Tl). 

1.6. We need the Orlicz space L log L when estimating the function N'(a) for 
the operator (0.1) with 2l=d. We say that  a measurable function f defined on a 
set E c R  d of finite measure, belongs to the class L logL(E)  if 

I f l ( l+ l~  If}) dx < oo. 

The class L log L(E)  is a linear normed space. The most convenient way for us to 
introduce a norm on L log L is as follows. Let us consider the Orlicz function 

B(s) = ( I + H ) l o g ( l +  N ) - I s l  
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and also the function dual to 13(s), 

A(s) = e t ~ l - l - l s l  . 

We define the "average Orlicz norm" 

} IlfllLlogL(E)=SUp fgdx  : A (g (x ) )dx<measE  . 
g k l  E I 

The norm (1.14) is more convenient for our purposes than the standard Orlicz norm 
(see [KR]) since it has a useful homogeneity property with respect to the dilations 
of R a. Namely, if ~ is a dilation, then for an arbitrary set E c R  a of a finite measure, 
we have 

(1.15) (measE)-Illfo~I[~l)gi(E) =(meas~(E))-lllf[l(La~)gL(~(E)). 

The norm [1" [[(av) was introduced in [$2]. 

2. Funct ion classes. The  Hardy inequality 

Here we have collected relatively simple facts about the function classes used 
in the main part of the paper. It is always assumed in what follows that 

21>d. 

2.1. Let us temporarily remove the assumption of d being even. This will allow 
us to successively compare results for even and odd d. We introduce the quadratic 
forms 

(2.1) ~[u]  = / IVlu[ 2 dx 

and 

(2.2) ~,~[ul= f (IVtul2+3"lxl-2~lul2)dx, ~>0,  

defining them for all those uEH[oc(R d) whose corresponding integrals are finite. 
The form (2.2) coincides with (2.1) for 3,=0. For 3/>0 the finiteness of the integral 
in (2.2) implies 

(2.3) D~u(O) = 0 for lal < l -  ld .  
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The number of independent conditions in (2.3) is 

(2.4) # { ~ E zd : ,~, < l-�89 = (l + [�89 ]). 

We denote by 7-/~ =7-/~ (1~ d) the complete Hilbert space 

(2.5) 7-/~ (1~ d) ---- {u e g~oc (Rd): ~,1 [u] < oc} 

supplied with the metric form .~,1. The forms ~,~ with different ~,>0 define equiv- 
alent metrics on 7-/Zl(Rd). It is essential that  the class C~(Ft d) is dense in H~ (Rd). 

If d is odd then the Hardy inequality holds true 

(2.6) f 1 12 ~dx<C2.6~[u] ,  ueT#l(Ftd), d odd. 

(The sharp value of the constant in (2.6) is well known, but we do not need it.) 
The inequality (2.6) implies that  the form ~ given by (2.1) defines an equivalent 
metric on 7-l~ for odd d's. 

2.2. The estimate (2.6) fails for an even d. Moreover, any weighted L2-estimate 
by ~ is impossible on 7-# 1 for a non-trivial weight. To obtain such an estimate, 
one has to restrict the function class. In order to do this we must first discuss 
a convenient representation for o~ in spherical coordinates. This was found by 
Yu. Egorov and V. Kondrat 'ev [EK]. 

Let (r,w) be the spherical coordinates in R d and "P(d, k), kEZ+ be the space 
of all spherical ( d -  1)-dimensional harmonics of the order k. As is well known (see, 
e.g., [SW, Section IV.2]), 

Let (I)k~(w), l<_u<_tt(d,k) be an orthonormal basis in P(d, k) with respect to the 
scalar product in L2(sd-1). (The choice of a basis in 7~(d, k) is arbitrary and a co- 
ordinate-free presentation would also be possible.) With any function uEH[oc(R d) 
we associate its Fourier series with respect to the system {(I)k~(W)}, k E Z+, 1 < u<  
u(d, k): 

k 
where 

(2.8) 

Let 

(2.9) 

Fk.(r) = fsd-1 

r----e t, 
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Propos i t ion  2.1. ([EK, Lemma 2]) There is the following equality 

(2.10) ~[u] = E  f (Lk(Dt)zk,(t))zk,(t)dt ,  u E C ~ ( I : ~ d ) ,  
k,u J R  

where the functions zk, are defined in (2.8), (2.9) and 

1--1 l 
(2.11) Lk(7)=l - I (~-2+(k- l+ �89  kEZ+.  

j = 0  i=0 

For the numbers ~ki defined by (2.11) we have 

(2.12) ~ko_>0, Qki>0 f o r l < i < l .  

The equality (2.10) can obviously be written in a more convenient way 

1 

(2.13) ~[u] E E E ~ k i / a  (i) 12 = Izk,(t) dr, u e C ~ ( R d ) .  
kCZ+ u i~0 

It is not difficult to see from the representation (2.13) that the equality of the 
coefficient Qk0 to zero (see (2.12)) for at least one of the values of hEZ+, makes the 
Hardy inequality incorrect. Let us define 

(2.14) 7~ = S(d, l) = {k �9 Z+: ~k0 = Lk(0) = 0}. 

For an odd value d we always have ~=0. On the contrary 

1 d l -  �89 odd, ~ . = { 1 , 3 , . . . , 1 - ~  }, deven, 

~ = { 0 , 2 , . . . , 1 - � 8 9  d even, 1-�89 even. 

From the definition of ~ and (2.7) we obtain 

kEE 
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2.3. We are now ready to describe the "right" version of the Hardy inequality 
(2.6) for even d found by M. Solomyak [S1]. From now on, unless otherwise specified, 
we assume that d is even. 

For u�9 ~) we define 

(2.16) u=(r ,w)= E Fk.(r)4~k~(w) 
ke~,(d,t),v 

and consider the integral 

- - Ix l )  (2.17) It[u]= f ( ] u ~  ]2 ,x,2 tl~ 2 

If the integral in (2.17) is convergent, then (2.3) is certainly fulfilled and the equality 

(2.18) uz(r,w)]~=l =0  

must also hold. The equality (2.18) is equivalent to the system of conditions 

(2.19) Fk . (1)=0,  k E E ( d ,  1), l < ~ # ( d , k )  

which can also be rewritten as 

(2.20) zk,(0)=0,  k c ~ ( d , l ) ,  l < , < # ( d , k ) .  

Put 
= 3) [u] + z i t  [u], 

and introduce the function space 

T/l= T/t (1~ d) = {u E H~o c (Rd): ~,1 [u] < c~}. 

The conditions (2.3) and (2.18) are fulfilled on ~z automatically. The forms ~,7 
with different 7>0  define equivalent metrics on 7-/z. It is important that this is true 
even for 7=0. This is implied by the following statement: 

P ropos i t i on  2.2. ([S1]) Let d be even and 21>d. Then 

(2.21) Iz[u] <_ C2.~1~[u], uCT/l(l~d), 

with C2.21 =C(d, l ) .  The class 

(2.22) (u �9 C~(Rd) :  (2.18) is fulfilled} 

is dense in TI z(Rd). 
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2.4. In what follows we consider TIt as a Hilbert space with respect to the metric 
form fit. This space is obviously complete. It is also clear that  the definition of 7-/l 
is equivalent to the following direct description: 

7-# (1~ d) = {u �9 H[oc(Rd): f i  [u] < cx~ and (2.3) and (2.18) are fulfilled}. 

Let us also notice that  the equality (2.13) can be extended by continuity to all 
uc tt(itd). 

We now introduce the following subspaces in 7-# (Rd): 

(2.23) 142 := {w �9 ~ t :  w_ = w}, 

(2.24) y :-- {y �9 7-#: Ys = 0}. 

It follows directly from (2.13) that (with respect to the metric form f i )  

( f t  = w e y .  (2.25) 

In particular, 

(2.26) w = u z ,  y = u - w .  

From (2.16) and (2.8) we see that  the class C ~ ( R  d) (which is dense in 7-tt(l~d)) is 
invariant with respect to projections onto W and onto y .  

2.5. If 2l=d we obviously have E={0} and 9~(d, l )=#(d,  0)=1. The function 
us depends only on r: 

us (r) - 1 f s  u(r, w) d~. meas  S d-1 d-1 

For y = u - u s  we have 

f s  y(r,w)dw=O for any r > 0. 
d - - 1  

These facts give us some simplifications in the case 21=d. The corresponding con- 
siderations are similar to [BL] where 21 = d = 2 .  When 2l > d the technical differences 
are more substantial. 

2.6. We also need the following subspace of the Hilbert space H Z (Rd): 

H / =  H / ( R  d) = {u �9 H / ( R d )  : (2.3) and (2.18) are fulfilled}. 

In view of (2.4) and (2.15) 

(2.27) dim( Hl (Rd) / ~IZ (Rd) ) = ( ld�89 d ) . 

Notice also that  the class (2.22) is dense in HI(Rd). 
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3. S t a t e m e n t  of  t h e  p r o b l e m .  R e d u c t i o n  to  
a s p e c t r a l  p r o b l e m  for a c o m p a c t  o p e r a t o r  

3.1. We begin with a precise definition of the operator A(a) given by (0.1). 
The basic Hilbert space is L2 (Rd). The quadratic form ~ considered on the domain 
~[~] = H  z (R d) is positive and closed in L2(Rd). The selfadjoint operator in L2 (R d) 
corresponding to this form coincides with the operator ( - A )  z defined on H 2z(Rd). 
Let V be a real measurable flmction and 

(3.1) by[u] := / Vlul 2 dx. 

Below we shall impose some conditions (see Subsection 3.4) which, in particular, 
provide the compactness of the form by in HZ(Rd). Then by Proposition 1.2 the 
form 

(3.2) a(a)= flt-abv, a > O ,  O[a(a)]=Ht(Rd), 

is semibounded from below and closed in L2(Rd). The selfadjoint operator A(a) 
in L2(R d) generated by this form can be naturally taken as a realization of the 
operator ( - A )  z - a V  given by (0.1). It follows from the same Proposition 1.2 that 
the negative spectrum of A(a) is discrete for all a>0 .  If it is finite, then we shall 
denote the number of its negative eigenvalues by Af(a). 

Let us now consider the form ~ - a b y  on the "poorer" domain: 

(3.3) 

The operator, which is selfadjoint in L2(R d) and corresponds to the form (3.3) is 
denoted by -4(a) and the number of its negative eigenvalues by N(a). From (2.27) 
and the variational principle we obtain the inequalities 

N(a) <_Af(a) < N(a)+ (l +d2d ) . (3.4) 

3.2. Let 

(3.5) T(V) = T( Jt, by, 7-t l) 

now be the operator generated by the form (3.1) in the space 7-/l=~-/Z(l~ d) (the last 
space is defined in Subsection 2.3). In other words, the operator (3.5) corresponds 
to the quotient of quadratic forms 

(3.6) u 
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in the same sense as it was clarified in Subsection 1.4. If T(V) is compact, then by 
(1.10) 

(3.7) N(a) = n+(a  -1, T(V)) = n+(a  -1, (3.6)). 

In particular, if T(V)EC(~I), then g(a) (and consequently Af(a)) is finite for all 
a > 0 .  Futhermore, it follows from (3.4) and (3.7) that  

<n o!-l,T V~ "{l+ld '~ (3.8) n+(a-l,T(V))<-.hf(a)- +( . ( H - ~  d )" 

By using the two-sided estimate (3.8) we reduce the study of the quantity 
Af(a)=rankEA(~)(R_)  to the study of spectral characteristics of the (compact) 
operator (3.5), or, equivalently, of the variational quotient (3.6). Although we have 
only the function n+ involved in (3.7) and (3.8), we shall for the sake of symmetry, 
study the behaviour of both functions n + ( . ,  (3.6)). 

3.3. For technical reasons we shM1 also need to consider the operator 

(3.9) T.y(V) :=T(~,.y,bv,~(Rd)),  7 > 0  

together with the operator T(V). The operator (3.9) corresponds to the quotient 
of the quadratic forms 

f V]u[ 2 dx 
(3.10).y f (IV*ul2 +.~lx1-2*lul 2) dx' 7 > o, u e ?-ltl (Rd), 

where the space 7-/~ was introduced in Subsection 2.1. We use the estimates of the 
quasinorm IIT.r(V)II~,o~ for the semiclassical value 

(3.11) x--- d/21 

by a quasinorm V in a suitable separable class. These estimates were obtained 
in [BSh] for 2l>d and in [$3] for 21=d. We give here not only these estimates, but 
also their proofs since they will be significantly used in the future. 

Let us introduce some notation. We consider in R d the domains 

(3.12) f~0 =B1,  ~tj ---Bei\closBe~-i for j EN.  

With a measurable function V we associate the sequence 

~(V) = ~(V, d, l) := {~?j (V, d, l)}j_>0, 
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where 

(3.13) 

(3.14) 

and 

(3.15) 

yo(V,d,l)= /n IVbdx, 
o 

~]j (V, d, l) = Ixl  -dlVl dx, 
J 

j � 9  for 2 l > d ,  

~]j (V, d, d/2) (av) =lIVIILlo L(  ), j c Z + .  

(av) 
Recall that  the Orlicz norm I1" LlogL(E) is defined in (1.14). 

Let us now introduce the function class G(d, l) 

(3.16) G(d,l) = { Y : Y  is measurable on Rd; ~7(V,d, 1) �9 

Here (as always) x is the exponential given in (3.11). The class G(d, l) is a complete 
linear quasinormed separable space with respect to the natural quasinorm 

IlVllo(d, ) = II,l(v, d, 1)llx. 

P r o p o s i t i o n  a.1. Let 21>d, VeG(d,l) and 3,>0. Then T~(V)�9 
and 

(3.17) IIT.~(V) II~,~ < C3.1711VIIG(d,l), 

or, equivalently, 

(3.18) 

C3.17 = C(d, l, "y), 

~ V  n(A,T~(V) ) < C~.17~-~ ~-~ ~]) ( ,d, 1). 
j>_o 

Proof. We can take ~/=1. For every domain 12j defined in (3.12) we consider 
the quotient of the quadratic forms 

faj Ylul 2 dx 
(3.19)y f~r (IVlul2 +e-2~Ylul 2) dx' y �9 Z+. 

It follows from the variational principle that  

n(A, TI(V)) = n()~, (3.10)1) _< ~-~ n(A, (3.19)j). 
j_>0 

Therefore it is sufficient to obtain the estimate 

(3.20)j n(A, (3.19)j) < CA-X~]~(V,d,l), j e Z+ 
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with a constant independent of j. The necessary estimates can easily be obtained 
from the well-known estimates for a fixed domain using scaling. Namely, for 2l> d 
according to Theorem 4.1(2) from [BS3] 

n()~,(3.19)j)<CA -x  IVIdx <_Ca-XTi;(V,d,l), j = 0 , 1 .  
\ J ~ 

The estimate (3.20)j for j > l  is reduced to (3.20)1 after the substitition xHeJx; 
this does not change the value of the constant C. For 2l=d and j=0 ,  1 the estimate 
(3.20)j is contained in Corollary 2.2 from [$3]. The change of variables x~-*eJx 
again reduces (3.20)j for j > l  to the case j = l .  By (1.15) the value of the constant 
is not changed (cf. the proof of Corollary 2.4 in [$3]). Thus (3.20)j and therefore 
(3.18) is established. 

Remark 3.2. For 21=d we could have avoided the Orlicz norms by replacing 
~7(V, d, �89 by the sequence •(V, d, a) with some a >  1 where 

Oo(V,d,a)= ( ~ o  ,Vl~ dx) 1/~, 

O j ( V , d , ~ ) =  I x ld (a -1 ) l r ladx~  , j e N .  
J 

In this case (2/=d) (3.17) can be replaced by the more rough estimate 

(3.21) [IT~(V)IIl,cc<C3.2111~(V,d,a)N1, 21=d, 63.21=C(d,a,~/). 

The inequality (3.21), of course, follows from (3.17) when 21=d. This estimate, 
however, can easily be derived directly by using the same scaling as in [BL] (where 
d=2). 

3.4. The estimate (3.17) gives the Weyl-type spectral asymptotic formula for 
the operator (3.9). The following statement is true. 

Propos i t ion  3.3. Let VEG(d, l) and T~(V), V>0 be the operator (3.9). Then 

(3.22) A~ (T~(V))= 5~ (T~(V)) / = Cd V_~ dx, 

where Cd is the constant (0.4). 

Proof. By using Proposition 1.1 together with the estimate (3.17) it is enough 
to verify (3.22) for a set dense in G(d, l). Thus we can assume that 

suppV CBR\closB~=:~(Q,R), 0 < ~ < R .  
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Let us consider the quotient of the type (3.10)~ with the integration over the do- 
main ~ = ~ ( p ,  R), on the class H10(~) (problem D(~))  and on the class HZ(~) (prob- 
lem g(Q)). The standard variational arguments give 

(3.23) ~ (:D(~t)) _< 5~ ((3.10)~) _< A~ ((3.10)~) < A~ (g(~t)). 

On the other hand, the asymptotic formulae 

(3.24) 5~ (:D(gt)) = A~ (:D(gt)) = 5~ ($(~)) = A~ (g(~)) = Cd ~ V~ dx 

are known. For 2/>d,  (3.24) is contained in [BS1] (see also [BS3, Theorem 4.6]). 
For 21=d one can find (3.24) in [$3, Theorem 2.2] and the remark to this theorem. 
From (3.23) and (3.24) follows (3.22). [] 

Now let d be odd. Then ~(d, l )=0  and the classes 7-/z (l~ d) and ~ l  1 (1~ d) coincide. 
From the Hardy inequality (2.6) and Proposition 3.1 we get 

(3.25) IIT(V)IIx,~ ~CiiYiiG(d,l) , d odd, 21>d. 

Using (3.25) we can obtain in turn the Weyl-type asymptotics 

A~(T(V))  = 5~(T(V)) = cd / V~= dx, d odd, 21 > d. 

(The argument is the same as in the proof of Proposition 3.3.) 
If d is even, then the condition VEG(d, l) neither implies the inclusions T(V)E 

g x , ~ ( ~ )  nor that T(V)EI3(~t). The analysis of these difficulties is the main 
content of this paper. 

For a compactly supported V, the estimate of the type (3.25) remains valid 
for an even d, but the constant in the estimate depends on the size of the support. 
Namely, the following statement is true. 

P r o p o s i t i o n  3.4. Let d be even, 2l>_d, and V EG(d, 1), supp V C BR, R> I. 
Then T(V)EC~,~ and 

(3.26) IIT(V)]]~,~ ~ C3.26(R)IIVIIa(d,I). 

Proof. Using (2.21) the quotient (3.6) can be estimated from above (with a 
constant) by the quotient 

by[u] 
(3.27) u e uz( d)" 
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The weights in the integral Is (see (2.17)) are separated from zero in the ball BR. 
Therefore (3.27) can be estimated from above (with a constant) by the quotient 

(3.28) J~BR Vlul 2 dx u C HI(BR). 
IBR (rVZul 2 + lul ~) dx' 

At the same time we have withdrawn the conditions (2.3) and (2.18) which can 
only increase the value of n• The given variational arguments reduce the problem 
to one of estimating the quantity [[(3.28)I[x,oo. The latter is estimated by the 
norm V in L(BR) when 2l>d and by the norm V in LlogL(BR) when 21=d (see 
Theorem 4.1(2)from [BS3] and Theorem 2.1 from [$3] respectively). The mentioned 
norms for V are estimated by the norm V in G(d, 1). Thus (3.26) is established. [] 

4. T h e  m a i n  t h e o r e m  

The main result of this paper, Theorem 4.2, is formulated and proved in this 
section. In everything that follows we assume that the condition 

(4.1) V C G(d, l) 

is fulfilled. The class G(d, l) is defined in (3.13)-(3.16). 

4.1. In the space ~l(l~d) we single out a subspace 

~*r lxl<R}, R_>I. (4.2) 

Define 
B(R) = RdNclos BR = {x C Rd: Ixl > R}. 

The subspace (4.2) is naturally identified with the Hilbert space 

(4.3) / i t ( R ) : =  { u E  H[oc(B(R)): I s  IVlu]2dx<~176 Dflullxl=R=O for Ifll <l}, 
(R) 

whose metric form is fB(R)IVaul ~ dx. It is clear that  the class C~(B(R))  is dense 

in ?-t z(R). 
It can be seen from (2.16) and (2.8) that  the projections in 7-/z onto the sub- 

spaces W, Y (defined in (2.23), (2.24)) and on the subspace 1-I~(R), commute. Let 
us introduce the subspace 

(4.4) W(R) := WN/-#~ (R) 
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and consider the restriction of the quotient (3.6) to VV(R) 

fS(R) V[w[ 2 dx 
(4.5)R fB(R) ]Vlw[ 2 dx' w�9 

We shall see that  the behaviour of the quotient (3.6) on the relatively weak subspace 
)/V(R) does not allow us to extend the asymptotics (3.22) to the case 7--0 if we 
only have the condition (4.1). 

It is clear from (2.16) that  w=w=_ can be identified with the vector-valued 
function F----{Fk~}, kcE(d,  1), u--1, . . .  , #(d, k). The vector dimension of F is 9~(d, l) 
(recall that  p, ~ and 9~ are defined in (2.7), (2.14) and (2.15)). The quotient (4.5)R 
can be written in terms of F. Then we obtain a (vector) problem on the semiaxis 
(R, oc) for the quotient of two forms where the first is of order zero. The second 
form is of differential order I and strictly positive. The vector function F satisfies the 
Dirichlet boundary condition at the point r=R: dmF/drmlr=R=O, m = 0 , . . .  , l - 1 .  
The following statement holds. 

P r o p o s i t i o n  4.1. Let us assume that for some R>_I 

(4.6) Aq((4.5)R)<ec , q>l/21, R>_I. 

Then (4.6) is fulfilled for any R> 1 and the functionals 

(4.7) Aqi((4.5)n), 5~((4.5)R), q>l/21, R>_I 

are independent of R. 

Proof. Let RI>R.  For the quotient (4.5)R we set the additional Dirichlet 
boundary condition at the point R1. This can only decrease the value of the function 
n• (4.5)R) by the number 19~(1, d). The new problem is decomposed into the 
orthogonal sum of the problems on intervals (R, R1) and (R1, c~). The contribution 
to n+(A) from the finite interval has the standard order O(A-~/21). Therefore the 
functionals (4.7) for R and R1 coincide. [] 

4.2. Let us agree to denote the value of the functionals (4.6) and (4.7), common 
for all R_> 1, respectively by 

(4.8) Aq(V) a n d / ~ ( V ) ,  6q=e(V), q>  1/21 

and formulate the main theorem. 
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T h e o r e m  4.2. 
(a) 

(4.9) 

(4.10) 

(b) 

(4.11) 

Let d be even, 2l>_d and (4.1) be fulfilled. Then 
if hx(fvI)<cc, then T ( V ) e g x , ~  and 

(T(V)) = ca f V:~ d x + s  (V), A~ 

=Cd V~= dx+5~(Y); / 
if s for some q>x,  then T(Y)egq,~  and 

Aiq(T(V))=hmq(V), 6iq(T(Y))=5~q(Y). 

Remark 4.3. The result of Theorem 4.2 can be interpreted as follows: the 
contributions to n()%T(V)) from the subspaces y and YV are asymptotically in- 
dependent as A~0.  The restriction of the quotient (3.6) to kV(R) generates an 
ordinary differential operator (system) on a semiaxis whose spectrum is responsible 
for the terms /~qi(V) and 5q:e(V), q ~ x  in (4.9)-(4.11); see Section 6 for details. In 
a different situation a similar effect was met in [JMS] when studying the eigenvalue 
asymptotics of the Neumann-Laplacian of regions with cusps. In the case of [JMS] 
the auxiliary operator was a one-dimensional SchrSdinger operator on a semiaxis 
with an increasing potential. 

Of course, the statements of the theorem are informative only when there 
exist potentials with / ~ ( V ) > 0 ,  q > x .  The detailed discussion of these questions 
is the content of Section 6, where we give a concrete meaning to the "conditional" 
statements of Theorem 4.2. The basic material is taken from Section 5, where 
we give some information about the spectrum of one-dimensional problems of the 
type (4.5)R. 

4.3. Theorem 4.2 is proved in several steps. The first one is very simple. Let 
us denote by T(V, 3]) and T(V, l/V) the operators corresponding to the quotient (3.6) 
restricted to y and kV respectively. 

P r o p o s i t i o n  4.4. Under the conditions of Theorem 4.2 we have 

(4.12) T(V) ECp,~(7-#), T(IVI) CCp,~(7-#), 

where p = x  and p=q for the statements (a) and (b) of Theorem 4.2 respectively. 
The estimate 

(4.13) IIT(Igl, Y)}lx,~ ~ C4.13brVHG(d,O 

holds true. 



108 Mikhail Sh. Birman, Ari Laptev and Michael Solomyak 

Proof. Of the two inclusions (4.12) it is enough to prove the second one. Let 
u=y+w according to the decomposition (2.25). From (2.26) and the inequality 

blv I [u] _< 2(blv I [y] +blv I [w]) 

we see that  it is sufficient to consider the operators T(IVI, Y) and T(IVI, W). The 
Hardy inequality (2.21) on y takes the form 

f ly121xl-2Z dx<Cz21~[y], yEY .  

This allows us to reduce the estimate for T(IVI, y) to that  of the operator TI(IVI) 
(defined according to (3.9)). The necessary estimate coincides with (3.17) where 
~/= 1 and Y is replaced by I VI. Therefore T(I V I, Y) �9 C~,~ and (4.13) is thus fulfilled. 
It only remains for us to notice that  the inclusion T(IVI, l/Y)�9 is equivalent to 
the assumption s [] 

4.4. Along with W(R) (see (4.4)) we introduce the space 

and remark that 

(4.14) =N(R)eW(R). 

We denote by T(V, y(R)) and T(V, ~t~(R)) the operators corresponding to the re- 
strictions of the quotient (3.6) to y ( R ) and TI~ ( R ) respectively. Let us now establish 
the following result. 

P r o p o s i t i o n  4.5. Under the conditions of Theorem 4.2 the following relations 
are fulfilled 

(4.15) 

(4.16) 

where p = x  and p=q for the statements (a) and (b) of Theorem 4.2 respectively. 

Proof. The lower estimates follow directly from the variational principle 

(4.17) > 
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In order to obtain the upper estimates we put  u=y+w according to (4.14). For any 
CE(0, 1) we have 

bv[u]<_/B (Y+c-llYl)ly[2dx+[ (Y+~lYl)lwl2dx, 
(R) JB(R) 

hence 

(4.18) A~(T(V,~I~(R)))<_A~(T(V+s-I[V[,y(R)))+A~(V+s]V]), 
(4.19) 5~ (T(V, ~r (R))) _< A~(T(V+s-1]V], Y(R)))+~(Y+s]Yf). 
Let XR be the indicator function of B(R). From the variational arguments and the 
estimate (4.13) we obtain 

A~(T(V +s-1]V], y(R)))  _< A~(T( ( I +~-I)xR]V], 32)) 
(4.20) < ]]T((I+~-I)XR]V], y)]]~,~ 

2,r - - 1  2,r ) llxRVlIc(d, )- 
The right hand side of (4.20) tends to zero as R--~oc. Besides, (4.20) implies 
Aip(T(V+c-IIVI,y(R)))=O when p > x .  From (4.18) we now obtain 

(4.21) lim sup A~ (T(V, 7-/t~ (R))) < Zk~ (V+~]V]). 
R----* oc 

Since fXp(clVI)=~PAp(IVI)----~O as c--~0, using Proposition 1.1 we can pass to the 
limit in (4.21) as ~--~0. Thus 

(4.22) lira sup Ap~ (T(V,/-/z~ (R))) _</~pi(V). 
R--+ r 

By analogy we obtain from (4.19) that  

(4.23) lim sup 5pi(T(V,/-t~ (R))) __ 5~ (V). 
R---+oo 

By combining (4.17) with (4.22) and (4.23) we derive (4.15) and (4.16). [] 

4.5. Along with ?-/~(R) (see (4.2) and also (4.3)) we introduce the class 

(4.24) 7-I~(R) = {u c 7-/1: u(x) = 0 for Ixl > R}, R >_ 1. 

Both classes I-/~(R) and 7-/~(R) are subspaces in/_/1. They are orthogonal (with 
respect to the metric of the form ~ )  but do not generate the whole/_/l. The class 
(4.24) is naturally identified (algebraically and topologically) with the subspace in 
HZo(BR) 
(4.25) T/~(R) = {u �9 H0t (Bn) :  (2.3) and (2.18) are fulfilled}. 

The operator generated by the restriction of the quotient (3.6) to 7-t~(R) is denoted 
by T(V, TI~(R)). 
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P r o p o s i t i o n  4.6. Let the assumptions of the statements (a) or (b) of Theo- 
rem 4.2 be satisfied. Then for an arbitrary R> 1 we respectively obtain, 

in case (a) 

(4.26) 

(4.27) 

in case (b) 

(4.28) 

(4.29) 

A~(T(V))  = cg /BR V~= dx+A~ (T(V, 7-f~(R))), 

fi~(T(V)) = Cd /BR V:~ dx+5~(T(V, ~z~ (R))); 

• 
= aq (T(V, q > x, 

5~(T(V)) = 6~(T(V, 7-f~ (R))), q > x. 

The proofs of the statements (a) and (b) will be parallel. We assume that p=x 
and p=q in the cases (a) and (b) respectively. The inclusions (4.12) are implied by 
Proposition 4.4. 

We begin with the following remark. According to (4.25) 

dimHlo(BR)/~{(R)= ( l ?  d)  <oo. 

Therefore the spectral asymptotic formulae for T(V, 7-f{ (R)) are the same as for the 
quotient 

(4.30) fBR V[ul2 dx 
IVZul 2 d x '  u e HIo(BR). 

Under the condition (4.1) the standard Weyl-type formula is valid for (4.30) (see 
references concerning (3.24)). Thus 

(4.31) a~(T(V,7-I{(R)))=5~(T(V,7-L{(R)))=Cd/B V~: dx. 
R 

Since ~ z 7-/i(R ) O/-/~(R)CTt I the variational principle leads us to 

ha: (A, T(V)) > n+(;~, T(V, ?-/{ (R) ) )+n+  (A, T(V, T/z~ (R))). 

The latter inequality together with (4.31) immediately imply the relations (4.26)- 
(4.29) with "=" replaced by "_>". We must now obtain the inequality "<" which is 
more complicated. This is done in the next subsection. 
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4.6. From now on we denote by D~ any of the functionals Ap e or 6p a: . Let us 
first assume that  for some Q>0 

(4.32) V(x)=O f o r R - ~ < l x [ < R +  Q. 

Fix a function r176  d) such that  ( ( x ) = l  for I[x[-RI >Q and ( (x )=0  near 
the sphere IxI=R. Given eE(0, 1) we consider the quadratic forms 

~(~) [u I ----- eG [u] + (1 -e) / (2 iV%l 2 dx, 

and 
,.~(e) [u] = e ~  [u] + (1 - e ) ~  [(u]. 

All the three forms 5 ,  ~(e) and ~(e) define equivalent metrics in ?_fl. Moreover 

(4.33) d~ [u] > ~f(~) ~ z  

The form ~(~)-~(~)  is of differential order ( l - �89  and its coefficients vanish ex- 
cept when IIx]-R I <Q. Hence this form is compact in 7-/Z and thus we can apply 
Proposition 1.5. Together with (4.33) this gives 

(4.34) D~p(T(Y)) < + (~) • _ Dp (~ , b v ,  ?-fl)  = Dp (~(~), by, ~ l ) .  

Let us clarify that  we have here used the notation mentioned in Subsection 1.5, 
namely, an operator is replaced by its respective variational triple. Let us use 
Proposition 1.4 with ~ = ~ z  l l ?-/l=:Hi(R)|  a = , ~  (~), a ] = ~ ;  b=bl=by and 
F: u--*(u. The condition (1.11) is fulfilled in view of (4.32) and the choice of (; 
(1.12) also holds true with t = l - e .  Therefore from (1.13) we obtain 

n• )~, ~(~), by, ~z) < n• ((1-e)~,  T(V, 7-l~( R) ) ) +n• (1-e).~, T(V, ~l~ (R))). 

Let us multiply the last inequality by ~P and pass to the upper and lower limits as 
)~--*0. Using (4.34) we find 

D~p (T(Y)) <_ (1-e) -PA~(T(V,  7-I~(R)))+(1-e)-PD~(T(V, ?-/l~ (R))). 

From here and (4.31) we obtain (4.26)-(4.29) with "~" instead of "=", as e--~0. 
Thus under the additional restriction (4.32) the equalities (4.26)-(4.29) are estab- 
lished. 
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The restriction (4.32) now remains to be eliminated. Let V satisfy the condi- 
tions of Theorem 4.2. For ~<1 we introduce 

S V(x), i f l l x I - R  I>t~ 
v&) 

0, if llx I - R  I <~.  

Then T(V)=T(Ve)+T(V-V~) and s Thus the conditions of The- 
orem 4.2 and also (4.32) are satisfied for Ve. Besides, the estimate (3.26) can be 
applied to T(V-V~) with the same constant C3.26(R+1) (independent of Q) and 
consequently 

I IT(V)-T(Ve)IIx ,~O as Q ~ 0 .  

This, together with Proposition 1.1, implies 

D~(T(Vo))~D~(T(V)) as ~ 0  

and Dip(T(VQ))=Dip(T(V)) for p=q (>x) .  The same is obviously true for the 
functionals Dpi(T(VQ,TI~(R))). These facts allow us to pass to the limit (as ~--~0) 
in the formulae (4.26) (4.29) written for VQ. [] 

4.7. T h e  p r o o f  o f  T h e o r e m  4.2. One only needs to pass to the limit as 
R--*c~ in formulae (4.26)-(4.29). This, together with (4.15) and (4.16), gives the 
relations (4.9)-(4.11). [] 

4.8. Using the inequalities (3.8) we reformulate Theorem 4.2 in terms of the 
function Af(a), i.e. the number of negative eigenvalues of the operator (0.1) gen- 
erated by the form (3.2) in Lz(Rd). Notice that  the relations (4.9)-(4.11) from 
Theorem 4.2 are only needed with the sign " + ' .  Let us recall that  the functionals 
(4.8) involved in the statement of this theorem, correspond to the spectrum of the 
quotient (4.5)R and are independent of R. 

T h e o r e m  4.7. Let 21>_d, d be even and (4.1) be fulfilled. 
(a) If s then 

sup = f v :  dx+A + lim (v), 
O~ ---+ ( X )  J 

= f dx + liin__)nf 

If in this case/~+(V)=0, then the Weyl-type asymptotic formula holds 

lira a-~Af(a) = Cd / V~_ dx. 
OL ---4- O 0  
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(b) I f  s  and q>•, then 

lira sup a - q N ' ( a )  = s + (V) ,  
Ot ---> O O  

lira inf oL-qN'(a) = 5+ (Y) .  
OZ----* C ~  

We discuss the properties of the functionals (4.8) in Section 5. After this we 
give some concrete versions of the "semieffective" Theorem 4.7 in Section 6. 

5. An auxiliary spectral  problem on the semiaxis  

The material given in this section represents an extraction from the paper [BLS] 
containing the proofs and further references. It concerns a vector spectral problem 
on the semiaxis R+.  We formulate this problem as a problem for a variational 
triple. Our purpose is to give some facts which will allow us to s tudy the spectral 
properties of the quotient (4.5). 

1,1 1 1 5.1. Denote by 7-/0 =7-/~' (R+),  />1,  the completion of the class C ~ ( R + )  
with respect to the metric form 

(5.1) ~,1 [f] = / r t +  (If(012 + If'12) dt. 

The direct description of this Hilbert space is the following 

(5.2) 7~ / ' I (R+)={fEH(oc (R .+) :  , ~ , l [ f ]<o o ,  f (0)  . . . . .  f ( l - ] ) ( 0 ) = 0 } .  

1,1 Let l < n < o o .  We shall consider a vector version of the space 7-/0 , 

(5.3) ~1,1 a-/l, 1 [D : = ,  c " )  = 

In what follows the standard scalar product and the norm in C n are denoted by 
(. ,. ) and I" I. The operator norm in C n of an (n • n)-matrix is also denoted by I' I. 

Let us consider a set of Hermitian matrices ml  ,... , rnt where m l  and rnl are 
positive definite matrices in C n and where mj ,  l < j <l, are nonnegative. Introduce 
the quadratic form 

(5.4) . z r -l,1 M[z] ( m j z  (y) z (j)} dt, ~ rto, . .  
l< j~ l  J R +  
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It is clear that the form (5.4) defines a metric in ~0', 1 which is equivalent to the 
original one. 

~ the rmore ,  let Q(t) be an Hermitian (nxn)-matrix-function with entries in 
Ll,loc(R+). We define the quadratic form 

(5.5) Q[z] = f _  (Q(t)z,z> dt 
+ 

and consider the operator T(Ad, Q) generated by the variational triple (g/l, Q, 1-/0,,).1'1 
The decreasing rate of the eigenvalues of T(Ad, Q) (when it is compact) is defined 
by the behaviour of Q(t) as t--*ec. To some extent this problem is nonstandard 
due to the absence of the term of degree zero in (5.4) and because there exists a 
competition between the influence of the lowest order and the highest order terms 
in the quadratic form Ad[. ]. The same arguments concern the form (5.1). 

5.2. The behaviour of Q(t) for large t's will be described by means of the 
sequences 

((Q,p)={~k(Q,p)},  k E Z + ,  

1 2 k 

(5.6) ~ ~  0 IQ(t)ldt' ~k(Q'P)= f 2k-lt2p-llQ(t)]dt' k E N ,  

where p >  1 is an additional numerical parameter. We write ( (Q)  instead of ( (Q,  1). 
By 4. we denote the above sequence omitting the first term: ~.={~k(Q)}, kEN.  
We shall employ the same convention to other sequences. 

The following statement contains the main estimates for the operator T(3A, Q). 
The constants in these estimates depend on n, 1 and on the lower bounds of the 
matrices rnl and ml. This will not be indicated in future notation. 

P r o p o s i t i o n  5.1. Let T=T(Ad,  Q) be the operator generated by the triple 
(./~, g )  " I j l ' l  "~ where A4 is the form (5.4), Q is the form (5.5) and 1-llo',~ is the "~  ~ ~O,n}~ 
Hilbert space defined in (5.2) and (5.3). Then the following estimates are fulfilled 
provided that their right hand sides are finite. 

(1) If q=cc then 

(5.7) 

if ~(Q)6co, then TEC. 
(2) For �89 < q < o c  we have 

(5.s) 
(5.9) 

IITII _< CIl((Q)llo~; 

Ilrllq,  <- CIl (Q)llq, , 
Aq(T) < 

c=c(q), 
c=c(q). 
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(3) If q= �89 then 

(5.10) IITII1/2,  <_ 6115(Q) 111/2. 

If l>1 and the right hand side in (5.10) is finite, then 

(5.11) A1/2(T ) =0 .  

(4) I f l > l  and 1/2l<q< �89 then 

(5.12) IITllq,~ <_ cII~(Q, (2q)- l) l l~,  c = C(q), 

(5.13) Aq(T) _< Cl imsup~k(Q,  (2q)-1), C = C(q). 
k---*oo 

If q= �89 then 

IlTII1/21,~ ~_ CII((Q, l)lll/21. 

(5) 

(5.14) 

Proposition 5.1 is part of a more general Theorem 2.4 from [BLS] where all the 
proofs are given. Here we only notice that the value q _ l  is critical. If q> �89 then - - 2  
the lowest order term of the form Ad is most essential. This corresponds to the 
value p--1 (see (5.6)) in the estimates (5.7)-(5.10). For q<�89 and />1 (estimates 
(5.12)-(5.14)) we have p=p(q)>l. This in turn, is responsible for the fact that  the 
highest order term has an influence in the form A/[. 

5.3. The statements (1) and (2) in Proposition 5.1 are reversible for Q of a 
fixed sign. 

P r o p o s i t i o n  5.2. Under the conditions of Proposition 5.1, let • 
(1) IfT=T(JM, Q)EB, then ~(Q)El~ and 

(5.15) II~*(Q)II~ <- CIITII. 

Moreover, ifTEC, then ~(Q)Eco. 
(2) There exists a constant 6>0,  such that 

(5.16) n(Q~,~.(Q))<2n(~,T), ~ > 0 .  

Remark 5.3. The sequence ~., not ~, is involved in the estimates (5.15) and 
(5.16). This is connected with the impossibility of estimating the integral ~0(Q) 
by n(A, T). 

Let us now compare Proposition 5.1(1)-(2) with Proposition 5.2. 
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P r o p o s i t i o n  5.4. Under the conditions of Proposition 5.1, let +Q(t)>O. 
(1) The inclusions TEB  and ((Q) El~ and also the inclusions TEC and ((Q) E 

Co are equivalent. The estimates (5.7) and (5.15) are fulfilled. 
(2) For �89 the inclusions TECq,~ and ((Q)Elq,o. are equivalent. Along 

with (5.8) the estimate 

(5.17) II~.(Q)llq,~ ~ CIITllq,~ 

holds true. Besides, 

(5.18) Aq(T) ~ Aq(~(Q)), 

(5.19) 5q(~(Q)) <_ CSq(T). 

The estimate (5.16) does not give us anything to be able to reverse the state- 
ments (3)-(5) in Proposition 5.1. Indeed, if q = l ,  then there is a "gap" between 
11/2 and I1/2,~ in these estimates. (In particular, this gap gives (5.11)). If q<�89 
then the upper bounds contain ((Q,p) with p=p(q)>l,  while p = l  in (5.16). 

In fact, the statement (4) of Proposition 5.1 is also reversible, though for a 
much narrower class of Q. Say, this is the case if IQ(t)l~r where qS",~, see [BLS, 
Subsection 6.6]. However, this gives nothing for our operator (3.5), in view of 
Proposition 6.4 below. 

5.4. Along with 2t4[z] we also consider the quadratic form 2t41[z] which is 
responsible for the lowest term of the form Ad 

(5.20) JMl[z] = (mlZ',z ')dt ,  z E 7-{1,n, 

where 

(5.21) ~'~1 q"{ l ' l{  / R } o,.:=.~o,n= zEH~oc(R,+;C"): Iz'12dt<c~, z ( 0 ) = 0  . 
+ 

Let us introduce the operator TI=T(JM1, Q) generated by the variational triple 
(2t41, Q,7-(01,). The results of Proposition 5.1(1) (3) and Proposition 5.4 can, of 
course, be applied to this operator. In particular, it can be seen that the estimate 
n(A,. )=O(A-q),  q> 1 is provided for T and 2"1 by the same conditions on Q. More- 
over, for +Q_>0 these conditions are necessary. As already noticed, this means 
that  the terms with derivatives of the order j > l  appearing in (5.4), do not have 
any influence on the estimates in the classes Cq,~ with q> 1. The statement given 
below, illustrates this effect in a much sharper form. 
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Propos i t ion  5.5. Let the operator TI=T(A/[1, Q) be generated by the triple 
(A41, Q, 7-/~,n) defined in (5.20), (5.5) and (5.21). Then, under the conditions of 
Proposition 5.1(2), i.e. if ~(Q)Clq,~, q>�89 we have 

1 (5.22) 
The last proposition implies that the spectral asymptotics of the order A -q, 

q> �89 for the operators T(~d, Q) and T(A/ll, Q) coincide. 
The proofs of Propositions 5.4 and 5.5 are contained in more general statements 

(in Corollary 2.9 and in Theorem 2.10) from [BLS]. 
Let us now assume that Q(t) in (5.5) is of the form 

(5.23) Q(t) =Z(t)X, 

where Z=fl  is a scalar-valued function and X is an Hermitian matrix which is inde- 
pendent of t. Let us fix the ml-orthonormal basis in C" consisting of eigenvectors 
of the pencil X-prnl .  Then X transforms to a diagonal matrix and rnl becomes 
the unit matrix. As a result, the problem on the variational quotient for the triple 
(~41, Q, 7-/01,,) splits into an orthogonal sum of n scalar problems. More precisely, 
let {#+} and { - # f }  be the positive and negative eigenvalues of the pencil X-pro1. 
Consider the quotient 

(5.24) fa+ Z(t)If[ 2 dt 
. - -  ~t'~0,1 . fR+ If'l 2dt ' f cT-t~.- 1 

Propos i t ion  5.6. Let us assume that TI=T(A/[1, Q, 1 no,n) and Q(t) in (5.5) 
be given by (5.23). Let To(Z) be the operator generated by the quotient (5.24). Then 

(5.25) n• T 1 ) = E n •  
i 

The proof is obvious. 
Let us give an example. Put {o 

(5.26) Zq(t)= t_2(logt)l/q 
for O < t < e ,  

q>�89 
for t >__e, 

and let T0(Zq) be the operator generated by the quotient (5.24) where Z=Zq. Then 
(see [BL]) 

(5.27) Aq(To(Zq)) =~q(To(Zq))= 22(q-l)r(q- �89 1 
v~r(q)  =:K(q), q > ~. 

If now in (5.23) Q(t)=Zq(t)X, then (5.25) implies 
•  1 (5.28) 6iq (T1)=A~(T1)=K(q) E ( #  j )  , q>~. 

J 

Using (5.22) we can carry over the asymptotics (5.28) onto the corresponding op- 
erator T. 
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5.5. Let us finish this section by a simple technical remark. Denote the sum 
of the singular numbers of a matrix Q by IQI1; in other words I"11 is the Cl-norm. 
If • then IQIl=• Along with the sequence ~(Q,p) defined in (5.6) we 
also consider the sequence ~(Q, p), p>  1 setting 

1 2 k 

(5.29) ~o(Q,p)=ffo IQ(t)lldt, ~k(Q,p)=~k_lt2P-llQ(t)]ldt, kEN. 

We shall write ~(Q) instead of ~(Q, 1). The inequalities 

~k(Q,P) <- ~k(Q,P) <- n~k(Q,p), k E Z+, 

imply the following result. 

Proposi t ion 5.7. The statements in this section remain valid if ~(Q,p) is 
replaced by ~(Q,p). 

The sequence ~(Q,p) is convenient because if •  then we can change 
the order of Tr and f in (5.29). 

6. Analysis  of  the main theorem 

We take up the study of the behaviour of the functionats (4.8) using the results 
from Section 5. This will allow us to give a more concrete meaning to the statements 
of Theorem 4.2 (and thus of Theorem 4.7). We shall find a certain difference between 
the cases ld<l<d and l>_d. 

The functionals (4.6) and (4.7) generated by the quotient (4.5)R are indepen- 
dent of R > I  (Proposition 4.1). This allowed us to introduce the notation (4.8) for 
these functionals. It is convenient here to associate this notation with the quotient 
(4.5)R where R--1. Then, passing to the variable t (see (2.9)), we obtain a vector 
problem on the semiaxis R+.  

6.1. According to (2.16) we have the following representation for a function 
weW(1)  (see the definition of W(R) in (4.4)) 

w=EFk~(r)~k,(W), keE(d,l), l ~ < # ( d , k ) ,  
k,v 

where dmFk,(r)/drmlr=l=O, 0 < r e < l - 1 .  It is convenient to pass to the variable 
t and identify wE}V(1) with the correspondig vector-valued function z={zk,} us- 
ing (2.9). The vector dimension of z is equal to n=9~(d, l) (see (2.15)). According 
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to (2.13) we find 

(6.1) 
l 

= Izk (t)l dt=: A~dj[Z], 
k E E  i=1 + 

where z satisfies the Dirichlet boundary conditions at t=0.  
Thus the denominator in the quotient (4.5)1 turns into the quadratic form 

1,1 of the type (5.4) and we see that  zET-/0, n. In this case all the matrices my in 
(5.4) are diagonal and every diagonal splits into # ~ =  [�89 (l-�89 1)] intervals of the 
length #(d, k), where all the entries are equal to each other and coincide with Qkj. 
According to (2.12), M1 the matrices mj,  l<j<_l, are positive by definition. 

Let us now transform the numerator in (4.5)1. It is easy to see that  

(6.2) v(x)lwl  dx = fR+ (Qy(t)z, z> dt =: Qy[z], 

where Qv(t) is an Hermitian matrix with the entries 

(6.3) It~--e2U fs  V(et,w)q~kl.l(W)Ok2v2(w)dw q k l v l , k 2 v 2  ~ ) - -  d -1  

for kl, k2e~(d, /) ,  l<Vl  <#(d, kl), l<u2<#(d, k2). Hence the variational quotient 
(4.5)1 transforms to 

Qv[z] ,1 
z E 7-/~',,, (6.4) Md,,[z] '  

941'1 is where the forms A4d,Z and Qv are defined in (6.1) and (6.2), and the space '~o,, 
given by (5.3). Thus we have the following result. 

P r o p o s i t i o n  6.1. Let T(V)=T(Addj, Qv) be the operator generated by the 
variational triple ~jV[ ~ 7-/z'l ~ (i.e. the quotient (6.4)). Then the functionals d, l ,  ~,~V~ 0,n} 
(4.8) coincide with the respective functionals for the operator T(V). 

6.2. Let us mention several cases where the description of the quotient (6.4) 
can be considerably simplified. 

(1) The case 21=d. Then E={0}, n = l ,  i.e. (6.4) is a scalar problem. In this 
case  

Qv(t)= e2" [ dw. 
meas Sd-1 J s d - 1  
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(2) The case of spherical symmetry: V=V(r). It  can be seen from (6.3) that  

in this case Qv is a factor of the unit matr ix  and the form (6.2) is equal to 

Qy[z] = f e2'tV(et)tzl2 dt. 
JR+ 

The corresponding quotient (6.4) decomposes into the orthogonal sum of scalar 

problems. 

(3) Potentials of the type 

(6.5) V(x) = r(r)g(~). 

In this case 

(6.6) Qv ( t ) = e2U F ( et)X (g), 

where X(g) is a constant matrix. The matr ix  (6.6) is of the form (5.23) and every- 

thing mentioned in Section 5.4 holds true for this matrix. 

Let us remark that  if V(x) >0, then Qv (t) >_ O. 

6.3. In order to apply the results of Section 5 we have to express, or at least 
estimate, ~(Qv, p) in terms of the original potential  V. In fact, it is more convenient 

to deal with the sequence ~(Qv,p) defined in (5.29). We now obtain an explicit 
expression for ~(Qv,p) assuming V_>0 and a simple majorant  in the general case. 

If V>__0, then according to (6.3) we find 

IQv(t)ll = Tr Qv(t)=e 2'~ f V(d,~) ~ ~ I,~k~,(~)l 2 d~. 
JSd-1 kc~ l_<.<~(d,k) 

Since 

we obtain 

(measS d-l) ~ Ir 
l<v_<~(d,k) 

(6.7) (measSd-1)TrQv(t)=92(d,l)e2Zt~sd_ 1V(et,w)dw, V>_O. 

This implies 

(6.8) ~(Qv,p) = ~(d,  Z)(meas Sd-1)-lO(V,p), +V >_ O, 
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where the sequence 0(V, p) is defined by the formulae 

Ixl2Z-dlW(x)l dx, 00(V,p) = <lxl<e 
(6.9) 

f2 Ixl2Z-d(log Ixl)2p-XlV(x) I dx, j ~ N. 
Oj(V,p)= J-~<loglxl<2J 

For an alternating potential V = V + - V _  it is obvious that  Qy(t )=Qv+(t ) -  
Qv_(t) and IQv(t)l l<Tr(Qv+(t)+Qv_(t))=TrQ,v,(t  ). For TrQ,v,(t) we use (6.7) 
and after that  arrive at the estimate 

(6.10) ~(Qv,p) <_ fit(d, l)(meas sd-1)-lO(V,p). 

Remark 6.2. The relations (6.8) and (6.10) allow us to substitute ~ (and con- 
sequently ~) by the sequence 0 in all that  follows. 

As usual we put 0(17, 1)--:0(V). 
x 6.4. T h e  ease  �89 In this ease x=d/21 implies 7 <x_<l  and the param- 

eter q>__x in the statement of Theorem 4.2 also satisfies the condition q> �89 This 
allows us to use the most advanced part of the results of Section 5 while interpreting 
Theorem 4.2. Let us give the corresponding statement. 

T h e o r e m  6.3. Under the conditions of Theorem 4.2, let �89 
(1) The following hold 

(6.11) {0(V) e lq,~} ~ {T(V) e Cq,~}, q >_ x, 

(6.12) {0(V) e l ~ ~}  ~ {T(V) 0 , ~Cq,~},  q>_x. 

(2) If V is of a fixed sign, then the implications (6.11) and (6.12) are reversible. 
Besides, in this case 

(6.13) s q > x ,  

~q(v) >_c6(o(v)), q>_x. 

(3) The condition A . ( 0 ( V ) ) = 0  is sufficient for the Weyl-type asymptotics 

(6.14) A~(T(V)) = ~ ( T ( V ) )  = Cd f V~= dx 

to be true. For a potential V of a fixed sign this condition is also necessary. 
(4) The funetionals involved in the statement of Theorem 4.2 coincide with the 

corresponding functionals for the quotient 

fR+ (Qvz, z} dt 7-[ x 
(6.15) frt+(EkezpklEl<_,<,(d,k) lz~,(t)12)dt, zE o,," 
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Proof. Let us recall that  7-/1 is defined in (5.21) and the denominator in 0,n 
(6.15) corresponds to the terms with i = 1  in the sum (6.1). Using Remark 6.2 in 
all the references in Section 5, we replace ((Qv) by the sequence O(V) defined 
in (6.9). Then (1) follows from (5.8) and (5.9), (2) follows from Proposition 5.4(2), 
(3) follows from (4.9), (4.10) and (6.13) with q = x  and finally (4) is a direct corollary 
of Proposition 5.5. [] 

We omit a reformulation of Theorem 6.3 in terms of the operator (0.1). This 
can be done automatically. 

Let us show that all the possibilities mentioned in Theorem 6.3 are realizable. 
We consider the potential Vq(Ixl) , such that  

f r-2 (logr)-2(loglogr)-l/q for logr>e, 
Vq( ) 

0 for log r < e. 

It is easy to see that  VqEG(d, l) for any qER\{0} .  However, we are interested here 
in the values q > x .  The corresponding potential Qvq is exactly equal to 

(6.16) Qv=~q(t)l, q>~<, 

where/~q is the functon (5.26) and 1 is the unit matrix in C ~(d,0. It immediately 

follows from (5.27) that  O(Vq)elq,~ and s Thus if q = x ,  then 
(4.9) and (4.10) give us an asymptotic formula of the Weyl-type order x but with 
an additional (non-Weyl-type) term which is proportional to the constant K ( x )  
defined in (5.27). We shall not present the final formulae since they can be obtained 
quite elementarily. For an arbitrary q > x  the potential (6.16) gives finite values 
of Aq(T(Vq))=hq(T(Vq))>O in (4.11). Finally we obtain that  the corresponding 
operator T(Vq) is unbounded for q<0. In terms of the negative spectrum of the 
operator (0.1) this means that  N ' ( a ) = o c  for any a > 0 .  

If V is of the form (6.5) with F=Vq, q>x, then the asymptotic coefficients 
/ ~ ( V ) = ~ ( V )  can also be calculated explicitly by means of the formulae (5.28). 
The values of these coefficients are the same if Y(x)=g(w)(Vq(r)+o(1)) as r--.c~. 

6.5. T h e  case  l>d. In this case it is also possible that  VEG(d,I) but the 
Weyl-type asymptotics for n(A, T(V)) (and therefore for Af(a)) is violated. How- 
ever, the corresponding examples are a bit more complicated and not as exhaustive 
as for �89 

Let us consider a radial potential 

C X-21  2j - (6.17) V(x) = J , if 1 < log Ix] < 2 j, j E N, 
0, otherwise. 

The coefficients cj will be chosen later. 
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According to (3.12)-(3.14), we see that for the potential given by (6.17) 

VEG(d,I) i f a n d o n l y i f  {cj}Elx. 

Now (6.9) implies 

In particular, 

Oj(Y,p)~2J(2p-1)r j EN, p>l.  

Oj(V):=Oj(V, 1)~2Jcj, j c N .  

Let now c3=2-Jj -1/q, q> �89 Then VeG(d, l) and O(V)elq,~\l~ It follows 
from Proposition 5.4(2) and Theorem 4.2 that T(Y)ECq,oo\C~ Moreover, here 

We were unable to construct similar examples for x ~ q <  �89 The main obstacle 
for such a construction is that generally the statement (4) in Proposition 5.1 is not 
reversible. It is not difficult from the above example to derive that for any qC [x, �89 
there exists a potential V, such that the operator associated with the variational 
triple (6.4) belongs to Cq,~ but does not belong to Cq,,~ for any q'<q. However, it 
is unclear whether this operator belongs to Cq,~ \Cq,oz.~ 

In the above construction 7/(V) (see (3.13) and (3.14)) was a lacunary sequence. 
On the contrary, if the sequence ~/(V) behaves sufficiently regularly (for example, 
monotonically), then it is easy to show that using only condition (4.1) we obtain 
the Weyl-type asymptotics (6.14). To this end, note first that from (3.14) and (6.9) 
follows 

2 j 

(6.18) O J : - ~ - O J ( Y ' ( 2 x ) - l ) ~ 2 J ( x - z - 1 )  E ~J' j> l .  
2J-1+1 

The two-sided estimate (6.18) implies a simple criteria for the inclusion OEco in 
terms of the sequence ~/: OEco if and only if 

2n 

(6.19) n-1 E ~i=~ 
i=n+l 

It is easy to verify that, generally speaking, ~/Elx does not imply (6.19). The 
following statement imposes such conditions on ~/that both inclusions vlEl• and 
OEco hold true and thus guarantee the asymptotics (6.14). 

Propos i t ion  6.4. Let l>d and let the sequence ~l(V) admit the factorization 

(6.20) ~lj :~-I]j(Y)--~/~;-Z-l~/j, j e Z + ,  

(6.21) /~j>_0, /~/"-~0, 7 j>0 ,  E ~ j < o c ,  E T j < o c .  
J J 
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Then VEG(d, l) and O(V, ( 2z ) - l )Ee0  . 

Proof. By using the H51der inequality, we obtain from (6.20) 

EgJ E J, 
J J J 

so that  VEG(d, l) follows from (6.21). The conditions on the sequence/3 imply that  
/3 j=o(j -1) .  Hence (again using (6.20)) we have 

2 n  2 n  

Z 
i = n + l  i = n + l  

The latter yields (6.19). [] 

Remark 6.5. For a monotone sequence r l (V)E/x one can take /3j=~/j=~y. 
Then the conditions (6.20) and (6.21) are satisfied and therefore O(V, (2x- l ) )Ec0 .  

It now remains for us to give the following result in the case when l>_d and the 
sequence ~(V) behaves regularly. 

T h e o r e m  6.6. Let l>d. Suppose that for a given V the sequence rl(V ) de- 
fined in (3.13) and (3.14), admits the factorization (6.20), (6.21). Then VEG(d, 1), 
/~x(lVI)=0 and the Weyl-type asymptotic formula (6.14) holds true. 

Proof. Using Proposition 6.4 we obtain VEG(d, l) and O(V, (2x-1))Ec0.  From 
(5.13) when q = x  we now derive that  /Xx(]V])=0. Finally (6.14) follows from (4.9) 
and (4.10). [] 

The examples given in Subsections 6.4, 6.5 and Theorem 6.6 show that  the case 
l_>d is somewhat more complicated in comparison with �89 l < d. In particular, we 
have no examples of V such that n(;~, T(V)) has the order O()~ -~)  as ) ,~0 ,  but 
the asymptotic formula (6.14) fails. 
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