Extension of smooth CR mappings between non-essentially finite hypersurfaces in \mathbf{C}^{3}

Henri-Michel Maire and Francine Meylan(${ }^{1}$)

0. Introduction

Let M be a real analytic hypersurface in \mathbf{C}^{3} containing 0 and let M^{\prime} be the algebraic hypersurface in \mathbf{C}^{3} defined by

$$
\begin{equation*}
\operatorname{Im} w^{\prime}=\left|z_{1}^{\prime}\right|^{2}+\operatorname{Re} w^{\prime}\left|z_{2}^{\prime}\right|^{2}, \quad\left(z_{1}^{\prime}, z_{2}^{\prime}, w^{\prime}\right) \in \mathbf{C}^{3} \tag{0.1}
\end{equation*}
$$

For any $b^{\prime}<0$, the function $\left(z^{\prime}, w^{\prime}\right) \mapsto 1 /\left(w^{\prime}-i b^{\prime}\right)$ is holomorphic in $\mathbf{C}^{3} \backslash\left\{w^{\prime}=i b^{\prime}\right\} \supseteq$ M^{\prime}; therefore its restriction to M^{\prime} is a CR function which does not extend holomorphically around $\left(0,0, i b^{\prime}\right)$. A classical argument using Baire's category theorem (see [HT, p. 125]) guarantees the existence of a CR function on M^{\prime} which does not extend to a full neighborhood of $0 \in \mathbf{C}^{3}$. In contrast, for CR mappings we have the following result.

Theorem 1. If $h: M \rightarrow M^{\prime}$ is a smooth $C R$ local diffeomorphism at 0 with $h(0)=0$, then h extends to a holomorphic mapping in a full neighborhood of 0 in \mathbf{C}^{3}.

As we shall see in Corollary 1.2, if h satisfies the hypothesis of the theorem (more generally if h is of finite multiplicity) then M is of finite type. After Trepreau's theorem we know that any CR function on M extends holomorphically to one side of M; therefore Theorem 1 is equivalent to a reflection principle (cf. Baouendi and Rothschild [BR3]). Because we do not assume M to be algebraic, and because M^{\prime} is not essentially finite, Theorem 1 does not follow from the recent results of Baouendi, Huang and Rothschild [BHR] nor from those of Baouendi and Rothschild [BR2]. Notice that M^{\prime} is holomorphically non-degenerate in the sense of Stanton [S].

Theorem 1 may be generalized as follows.

[^0]Theorem 2. Suppose $h: M \rightarrow M^{\prime}$ is a smooth CR mapping of finite multiplicity at 0 with $h(0)=0$ and the Levi form of M has a nonzero eigenvalue at 0 . Then h extends to a holomorphic mapping in a full neighborhood of 0 in \mathbf{C}^{3}.

Remark. We do not know whether the conclusion still holds without the hypothesis of non-degeneracy of the Levi form of M.

In order to relax the finite multiplicity condition, let us be precise with some notions. After a local holomorphic change of coordinates, we may assume that M is locally given by

$$
\begin{equation*}
\operatorname{Im} w=\varphi(z, \bar{z}, \operatorname{Re} w) \tag{0.2}
\end{equation*}
$$

where φ is a real analytic function in a neighborhood of $0 \in \mathbf{C}^{2} \times \mathbf{R}$ satisfying the identity $\varphi(z, 0, w) \equiv 0$. Such coordinates (z, w) are called normal coordinates. Let $h: M \rightarrow M^{\prime}$ be a smooth CR mapping such that $h(0)=0$; we will denote by $\left(F_{1}, F_{2}, G\right)$ the holomorphic formal Taylor series of h at 0 (cf. [BR1]) and write

$$
F_{1}(z, w)=\sum_{j=0}^{\infty} F_{1 j}(z) w^{j}, \quad F_{2}(z, w)=\sum_{j=0}^{\infty} F_{2 j}(z) w^{j}
$$

Denote by l the least element of $\mathrm{N} \cup\{\infty\}$ such that $F_{1 l}$ or $F_{2 l}$ is not constant.
Definition. (Cf. [M2]) We say that h is tangentially finite at 0 if l is finite and

$$
\begin{equation*}
\operatorname{dim}_{\mathbf{C}} \mathbf{C}[[z]] /\left(F_{1 l}(z)-F_{1 l}(0), F_{2 l}(z)-F_{2 l}(0)\right)<\infty \tag{0.3}
\end{equation*}
$$

It is called transversally submersive [resp. transversally non-flat] at 0 if

$$
\begin{equation*}
\frac{\partial G}{\partial w}(0) \neq 0 \quad[\text { resp. } G \neq 0] \tag{0.4}
\end{equation*}
$$

Note that because $h(0)=0, h$ is tangentially finite with $l=0$ if, and only if, h is of finite multiplicity. The above definition as well as the integer l are independent of the choice of normal coordinates if h is transversally submersive (see [M3]).

We may now state the two other extension results we prove in this paper.
Theorem 3. Let M be a real analytic hypersurface in \mathbf{C}^{3} non-flat at 0 and let M^{\prime} be defined by

$$
\begin{equation*}
\operatorname{Im} w^{\prime}=\left(\operatorname{Re} w^{\prime}\right)^{m^{\prime}}\left(\left|z_{1}^{\prime}\right|^{2}+\operatorname{Re} w^{\prime}\left|z_{2}^{\prime}\right|^{2}\right), \quad\left(z_{1}^{\prime}, z_{2}^{\prime}, w^{\prime}\right) \in \mathbf{C}^{3}, m^{\prime} \in \mathbf{N}^{*} \tag{0.5}
\end{equation*}
$$

Suppose $h: M \rightarrow M^{\prime}$ is a smooth tangentially finite and transversally non-flat $C R$ mapping with $h(0)=0$. If h extends holomorphically to one side of M near 0 , then h extends to a holomorphic mapping in a full neighborhood of 0 in \mathbf{C}^{3}.

When $m^{\prime}=0$, the corresponding statement requires more hypotheses.

Theorem 4. Let M be a non-flat real analytic hypersurface in \mathbf{C}^{3} of infinite type and let M^{\prime} be defined by (0.1). Suppose $h: M \rightarrow M^{\prime}$ is a smooth tangentially finite and transversally submersive $C R$ mapping with $h(0)=0$. If h extends holomorphically to one side of M near 0 , then it extends holomorphically to a full neighborhood of 0 in \mathbf{C}^{3}.

Remark. Theorems 1-4 have obvious generalizations to the case where M is a real analytic hypersurface in \mathbf{C}^{p+q+1} and M^{\prime} is the algebraic hypersurface in \mathbf{C}^{p+q+1} defined by

$$
\begin{equation*}
\operatorname{Im} w^{\prime}=\left(\operatorname{Re} w^{\prime}\right)^{m^{\prime}}\left(\left|z_{1}^{\prime}\right|^{2}+\ldots+\left|z_{p}^{\prime}\right|^{2}+\operatorname{Re} w^{\prime}\left(\left|z_{p+1}^{\prime}\right|^{2}+\ldots+\left|z_{p+q}^{\prime}\right|^{2}\right)\right) \tag{0.6}
\end{equation*}
$$

Some of the results presented here have been announced in Meylan [M1].
Acknowledgment. We thank the referee for his careful reading of the manuscript and for some valuable suggestions.

1. The basic relation and its consequences

The following notation will be used throughout:

$$
M=\left\{(z, w) \in \mathbf{C}^{3} \mid \operatorname{Im} w=\varphi(z, \bar{z}, \operatorname{Re} w)\right\}
$$

with φ real analytic at $0 ;\left(F_{1}, F_{2}, G\right)$ denotes the holomorphic formal Taylor series of h at 0 , with $h(z, s+i \varphi(z, \bar{z}, s))=\left(f_{1}, f_{2}, g\right)(z, \bar{z}, s)$.

Lemma 1.1. Let $h: M \rightarrow M^{\prime}$ be a smooth CR mapping with M^{\prime} defined by (0.1). Then

$$
\begin{equation*}
\varphi(z, \bar{z}, 0)\left(\frac{\partial G}{\partial w}(0)+O(|z|)\right)=\left|F_{1}(z, 0)\right|^{2}, \quad z \in \mathbf{C}^{2} \tag{1.1}
\end{equation*}
$$

Proof. On the formal power series level, we have for $(z, w) \in M$:
(1.2) $G(z, w)-\bar{G}(\bar{z}, \bar{w})=2 i F_{1}(z, w) \bar{F}_{1}(\bar{z}, \bar{w})+i(G(z, w)+\bar{G}(\bar{z}, \bar{w})) F_{2}(z, w) \bar{F}_{2}(\bar{z}, \bar{w})$.

Replacing w by $i \varphi(z, \bar{z}, 0)$ in (1.2), we get an identity for formal power series in z, \bar{z}; putting $\bar{z}=0$ and using $\varphi(z, 0,0) \equiv 0$, we get $G(z, 0) \equiv 0$, that is $G(z, w)=w \widetilde{G}(z, w)$ for some formal power series \widetilde{G}. Replacing now w by $i \varphi(z, \bar{z}, 0)$ in (1.2), we obtain

$$
\begin{aligned}
\varphi(z, \bar{z}, 0)(\operatorname{Re} \widetilde{G}(0)+O(|z|)) & =\left|F_{1}(z, i \varphi(z, \bar{z}, 0))\right|^{2}=\left|F_{1}(z, 0)+i \varphi(z, \bar{z}, 0) R(z, \bar{z})\right|^{2} \\
& =\left|F_{1}(z, 0)\right|^{2}+\varphi(z, \bar{z}, 0) O(|z|)
\end{aligned}
$$

where R is some formal power series. The lemma will be proved as soon as we know that $\widetilde{G}(0)$ is real. This general fact is quickly verified below.

Because G is the Taylor series of the third component of h at 0 , the Taylor series of g at 0 is $G(z, s+i \varphi(z, \bar{z}, s))$ and hence

$$
\begin{equation*}
\frac{\partial g}{\partial s}(0)=\frac{\partial G}{\partial w}(0) \tag{1.3}
\end{equation*}
$$

When we differentiate the relation

$$
g-\bar{g}=2 i f_{1} \bar{f}_{1}+i(g+\bar{g}) f_{2} \bar{f}_{2}
$$

with respect to s, we get $(\partial / \partial s)(g-\bar{g})(0)=0$ and hence $(\partial g / \partial s)(0) \in \mathbf{R}$.
Corollary 1.2. Let $h: M \rightarrow M^{\prime}$ be a smooth CR mapping of finite multiplicity at 0 with M^{\prime} defined by (0.1). Then M is of finite type at 0 .

Proof. Because M^{\prime} is of finite type, this result is a consequence of [BR2, p. 486], but we give a direct short proof in our case.

Suppose M is not of finite type at 0 . Then $\varphi(z, \bar{z}, 0) \equiv 0$ and hence, after (1.1), $F_{1}(z, 0) \equiv 0$. Therefore $\operatorname{dim} \mathbf{C}[[z]] /\left(F_{1}(z, 0), F_{2}(z, 0)\right)=\infty$ which means that h is not of finite multiplicity.

Corollary 1.3. Suppose M, M^{\prime} and h satisfy the hypotheses of Theorem 2. Then $\nabla_{z} F_{1}(0) \neq 0$ and the Levi form of M at 0 has a unique nonzero eigenvalue whose sign is that of $(\partial g / \partial s)(0)$.

Proof. We may find a linear change of coordinates in \mathbf{C}^{2} such that

$$
\varphi(z, \bar{z}, 0)=\lambda_{1}\left|z_{1}\right|^{2}+\lambda_{2}\left|z_{2}\right|^{2}+O\left(|z|^{3}\right), \quad z \rightarrow 0 \in \mathbf{C}^{2}
$$

with some $\lambda_{1}, \lambda_{2} \in \mathbf{R}$. If we also expand $F_{1}(z, 0)$:

$$
F_{1}(z, 0)=a_{1} z_{1}+a_{2} z_{2}+O\left(|z|^{2}\right)
$$

we get after (1.1)

$$
\left(\lambda_{1}\left|z_{1}\right|^{2}+\lambda_{2}\left|z_{2}\right|^{2}\right) \frac{\partial G}{\partial w}(0)=\left|a_{1}\right|^{2}\left|z_{1}\right|^{2}+a_{1} \bar{a}_{2} z_{1} \bar{z}_{2}+\bar{a}_{1} a_{2} \bar{z}_{1} z_{2}+\left|a_{2}\right|^{2}\left|z_{2}\right|^{2}+O\left(|z|^{3}\right)
$$

Therefore

$$
\begin{equation*}
\lambda_{1} \frac{\partial G}{\partial w}(0)=\left|a_{1}\right|^{2}, \lambda_{2} \frac{\partial G}{\partial w}(0)=\left|a_{2}\right|^{2}, \quad \text { if } \bar{a}_{1} a_{2}=0 \tag{1.4}
\end{equation*}
$$

Because M^{\prime} is of finite type and h has finite multiplicity, we know that $(\partial G / \partial w)(0)$ is nonzero (see [BR2, Theorem 1]). Hence (1.4) implies $\lambda_{1} \lambda_{2}=0$. Because $\left(\lambda_{1}, \lambda_{2}\right) \neq 0$ we get $\left(a_{1}, a_{2}\right) \neq 0$ that is $\nabla_{z} F_{1}(0) \neq 0$. The last assertion follows from (1.3).

Corollary 1.4. Suppose M, M^{\prime} and h satisfy the hypothesis of Theorem 1. Then the Levi form of M at 0 is nonzero. As a consequence, Theorem 2 implies Theorem 1.

Proof. The local diffeomorphism assumption implies $\nabla_{z} F_{1}(0) \neq 0$ and hence $F_{1}(z, 0)$ has a nonzero linear term. After (1.1), it follows that $\varphi(z, \bar{z}, 0)$ has a nonzero quadratic term.

Remark 1.5. Because the rank of the Levi form is a CR invariant and since M and M^{\prime} are CR equivalent, it follows from general theory that the Levi form of M has one zero and one nonzero eigenvalue.

2. First properties of the tangential components

Proposition 2.1. Suppose M, M^{\prime} and h satisfy the hypotheses of Theorem 2. Then h extends to a neighborhood of $0 \in \mathbf{C}^{3}$ intersected with the following component of $\mathbf{C}^{3} \backslash M$:

$$
\begin{equation*}
\{(\operatorname{Im} w-\varphi(z, \bar{z}, \operatorname{Re} w))(\partial g / \partial s)(0)>0\} \tag{2.1}
\end{equation*}
$$

Proof. From general theory [H, p. 51], if λ is a nonzero eigenvalue of the Levi form of M at 0 , then every CR-function on M extends to a neighborhood of $0 \in \mathbf{C}^{3}$ intersected with the following component of $\mathbf{C}^{3} \backslash M:\{(\operatorname{Im} w-\varphi(z, \bar{z}, \operatorname{Re} w)) \lambda>0\}$. Because of Corollary 1.3, this component is identical with (2.1).

Remark 2.2. Because φ is analytic, the map

$$
\begin{equation*}
(z, s+i t) \longmapsto(z, s+i t+i \varphi(z, \bar{z}, s+i t)) \tag{2.2}
\end{equation*}
$$

is well defined in a neighborhood of $0 \in \mathbf{C}^{3}$. It is a local diffeomorphism at 0 since $(\partial \varphi / \partial s)(0)=0$ in normal coordinates; the side $\{t>0\}$ is mapped into the following side $\{\operatorname{Im} w-\varphi(z, \bar{z}, \operatorname{Re} w)>0\}$ of M.

Definition 2.3. We will say that a germ $u:\left(\mathbf{C}^{2} \times \mathbf{R}, 0\right) \rightarrow(\mathbf{C}, 0)$ of a smooth function extends up [resp. down] if there exist $\varepsilon>0$ and a smooth function

$$
U:\left\{(z, s+i t) \in \mathbf{C}^{3}| | z|<\varepsilon,|s+i t|<\varepsilon\} \longrightarrow \mathbf{C}\right.
$$

holomorphic with respect to $s+i t$ for $t>0$ [resp. $t<0]$ which extends u.
Recall the following standard notation. Write

$$
\begin{equation*}
L_{j}=\frac{\partial}{\partial \bar{z}_{j}}-i \frac{\varphi_{\bar{z}_{j}}}{1+i \varphi_{s}} \frac{\partial}{\partial s}, \quad j=1,2 \tag{2.3}
\end{equation*}
$$

for the vector fields in $\mathbf{C}^{2} \times \mathbf{R}$ corresponding to the antiholomorphic tangent vector fields to M and put

$$
\begin{equation*}
D=\operatorname{det}\left(L_{j} \bar{f}_{k}\right)_{1 \leq j, k \leq 2} \tag{2.4}
\end{equation*}
$$

Proposition 2.4. Let $h: M \rightarrow M^{\prime}$ be a smooth CR mapping where M^{\prime} is defined by (0.1) with components f_{1}, f_{2} and g extending up. Then

$$
D \frac{f_{1}}{1+i f_{2} \bar{f}_{2}} \text { and } D^{5} \frac{\bar{g} f_{2}}{\left(1+i f_{2} \bar{f}_{2}\right)^{2}} \text { extend down. }
$$

Proof. Since $h(M) \subseteq M^{\prime}$, we have

$$
\begin{equation*}
\bar{g}=g-\frac{2 i f_{1} \bar{f}_{1}}{1+i f_{2} \bar{f}_{2}}-g \frac{2 i f_{2} \bar{f}_{2}}{1+i f_{2} \bar{f}_{2}} . \tag{2.5}
\end{equation*}
$$

Applying L_{1} and L_{2} to both sides of (2.5), we obtain

$$
\begin{equation*}
L_{j} \bar{g}=\frac{-2 i f_{1}}{1+i f_{2} \bar{f}_{2}} L_{j} \bar{f}_{1}-\left(\frac{2 f_{1} f_{2} \bar{f}_{1}}{\left(1+i f_{2} \bar{f}_{2}\right)^{2}}+g \frac{2 i f_{2}}{\left(1+i f_{2} \bar{f}_{2}\right)^{2}}\right) L_{j} \bar{f}_{2}, \quad j=1,2 . \tag{2.6}
\end{equation*}
$$

Hence

$$
\begin{equation*}
D \frac{f_{1}}{1+i f_{2} \bar{f}_{2}}=\frac{i}{2}\left(L_{1} \bar{g} L_{2} \bar{f}_{2}-L_{2} \bar{g} L_{1} \bar{f}_{2}\right)=: k_{1} . \tag{2.7}
\end{equation*}
$$

Because f_{1}, f_{2} and g extend up, we know that k_{1} is a smooth function which extends down. This proves the first part.

The same argument also shows that

$$
\begin{equation*}
D\left(\frac{-2 f_{1} f_{2} \bar{f}_{1}}{\left(1+i f_{2} \bar{f}_{2}\right)^{2}}+g \frac{-2 i f_{2}}{\left(1+i f_{2} \bar{f}_{2}\right)^{2}}\right) \tag{2.8}
\end{equation*}
$$

extends down. Multiplying (2.7) by D and applying L_{j} yields

$$
-i D^{2} \frac{f_{1} f_{2}}{\left(1+i f_{2} \bar{f}_{2}\right)^{2}} L_{j} \bar{f}_{2}=-2 D L_{j} D \frac{f_{1}}{1+i f_{2} \bar{f}_{2}}+L_{j}\left(D k_{1}\right)
$$

hence $D^{3}\left(f_{1} f_{2} /\left(1+i f_{2} \bar{f}_{2}\right)^{2}\right)$ extends down. This information and (2.8) show that

$$
\begin{equation*}
D^{3} \frac{g f_{2}}{\left(1+i f_{2} \bar{f}_{2}\right)^{2}} \quad \text { and } \quad D^{3} \frac{f_{1}}{\left(1+i f_{2} \bar{f}_{2}\right)^{2}}=D^{3} \frac{f_{1}\left(1+i f_{2} \bar{f}_{2}\right)}{\left(1+i f_{2} \bar{f}_{2}\right)^{2}}-D^{3} \frac{i f_{1} f_{2} \bar{f}_{2}}{\left(1+i f_{2} \bar{f}_{2}\right)^{2}} \tag{2.9}
\end{equation*}
$$

extend down. Applying L_{j} to (2.9), we get, again by the same type of arguments, that the functions

$$
D^{5} \frac{f_{1} f_{2}}{\left(1+i f_{2} \bar{f}_{2}\right)^{3}} \quad \text { and } \quad D^{5} \frac{g f_{2}^{2}}{\left(1+i f_{2} \bar{f}_{2}\right)^{3}}
$$

extend down. This and (2.5) multiplied by $f_{2} /\left(1+i f_{2} \bar{f}_{2}\right)^{2}$ finally proves that the function $D^{5} \bar{g} f_{2} /\left(1+i f_{2} \bar{f}_{2}\right)^{2}$ extends down.

3. Properties of the source hypersurface

Proposition 3.1. Let h, M and M^{\prime} satisfy the hypotheses of Theorem 2. Then M contains a one-dimensional complex submanifold.

Proof. As h is of finite multiplicity and M^{\prime} is not essentially finite, it follows from [BR2, Theorem 4] that M is not essentially finite. Therefore, by Proposition 4.1 in [BJT], the hypersurface M contains a holomorphic one-dimensional subvariety passing through 0 . The curve selection lemma (cf. [E$]$), guarantees the existence of a non-constant holomorphic curve $c: U \rightarrow M$, defined in a neighborhood U of $0 \in \mathbf{C}$, such that $c(0)=0$. Because we work in normal coordinates we have

$$
\begin{equation*}
\frac{\partial^{k} \varphi}{\partial \bar{z}_{j}^{k}}(0)=\frac{\partial^{l} \varphi}{\partial z_{j}^{l}}(0)=0, \quad \text { for all } k, l \in \mathbf{N}, j=1,2 \tag{3.1}
\end{equation*}
$$

the chain-rule applied to

$$
c_{3}-\bar{c}_{3}=2 i \varphi\left(c_{1}, \bar{c}_{1}, c_{2}, \bar{c}_{2},\left(c_{3}+\bar{c}_{3}\right) / 2\right)
$$

shows that $\left(\partial^{k} c_{3} / \partial t^{k}\right)(0)=0$, for all k, hence $c_{3}=0$. Because c is holomorphic and h is $\mathrm{CR}, h^{\circ} \mathrm{c}$ is a holomorphic curve in M^{\prime} passing through 0 . The above argument using (3.1) is also valid for $h \circ c$ and gives $g \circ c=0$, hence $f_{1}{ }^{\circ} c=0$. After a linear change of coordinates, we may suppose $\left(\partial F_{1} / \partial z_{1}\right)(0) \neq 0$ (cf. Corollary 1.3) and reparametrizing c we may write

$$
\begin{equation*}
c(t)=\left(c_{1}(t), t^{m}, 0\right), \quad \text { with } m \in \mathbf{N}^{*} \tag{3.2}
\end{equation*}
$$

On the formal power series level, we have $F_{1}\left(c_{1}(t), t^{m}, 0\right) \equiv 0$; the formal implicit function theorem applies and gives $c_{1}(t)=C_{1}\left(t^{m}\right)$, for some formal power series C_{1}. Because c_{1} is convergent, C_{1} is convergent too. The image of the complex curve

$$
\begin{equation*}
s \longmapsto\left(C_{1}(s), s, 0\right) \tag{3.3}
\end{equation*}
$$

is a complex submanifold contained in M.
Corollary 3.2. Let h, M and M^{\prime} satisfy the hypotheses of Theorem 2. Then there exists a local holomorphic change of coordinates at 0 such that φ given by (0.2) satisfies

$$
\begin{equation*}
\varphi(z, \vec{z}, 0)=\left|z_{1}\right|^{2} \widetilde{\varphi}(z, \vec{z}) \tag{3.4}
\end{equation*}
$$

where $\widetilde{\varphi}$ is real analytic at 0 and $\widetilde{\varphi}(0) \neq 0$ has the sign of $(\partial g / \partial s)(0)$.
Proof. Without loss of generality, we may suppose that M contains the curve (3.3). Let us make the following holomorphic change of coordinates $Z_{1}=z_{1}-C_{1}\left(z_{2}\right)$, $Z_{2}=z_{2}, W=w$. Then the complex line $\left\{\left(0, Z_{2}, 0\right) \mid Z_{2} \in \mathbf{C}\right\}$ lies in M and therefore

$$
\varphi\left(0, Z_{2}, 0, \bar{Z}_{2}, 0\right) \equiv 0
$$

After (1.1), we get $F_{1}\left(0, Z_{2}, 0\right) \equiv 0$ and hence $F_{1}\left(Z_{1}, Z_{2}, 0\right)=Z_{1} \widetilde{F}_{1}\left(Z_{1}, Z_{2}\right)$ for some power series \widetilde{F}_{1}. Introducing this into (1.1) and using $(\partial G / \partial w)(0) \neq 0$ we obtain (3.4). The question of sign follows from Corollary 1.3 because $\widetilde{\varphi}(0)$ is the nonzero eigenvalue of the Levi form of M at 0 .

4. Estimates for the transversal component

In this paragraph we assume that h, M and M^{\prime} satisfy the hypotheses of Theorem 2 . We also assume (without loss of generality) that

$$
\begin{equation*}
\frac{\partial g}{\partial s}(0)>0, \quad \varphi(z, \bar{z}, 0)=\left|z_{1}\right|^{2} \widetilde{\varphi}(z, \bar{z}) \quad \text { and } \quad \widetilde{\varphi}(0)>0 \tag{4.1}
\end{equation*}
$$

(cf. Corollary 3.2). After Remark 2.2 and Proposition 2.1, we know that h has a C^{∞} extension \mathcal{H} to a neighborhood Ω of $0 \in \mathbf{C}^{3}$ which is holomorphic in $\Omega \cap$ $\{\operatorname{Im} w>\varphi(z, \bar{z}, \operatorname{Re} w)\}$. Denote by \mathcal{G} the third or transversal component of \mathcal{H} and let

$$
g(z, \bar{z}, s+i t)=\mathcal{G}(z, \bar{z}, s+i t+i \varphi(z, \bar{z}, s+i t))
$$

Proposition 4.1. Let $h, M, M^{\prime}, \mathcal{G}$ and g be as above. Then the following estimates hold $\left(^{(}\right)$:

$$
\begin{equation*}
\mathcal{G}(z, w)=o\left(\left|z_{1}\right|^{2}\right)+w \frac{\partial \mathcal{G}}{\partial w}(0)+o(|w|), \quad(z, w) \rightarrow 0 \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
|g(z, \bar{z}, s+i t)| \geq \frac{1}{8} \frac{\partial g}{\partial s}(0)|s+i t| \quad \text { for } t \geq 0 \text { and }|(z, s+i t)| \text { small. } \tag{4.3}
\end{equation*}
$$

Proof. For any $\alpha, \beta \in \mathbf{N}^{2}$ and any $j, k \in \mathbf{N}$ with $\beta \neq 0$ or $k \neq 0$, we have by continuity $\left.\partial_{z}^{\alpha} \partial_{\bar{z}}^{\beta} \partial_{w}^{j} \partial_{\bar{w}}^{k} \mathcal{G}\right|_{M}=0$. Therefore, using $\left(0, z_{2}, 0\right) \in M$ for z_{2} small, we see that the functions

$$
\begin{equation*}
z_{2} \longmapsto \partial_{z}^{\alpha} \mathcal{G}\left(0, z_{2}, 0\right) \tag{4.4}
\end{equation*}
$$

$\left({ }^{2}\right)$ As usual, $u(z, w)=o(v(z, w))$ means that $u(z, w) / v(z, w) \rightarrow 0$, as $(z, w) \rightarrow 0$.
are holomorphic. As already mentioned, at the formal power series level, we may factorize w in G and obtain $\partial_{z}^{\alpha} \partial_{\bar{z}}^{\beta} \mathcal{G}(0)=0$ for all $\alpha, \beta \in \mathbf{N}^{2}$. Together with (4.4), this implies

$$
\begin{equation*}
\partial_{z}^{\alpha} \mathcal{G}\left(0, z_{2}, 0\right) \equiv 0 \tag{4.5}
\end{equation*}
$$

Taylor's theorem for $z_{1} \mapsto \mathcal{G}\left(z_{1}, z_{2}, 0\right)$ at 0 shows that for $m \geq 3, m \in \mathbf{N}$,

$$
\begin{aligned}
\mathcal{G}\left(z_{1}, z_{2}, 0\right) & =\mathcal{G}\left(0, z_{2}, 0\right)+z_{1} \frac{\partial \mathcal{G}}{\partial z_{1}}\left(0, z_{2}, 0\right)+\bar{z}_{1} \frac{\partial \mathcal{G}}{\partial \bar{z}_{1}}\left(0, z_{2}, 0\right)+\ldots+O\left(\left|z_{1}\right|^{m}\right) \\
& =o\left(\left|z_{1}\right|^{2}\right), \quad z \rightarrow 0
\end{aligned}
$$

For the same reasons, $(\partial \mathcal{G} / \partial \bar{w})\left(z_{1}, z_{2}, 0\right)=o\left(\left|z_{1}\right|^{2}\right), z \rightarrow 0$. Finally, Taylor's theorem for \mathcal{G} at $\left(z_{1}, z_{2}, 0\right)$ yields

$$
\begin{aligned}
\mathcal{G}\left(z_{1}, z_{2}, w\right) & =o\left(\left|z_{1}\right|^{2}\right)+w \frac{\partial \mathcal{G}}{\partial w}\left(z_{1}, z_{2}, 0\right)+\bar{w} o\left(\left|z_{1}\right|^{2}\right)+O\left(|w|^{2}\right) \\
& =o\left(\left|z_{1}\right|^{2}\right)+w \frac{\partial \mathcal{G}}{\partial w}(0)+o(|w|), \quad(z, w) \rightarrow 0
\end{aligned}
$$

This proves (4.2). Because $|w(\partial \mathcal{G} / \partial w)(0)+o(|w|)| \geq \frac{1}{2}|w|(\partial \mathcal{G} / \partial w)(0)$, for $|(z, w)|$ small, to prove (4.3), it is enough to verify

$$
\begin{equation*}
|s+i t+i \varphi(z, \bar{z}, s+i t)| \geq \frac{1}{4}\left(|s+i t|+\left|z_{1}\right|^{2} \widetilde{\varphi}(0)\right) \quad \text { for } t \geq 0 . \tag{4.6}
\end{equation*}
$$

Using (4.1) and $(\partial \varphi / \partial s)(0)=0$, we get after using Taylor's theorem:

$$
\varphi(z, \bar{z}, s+i t)=\varphi(z, \bar{z}, 0)+o(|s+i t|)=\left|z_{1}\right|^{2}(\widetilde{\varphi}(0)+o(1))+o(|s+i t|) .
$$

Hence

$$
|s+i t+i \varphi(z, \bar{z}, s+i t)|=\left.|(s+i t)(1+o(1))+i| z_{1}\right|^{2}(\widetilde{\varphi}(0)+o(1)) \mid
$$

as $(z, s+i t) \rightarrow 0$ and $t \geq 0$. The following elementary inequality

$$
|s+i t+i r| \geq \frac{1}{\sqrt{2}}(|s+i t|+r) \quad \text { for } r, t \geq 0
$$

may be perturbed to give

$$
|(s+i t)(a+i b)+i r(c+i d)| \geq \frac{1}{4}(|s+i t|+r) \quad \text { for } r, t \geq 0
$$

where $a+i b$ and $c+i d$ are sufficiently close to 1 . The proof of (4.6) follows.
Corollary 4.2. Under the hypotheses of Theorem 2 with the choice (4.1), the function $D^{5} f_{2} /\left(1+i\left|f_{2}\right|^{2}\right)^{2}$ extends down.

Proof. After Proposition 2.1 and Remark 2.2, we know that f_{1}, f_{2} and g extend up. Therefore Proposition 2.4 applies and shows that $D^{5} \bar{g} f_{2} /\left(1+i\left|f_{2}\right|^{2}\right)^{2}$ extends down. Of course, $D^{5} f_{2} /\left(1+i\left|f_{2}\right|^{2}\right)^{2}$ is C^{∞} at $0 \in \mathbf{C}^{2} \times \mathbf{R}$. Because \bar{g} extends down and is bounded below by (4.3), we may apply Lemma 4.5 of [BR3] to conclude that $D^{5} f_{2} /\left(1+i\left|f_{2}\right|^{2}\right)^{2}=(1 / \bar{g}) D^{5} \bar{g} f_{2} /\left(1+i\left|f_{2}\right|^{2}\right)^{2}$ extends down.

5. Proof of Theorem 2

Let us assume that $h: M \rightarrow M^{\prime}$ satisfy hypotheses of Theorem 2. The finite multiplicity assumption guarantees (cf. [BR1, (3.18)]) the existence of a multi-index $\gamma \in \mathbf{N}^{2}$ such that

$$
\begin{equation*}
L^{\gamma} D(0) \neq 0 \tag{5.1}
\end{equation*}
$$

where L and D are defined by (2.3) and (2.4). If we take care to choose γ minimal with respect to the following lexicographic order on \mathbf{N}^{2} :

$$
\begin{equation*}
\alpha \prec \beta \quad \Longleftrightarrow \quad \alpha_{1}+\alpha_{2}<\beta_{1}+\beta_{2} \text { or } \alpha_{1}+\alpha_{2}=\beta_{1}+\beta_{2} \text { and } \alpha_{1}<\beta_{1} \tag{5.2}
\end{equation*}
$$

then we also have

$$
\begin{equation*}
L^{5 \gamma} D^{5}(0) \neq 0 \tag{5.3}
\end{equation*}
$$

Indeed, the order (5.2) satisfies

$$
\alpha, \beta \in \mathbf{N}^{2}, \alpha+\beta=2 \gamma \quad \Longrightarrow \quad \alpha \preceq \gamma \text { or } \beta \preceq \gamma ;
$$

and Leibniz' formula gives

$$
L^{2 \gamma} D^{2}(0)=\sum_{\alpha+\beta=2 \gamma}\binom{2 \gamma}{\alpha} L^{\alpha} D(0) L^{\beta} D(0)=\binom{2 \gamma}{\gamma}\left(L^{\gamma} D\right)^{2}(0) \neq 0
$$

Using now

$$
\alpha, \beta \in \mathbf{N}^{2}, \alpha+\beta \prec 2 \gamma \quad \Longrightarrow \quad \alpha \prec \gamma \text { or } \beta \prec \gamma,
$$

we see that

$$
L^{\delta} D^{2}(0)=0 \quad \text { for } \delta \prec 2 \gamma .
$$

By iteration, we get (5.3).
Go back to Proposition 2.4 and rewrite (2.7) as

$$
\begin{equation*}
D f_{1}=\left(1+i f_{2} \bar{f}_{2}\right) k_{1} \tag{5.4}
\end{equation*}
$$

Applying L^{α}, for $\alpha \in \mathbf{N}^{2}$, to both sides gives

$$
\left(L^{\alpha} D\right) f_{1}=\sum_{\alpha^{\prime}+\alpha^{\prime \prime}=\alpha}\binom{\alpha}{\alpha^{\prime}}\left(L^{\alpha^{\prime}}\left(1+i f_{2} \bar{f}_{2}\right)\right)\left(L^{\alpha^{\prime \prime}} k_{1}\right)
$$

and hence, at 0 ,

$$
0=\sum_{\alpha^{\prime}+\alpha^{\prime \prime}=\alpha}\binom{\alpha}{\alpha^{\prime}} L^{\alpha^{\prime}}\left(1+i f_{2} \bar{f}_{2}\right)(0) L^{\alpha^{\prime \prime}} k_{1}(0)
$$

By induction on α and using $\left(1+i f_{2} \bar{f}_{2}\right)(0) \neq 0$ we get $L^{\alpha} k_{1}(0)=0$ for all $\alpha \in \mathbf{N}^{2}$. This implies

$$
\begin{equation*}
L^{\alpha}\left(\bar{f}_{2} k_{1}\right)(0)=0 \quad \text { for all } \alpha \in \mathbf{N}^{2} \tag{5.5}
\end{equation*}
$$

Application of L^{γ} to both sides of (5.4) may also be written as

$$
\left(L^{\gamma} D\right) f_{1}=L^{\gamma} k_{1}+i f_{2} L^{\gamma}\left(\bar{f}_{2} k_{1}\right)
$$

That is, after (5.1)

$$
\begin{equation*}
f_{1}+f_{2} u_{1}+v_{1}=0 \tag{5.6}
\end{equation*}
$$

with $u_{1}=-i L^{\gamma}\left(\bar{f}_{2} k_{1}\right) / L^{\gamma} D, v_{1}=-L^{\gamma} k_{1} / L^{\gamma} D$ extending down and from (5.5) we have $u_{1}(0)=0$.

Using $L^{5 \gamma}$, Corollary 4.2 and (5.3), we prove in the same manner that f_{2} satisfies an algebraic relation

$$
\begin{equation*}
f_{2}+f_{2} u_{2}+f_{2}^{2} u_{3}+v_{2}=0 \tag{5.7}
\end{equation*}
$$

with u_{2}, u_{3}, v_{2} extending down and $u_{2}(0)=0$. The implicit function theorem enables us to solve the system (5.6)-(5.7) and show that f_{1} and f_{2} extend down. From (2.5), we deduce that g also extends down. From Lemma 2.2 of [BJT] it follows that h has a holomorphic extension near 0 in \mathbf{C}^{3}. The proof of Theorem 2 is complete.

6. Proofs of Theorems 3 and 4

Lemma 6.1. Let $\omega \in \mathbf{C}\left\{x_{1}, x_{2}, y\right\}$ be defined by

$$
\begin{equation*}
\frac{y-\omega}{2 i}=\left(\frac{y+\omega}{2}\right)^{m^{\prime}} x_{1}+\left(\frac{y+\omega}{2}\right)^{m^{\prime}+1} x_{2}, \quad m^{\prime} \geq 1 \tag{6.1}
\end{equation*}
$$

Then

$$
\omega\left(x_{1}, x_{2}, y\right)=y+y^{m^{\prime}} \sum_{\alpha \in \mathbf{N}^{2} \backslash\{0\}} A_{\alpha}(y) x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}, \quad A_{\alpha} \in \mathbf{C}\{y\},
$$

where $A_{1,0}=-2 i$ and $A_{0,1}=-2 i y$.
Proof. After the implicit function theorem, we may write

$$
\omega=\sum_{\alpha \in \mathbf{N}^{2}, j \in \mathbf{N}} B_{\alpha, j} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} y^{j}
$$

For $x=0$ in (6.1), we have $\sum_{j} B_{0, j} y^{j}=y$, and hence

$$
\omega=y+\sum_{|\alpha|>0} B_{\alpha}(y) x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}, \quad \text { with } B_{\alpha}(y)=\sum_{j} B_{\alpha, j} y^{j}
$$

Let us insert this expression into (6.1); we get

$$
\begin{equation*}
-\frac{1}{2 i} \sum_{|\alpha|>0} B_{\alpha}(y) x^{\alpha}=\left(y+\frac{1}{2} \sum_{|\alpha|>0} B_{\alpha}(y) x^{\alpha}\right)^{m^{\prime}} x_{1}+\left(y+\frac{1}{2} \sum_{|\alpha|>0} B_{\alpha}(y) x^{\alpha}\right)^{m^{\prime}+1} x_{2} \tag{6.2}
\end{equation*}
$$

When $y=0$, this implies that $B_{\alpha}(0)=0$ for all α. Because the right hand side of (6.2) has a factor $y^{m^{\prime}}$, each B_{α} is divisible by $y^{m^{\prime}}$. The expressions for $A_{1,0}$ and $A_{0,1}$ follow directly.

Proof of Theorem 3. Without loss of generality, we may suppose that f_{1}, f_{2} and g extend up. Because $h(M) \subseteq M^{\prime}$, Lemma 6.1 yields

$$
\begin{equation*}
\bar{g}=g+g^{m^{\prime}} \sum_{\alpha \in \mathbb{N}^{2} \backslash\{0\}} A_{\alpha}(g)\left|f_{1}\right|^{2 \alpha_{1}}\left|f_{2}\right|^{2 \alpha_{2}} \tag{6.3}
\end{equation*}
$$

Applying L_{j}, for $j=1,2$, gives

$$
\begin{aligned}
L_{j} \bar{g} & =g^{m^{\prime}} \sum_{|\alpha|>0} A_{\alpha}(g)\left(\alpha_{1} f_{1}^{\alpha_{1}} f_{2}^{\alpha_{2}} \bar{f}_{1}^{\alpha_{1}-1} \bar{f}_{2}^{\alpha_{2}} L_{j} \bar{f}_{1}+\alpha_{2} f_{1}^{\alpha_{1}} f_{2}^{\alpha_{2}} \bar{f}_{1}^{\alpha_{1}} \bar{f}_{2}^{\alpha_{2}-1} L_{j} \bar{f}_{2}\right) \\
& =g^{m^{\prime}}\left(-2 i f_{1}+S_{1}\left(f_{1}, f_{2}, g, \bar{f}_{1}, \bar{f}_{2}\right)\right) L_{j} \bar{f}_{1}+g^{m^{\prime}}\left(-2 i g f_{2}+S_{2}\left(f_{1}, f_{2}, g, \bar{f}_{1}, \bar{f}_{2}\right)\right) L_{j} \bar{f}_{2}
\end{aligned}
$$

with S_{1}, S_{2} being convergent power series such that

$$
S_{j}\left(0,0, g, \bar{f}_{1}, \bar{f}_{2}\right)=\frac{\partial S_{j}}{\partial f_{1}}\left(0,0, g, \bar{f}_{1}, \bar{f}_{2}\right)=\frac{\partial S_{j}}{\partial f_{2}}\left(0,0, g, \bar{f}_{1}, \bar{f}_{2}\right)=0 .
$$

Hence, with $D=L_{1} \bar{f}_{1} L_{2} \bar{f}_{2}-L_{2} \bar{f}_{1} L_{1} \bar{f}_{2}$:

$$
\begin{align*}
D g^{m^{\prime}}\left(-2 i f_{1}+S_{1}\left(f_{1}, f_{2}, g, \bar{f}_{1}, \bar{f}_{2}\right)\right) & =k_{1} \tag{6.4}\\
D g^{m^{\prime}}\left(-2 i g f_{2}+S_{2}\left(f_{1}, f_{2}, g, \bar{f}_{1}, \bar{f}_{2}\right)\right) & =k_{2}
\end{align*}
$$

where k_{1} and k_{2} are functions which extend down.
Under the non-flatness condition (0.4), we may use Lemma 3.12 of [M2], a detailed proof of which is given in [M3]. Therefore g is divisible by s^{k} for some k :

$$
g(z, \bar{z}, s)=s^{k} g_{1}(z, \bar{z}, s), \quad \text { with } g_{1}(0) \neq 0
$$

Division by \bar{g} in the class of functions which extend down is then possible because Corollary 4.8 of [BR3] applies. Conjugation of (6.3) gives

$$
\begin{equation*}
g=\bar{g}\left(1+\bar{g}^{m^{\prime}--1} \sum_{|\alpha|>0} \bar{A}_{\alpha}(\bar{g})\left|f_{1}\right|^{\alpha_{1}}\left|f_{2}\right|^{\alpha_{2}}\right) \tag{6.5}
\end{equation*}
$$

and hence $g^{m^{\prime}}=\bar{g}^{m^{\prime}}(1+\ldots)$ where the dots do not contain constant terms. From (6.4) we get

$$
\begin{array}{r}
D\left(f_{1}+T_{1}\left(f_{1}, f_{2}, g, \bar{f}_{1}, \bar{f}_{2}\right)\right)=v_{1} \tag{6.6}\\
D\left(g f_{2}+T_{2}\left(f_{1}, f_{2}, g, \bar{f}_{1}, \bar{f}_{2}\right)\right)=v_{2}
\end{array}
$$

where T_{1}, T_{2} have no linear terms in f and v_{1}, v_{2} extend down.
From the tangential finiteness assumption, Proposition 3.1 of [M2] asserts that

$$
L^{\beta} D(z, \bar{z}, s)=s^{2 l} D_{\beta}(z, \bar{z}, s) \quad \text { for all } \beta \in \mathbf{N}^{2}
$$

and there exists α such that $D_{\alpha}(0) \neq 0$.
Applying L^{α} to both sides of (6.6), we get

$$
\begin{aligned}
s^{2 l} D_{\alpha} f_{1}+s^{2 l} R_{1}\left(f_{1}, f_{2}, u\right) & =L^{\alpha} v_{1} \\
s^{2 l} D_{\alpha} g f_{2}+s^{2 l} R_{2}\left(f_{1}, f_{2}, u\right) & =L^{\alpha} v_{2}
\end{aligned}
$$

where u is a finite set of functions extending down and R_{1}, R_{2} do not contain linear terms in f. After dividing by $s^{2 l}$ and use of the implicit function theorem we obtain that f_{1} and $g f_{2}$ extend down. Hence with the same trick as above, f_{1} and f_{2} extend down. Finally (6.5) shows that g extends down.

Proof of Theorem 4. Because M is assumed to be of infinite type and h is transversally submersive, it follows from [M3] that

$$
g(z, \bar{z}, s)=s g_{1}(z, \bar{u}, s) \quad \text { with } g_{1}(0) \neq 0
$$

Therefore we may divide by \bar{g} in the class of functions which extend down.

Proposition 2.4 applies and with the above remark asserts that

$$
\frac{D f_{1}}{1+i f_{2} \bar{f}_{2}} \quad \text { and } \quad \frac{D^{5} f_{2}}{1+i f_{2} \bar{f}_{2}}
$$

extend down.
The proof of Theorem 2 in Paragraph 5 may be reproduced with adjunction of a factor $s^{2 l}$, where l comes from (0.3), in each formula from (5.1) to (5.5). Indeed, the following observations are used:
(1) If M is of infinite type, v is smooth and $p \in \mathbf{N}$ then $L^{\alpha}\left(s^{p} v\right)=s^{p} v_{\alpha}$, with v_{α} smooth.
(2) $D(z, \bar{z}, s)=s^{2 l} D_{0}(z, \bar{z}, s)$ (see [M3]).

References

[BHR] Baouendi, M. S., Huang, X. and Rothschild, L. P., Regularity of CR mappings between algebraic hypersurfaces, Invent. Math 125 (1996), 13-36.
[BJT] Baouendi, M. S., Jacobowitz, H. and Treves, F., On the analyticity of CR mappings, Ann. of Math. 122 (1985), 365-400.
[BR1] Baouendi, M. S. and Rothschild, L. P., Germs of CR maps between real analytic hypersurfaces, Invent. Math 93 (1988), 481-500.
[BR2] Baouendi, M. S. and Rothschild, L. P., Geometric properties of smooth and holomorphic mappings between hypersurfaces in complex space, J. Differential Geom. 31 (1990), 473-499.
[BR3] Baouendi, M. S. and Rothschild, L. P., A general reflection principle in \mathbf{C}^{2}, J. Funct. Anal. 99 (1991), 409-442.
[HT] Hanges, N. and Treves, F., On the local holomorphic extension of CR functions, Astérisque 217 (1993), 119-138.
[H] Hörmander, L., Complex Analysis in Several Variables, 3rd ed., North Holland, Amsterdam-New York, 1990.
[L] Lojasiewicz, S., Introduction to Complex Analytic Geometry, Birkhäuser, BaselBoston, 1991.
[M1] Meylan, F., Extension de germes de difféomorphismes CR entre hypersufaces analytiques réelles non essentiellement finies de \mathbf{C}^{3}, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 827-830.
[M2] Meylan, F., A reflection principle in complex space for a class of hypersurfaces and mappings, Pacific J. Math. 169 (1995), 135-160.
[M3] Meylan, F., Remarks on some invariants related to CR maps, Preprint, Université de Fribourg, 1996.
[S] Stanton, N., Infinitesimal CR automorphisms of rigid hypersurfaces of the space of n complex variables, Amer. Math. J. 117 (1995), 141-147.

Received May 2, 1996
Henri-Michel Maire
Section de Mathématiques
Université de Genève
Case postale 240
CH-1211 Genève 24
Switzerland
Francine Meylan
Institut de Mathématiques
Université de Fribourg
Chemin du Musée 23
CH-1700 Fribourg
Switzerland

[^0]: $\left.{ }^{1}\right)$ The second author was partially supported by the Swiss NSF Grant 2000-042054.94/1.

