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Wiggly sets and limit sets 

Chr i s tophe r  J. Bishop and  Pe t e r  W.  Jones  

Abs t rac t .  We show that a compact, connected set which has uniform oscillations at all 
points and at all scales has dimension strictly larger than 1. We also show that limit sets of 
certain Kleinian groups have this property. More generally, we show that if G is a non-elementary, 
analytically finite Kleinian group, and its limit set A(G) is connected, then A(G) is either a circle 
or has dimension strictly bigger than 1. 

1. S t a t e m e n t  o f  r e s u l t s  

The  purpose  of th is  pape r  is to  show t h a t  a connected ,  compac t  set which  

"oscillates" a r o u n d  every poin t  and  at  every  scale mus t  have d imens ion  s t r i c t ly  

larger  t h a n  1. A l t h o u g h  this  seems like a very  in tu i t ive  resul t ,  we do not  know any  

short ,  e l emen ta ry  p roof  and  ours is based  on the  " t ravel ing  sa lesman  theorem"  of the  

second au thor  [21] (also see [27]). We will a p p l y  the  resul t  to  l imi t  sets of ce r ta in  

Kle in ian  groups,  and  eventua l ly  prove a genera l i za t ion  of Bowen 's  d ichotomy:  a 

connec ted  l imi t  set of an ana ly t i ca l ly  finite g roup  is e i ther  a circle or has Hausdorf f  

d imens ion  s t r i c t ly  larger  t h a n  1. 

A dyadic  square  Q in the  p lane  is one of the  form Q=(2-nj, 2-'*(j+l)] x 

( 2 - n k ,  2 - n ( k + l ) ] .  For  a posi t ive  number  A>0 ,  we let  AQ denote  the  square  con- 

centr ic  wi th  Q bu t  wi th  d i ame te r  A d i a m ( Q ) ,  e.g., 2Q is the  "double" of Q. Given  

a set E in the  p lane  and  a square Q we def ine /3(Q)  as 

/3(Q) = d i a m ( Q )  -1  inf sup d i s t ( z , L ) ,  
LEs zcEN3Q 

where  E is the  set of all lines L in tersec t ing  Q. A connec ted  set wi th  the  p r o p e r t y  

t h a t  there  is a/30 > 0 such t h a t  ~E (Q) >/30 for every  Q wi th  �89 Q N E ~ 0 and  d i a m ( Q )  _< 

d i a m ( E )  is cal led uniformly wiggly. We shall  prove the  following theorem.  
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Figure 1.1. Definition of the ~'s. 

T h e o r e m  1.1. Suppose E c R  2 is a closed, connected set and is uniformly 
wiggly with constant/3o. Then d im(E)>  1+C/3~, where C is an absolute constant. 

This estimate is sharp (except for the choice of C) as can be seen by simple 
examples. A stochastic version of this theorem with an application to Brownian 
motion is given in [10]. The theorem is also true in R ~, but with different constants. 

Limit sets of certain Kleinian groups provide a natural class of uniformly wiggly 
sets. Consider a group G of M6bius transformations acting on the two sphere S 2. 
We say the group is Kleinian if it is discrete as a subgroup of PSL(2, C), (i.e., if 
the identity element is isolated) and we say it is elementary if it has a finite index 
Abelian subgroup. If G is not elementary, then the limit set, A ( G ) c S  2, is the 
accumulation set of any orbit. The ordinary set of G, ~(G),  is the complement 
of the limit set. The quotient ~ ( G ) / G  is always a union of (possibly branched) 
Riemann surfaces. 

T h e o r e m  1.2. I f  ~ ( G ) / G  is compact and A is connected then A is either a 
Euclidean circle on S 2 or it is uniformly wiggly (and hence has dimension >1). 

This result for quasi-Fuchsian groups was obtained by Rohde in [31] who also 
introduced a version of the uniformly wiggly condition. An alternative version of 
this condition is used in [36] and [37]. We also show that  limit sets of another class 
of groups are uniformly wiggly, namely the degenerate groups (Theorem 4.2). A 
Kleinian group action extends naturally from S 2 to a group of isometries of the 
hyperbolic 3-ball B 3. The Poincard exponent (or critical exponent) of the group is 

(~(G) = inf { s :  E exp(-sQ(O, g(O))) < o c / '  
"- G . )  
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where ~ is the hyperbolic metric in B 3. 

The group G is called analytically finite if f t (G) /G  is a finite union of finite 
type surfaces (i.e., each is compact except for a finite number of punctures). By 
the Ahlfors finiteness theorem [2], [6], all finitely generated Kleinian groups are 
analytically finite. If G is analytically finite, but ~ ( G ) / G  is not compact, then 
A need not be uniformly wiggly, but even in this case we will prove the following 
results. 

T h e o r e m  1.3. Suppose G is analytically finite and f~ is a simply connected, 
invariant component of ft(G). Then d i m ( 0 f t ) = l  if  and only if 5 ( G ) = l  if  and only 
if Of~ is a circle. 

C o r o l l a r y  1.4. I f  G is analytically finite then its limit set is either totally 
disconnected, a circle or has Hausdorff dimension > 1. 

C o r o l l a r y  1.5. I f  G is analytically finite and geometrically infinite then 
~(G)>I. 

In [9] we prove that  if G is analytically finite and geometrically infinite then 
dim(A)=2, but  this does not directly imply the corollary (as far as we know). 

Theorem 1.3 was first formulated by Bowen [11] for quasi-Fuchsian groups with 
no parabolics. The geometrically finite, cocompact Kleinian group case was proven 
by Sullivan [33] and by Braam [12]. See also [34], [26]. The general geometrically 
finite case was proven by Canary and Taylor in [15]. In this paper we complete 
the discussion by including the geometrically infinite groups (although our proof 
covers all cases at once). The fact that  the limit set is either a circle or has infinite 
length (and has tangents almost nowhere) follows from a more general result for 
divergence type groups by Pommerenke [29]. Pictures of limit sets can be found in 
several sources such as [13], [25], [28], and [35]. 

The remaining sections of this paper are organized as follows: 

Section 2: We recall some definitions and results. 

Section 3: We prove Theorem 1.1. 

Section 4: We prove Theorem 1.2. 

Section 5: We recall the basic properties of the Schwarzian derivative. 

Section 6: We prove Theorem 1.3. 

Section 7: We consider the case when f~ is a union of disks. 

Section 8: We prove Corollary 1.4 and Corollary 1.5. 

The first author thanks Ed Taylor for explaining the results of [15] and for 
suggesting the problem of proving the Hausdorff dimension of degenerate limit sets 
is strictly greater than 1. It was by considering this problem that  we were led to 
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the other results in this paper. We also thank the referee for a very careful reading 

of the manuscript  and numerous suggestions which improved it. 

2. Background 
First we recall the definition of Hausdorff dimension. 

function ~ on [0, oc), we define 

H ~ ( E ) = i n f { E ~ ( r j )  

and 

Given an increasing 

: E c U D ( x j , r j )  ~ rj <~}, 
J 

H~(E) = lim H~ (E). 

This is the Hausdorff measure associated to ~. H ~  is called the Hausdorff content. 
It  is not a measure, but has the same null sets as H~. When p ( t ) = t  ~ we denote 
the measure H~ by Ha  and we define 

dim(E)  = inf{e~ : Ha(E) = 0}. 

For c~=l we sometimes denote H1 by 1 (for "length"). An upper bound for dim(E)  
can be produced by finding appropriate coverings of the set. We will be more 

interested in finding lower bounds. The usual idea is the mass distribution principle: 
construct a positive measure # on E which satisfies #(D(x ,  r))~_Cr ~. This implies 
d i m ( E ) > a  since for any covering of E we have 

E r? ~ C -1 E #(D(zj ,r j))  > C-I#(E)  > O. 
J J 

Taking the infimum over all covers gives H ~  ( E ) >  C-lp.(E)> O, which implies that  
d im(E)  > a .  

A point xEA(G)  is called a conical limit point if there is a sequence of orbit 
points which converges to x inside a (Euclidean) non-tangential  cone with vertex at 
x (such points are sometimes called radial limit points or points of approximation). 
The set of such points is denoted Ac(G). The following is Theorem 1.1 of [9]. 

T h e o r e m  2.1. Suppose G is a discrete group of MSbius transformations with 
more than one limit point. Then 5(G)=dim(Ac)<dim(A). 

Next we want to show that  it is enough to estimate the Poincar6 series along 
an orbit in ~t(G) (rather than  along the orbit of 0EB3).  For zE~(G), let d ( z )=  

dist(z, 0~)  denote spherical distance. 
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L e m m a  2.2. If G is a Kleinian group, 0 is the center of B a and z0c f~(G)c  
0B 3, then d(g(zo))~-l-Ig(O)l for all gEG, with constants that depend on zo and G, 
but not on g. 

Proof. It clearly suffices to prove this with the origin replaced by any other fixed 
point xEB .  We may also assume that  the group is normalized so that  d iam(A)= 

1 dist(z0, A), let H be the d iam(S2)=l .  Let D be a disk around z0 with radius 
hyperbolic half-plane which meets S 2 in OD and let x E H  be the point closest to 0. 
Then z0 is one of the endpoints of the geodesic through x which is perpendicular 
to H.  Thus g(zo) is an endpoint of the geodesic through g(x) perpendicular to g(H). 
This implies 

dist (g(z0), Og(D)) >_ C -1 (1 -Ig(~)l) ,  

since both endpoints of the geodesic are at least this far away from Og(D). Since 
g(zo) cg(D) and g(D) does not hit A, we deduce dist(g(z0), A)_>C(1-Ig(x)l).  

Since A is separated from g(zo) by g(H) and A is assumed to have large diam- 
eter, g(zo) must be on the side of g(H) with smaller diameter. Thus 

dist(g(z0), g(x)*) <_ C(1-IgCx)l),  

where g(x)* denotes the radial projection onto S 2. Next, note that  since x is a 
fixed hyperbolic distance from the hyperbolic convex hull of A, there is a fixed M 
so that the spherical ball of radius M ( l - l g ( z ) l )  around g(z)* must hit a .  Thus 
dis t (g(z0) ,A)<C(1-1g(x) l ) ,  as desired. [] 

3. L a r g e  ft 's  i m p l y  d i m e n s i o n  > 1 

The main tool in the proof of Theorem 1.1 is the second author's "traveling 
salesman theorem" from [21]. It states that  if E is a set in the plane then the shortest 
curve F which contains E has length comparable (with universal constants) to 

diam(E) + ~ / 3 ( Q )  2 diam(Q), 
Q 

where the sum is over all dyadic squares in the plane. Similarly, the length of the 
shortest curve which passes within c of every point of E has length comparable to 

diam(E) + E /3(Q) 2 diam(Q), 
diam(Q)>e 

where the sum is over all dyadic squares larger than size e. 
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Proof of Theorem 1.1. Suppose E0 is compact,  connected and uniformly wiggly. 
Suppose Q is a square of side length d i a m ( Q ) = r = 2  -N_<diam(Eo) with �89 50. 
Our first objective is to show that  for small enough e > 0  (depending only on the/3o 
in the definition of uniformly wiggly) we can find more than  1000e -1 subsquares of 
Q of sidelength c diam(Q) with disjoint doubles and such tha t  each contains a point 

of E0 in its middle third. We will then apply the same argument to each subsquare 
and use the resulting nested collection of squares to build a measure # on E0. 

Define E=(EonQ)UOQ. Note that  E is connected since diam(Q)_<diam(Eo). 
Fix some integer n so that  2 -n  < r  (possibly much smaller). Because E is connected, 
there are more than  1 n ~r2 dyadic subsquares {Qj} of _2Q3 of size 2 -n  such that  
QjAET~O. To see this, consider concentric "annuli" between I Q  and _2Q made of 3 3 
squares of size 2-n;  there are l r2n  such and each must intersect E. See Figure 3.1. 

I I I I I I I I ] 1  

I I I I I l l l l l  

1Q 

Figure 3.1. Many squares must hit E. 

From this we deduce 

1 2 
E /3~(Q) diam(Q) > 5/30r. 

Q:diam(Q)=2 -n 

Thus for any integer k > l  (recall r = 2 - N ) ,  

N+k 
1 2 

E E /3~(O) diam(Q) _> 5k/3or. 
n=N§ Q:diam(Q)=2 -n 

Suppose Fk is the shortest curve in the plane with the property that  for each 
zEE we have dist(z, Fk)_<2 - N - k .  It  is fairly easy to check that  for squares with 
diam(Q) _> 1 0 " 2 - - N - - k / 3 0 1  , w e  have 
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Therefore 

N+k 

n = N + l  Q:diam(Q)=2 ~ 

/3~k (Q) diam(Q) _> ~ (k-10/3-1)/3o2r. 

1 2 Choose k>20/3o 1. Then the term on the right is >gkflor. 
By the second author's characterization of rectifiable curves in [21], the length 

of Fk is at least Co(diam(rk)+Zgkr), for s o m e  absolute constant Co. We claim 
that  this implies that  there are more than (Coflgkr-4r)C2 N+k boxes {Qj} of side 
length 2 -N-k such that  1Qj N E ~ .  

To prove this claim, let {zj} be a collection of points on Fk so that  jCjP implies 
Izj--zj ,  l~2--N--k, but so that  Uy B(zj, 2 - N - k + 2 )  c o v e r s  E. Let C be the collection 

{OQk} of all dyadic squares of size 2 -g-k  contained in Q which contain some zj. 
Let F =  UQ~ ~r OQj u Uj sj be the union of the boundaries of these squares, together 
with segments Sj which connect OQj with the point zj. Then obviously 

/ ( r )  < 6.2-N-k@(C).  

Since F has the property that  it passes within 2 - N - k  of every point of E and since 
Fk was defined to be the shortest such curve, we must have 

6.2--N-k4p(C) >_/(F) >_/(Fk) _> CO/~2]~2 - N  

and hence 
1 2 k #(c) _> ~c0~0k2. 

Now set c=2 -k. If k>600000/3o2Co I, then [C I ~ 100000c -I, and consists of disjoint 

dyadic squares of size c diam(Q) each of which contains a point of E. Replace 
s0 ,_ of the squares we can assume the each square by its triple. By throwing away ~ 

remaining ones have disjoint triples, and each hits E in its middle third, as desired. 

To finish the proof of the theorem, we build nested generations of squares 

using the construction above. The initial square Q0 forms the first generation. The 

squares of size g diam(Q0) constructed above form the first generation. In general, 

given an nth generation square containing a point of E0 in its middle third, we 

construct 1000c -I subsquares as above (with disjoint triples and containing a point 

of E0 in their middle thirds), and put these into the (n+l)st generation. 

We then define a measure It by assigning each nth generation square equal mass 

(namely (~/1000)n)). Since an n th  generation square Q has size c n diam(Q0), this 
measure satisfies 

It(Q) _< C diam(Q) ~, 
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where 
log s - l o g  1000 log 1000 

a -  - l q  - -  >1 .  
log s log (1/c) 

Since s = 2  -k and k~-flo 2 we get l o g o - l - r i o  2. This gives the estimate in the the- 
orem. It only remains to check that this inequality holds for all squares in the 
plane, but this is a standard argument. Thus by the mass distribution principle 
dim(E0)_>a> 1. [] 

Given a compact set K in the plane let f ~ = R 2 \ K  be its complement. A 
Whitney decomposition of ~2 is a collection of squares {Qj} which are disjoint, 
except along their boundaries, and such that  there is a C < o c  such that 

1 
dist(Qj, 0~)  < diam(Qj) < C dist(Qy, 0n) .  

The existence of a Whitney decomposition for any open set is a standard fact in real 
analysis (e.g., [32]). One can define {Qj} to be the maximal collection of dyadic 
squares in ~t such that  d iam(Q)<dis t (Q,  0n) .  This gives 

! dist (Q, 0~)  < diam(Q) < dist(Q, Oft). 
4 - -  - -  

f 

Figure 3.2. Whitney squares. 

C o r o l l a r y  3.1. Suppose K is connected and flK(Q)>flo>O for every square 
of the for~rt Q=IOQ ~ with Q~ a Whitney square for ~ (the complement of K) and 
diam(Q') <d iam(K) .  Then dim(K) > 1. 

Proof. To prove this we simply note that the hypotheses imply that fiK (Q)_> 
flo/C for every square intersecting K and some absolute C<o c .  If flK(Q)>I/IO0 
there is nothing to do (take C=100).  If IlK(Q)<_ 1/100 then Q contains a Whitney 
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square Q′ for Ω of comparable size with 10Q′⊂Q and so βK(Q)≥βK(10Q′)/C≥

β0/C. �

We should point out that in the previous result, one needs the estimate for

Whitney squares in all the complementary components of K. One can construct a

Jordan domain so that the β’s for Whitney squares of the bounded component are

all bounded away from zero, but so that the boundary has dimension 1.

4. Limit sets which are uniformly wiggly

Proof of Theorem 1.2. It suffices to show that if Λ is not uniformly wiggly,

then Λ is a circle. Consider a square Q with diam(Q)≤diam(Λ), 1
3Q∩Λ 6=∅ and

β=βΛ(Q) very small. Since Λ is connected we may pass to a subsquare if necessary

and assume that Λ∩β−1/2Q is contained in a strip S of width ≤Cβ1/2 diam(Q) and

that it “crosses” Q. Choose a point z1∈Ω∩3Q with distance diam(Q) from Λ. Since

Ω(G)/G is compact, we can find a group element g∈G so that dist(g(z1), Λ)>δ (in

Euclidean metric) for some δ depending on G, but not on z1. (This would be false

if Ω/G was not compact.) Since Λ is G-invariant, g(Λ)=Λ. On the other hand,

g(Λ) is contained in g(S)∪g(S2\β−1/2Q). See Figure 4.1.

Since lines map to circles under Möbius transformations, g(S) is the region

between two circles and the distance between these circles looks like at most Cβ1/2.

To see this let L be the line through z1 which is perpendicular to the strip S and

let z2 be the point on L midway between z1 and S. By Koebe’s distortion theorem

dist(g(z2), Λ) is also bounded uniformly away from 0. Let z3, z4 be the points

where L intersects the two sides of the strip S. The cross ratios of (z1, z2,∞, z3)

and (z1, z2,∞, z4) clearly differ by only a factor bounded by Cβ1/2. Thus the same

is true after we map by g. Since g(L) is perpendicular to the two circles bounding

g(S) and g(z1), g(z2) are bounded away from these circles, we see that g(z3) and

g(z4) are bounded away from g(∞). Thus the maximum width of g(S) is bounded

by Cβ1/2, as desired.

Similarly, g(S2\β−1/2Q) is contained in a small disk. Thus Λ is contained

in a neighborhood of a circle on the sphere where the width of the region can be

estimated in terms of βΛ(Q). Thus if βΛ(Q) is not bounded below, Λ must be a

circle. �

Its easy to see that if Ω/G is compact then Λ is uniformly perfect (e.g., [14],

[30]). Using this, the proof above gives the following corollary.

Corollary 4.1. Suppose Ω/G is compact. Then Λ is either contained in a

circle or βΛ(Q)≥β0 for every square Q such that 1
3Q∩Λ 6=∅ and diam(Q)≤diam(Λ).
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Figure 4.1. Co-compact groups have big ~'s. 

Next we will consider another class of groups which have uniformly wiggly 
limit sets. Suppose G is a finitely generated degenerate group, i.e., ~ ( G ) = ~  has 
a unique component and this component is simply connected. Such a group must 
be geometrically infinite, so results from [9] imply we actually have dim(A)=2,  but 
this is much harder, and does not directly imply the set is uniformly wiggly. 

T h e o r e m  4.2. If G is a finitely generated degenerate group then A(G) is uni- 
formly wiggly. 

Proof. If the Fuchsian equivalent G = O o G o ~  -1 has no parabolics, then we 
already know this (e.g., Theorem 1.2). Therefore we may assume G does have 
parabolics. Fix a small number 6 and for each parabolic fixed point of G, choose a 
generator ~j of the parabolic group fixing that  point and let BJ be the set of points 
in D which are moved less than hyperbolic distance 6 by t)j. Similarly, let B~ be 

the points moved by less than 16 by t)j- Let X = D \ U  j B~. Then X/G is compact. 

The domain O(BJ) must be a quasidisk with constant depending only on 6. 
To prove this, suppose gEG corresponds to t) and conjugate g so its fixed point 
is oc, i.e., g is a translation. Let 7 be an arc of length 6 on OBJ. By the Koebe 
distortion theorem its image is a smooth arc and ~(OBJ) consists of translations 
of this arc joined end to end, and hence is a quasicircle since it satisfies the three 
point condition: there is an M < c ~  so that if zl, z2, z3 are any three points on the 
curve with Zl on the shorter arc between z2 and z3, then 

Z - - Z  1 [ 
- - _ < M ,  Iz2-zll 
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(e.g., Theorem IV.4, [3]). Composing with MSbius transformations preserves quasi- 
circles, so any image of a horoball conjugate to B 1 is a quasidisk with the same 
constant. 

Now suppose A is not uniformly wiggly, i.e., suppose we have a square Q with 
�89162 diam(Q)_<diam(A) and /3=/3A(Q) is small. Let S be a strip of width 

1 /3diam(Q) centered on a line L containing ANQ. Choose a point zE gQ which is 
about  distance/31/2 from L. If we can choose z c ~ ( X )  then the proof of Theorem 1.2 
gives a contradiction, if/3 is small enough. 

So suppose z~g2(X). Then z is in the image of some horoball B~ and is moved 

less than hyperbolic distance 1~ by some element g of G. Let z '  be the reflection 

of z across L. By normal families, it is easy to see that  if/3 is small enough then g 
moves z '  by less than  a in the hyperbolic metric on ft (because in the limit as/3--+0, 
the t ransformation tends to one preserving L and is symmetric  with respect to L). 
This means that  z'Er 

Q 

Figure  4.2. Degenera te  l imit  sets  canno t  have  smal l /3 ' s .  

Thus z and z ~ are both  in ~ ( B ] )  CQ which is a quasidisk with constant depend- 
ing on G but not on z, Q or/3. The boundary of this quasidisk must intersect the 
segment connecting z to z '  in at least two points and must  leave Q between these 
two points. Thus if/3 is small enough the three point condition must be violated, 
giving a contradiction. This proves the result. [] 
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5. T h e  S c h w a r z i a n  d e r i v a t i v e  

The Schwarzian derivative of a locally univalent function f is defined by 

rs,,(z) 1, 1 2 
s(f)(z) = L f,(z) j - ~ L f~T~- j  

The following facts are standard (e.g., see [17]). First, S ( f ) - O  if and only if f is a 
Mhbius transformation. Furthermore, S satisfies the composition law 

S(fog) = S ( f ) ( s  

In particular, if g is M6bius then 

S( fog)=S( f ) (g ' )  2 and S ( g o f ) = S ( f ) .  

If G is a Kleinian group and ft is a simply connected invariant component of ft(G) 
and @: D--+ft is a Riemann mapping then IS(@)I(1-Iz12) 2 is constant along orbits of 
the Fuchsian equivalent G=(I) -1 oGo~. Thus either �9 is M6bius or IS(q5)l(1-Iz12) 2 

bounded away from zero along some orbit of G. Suppose f is analytic on D. If f 
is univalent and p= log  f~ then 

6 6 
IZ(f)(z)l_< ( l_ lz l2)  2 and ]~'(z)l-< l_]z]~. 

The following is from [8] but we give a proof for completeness. 

L e m m a  5.1. There is a C<oc such that if q~: D--+ft is univalent and Oft is 
rectifiable (i.e., has finite 1-dimensional measure) then 

f / l r  l Is(r  2(1-  I;ff) ~ d~ < dy Cl(Oft). 

The same holds if �9 is only defined on a Lipschitz subdomain :DcD.  

Proof. The lemma is an application of the following version of Green's formula. 
Suppose that  F is holomorphic on D and satisfies 

/ / D  lF'(z)12(1-lzl) dxdy < o o .  

Then F E H 2 ( D )  (the Hardy space) and 

~OD IF(2')12 Ir(~ IF'(z)12(1-1~l)d~dy" 
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Setting F(z)=~-~ n anz n, then the proof is an easy calculation using the fact that 
the right hand side is ~ . ,  lanl 2 and that the left hand side is 

co fO 1 oo (21_ n laol2+En2lanl2 r2(n-1)(1-r)rdr=laol2+En2lanl2 
n = l  n = l  

o o  

-~ ~ la~l 2- 
n ~ 0  

2 1) 

A similar calculation shows 

I D  IF(z)12 ds(z) ~ IF(0)I2 +lF'(0)12 + ] / D  IF"(z)12(1 - Iz[) a dx dy. 

We apply this with F = ( ~ ' )  1/2. Then if ~=log(~ ' ) ,  ' 1 , F =~(~ )~/~(~'), and 

F '! _1 ( r  ~ 1/2 { ~ "  + 1 (~/~"12 ~ 1 ((I)') 1/2 (S((I))  -}- ( ~ ' ) 2 ) .  
= 2 \  ] \ 2 \  ~ ' ]  ] = 2  �9 

Thus 

f /D w(z)l ls(e)12(1-M) 3 dx e <_ C f fD W(~)I bS(e)+(~'(~))212(1-M) 3 dx dy 

+ o f f  D Ig)'(z)14(1--Izl) 3 dxdy 

<_ c f fD If"@)l~ (1-Izl) ~ d~ dy 

+ C s u p  I ~ ' ( z ) 1 2 ( 1  - I~12) 
z 

x/fD If'(z)I 2 (1- Izl) dx dy 

Since (I) is univalent, SUpz I~'(z)12(1 - Izl 2) is uniformly bounded and so by the for- 
mulas above, each of the two terms on the right is bounded by C f lgYl dO<_Cl(Oft). 

The same proof works for Lipschitz domains, using the following version of 
Green's theorem for such domains ([16], [201). Suppose 067P, 7? is Lipsehitz with 
constant M, and that dist(0, 0:D)~diam(2?)=1. Then if d(z)=dist(z, OZ)), 

i ~) IF(z)l 2 ds(z) -~ tF(O)12+//z~ ]F'(z)12(1-d(z)) dxdy, 

2 IF(z)12ds(z)~--IF(O)12+lF'(O)I2+ IF (z)l (1-d(z))adxdy. 
7? 

[] 
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Although we will not need it in this paper, we should mention that  there is a 
close relationship between the Schwarzian of a Riemann mapping ~ and the i t s  of 
the corresponding 0~. In [7] the following is proven: suppose E is compact and 
connected, f ~ = C \ E  and q): D+~2 the Riemann map. Then 

o o  

IS(~) (w)](1 -Iwl2) 2 _< C E flE(2nQ)2-"~ 
r t ~ 0  

where r=dist(O(w),Oft). The number # satisfies 0 < # < 1  but can be taken as 
close to 1 as we wish. The constant C depends only on the choice of #. There is 
also a version of this for disconnected E using the universal covering map on the 
complement. Thus large Sehwarzian implies large i ts ,  although the converse need 
not be true. 

A set { z n } c D  is called non-tangentially dense if almost every point of 0D is a 
non-tangential limit point of the set. Although in this definition the angle associated 
to each boundary point may be different, this is not really a restriction; if we fix any 
positive angle and only consider convergence within cones of that angle then almost 
every boundary point is still a limit point (e.g., see the proof of Theorem IX.5.1 
of [19]). Thus if we fix any 0 < C < e ~  and let In be the interval on 0D with center 
zn/Izn t of length C(1 - Izn  1) we see that  {zn } is non-tangentially dense if and only 
if almost every point of the circle is in arbitrarily small In's. 

The orbit of a Fuchsian group is non-tangentially dense if and only if the group 
is divergence type, i.e., 

~ ( 1 - 1 g ( 0 ) l )  = o~. 
9CG 

See, for example, Theorem 6.3.3 of [26]. If G is analytically finite with an invari- 
ant simply connected component ft, then the Fuehsian equivalent G is divergence 
type. The following is a quantitative version of a result of Pommerenke (Theorem 4 
in [29]). 

L e m m a  5.2. Suppose G has an invariant simply connected component 
A 

which is not a disk and that the Fuchsian equivalent G of G is divergence type. 
Let Zo be in the G orbit of 0 and let Io be the interval centered at zo/izo] of length 
lO(1-1zo] ). Let ~ be a Riemann mapping onto ~ such that c=]S(O)(O)]>O and 
for ICIo let t I={ t z : zEI} .  Then 

l( r  ( 1 -  rizol)I) ) 
dist(~(Zo), OQ) -~ ~ '  

as r--~O with estimates that only depend on G, III/]Io] and ]S(O)(O)I. 
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Proof. By rescaling we may assume that dist(O(Zo),Of~)=l. Suppose that 

�9 ((1-rlzol)I) has length _<L for all O < r < l .  Then ~ '  is in the Hardy space H ~ for 
the Carleson square with base I, so by the non-tangential maximal theorem there 

is a compact set E C I  with IEI_>�89 so that for each xEE there is a cone (say of 
angle �89 in which 

1 
- - < I ~ ' I < M ,  
M - 

where M depends only on L. By taking the union of these cones we construct a 
"sawtooth" domain W c D  such that M-I<B~'B<M on W. 

Figure 5.1. The sawtooth domain. 

For each orbit point z~EW, let D~ denote the intersection of W with the disk 

centered at z~ of radius 1 ( 1 -  I Zn I)" By the Koebe 1 theorem l a2'] > C l(~'(Zn)l on all 
of Dn and by subharmonicity, 

D~ ]S((I))12 dx dy > C area(Dn)lS((~)(zn)l 2. 

Thus 

/ s  - dy>_ [[ W(z)l(1- ay ]S(~)(z)l~(1 I~]~) ~ dx Cc 2 izl)  - 1  dx 
n J J D n  

> CM-l~2(1- lz~l ) .  

Therefore by the Lipschitz case of Lemma 5.1, 

n>-C//wlgP'(z)l[S(eP)(z)12(1-1zl2)3 dxdy>-CM-le2 E 1-iZnl" 
n : z , ~ E W  

We want to see that the last term grows to infinity as r--*l with an estimate 

which is independent of W, giving a contradiction. Suppose this was false, i.e., there 
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are sequences of sawtooth domains {Wn} and radii {rn} so that |En|=|∂Wn∩rnI |≥
1
2 |I | and ∑

j:zj∈Wn

1−|zj| ≤C <∞,

for all n. Passing to the limit (in the Hausdorff metric) of some subsequence we get

a sawtooth domain W so that |E|=|∂W∩I |≥ 1
2 |I | and

∑

n:zn∈W

1−|zn| ≤C <∞.

(We leave it as an easy exercise to verify that there is a limiting domain W with

these properties.)

To show this is impossible we use the Vitali covering lemma: if E is a set and

{Ij} is a collection of intervals such that each point of E is contained in intervals in

{Ij} of arbitrarily small length, then there is a disjoint subcollection which covers

almost every point of E (e.g., see [38]).

By assumption, Ĝ has non-tangentially dense orbits, so if we associate to each

orbit point zn the interval In of length 1−|zn| centered at zn/|zn|, then almost

every point of the circle is in infinitely many of the intervals F={In}. Let F be the

subset of ∂W∩I which is Vitali covered by {In}. Then |F |≥ 1
2 |I | and we can use

the Vitali covering lemma to obtain a disjoint covering of almost every point of F

by intervals in {In}. In fact, by repeated applications of the covering lemma we can

find infinitely many collections Fk={Ik
j }⊂F each of which is a disjoint covering of

almost all of F , and so that no interval belongs to more than one collection. Thus

∑

n:zn∈W

1−|zn| ≥
∑

k

∑

In∈Fk

|In|=
∑

k

1
2 |I |=∞.

Therefore Φ(rI) must have length tending to ∞ as r→1 with estimates depending

only on I , the group Ĝ and |S(Φ)(0)|.

If we divide I0 into N equal intervals, we can apply the proof to each interval

and then by taking the minimum growth rate for l(Φ(rI)), get an estimate which is

valid for all N intervals. Since any interval of length ≥4π/N contains at least one

of the above intervals, the growth rate also holds for such an interval. This finishes

the proof. �

The hypothesis in this result that the Fuchsian equivalent be divergence type is

necessary. Astala and Zinsmeister [5] have shown that any convergence group (i.e.,∑
γ∈G(1−|γ(0|)<∞) has a quasiconformal deformation to a Kleinian group whose

limit set is a rectifiable curve but not a circle.
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6. Proof of Theorem 1.3

Proof of Theorem 1.3. If the limit set is a circle then clearly dim(∂Ω)=1 and

hence δ≤1 by Theorem 2.1. Since it is easy to see that δ≥1 under the hypotheses

of the theorem, we get δ=1. Thus to complete the proof we need only show that if

Ω is not a disk then δ>1.

So assume Ω is not a disk. Let Φ:D→Ω be a Riemann mapping and normalize

so that |S(Φ)(0)| 6=0. Let Ĝ=Φ−1 � G � Φ denote the Fuchsian equivalent of G. Let

{zj} be the orbit of 0 under Ĝ and for each j, let Ij⊂∂D be the interval on the

boundary centered at zj/|zj | with length 1−|zj|. We let Sj denote the Carleson

square with base Ij ,

Sj = {z : z/|z| ∈ Ij, 1−|Ij | ≤ |z|< 1}.

Let

dj = d(Φ(zj)) = dist(Φ(zj), ∂Ω)' (1−|zj|)|Φ
′(zj)|.

We will show the following lemma.

Lemma 6.1. There is a C<∞ (depending only on G) such that if g∈Ĝ\{Id},

and z0=g(0) then there is a collection of orbit points {zk}={gk(0)}⊂S0 such that

(1)
∑

k dk≥2d0,

(2) 1
2 (1−|z0|)≥(1−|zk|)≥(1−|z0|)/C,

(3) the intervals {Ik} are disjoint and Ik⊂I0 for all k.

Note that conditions (1) and (2) imply
∑

k d1+ε
k ≥d1+ε

0 , if ε is small enough (de-

pending on C). Using condition (3), we can break the orbit of 0∈D into generations

Gn so that ∑

zk∈Gn

d1+ε
k ≥

∑

zk∈Gn−1

d1+ε
k ≥ 1,

which implies ∑

zk∈Ĝ(0)

d1+ε
k =∞.

By Lemma 2.2, this proves δ(G)>1.

Thus it suffices to prove Lemma 6.1. Let Φ:D→Ω be a Riemann map, normal-

ized so that S(Φ)(0) 6=0. Conjugate G so that Φ(0)=∞ and diam(∂Ω)=1. If Ω/G

is a surface with punctures, then we can find a G invariant collection of disjoint

balls B1={B1
j } in Ω, each invariant under a parabolic element of G and so that(

Ω\
⋃

j B1
j

)
/G is compact (i.e., we are taking a neighborhood of each puncture on

Ω/G and lifting it to Ω). This is the only place in the proof where we use analytic

finiteness.
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Each B~ is thus conjugate to one of a finite subcollection and each ball has a 
parabolic fixed point of G on its boundary. To each ball in B1 we associate smaller 
invariant balls B2cB~ so that  the hyperbolic distances between OB~ and OB j is 1. 

Also any point of ft which is outside [Jj B~ is within a bounded hyperbolic distance 
of the orbit of c~. Let C1 denote this bound. 

If ~t/G has no punctures, just replace the collections Bj by the empty set in 
the proof that  follows. Note that  in this case every point of ~ is within a bounded 
hyperbolic distance of the orbit of c~. 

For each t > 0  consider the level line of Green's function in the disk 

Ft = { z :  Izl = l - t } ,  

and for each orbit point zy eG(0)  let 

I'~ =Ft(l_lzyl)N•j. 

The first thing we want to see is that  the image of F j is very long if t is small enough 
(independent of j ) .  

Figure 6.1. Level lines for Green's function. 

L e m m a  6.2. For any M > 0  there is a to such that if t<_to then 

l(~5(FtJ)) > Mdj. 

Proof. This is just Lemma 5.2. [] 

We would like to take the orbits for Lemma 6.1 to be near the curve F~. More 

precisely, we will break Ft 3 into unit hyperbolic segments {Tk} and to each segment 
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associate the closest orbit point zk. If there were no parabolic points then each orbit 
point would be associated to a bounded number of segments, say N (depending only 

on G) and by the standard distortion theorems for conformal maps, 

Thus by throwing out repeated segments we would have a collection of points zk E Sj 

with 

k 

and 

dk > Cdj 

(where C depends on t and constants in certain distortion theorems for conformal 

maps). This proves the Lemma 6.1 when there are no parabolics. 

If the surface f t /G  has punctures, then there may be points of P3 t which are 

very far from the closest orbit of 0, and we need to replace such pieces by new curves 

which are closer to orbit points. The idea is that  if F j passes through the "bottom 
half" of a horoball B in the unit disk with tangent point p on the unit circle, then 

we replace Ft j NB by the arcs 

F B = (OBN{z : 1 - I z l  <_ t(1-IZo I)})\B(p, t ( 1 - I z j  I)). 

See Figure 6.2. Then the Euclidean distance of FB from the unit circle is greater 

than eBt(1--[zj I) where CB is a positive constant depending only on the conjugacy 

class of B. 

I t 

Figure 6.2. Changing F inside horoballs. 
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The arcs ΓB remain within a bounded hyperbolic distance of the orbit of 0.

Most importantly, Beurling’s projection theorem implies that the length of Φ(ΓB)

is bounded below by a universal constant times the length of Φ(Γj
t∩B). To see

this, recall that Beurling’s projection theorem (e.g., [4]) says that if Ω is simply

connected and z0∈Ω then

ω(z0, ∂Ω∩D(x, r), Ω)≤C
( r

dist(z0, ∂Ω)

)1/2

,

for any disk D(x, r). In particular, if a subset of ∂Ω has large harmonic measure

with respect to z0, it must have diameter bounded away from zero by a multiple of

dist(z0, ∂Ω).

Cut Γj
t∩B into unit hyperbolic segments {γj} and project each, except the

center one, vertically onto an arc γ∗
j of ΓB . Then γ∗

j has harmonic measure bounded

uniformly away from zero with respect to wj , the center of γj . Thus by Beurling’s

theorem, Φ(γ∗
j ) must have length bounded below by a universal constant times

dist(Φ(wj), ∂Ω), which by Koebe’s distortion theorem, is comparable to l(Φ(γj)).

The center piece of Γj
t∩B is handled by using Koebe’s theorem to compare it to

adjacent arcs.

Thus we have proved the following lemma.

Lemma 6.3. For each zj there is an arc Γ̃j
t consisting of pieces of Γj

t and

arcs of horoballs such that

(1) Γ̃j
t⊂Sj∩{|z|≤1−εt(1−|zj|)},

(2) l(Φ(Γ̃j
t ))≥Mdj,

(3) every component of Γ̃j
t has hyperbolic length at least 1,

(4) each point of Γ̃j
t has at most hyperbolic distance C1 from G(0).

We can now finish the proof of Lemma 6.1 just as in the case without parabol-

ics described above. This finishes the lemma and hence completes the proof of

Theorem 1.3. �

7. Groups with round components

Suppose G is a finitely generated Kleinian group and Ω(G) contains only com-

ponents which are round disks. Then either Ω(G) consists of exactly two compo-

nents or has infinitely many components which are disks. In the first case, G is an

extended Fuchsian group and the limit set is a circle. In the second case Λ must

have dimension >1 by a more general result of Larman [23]: there is an ε>0 so

that if {Dj} is any collection of three or more disjoint open disks in the plane, then

dim
(
R2\

⋃
j Dj

)
≥1+ε.
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Theorem 7.1. Suppose G is an analytically finite Kleinian group and Ω(G)

contains infinitely many components which are disks. Then dim(Λ(G))≥δ(G)>1.

This is slightly different than Larman’s result because we do not insist that

every component be a disk. This is a known result; it is a special case of Theorem 1

of [15] which Canary and Taylor prove using a result of Furusawa [18]. It is also

contained in results of Sullivan and of Patterson. Some very interesting pictures

of this type of limit set appear in [13]. Further results on such limit sets and the

corresponding groups are given in [22].

We include a short proof of Theorem 7.1 for completeness. It is a fairly stan-

dard computation involving Hausdorff measures. Let D1, D2 be distinct round

components with disjoint closures. Denote the stabilizers by G1 and G2. Since the

orbit of D1 under G2 accumulates densely on ∂D2 and vice versa, we may assume

(by choosing new disks if necessary) that

dist(D1, D2)≥ 1,

diam(D1)≤
1

1000 ,

and the double of each disk is contained in a fundamental polygon of the other

group (so the translates of the doubles are disjoint).

Fix values of δ>0 and N <∞. Suppose we construct a Cantor set E by an

iterative construction in which a disk D is replaced by at most N disks {Dj} such

that

(1) Dj⊂2D, and {2Dj} are disjoint,

(2) δ diam(D)≤diam(Dj)≤diam(D)/100,

(3)
∑

j diam(Dj)≥2 diam(D).

Then it is easy to see that dim(E)≥α(δ, N)>1.

D1 D2

Figure 7.1. Constructing a Cantor set.
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For D1 we can choose 5, N and such disks {DJ} by taking part  of the orbit 

of D2 under G1 (using the fact that  G1 is divergence type).  Similarly for D2 
and {D2}. At a general step in the construction suppose we have a disk D '  which is 

a "child" of D"  (i.e, D'c2D" and diam(D')_<diam(D")/100) .  Then D '  corresponds 
to either D1 or D2 under the action of GI*G2, so assume it is D1. Then there is an 
element gEGI*G2 so that  g(DI)=D' and g(D2)=D". It  is easy to check that  g has 
bounded distortion on 2D1 (since it corresponds to the much smaller disk D') .  Thus 
{g(D~)} satisfy the desired conditions with respect to D '  and the construction may 
be continued (the constants may be different, but we have uniform bounds). The 
bounded distortion also shows that  the orbit of a single point in the first generation 
disk stays near the center of each higher generation disk and this shows 5(G)> 1 as 
well. 

8. P r o o f  o f  C o r o l l a r y  1.4 a n d  C o r o l l a r y  1.5 

Proof of Corollary 1.4. Suppose G has a connected limit set. Then any com- 
ponent ft of ft(G) is simply connected. The subgroup fixing any component ft of 
ft(G) is a finitely generated Kleinian group Ga  and ~ is an invariant component 
of its ordinary set. Thus by Theorem 1.3 either d im(A(G))>  1 or every component 
of ft(G) is a disk. If the latter case holds then either Ft(G) has two components 
or infinitely many. If it has two then A(G) is a circle. Otherwise A ( G ) = C \  [.Jj Dj 
for some infinite collection of disjoint open disks. Thus d im(A(G))>1  by Larman 's  
theorem [23] or Theorem 7.1. 

It  follows from the Klein-Maskit  combination theorems that  either A(G) is 
totally disconnected or A(G) contains a connected component  which is itself the 

limit set of a finitely generated subgroup (see e.g. [1], [24]). If  this component is 
not a circle then we are done by Theorem 1.3. If the component  is a circle but 
A(G) is not then there are infinitely many circular components and the argument 
of Section 7 shows d im(A)>  1. [] 

To deduce Corollary 1.5, we need to show that  the first two cases of Corol- 
lary 1.4 do not occur if G is geometrically infinite. First, if G is analytically finite 
and A is a circle then G is ~ c h s i a n  (or has an index 2 Fuchsian subgroup) and 
must be geometrically finite. Secondly, it follows from the Klein Maskit combina- 
tion theorems that  if G is analytically finite and A(G) is totally disconnected then 
G is geometrically finite. Thus the third case of Corollary 1.4 must hold and this 

implies Corollary 1.5 
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