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The H p corona theorem in analytic polyhedra 

J 6 r g e n  Boo(1)  

A b s t r a c t .  The H p corona problem is the following: Let g l ,  -.. , grn be bounded holomorphic 
functions with 0<5_<}-~. Igil. Can we, for any HP function ~, find H p functions ul  ,... ,Urn such 
that ~g iu i=~o?  It is known that the answer is affirmative in the polydisc, and the aim of this 
paper is to prove that it is in non-degenerate analytic polyhedra. To prove this, we construct a 
solution using a certain integral representation formula. The H p estimate for the solution is then 
obtained by localization and some harmonic analysis results in the polydisc. 

1. I n t r o d u c t i o n  a n d  s t a t e m e n t  of  t h e  resul t  

T h e  H p co rona  p r o b l e m  is t h e  fol lowing:  G i v e n  g = ( g l ,  ... , g , , ~ ) E H  ~ such  t h a t  

0 < 5 < ~  ]g~l, c an  we for all  ~ E H  p f ind  u = ( u l , . . .  , U m ) E H  p such  t h a t  g l u l + . . . +  

g,~u,~ = ~ ?  I f p = o c ,  th i s  is t h e  t r u e  c o r o n a  p rob lem;  to  f ind b o u n d e d  f u n c t i o n s  ui .  If  

t he  c o r o n a  p r o b l e m  is solvable,  t h e n  t h e  H p co rona  p r o b l e m  is solvable ,  too,  because  

if we solve t he  co rona  p r o b l e m  g l v l + . . . + g , ~ v , ~ = l ,  t h e n  t he  f u n c t i o n s  u i = v i ~  will  

solve t he  H p co rona  p r o b l e m  g l U l + . . . + g ~ u , ~ = ~ .  I n  one  var iab le ,  t he  converse  

is also t r u e ~ f  we c an  solve t h e  H p c o r o n a  p rob l em,  t h e n  t h e  c o r o n a  p r o b l e m  is 

also solvable ,  see [An3]. Hence  t h e  c o r o n a  p r o b l e m  a n d  t he  H p c o r o n a  p r o b l e m  are 

equ iva l en t  w h e n  n =  1. Th i s  is n o t  t r u e  in  h igher  d imens ions .  

I n  t he  u n i t  disc, n =  1, t he  c o r o n a  p r o b l e m  is solvable;  th i s  is t he  classical  r esu l t  

of Car leson .  W h e n  n > l ,  t h e  c o r o n a  p r o b l e m  is in  gene ra l  n o t  poss ib le  to  solve, n o t  

even  in  s m o o t h  p s e u d o c o n v e x  d o m a i n s ,  see for e x a m p l e  [FS] or [S]. I t  is n o t  k n o w n  

if t he  co rona  p r o b l e m  is so lvable  in  s t r i c t ly  p s e u d o c o n v e x  d o m a i n s ,  or  even  in  t he  

u n i t  ba l l  of C n. T h i s  leads  to  s t u d y i n g  t h e  H p co rona  p r o b l e m  for p < o c  ins tead ,  

a n d  th i s  was o r ig ina l ly  done  in  [Anl] .  For  p < o c ,  some  pos i t ive  resu l t s  are  known .  

In  [Am], [Anl] ,  [An2], [An3], [AC1], [AC2], t h e  H p co rona  p r o b l e m  is solved u n d e r  

(1) I am very grateful to my advisor, Mats Andersson, for proposing the subject of this paper 
and for showing great interest in the project. I also want to express my thanks to Hasse Carlsson 
and Joaquim Ortega Cerd?~ for many helpful discussions. Finally, I wish to thank the referee for 
several comments which helped to improve the exposition. 



2 2 6  J 6 r g e n  B o o  

different conditions. The problem is solved for 0<p_<2 in a large class of weakly 
pseudoconvex domains and for all p < c c  in strictly pseudoconvex domains. The 
subject of this paper is to solve the H p corona problem in non-degenerate analytic 
polyhedra when l < p < c c ;  this is a generalization of the results in [Li], [L2], where 
the problem is solved in the polydisc. 

Definition 1. A bounded domain f ~ c C  n is an analytic polyhedron with N 
defining functions fi if 

a: { z~Cn: l f i ( z ) l< l ,  i = 1 , . . .  ,N},  

where the defining functions are holomorphic in some neighbourhood of ~. 
skeleton cr is the part 

of 0~2, where 

Its 

I I 
o z Q . j  0-1 

l<_Ii<...<In <_N 

~ i = { z ~ =  If~(z)l =1, ioN}. 

That  ft is a non-degenerate analytic polyhedron means that  0fI1A...AOflk r on 
{I/ i l l  . . . . .  I /rkJ=l}.  [] 

Note that the polydisc D n in C n is a non-degenerate analytic polyhedron with 
n defining functions. Its skeleton is the torus T n. 

Near each point on the boundary of a non-degenerate analytic polyhedron, the 
non-degeneracy condition assures that  we have a holomorphic change of variables, 
where the functions defining that  part  of the boundary are (some of) the new 
coordinates. In particular, each point on the skeleton has a neighbourhood that  is 
biholomorphically equivalent to a neighbourhood of some point on the torus in C n 
in such a way that points in the polyhedron correspond to points in the polydise. 

In C n, an analytic polyhedron is degenerate if more than n edges {z:tfil=l} 
intersect. For example, a non-trivial intersection of two discs in the plane is a 
degenerate analytic polyhedron. Hence, the only non-degenerate analytic polyhedra 
in C are the ones that  locally are defined by one single defining function. When 
n > l ,  we have the possibility of non-degenerate analytic polyhedra with more than 
n defining functions such that  the edges intersect in a more complicated way. 

Example 1. In C 2, consider the following analytic polyhedron: 

f l  (z) = Z l ,  

a={zeC2: l f i ( z ) l<l ,  i =  1,2,3}, f2(z)=z2, 

f3(z) = 4zlz2-2; 
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in other words, ft is the intersection of D 2 with the set {zcC2:]4zlz2-2]<1}.  
If ]fl(z)[=]f2(z)]=l, then the point z does not belong to ~; ]f3(z)l>2. Assume 
that  ]fl(z)]=]f3(z)[=l. (Such points z exist, for example (1, 3).) Then ]f2(z)l= 
]z2]<-34, so zEc~. Furthermore, OflAOf3=4zldzlAdz2r there. Thus ft is non- 
degenerate. [] 

Example 2. Of course, it is possible to have non-trivial non-degenerate analytic 
polyhedra with more than one defining fimction in C, as long as any two of those 
functions never have modulus 1 at the same time. Consider the annulus 

A = { z E C : I  <tz[<2 }. 

This is a non-degenerate analytic polyhedron defined by the functions f l (z)=�89 
and f2 ( z )=l / z ,  both holomorphic in a neighbourhood of A. [] 

The spaces H p in analytic polyhedra are defined as follows. 

Definition 2. For a non-degenerate analytic polyhedron f~, let 

f t ~ : { z e C n : l f i ( z ) l  < 1 - c ,  i - - l , . . .  , N } .  

Then ft~ are non-degenerate analytic polyhedra for small e > 0. Let a~ be the skele- 
ton of ft~. We define HP(ft) to be the set of CE(9(ft) such that  the HP-norm of 

r I[r IIr is finite. The space H~(f~)  is the space of bounded 
holomorphic functions in ft. [] 

The main result of this paper  is the following. 

T h e o r e m  1.1. Let f~ be a non-degenerate analytic polyhedron. Assume that 
giCH~(~2), l < i < m ,  satisfies 0~5~E~__ 1 [gil for some 5. Whenever ~EHP(ft), 
l < p < o c ,  there are u i E H P ( ~ ) ,  l <i<m,  such that ~=~i~=1 g~u~. 

The H p corona problem has already been solved in the polydisc. In this paper  
we will solve the problem in the more general case of the polyhedron. To do this, we 
will use a certain integral representation formula for holomorphic functions (see [B]) 
generalizing the Well formula; this will yield an explicit solution. The idea is to 
write ~ as an integral where we can make a factorization in the kernel to obtain 
u, and methods related to those in Wolff's proof of the corona theorem will then 
be used to get the H p estimate. The method will be different from tha t  of [L2], 
where the problem was solved by studying the Koszul complex and solving certain 
0-equations, but the core of the H p estimation, some nontrivial estimates in product 

domains, will essentially be the same. 
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Remark 1. We think that  the theorem probably is true even for the case p = l ,  
but this is not considered here. The method of proof used in this paper would 
not carry over to that  case without major modifications. In the proof we use 
duality between L p and Lq, so to go along the same lines one would have to use 
duality between L 1 and BMO. For instance, a version of Lemma 3.2, saying that  
the weighted Cauchy operator maps BMO to BMO, would have to be proved; but 
it is not obvious, at least not to the author, that this result is true. 

Some words on the case 0 < p < l :  H p for p < l  is very different from the case 
p > l ,  and to study the problem in that case one would probably have to rely on 
some other technique, for instance atomic decompositions. 

A major part of the proof of Theorem 1.1 is the localization, and a study of 
so called Hefer forms. We will here give an example, where we make considerations 
analogous to those in the proof. 

Recall Weil's integral representation formula (see, for instance, [A]). Let ft 
be a non-degenerate analytic polyhedron, say f t={ i f i  I <1, i = 1 , . . . ,  N}. Since the 
defining functions are holomorphic across the boundary of ft, we can find Hefer 
functions, that  is holomorphic functions H/k satisfying 

n 

k y ]  (r z)(r = 
k=l 

Define the Hefer forms hi by hi(C, z ) = E 2 =  1 H)(C, z)dCk. For any p EO (~) ,  

p(z) = E 1 f~ hi(C, z) A 
I �9 iCI 

where the smnmation is performed over strictly increasing multiindices. Consider 

the n x n-matrix Hz (C, z) = [H~ (C, z)]igr '~ l<k<~_. As AiCI hi =de t  Hz de1A... AdC,~, Well's 
formula can also be written 

1 f~ p(~)detHt(C,z)dClA...AdC~ 
~(z)  = E (27ri)n H i E I ( f i ( C ) - f i ( z ) )  

I z 

Let us consider the simplest case, where ft is a biholomorphic image of the poly- 
disc D~; ft is defined by the n functions fi: ~--~D which form a global, holomorphic 
change of variables. Introduce the new variables ~i=f/(C) and x i= f i ( z ) ,  from this 
~ET ~ and xCD ~. Furthermore, if we by 0C/0~ denote the Jacobian matrix of the 
change of variables, then 

9 (  
de1A... Aden = det ~@ d~t A... Aden a~ 
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so the Weil formula transforms to 

1 IT ~o(~)detH([,x)det(O(/O~)(~)d~lA...Ad[n 
~ ( x ) -  (2~i)n n (~ - -XO  ... (~n--Xn) 

Since 
0( 

det H(x, x) det ~ ( x )  = 1, 

this is nothing but Cauchy's formula applied to the holomorphic function 

or 
{, , ~o(~) det H({,  x) det ~ (~) 

and evaluated at the point x. Hence, in the biholomorphic case, WeiFs formula may 
be viewed as a variant of Cauchy's formula in the other coordinate system. 

In the general case, near each p on any ~I we have a local change of variables, 
and by compactness a can be covered by a finite number of sets, in each of which 
we have a change of variables. Introducing a parti t ion of unity and comparing with 
the biholomorphic case, we may thus write the Weft formula as a finite sum of 
Cauchy-like formulas. Local properties of ~ may then be studied by looking at the 
corresponding properties in polydiscs. Contrary to the biholomorphic case, we get 

singularities even if z is so far from the corner where ~ is located that  they do not 
lie in the domain of any common change of variables. 

Remark 2. By the methods used in the proof of Theorem 1.1, we see that  the 
integral operator corresponding to Weil's integral formula, 

1 [ hi((, z) 
+, , w,(z) = Z (2<~  jo A A(+) ~ f i ~ z ~ ~ I I i E I  

is an operator )/Y: L p (0)---+ H p (~); this is obtained by reducing to the known polydisc 
ease .  

The paper  is organized like this: In Section 2 we construct the division formula 
for solving the problem. In Section 3 we look at the integral formula in the special 
case of the polydisc, and prove the desired estimate. In Section 4 we study the gen- 
eral integral formula, and use localization to reduce to the polydisc case. Section 5 
contains the definition and estimates of certain Hefer functions needed in Section 4. 

2. A d iv i s ion  f o r m u l a  in t h e  polyhedron 

From now on, assume that  f~ is a non-degenerate analytic polyhedron with 
N defining functions fi. To construct the division formula tha t  will solve the H p 
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corona problem, as indicated in the introduction, we need some preliminaries. First 

some notes on notation. We will often use ( as variable in Ft and z as variable on 
a, and when a function depends only on (, we will (mostly) omit the argument. All 

b "~ differential forms will contain differentials of ( only. We let a- =~-~i=1 aibi. Thus 

the division problem may be formulated by saying that we want to find u E H p such 

that g.u=cp. 
Consider the (column) matrix g of functions. Let gH~, j = l  ,... , m, k = l , . . .  , n 

be Hefer functions for g, i.e. holomorphic functions satisfying 

oH((,  = g ( ( ) -g (z ) ,  

where we consider gH to be an m x n matrix of functions. We will make explicit 

choices of these Hefer functions for g later on. Define the corresponding holomorphie 

Hefer forms oh by 
n 

z) 
i = 1  

or, in matrix notation, gh=gH de. With a similar notation, we will denote the Hefer 

functions for the defining functions by I H  and let f h = f H  d(. 
We will use the following integral formula of Berndtsson (see [B]): 

Consider the kernel 

(2.1) Ko((, z) = 

N 
a,, 

c~=(c~o .. . . .  aN) i = 0  
I~l=n 

where ca are constants, Gi, i=0 , . . .  ,N,  are one-variable holomorphic functions 
with Gi (0 )= l ,  QJ, i=0 , . . .  , N  and j = l , . . .  ,n, are mappings from C ~ x C  n to C 

and the (1, 0)-forms qi are defined as below. 
If these mappings are chosen such that  everything make sense, then 

(2.2) = fa/ o ((, 

To solve the problem, we must choose the mappings Gi and QJ such that we can 

factor out g(z) from the kernel so that  the remainder still is holomorphic, and in a 

way that enables us to get HP-estimates. 

First we define the N + I  one-variable functions Gi. Let Go(t)=(l+t) ~, where 

u is a sufficiently large integer (>n  will do). For i = 1 , . . . ,  N, let G~(t)=l/(l+t) ~, 
where e>0.  Modulo constants, the k-th derivative will be G(ok)(t)=(l+t) ~-k when 

k < u  and G~k)(t)=e/(l+t) k+~ for i, k_>l. 
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For i=0 , . . .  , N and j = l , . . .  , n we shall define mappings Q~; that  is, we shall 

define the ( N + I ) •  matrix Q of functions. 

Qi (r z) dr E j  y 
Put 

and let 

whence 

Then we set q=Qdr i.e. qi(r 

9 
~ =  igl 2 

Qo(r =-9H(<,z)'7, 

Qo(r z) ( r  z) = - g H ( r  z)(r z).'7 = (g(z)-g)"7 = g(z)"7-1 

and therefore 

a(o ~) (Qo (r ~)(r ~)) 

Since u>n ,  we can write 

= (g(~).;)~'-< 

which is the desired factorization. Note that w depends on k; this is not indicated 
in the notation, since we only consider such properties of w that are independent 

of k. For further reference we note that a~ can be decomposed as a sum of products; 

(2.3) w(<, z) : Z ~i(r 
i 

One important property of wi(~) is that  we can estimate it and its derivatives by 

derivatives of g; 

(2.4) 
Okwi Okg + 

0 ~  ~.. -OCj k < Or ~ -OCj k lower order derivatives. 

For i=1 , . . .  ,N ,  let 

whence 

and therefore 

1-1s 

1-  ~f~(z) 1 
@(r162 1_iLl2 

Gi(Qi(r162 1--_ If~12 )~ 
k l -  fJ~(z) 
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and 
/ l__l~e.12 \k+e 

GI k) (Qi(~, z) (~'- z)) : ~ ~ 1:ff-fi~) ) 

From the definition of q, we have 

when k _> 1. 

Oqo = gh. 07 = E ghj AO~/f, 

SO 

(~ ~ Z A,h~A~ 
~=(~ ..... ~k) J ~  

where the summation is performed over strictly increasing multiindices/3; 1_</31 < 
...<3k<m. For i k l ,  

~qi=fhiA ~ fi dfi 
1-IAI 2 - fh~A (1-IAI2) 2 '  

and in particular (Oqi) k =0 if k> 1. 
Use the factorization of G~ k) to rewrite the kernel (2.1) (depending on c) as 

where (modulo constants) 

N 

= G~ (@(r ~) (r  ~, K~(r z) ~ ~(~q0) ~~ A (~') 
I~1=~ i=1 

N 

k=0 a- - (a l , . . . , aN)  i--1 
lal=n-k 

N 

k--00~--(O~1 ,..,,OLN) i=1  

a~E{0,1} 

Z A 
k--O a : ( a l , . . . , a n - k )  iCa i~(x 

l ~__(xl ( . . . ( c x n - k  ( N  

Let 

~(z)=LK~(r 
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then, by (2.2), u ~ will be a holomorphic solution to g.u~=~. 
Inserting the calculated quantities, we see that  (still modulo constants, that  

we may include in co) 

K~((" ;) = k,,~,/~E w ",c~(Agh'AO"TJ)" QA (l-~Ji(;))~+ 1 ( 1 -  'fi]2)~-' ,hiAd~)ir176 (1-[ 11--'fi'2_fifi(z)) ~' 
where the summation is performed over k=O,... , n, 1<<_~1 <... <a~-k <N and 1G 
fll <..-<ilk <m.  The final step in the construction of the division formula will be to 
let c-+0. When we do that,  we arrive at the following proposition. 

P r o p o s i t i o n  2.1. Let f~ be a non-degenerate analytic polyhedron with N defin- 
ing functions fi. Let g=(g l  ,.-. ,gm)eHeC(~), 0<r [gi[. Let fh be HeXer forms 
for the defining functions and gh be Hefer forms for g. Assume that 99E(9(ft). With 
~/ and w as defined above the function u given by 

(2.5) Z f{ Is, 
0<k<n If i l<l , /~a } 

1<c~1 <...<c~n_k <N 
l < f l ,  <. . .  <fle <_m 

where 

(2.6) 

is a holomorphic solution to the division problem 

g.u = 9~. 

Remark 3. Note that  we integrate over all possible aI,  including aO=~ and 
the corners constituting the skeleton. It would be nice to be able to construct a 
solution formula in which we (as in Weil's formula) only integrate over the skeleton. 

Proof. In view of the above work, we only need to show that  u=lim~__+0 uC 
But since 

lim ] 1  1 ]-[  ( 1-_lfil 2 ~ = 1 
~-+0**i~ ( 1 - ~ k ( z ) )  ~ ~ : \ l - k f i ( z ) ]  

and 
c(1-Ik 12)~-ldj~ _ -0(1-If/l~) 

1-kk(z) k-lkl2f (z) 
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we will have 

lim u~(z) = lim k~,~ f w~(AghjAOTJ)  
e-,0 e--,0 , Ifd<t,i=l,...,N} -jc~ - 

O(1-1f~12YAsh~ I I  11~ 1s 

~{ Ihi 
: k ~  ['i[:l,ic~ ghjAO'TJl iA fi--fi(z ) 

, I 1 1 1 < 1 , i r  J " j C ~  " " 

as desired. The limiting process is justified by localizing to the polydisc, performing 
the corresponding operation there and then going back. The limiting process in the 
polydisc is a generalization of the one-variable result 

lim f ~(~, z)8(1-1r de= lim [ 0(~(~, z)(1-1~I2)~)A d~ 
e-~O JD r  JD 

-- lim [(1--I~12)~C9~(~, z)A d~ 
~--+0 JD 

= \~-~o(lim- IT ~(~' z)( l-K'2)~ d~) - /D  C5~(~, Z)A d~ 

= JT ~(~, z) de. 

This motivates the above calculation. [] 

This solves the part of the problem to find a holomorphic u such that g.u=p; 
what we need to do to solve the H p corona problem is to show that u E H p whenever 
~DcH p. 

Remark 4. The term in (2.5) corresponding to k=0 is 

~{ f hi 
E l fi[=l,iEc~, I w(p A f i(r l~--~176 Ifil<l,ifta J ie~ 

a Wail integral. 

Example 3. When n = N = l ,  the solution u from Proposition 2.1 is 
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If we use ~ = 2  in the definition of Go, the factor w in the last integral will simply 
be (still modulo constants) w(~, z )=7(~) ,  and in the first integral it will be 

m 

= 

i = l  

Further, note that  we may choose 

/H(~ ,  z) = 

and 

so we have tha t  

f ( ~ ) - f ( z )  

g ~ ( ~ , Z ) - -  g i ( ~ ) - g i ( z )  

~ - z  

u ( z )  = c  
(r ( - - z  

m 

j = l  (~)1<1 ~ - - z  

[] 

3. So lu t ion  of  the  HP-corona  problem in th e  polydisc  

In this section we will consider the model case, where ~ = D  n. In the solu- 
tion (2.5) we make choices of Hefer functions in the polydisc to obtain an explicit 
solution. We will then show that  this solution is in H p. 

Choose Hefer functions for the coordinate functions ~i, tha t  is, for the defining 
functions, as the Kronecker delta, cH.~(~,z)=5~. Then the Hefer forms Ch just 
become the differentials 

c h i  (~,  z )  = d~ i .  

Then choose Hefer functions for g as 

(3.1) g H  k = g ( z l  , .. .  , z k - 1 ,  ~k , ...  , ~ n ) - g ( z l  , .. .  , z k ,  ~ k + l  , ...  , ~,~) 

~k -- Zk 

R e m a r k  5. Given the above choice of Hefer functions for ~, if we go through 
the procedure in Section 5 for choosing Hefer functions for g, we will return at (3.1). 
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With these choices, the solution (2.5) will be 

r J 

Observe, that  we integrate over ~iED when i~ct and over ~,iET when iEoz, so when 

we integrate f j e z  c57J, the only multiindex that  will be relevant is J =  { 1 , . . . ,  n} \c~. 

Further, H j is a sum of terms 
g/ 

where the crucial property of g ~ is that  it depends on the variables zl ,... , zl and 
(t+l ,... , C~ only (for some O < / < n  depending on the function gO. Thus 

gt 
A ghj f d~j : E H ~ ' d ~ l  A...Ad<,n. 
jE/3 jEc~ j~c~ J - -  j 

(3.2) ~(~) = Z 
O<k<n 

i__<0~I <...<O~n--k_<n 
l_<Ni <... <~k ! rn 

where the kernel Kk,~,# is 

- d~i 

jE3 iCc~ 

The remainder of this section contains the proof of the following theorem, that  
by a normal families argument  will prove Theorem 1.1 when f~=D n. 

T h e o r e m  3.1. Let u(z) be as in (3.2), where 0 < ~ < ~  ]gi l<l  and the gefer 
forms ghy are defined by (3.1). If we assume that the functions gi and ~ are holo- 
morphic on D n, then g . u = p  and IlulIgp(Dn) <_Cll~lIup(D~). 

Define F j by 

r~: 0~ 
O(j' 

i.e. 5~=r}d~, +...+ridden. By a simple calculation, 

2 0gi 0g 4 

that  is, F j is a sum of terms JOg/O~y, where w ~ can be estimated by g in the same 

way as w, see (2.4). Thus 

A A 
jE~ J=(jl ..... jk) jCJ ~ J  
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This means that  u is a sum of terms of the type 

/ j~11 1 jfc~(Og)d~j~d~j, Uoe(Z) 
"= j = l  

where we let co include the functions co', and let the function B be the product  of 
the functions g'. Assume, without loss of generality, that  a = ( k + l , . . .  , n), so that  

/D r i d g e ( )  co (c,z> A r o. dg 
(3.3) 

/D k ( Og ) d(~A d~i ~ d(i 
k • i=1 i=k+l 

where we let co include the "missing" factors (i from the last equality. 

In order to show that  uEH p, we estimate the HP-norm of the typical te rm 
(3.3). Since ~ and g are holomorphic on D n, 

II~IIH,(>) = II~IIL~(T-), 
and we estimate HU~IIHP(D,9 by duality; we integrate u~ against a function ~bE 
Lq(T~), where q is dual to p, and show tha t  

g a ~  < 

Looking at (3.3) and referring back to (2.3), we are to show that  we can est imate 

/~ ]-[k(ag) B(r162 
i=1 I]i:l((i-zi) l-Ii:k+l(1-~izi) 

s (og)fr 
k•  i=1 n I ] i = 1 ( r  i) YIi=k4-1( --r zi) 

(where the second equality includes a modification of ~, and where we define the 

integral operator T in the obvious way) by IIPIIL~(T,,)IIr 

(3.n) 
s k (og) f~  B((,z)~(z)r 

= k• CO(r ~ n II~l(1--r 

i=1 
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Remark  6. The change of order of integration in (3.4) is a formal calculation, 
motivated by the following. In the first k variables, the validity of the change of 
order of integration is not in doubt since the factors 1/(4~-z~) are integrable. In 
the last n - k  variables, though, some extra argument is needed. In one variable, by 
definition, 

IIr = lim I1r IIL~(T), r]'l 

where r ( z )=r  In our situation, this means that  we can estimate I lu~ I IHp(D~) 
by estimating 

(3.5) ~ Uc~(Z1,--- ,zk,rZk+l,... ,rZn)~(Z) 
n 

for any r < 1. The factors 1 / ( 1 - ~ r z ~ )  (for i > k) are then integrable, and the change 
of order of integration is justified. Now, the only place where the parameter r occurs 
is inside the integral operator T.  The LP-estimate for 2r can be done uniformly in r. 
Thus, carrying on as below, we get an estimate for (3.5) that  is independent of r, 
and from this the HP-estimate for u~ follows. 

Note that  the operator T is a weighted Cauchy integral operator, holomorphic 
in ~i for i_< k, and in order to perform the estimates we need a certain generalization 
of the fact that  the Cauchy integrM is bounded on L p. Obviously, the factor ~ will 
do no harm, since it is bounded and only depends on z. What  remains to take care 
of is the factor B. However, B is constructed as a product of factors g~, where each 
g~ (for some l) only depends on the variables zl ,... , zl, 41+1 ,... , ~n. If we split B 
into its factors, ordered in a suitable way, and use iteration, we arrive at the desired 

result II ~-r ( ~ )  ~< II r ~ (~o) This is a special case of the following lemma. 

L e m m a  8.2. Let g i (r  for i = 1 , . . .  , a ,  be bounded, Ig~l_<l, and depend 
only on the i first zk-variables and the n - i  last ~k-variables; that is gi(4, z ) =  
gi(zl  ,... , zi, 4i+1 ,... , 4,0. Then the weighted Cauchy operator T given by 

f~ Ilg~(4, z)r 7r = 
~ H((~-z~) 

is bounded on LP ( T'~ ) , l < p < c ~ .  

Proof. Write T as an iterated integral: 

7r  = f~ gl(4, z) f~ gi(4, z) f~ gn(4, z)r 
I~T 41--zl "'" ,eT 4~--Zi "'" .~T C---Z- 
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Observe that 
gi+l((,z) ~ gn((,z)~(z) 

~ + l e T  ~ i + l - - Z i +  1 "'" n E T  ~ n - z n  

is a function of z l ,  ... , zi, ~+1,  ... , (~ only; just as gi is. Therefore, with 

~ =gi((,Z) /z g~+l((,z) ~ gn((,z)~(z) 
I + I C T  ~i+1- -Z i+ l  "'" n E T  ( n - Z n  ' 

we have the usual Cauchy integral operator estimate 

~T ,~r r < I r  ,z~,r ,(.)1 p 
~ET 

- -  i c T  i + I c T  r  1 "'" n 6 T  ~ n - z n  

and iteration gives the estimate for T. [] 

Remark 7. The need to have the variables separated in this particular way is 
the reason for some technical statements (such as Proposition 4.1) to appear. 

We do not know whether the lemma is true when one drops the condition on 
the order of the variables, i.e. if the Cauchy operator with bounded holomorphic 
weight still will map L p to L p. 

As a consequence, we get the following result, that  we will need later On. 

Corollary 3.3. Let C(r z ) e C ~ ( D  ~) and let g,((, ~) for i = 1 , . . .  , n, be a s  in 
Lemma 3.2. Then the weighted Cauchy operator T given by 

T r 1 6 2  [Ig~(r162162 

is bounded on LP(T'~), l < p < o o .  

Proof. Since we can write 

C ( ( , z )  = C ( ( ; Z l , . . .  , z i , . . .  , Z n ) - - C ( ( ;  Z l  , ... , ( i  , ... , Z n ) ~ - C ( ( ;  Z l  , ... , ( i  , ... , Z n ) ,  

w h e r e  ( C ( ( ;  Zl , ... , z i , . . .  , Z n ) - C ( ( ;  Z l , . . .  , ~ i , * . .  , Z n ) ) / ( ~ i - - Z i )  is a b o u n d e d  func-  

t ion ,  we may assume that for all i, either C does not depend on zi or C((, z)/((i -zi)  
is bounded. Let I be the set of all i such that C((, z)/(~-z~) is bounded; then C 
does not depend on zi for iEI c. Let 

g ( ( ,  z i)  - C(( ,  z) 
I I ~ ( ( ~ - z ~ )  ' 
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where zi denotes the variables zi with iEI. Further, note that 
n 

H i=1 i C I  c 

where the functions ~ has the same structure in the variables zsc and Cz~ as in 
the lemma, and depends on the variables zs and ~z as parameters. Now, T can be 
written 9~(r O,zi)r 

Tr162 = .L  B(~,zi)]~ 
, . H ~ l O ( ~ - z i )  ' 

and an application of the lemma proves the claim. [] 

After these results, we return to our main track. In the estimation of (3.4), 
the last n - k  variables will not make matters worse (since there are no singularities 
involved, and we just can integrate in these variables); the most difficult term is the 
one with k=n, so we focus our attention on that  one. Hence, we must estimate 

i=1 
by IIplILP(T,~)IICHLq(Tn>. When this is done, the general result follows. 

Let e~=l-I;~1 ~ and e=l- l?a  e~- Use Green's formula to obtain (in one variable 
at a time) 

/D F= iv [ ( [2F+iD (1 -  [([2)F = - iD ~F ~ (1 -  [~[2) + i D  (1-- [~[2)F 

= L (1 -  ]~]2) ~ ( r  fD 0~((1 -- ]~]2)~F) + fD (1-- ]ffi2)F 

a oF 

This yields that  it is sufficient to estimate integrals like 

(3.6) iDn L0(/=l~l(0~/))0~l ... ~n(a)~:)~). 
Recall the estimates (2.4) for derivatives of w(~) by derivatives of g. Since 

lower-order derivatives will be easier to handle, we will estimate any derivative of 
w by the corresponding derivative of g. Letting h=~Tr this leads to (just modulo 
permutations of indices) estimating integrals like 

SDn' ~1 "'" ~ 0<1 . . . . . .  
The proof is completed by invoking tim following two lemmas. The proof of 

Lemma 3.4 uses some standard tent space techniques, see e.g. the proof of Lemma 1 
in [L1], and Lemma 3.5 first appeared as Theorem 2 in [C], see also e.g. [F]. 
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L e m m a  3.4. If h is holomorphic, then 

�9 "" 0 r  n 0 (  1 "'" CQCn 5 Ihl  �9 n j Tn 

L e m m a  3.5. If h is holomorphic, then 

0 0 2 f f 
L,~ ~ o~1 ~ I~1 ~ ihl- 

First note that  Lemma 3.5 together with the well-known fact that  

g Og Og 2 
0(1 "'" 0(~ 

is a Carleson measure yields the estimate 

"'" 041 " " 0 (  n 

Then we have 
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= ~ ~1 ... ~z 041 "'" 041 0(1 "'" ~Z+l ... 0(1+1 "'" 0(~ 0(l+1 "'" 

~_~ /TI•215 /Dz+lX...• QI+I . . . . . . . . .  ~n O~Z+I O(nOg 0(~+1 O(nO h 

J T  n 

and this completes the proof of Theorem 3.1. 

Remark 8. These lemmas hold even if h is replaced by hx, where xcC~(Dn) .  
To see this, just observe that ,  for example, 

0 0 ~h<ilxl ic ,~X: 0 0 h.  
0 (  1 ' "  0 (  n - -  0~-i1 "" 0 ( i k  

This means in particular that  we could get the same LP(T~)-estimate for a function 
u given by u=fKpx, where K is the kernel of the integral in (3.3) and x c C ~ .  
(This observation will be needed when we are to prove the general case.) 
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4. S o l u t i o n  o f  t h e  H P - c o r o n a  p r o b l e m  in t h e  a n a l y t i c  p o l y h e d r o n  

Now we will work through the scheme in. Section 3 to prove the analogue to 
Theorem 3.1 in the case of the polyhedron, that  is, we will prove tha t  IlUllHp(n) < 
CI[~IIH,(~ ) if u is the solution given by Proposit ion 2.1 and we choose Hefer func- 
tions for g in a suitable way. The interesting things happen at the "edges" or at 
the "corners" of 0~,  where some of the defining functions has modulus 1. The idea 
of the proof is to fix an edge, perform a suitable change of variables and see that  
the polyhedron kernel in the new variables looks like the polydisc kernel. Then we 
apply the polydisc proof of the HP-est imate (with some minor modifications) and 
arrive at the desired result. 

Fix one te rm Kk,~,Z in the kernel (2.6); denote this te rm by K .  Let u denote 
the corresponding te rm u ( z ) - f  K(~, z)~(~). (The sum of all such u will then be 
our solution (2.5) to g.u=~.) Look for possible singularities. 

Remark 9. For a singularity to occur in the polydisc, we would have ~i=zi,  
but in the general polyhedron singularities occur whenever f~(~)-f~(z) ,  which may 
happen as soon as ~ and z are on or near the same edge. 

Some possible singularities in K are the n - k  factors 

1 

A - A ( z ) "  

These are de facto singularities if and only if fi(~) is close to fi(z),  that  is, if ~ and z 
are near or on the same edge I f i l= l .  Thus, we have such singularities just at edges 
corresponding to the indices in c~. The only way for other, "new", singularities to 
appear  is to be a part  of some ghj. To see what singularities may come from there, 
we use the definition of Hefer functions (5.3) in Section 5, and we will as a tool 
use Lemma 5.1 from there. For easy reference, we collect the needed facts in the 

following proposition. 

P r o p o s i t i o n  4.1. There are functions A j and a (1,0)-form b such that gh 
defined by 

N 

gh(r z) = (r  )shj (r 
j = l  

is a Zefer form for g. The functions AJ(~, z ) ( f j (~ ) -  fj(z)) and the coefficients ofb 
are holomorphic and bounded. Furthermore, if we perform local changes of variables 
to ~ and x as below, they can be decomposed as sums of functions 

D~,~(~, x) 1-[ ( ~ , - x , ) ,  
iEc~ 
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where 1 < k K n +  l, a c { 1 , . . .  ,n},  the function Dk,~ is holomorphic and bounded 
and depends only on the variables ~i and xi with iEa,  xi with i ~ a  and i K k  and ~i 
with i ~ (~ and i >_ k. 

Remark 10. The properties of the functions Dk,~ should be compared to what 
happened in the polydisc case, where gH was a sum of functions g~, depending on 
some zi and some ~.~ variables in a certain order, combined with singularities. 

The remainder of this section is devoted to the proof of the following analogue 
to Theorem 3.1: 

T h e o r e m  4.2. Let u(z) be as in (2.5), where o<~_<~:lg~:l_<l and the Hefer 
forms ghj are defined as in Proposition 4.1. If we assume that the functions gi and 

are holomo hic on then g. =f and Ll ll-p( )-<Cllfll-p( )- 
By Proposition 4.1, 

N 
ghj E k Aj f hk 4- by, 

k--1 

where the forms by have bounded coefficients. Therefore they will not contribute 
with any singularities, and with respect to singularities we will have 

N 
k ghj ,', E Aj fhts, 

k = l  

where each A~ will contribute with a singularity 1/(fk (4 ) - fk ( z ) ) .  

Remark 11. With some modification, this is really the general case, where we 
take b into account. The difference is that  we will have some factors bj instead of 
factors Ayfhk,  but noting (see below) that  any such factor will be replaced by a 
bounded holomorphic function divided by f k ( ~ ) - f k ( z ) ,  we can instead replace by 
by such a construction. 

From this (leaving out irrelevant subscripts on A), 

N 

jC/~ iCa  jC/3 \ i : 1  z iE~ J : ( j l  ,... ,Jk) iEJ iCa 
Jr~a=0 

In this product, we will have k factors A i, where i~c~, and hence we get k new 
possible singularities from there; none of these with respect to any defining function, 
with respect to which we already had a possible singularity. We conclude, that  as 
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a total  we will have n possible singularities, and they will all be with respect to 
different defining flmctions. 

From now on, we may (without loss of generality) assume that  we have the 
possible singularities in the defining functions f l  to f~, and that  c~=(1,.. .  , n-k). 
Then we integrate over the set 

S : { I f / l : l ,  i : l , . . . , n - k ,  I f / l<1 ,  i = n - k + l , . . . , N }  

and the kernel we study looks like this: 

(4.1) K(4,z) =czC({ ,z )  I I  fi(4)-f~(z) A~({,z) A ovy dC~, 
i=1 i=n--kq-1 jE~ i=1  

where the function C is holomorphic across the boundary  of S and is made up from 
the coefficients in the forms fhi. 

To show tha t  we have an HP-solution to the division problem, it suffices to show 
that  every pea has a neighbourhood U c C  ~ such that  uELP(crNU). Therefore, 
fix pea. (We shall let z be on a near p.) By a part i t ion of unity argument,  it is 
enough to show that  any point qES has a neighbourhood VC C n such that  whenever 

xEC~(V), 

(4.2) fs K(r 
Therefore, fix qES; we shall let ~ be near q. By compactness, it suffices to choose 
U and V at the same time, such that  (4.2) is valid. 

Let J be the set of indices i such that  i<_n, Ifi(p)l=l and fi(p)=fi(q). Choose 
U~p and V~q so small that  the n functions f~ such that  If~(p)l=l constitute a 
local change of variables in U and the functions fi  such tha t  I fi (q) l = 1 constitute a 
local change of variables in V. (Note, in particular, that  the functions f l ,  ... , fn 
are among the functions that  constitute the change of variables in V, and that  

the functions fi with iE J are involved in the changes of variables both in U and 
in V.) In addition, U and V should be so small that  the three following conditions 

be satisfied. If IA(P) l<l  and zEU,  then [fi(z)l<l. If If, i(q)l<l and ~EV, then 
I f i (~) l< l .  If  fi(P)r zEO and CEV, then fi(z)r With these choices, 
the only remaining singularities will be the ones with respect to the functions fi, 
iEJ. To see this, first remember  that,  by our very choice of term in the kernel, the 
only possible singularities was with respect to fi, i<_n. Then, since every singularity 
could be expressed in terms of 1/(fi(r we will have no singularity for 

flmctions fi such that  fi(P)#fi(q). Finally, we must see tha t  we have no singularity 
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with respect to fi  if If~(p)[<l, but then I f i (z ) [< l  for zcU. If l < i < n - k ,  we are 
integrating over [ f i (4)]=l ,  so fi(P)~fi(q); this is an excluded case. It remains 
to study the case where n-k<i<_n. Then the possible singularity is of the type 
Ai(4, z). Assuming that  fi(P)=f.i (q), we have (z, 4)E U • V, and for such (z, 4) the 
function A i is bounded; see the definition (5.1) and compare with the proof for 
boundedness in Lemma 5.1. 

Let x be the new variables in U (corresponding to z), and ( be the new variables 
in V (corresponding to 4)- In particular, we will have xi=fi(z) and ~i=f i (4)  when 
i E J; furthermore ~ = fi (4) for i _< n -  k. When we perform these changes of variables, 
for suitable choices of the remaining functions in the change of variables in V we will 
have ~C?U~-DnA~? and f~AV~--DnAV, where U is a neighbourhood of the point 
x(p)ET ~ and V is a neighbourhood of the point ~(q)ET ~ k • 

Let us perform the indicated changes of variables, expand the functions A i and 
the forms 0 7. Then a calculation (that we omit) reveals that  the kernel is 

wB(~, x)C(~,x)x(~) A Og/O~id~i 1 d~i, 
i = 1  ~ i - -  Xi ~ i - -  Xi  i=n--k-]-i i = 1  

where the function B is a product of functions D 1-I({i-xi) Dom Proposition 4.1, 
and we let C include all functions (holomorphic across the boundary) coming Dora 
the change of variables, from the "quasisingularities" 1 / ( f i  (4) - fi  (z)) where i ~ J 
and fi'om the fact that  we (for notational convenience) have introduced factors 
1 / ({ i -x~)  even for i6J. 

The argument for H p in Section 3 may now be repeated to prove that  the 
solution function in the polyhedron belongs to H p (by showing that  (4.2) is valid 
for it). 

In short, we complete the proof in the following way: We integrate 

s A OglO   1 
n - k  • k i = 1  ~i - - X i  ~i - - X i  i=n--kq-1 i = 1  

against an Lq-function ~b, disposing of the singularities by introducing the integral 
operator T given by 

/ x)r 
= [ I  

This is holomorphic, furthermore it is bounded on L q as required, which we soon 
will see. If we split B into its parts and study each part  separately, the integral 
operator we must estimate is 

f [l(D~,a (~; x) Fi(~j - x j ) ) C ( ~ ,  x )~(x) r  
Tr  L I1 
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The first thing to notice, is that  we can forget about  c~, since it is bounded and only 
depending on the variable of integration. Next, we can forget about  all variables 
with numbers j such that  a factor {j-xj  occurs in the product  B; this factor 

will then cancel a corresponding singularity. We may thus assume that  the factor 

I](Dk,~({; x)1-I({j-xj))just is a product  H Dk({;x), where Dk depends only on 
x l ,  ... , xk-1,  {k, --- , {n. Since the operator 

Il Dk( ; 
1-I 

maps Lq to Lq by Corollary a.3, this yields the Lq-boundedness for our original T.  
Then we integrate by parts  and end up with the correspondence to (3.6). Fi- 

nally the lemmas from Section 3 in conjunction with Remark 8 yield the desired 
estimate; Theorem 4.2 is proved. 

Remark 12. To be more precise, we are only studying z in the set U, so the 
integral operator  T would be defined by integration only over UAT n. This will, 
however, not cause any trouble, since we may choose a cutoff function X'(z) with 
X ' =  1 on U and in whose support  we still have the change of variables. When we 
change the variables, we get the same integral as before with the difference of the 
X' oecuring in T;  this does not disturb the Lq-boundedness. In addition we get an 
integral over the set supp X ' \ { X ' = I } .  But  on that  set there will be no singularities, 
so the estimate is still valid. 

5. C h o i c e  o f  H e f e r  f u n c t i o n s  in t h e  p o l y h e d r o n  

We want to choose Hefer functions for g such that  the argument in the preceding 
section is valid. By Weil's integral formula (where we ignore the factor (2rd) n), 

I ~ ,  \lTl(fI~(w)-fI~(()) I](fI~(w)~fI~(z))J' 

where Dx is the determinant of the Hefer matr ix  I~H; 

Di(w,. )=det[fH~(w, " )]icIY=l ...... 

To obtain a Hefer decomposition of g, we rewrite the integral: 

g ( ( ) - g ( z ) = ~ /  g(w)Dl(w,()(H(fl~(w~_fi~(()) 1-I(fx~(w~-fl~(Z))) 

f , ,Di(w,4)-Df(w,z) 
+ E  I j ~  g(w) ~ = ,4+13. 



By this, 

where 

(5.1) 
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To study the integral A, just observe that 

ILnl(f~,(~)--fI,(r 
1 

I],nl(fI,(w)--f,,(~)) 
1 

k--1  n 
k=1 11~=1 (f:~(w)- fx,(z)) IIi=k(fl,(w)- fz,(r 

k n I-I~=1(:i, (~)-f,, (z)) IL=~+l(f,, (~)-f,, (r 
= ~  k frk(r177 

k=1 [I~=l(fi~(w)- fi,(z)) II~=k(fl,(w)- fI,(~))" 

N 

A =  ~ A~(r z)(fi(r 
i = l  

2 4 7  

L g(w)Di(w, r 
k n " 

, 1-[j=l (fIj (w) - fb (z)) I]y=~ (flj (w) - fIj (r 
A%z)=  Z 

I ~ i , i = I k  

Turn to the integral B. If we do any Hefer decomposition/3i of the determi- 
nant Oi;  Di(w, r z )=~ fl~(w, r z)(r such that/~I is holomorphic in 
all variables (across the boundary!), then by the calculation 

1-I(fi,(w)-fc,(z)) k=l rI(fx'(w)--fl'(Z)))(r 

13 n we have a decomposition = ~ k = l  Bk (r z)(r - zk), where 

(5.2) B k (r z) = E II(fI, (w)- fI, (z))" 
I I 

With A and B as in (5.1) and (5.2), we define the Hefer functions like 

(5.3) gH(r z) = d(r z)fH(r z )+B( r  z). 

To get the right estimates for gh (cf. Section 4), we need the following results 
for A i and Bi: 
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L e m m a  5.1. For each i, the functions Ai(r z ) ( f i ( r  and Bi(r z) are 
holomorphic and bounded. (Here r and zest.) Furthermore, if we perform any 
local change of variables to ~(~) and x(z) as in Section 4, each of these functions is 
a sum of functions 

Dk,,(~, x ) I I  ( r  
iCc~ 

where Dk,~ is holomorphic and bounded and depends on the variables ~i and xi with 
iEa, xi with i~a and i<k and ~i with i~a and i2k .  

The holomorphicity is in no doubt, the thing to prove is the boundedness and 
the decomposition after changes of variables. 

To prove this lemma, start with the part including A and rewrite the expression 

A i ( r 1 6 2  = E 
I ~ i , i = I k  

like 

E 
I ~ i , i = I k  

f~ g(w)Dr(w, r (r (z)) 
k n 

�9 1 ] j= l  ( f~  (~)  - f l j  (z))  I l j=k  (fi~ (~)  - fz~ (r 
g(~)D~(~, r 

k - 1  n [Ij=~ (f~ (w)-s (z)) II~=k (s  (w) - s  (r 
-~  k g(w)Dx(w,r 

i IIj=~(s (~)-f*, (~)) IIj=k+~ (f• ( ~ ) - s  (0) 

and look at one of the integrals, say one of the first kind. 

Take any r E a i .  Let f~=(fI1 ,... , fx~) be a local change of variables in some 
neighbourhood of r. Cover ax with a finite number of such neighbourhoods Ui. (We 
shall let t=fi(w) (that is, tj=fir be new variables instead of w there.) Let 
{X~} be a partit ion of unity subordinate to {U~}. 

Consider the integrals Ji given by 

jf g(w)Di(w, ~) 
k - 1  n 

x [ I j = l  (fx5 (w) - f l j  (z)) I]j=k(fIj (w)- fxj  (r 

= ~ f ~  k-1 g(~)D~(~,r 
�9 E j = I  (fIj (w) - f l j  (z)) I]j=k(flj (w)- fxj  (~)) 

= ~ .  
i 

We want to prove the decomposition for each such Ji- 
Assume that  I =  (1, ... , n) and let us suppress the index i. This means that we 

want to show the decomposition for the integral 

f~ g(w)x(w)D(w, r 
J :  k - 1  n 

Ilj=l ( f j (w)- f j(z) ) IIj=~ (f j (~)-  fj(r 
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To achieve this, we will perform changes of variables to convert J into a sum of 
Cauchy integrals. The changes of variables will be according to the situation in 
Section 4; z is to live near some point p e a  I and 4 is to live near some qCOf~. Let us 

assume that  If.i(p)l=l for i = 1 , . . .  ,#, I f i (p ) l< l  for i = # + 1 , . . .  , k - l ,  I f i (q ) l< l  for 
i=k, . . .  , , - 1  and If/(q) l = 1 for i = , , . . .  ,n. Then we will have new variables t(w) 
near r, x(z) near p and ~(r near q. In particular t i = s  for i = 1 , . . .  , n, x i = s  
for i = 1 , . . .  ,p  and ~i=f i (4)  for i=~, , . . .  ,n. 

Rewrite J ,  changing the bounded, holomorphic function D as we go along: 

j = f g(w)x(w)D(w, 4) 
k - 1  n 

i 11 =1 

(5.4) = , f n f I Y I j = I ( j ( w ) - f j ( z ) )  1-It=, ( j ( w ) - f j ( 4 ) )  

= = IT . n n Flj=  (tj- j) Flj= (j- j) 

The next step is to rewrite D in order to get the properties tha t  we want. We want 
to see that  J has the properties of the bounded functions of Lemma 3.2; that  it is 
holomorphic and bounded and only depends on the variables xi and ~i in a certain 
order. We will not be able to achieve exactly that ,  but will see that  J in fact can be 
split into a sum of functions with that  ordering property for some of the variables, 
while the dependence on the remaining variables will be harmless. Study the first 
variable number. We obtain a decomposition 

D(t; ~; x) = (D(t; ~; x ) -  D(t; xl ,  ~2 , ... , ~n; x) )+ O(t; Xl, ~2 , ... , ~n; X) 

of D into two functions, where the first function depends on both ~1 and Xl but 
remains bounded even after division by ~ l - X l ,  and the second function depends 
on xl but not on ~1. Repeat  this decomposition for each of these two functions 

(and all their descendants) for variables with numbers 2, . . .  , n. This yields the 
decomposition 

D(t;{;x)  = E Dk,~(t;~;x)1-I(~i-xi) ,  
Iod_<n iEc~ 

where the function Dk,~ depends on all ti, on all ~i and xi with itch, on all xi with 
i ~ c~ and i < k and finally on all ~i with i ~ c~ and i>_ k. This induces the corresponding 
decomposition of J as a sum of integrals 

Jk,~ = H ( { i - x i )  --/" k-lg(t)X(t)Dk'~(t'n ~' X) = I I ( ~ i - x i ) D ( ~ ,  x), 

where the function D is defined by the weighted Cauchy integral; D is holomorphic 
and (by Lemma 5.2 below) bounded and depends on all ~ and xi w i t h / c a ,  all xi 
with i r c~ and i < k and all ~i with i r a and i > k. This proves the assertion. 
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L e m m a  5.2.  I f b ( w , ~ ) e H ~ 2 1 5  n) and X ( w , ( ) c C ~  then the 

weighted Cauchy integral 

is bounded in D n. 

b(w, = 

T h a t  was the  pa r t  of the  l e m m a  involving A i. W h e n  we s tudy  B i, considera- 
t ions similar to those above show tha t  the  integral  

=s 
[ I ( f b ( w ) - f , j ( z ) )  ~ " t I I j = l ( J - x j )  

is bounded.  Also, when we per fo rm changes of variables,  it will have a decomposi t ion  
as above; this case corresponds to k = n + l .  
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