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Average decay of Fourier transforms 
and integer points in polyhedra 

Luca Brandolini, Leonardo Colzani and Giancarlo Travaglini 

1. I n t r o d u c t i o n  

Let XB be the characteristic function of a compact connected set B in R n. 
Precise estimates of the decay of the Fourier transform 

2B(~) = fB e-2'~x dx 

are crucial for several applications in Fourier analysis, geometry of convex sets and 
geometry of numbers. See e.g. [10], [9], [7], [8]. In the literature B has often been 
assumed to be convex, with a smooth boundary of strictly positive curvature. Under 
these assumptions the decay of 2B along a fixed direction represents the global 
behavior. This is not always true if the boundary OB is not smooth or if it is smooth 
but with curvature vanishing at some points; in both cases the decay of the Fourier 
transform may depend on the direction. For example, if P is an n-dimensional 
polyhedron, then 2p  ( ~ ) = ~ j  Qj (~)e2~i~5~ with Qj homogeneous of degree - n  and 
it can be seen that  2P(~) decays as fast as I~1 -~  along almost all directions, but only 
as I~1-1 along directions perpendicular to the (n-1)-dimensional  faces. Therefore, 
when studying the behavior of the Fourier transform, one may be led to introduce 
an average decay. This point of view has been exploited e.g. in [14], [13], [20], 
[11], [2]. 

In this paper we study an average decay of 2p  when P is a polyhedron and 
then we apply our results to obtain estimates for the number of integer points in a 
dilated copy of P,  randomly positioned in the space. We also compare polyhedra 
with more general domains. 

Our first result is the following. Let E n _ l = { G ~ R n : l G l = l }  be the unit sphere 
equipped with the Lebesgue surface measure and let 0_>0. When n = l  the polyhe- 
dron reduces to a segment, say [-�89 1], and the sphere consists of the two points 
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•  In this case one has the pointwise estimate 

12[ 1/2,1/2](-I-e)l = sin(71-e) <c(2_1_e)_1. 
roe 

When n_>2 the average decay of ~p  is different when measured by different 
norms. We prove that  

(i) sup;~> o ; q { ~ E n - ~ :  IxP(e~)l>;~}l <_c(2+0)-nlog'~-2(2+0), 
(ii) fE~ 112"p(e-)ldo-<_c(2+e) ~ logn- l (2+e) ,  

(iii) (f~n--1 IxP(e")l  p d~7) 1/p~c(2-[-e)-l-(n-1)/p' l < p < + o o ,  

and we also show that these estimates are essentially sharp. 
Here and in the sequel the letter c denotes a positive constant which may vary 

from step to step but does not depend on e- Moreover, when A is a measurable set 
in some measure space, IA1 denotes its measure. 

Observe that  the above estimates tnay be easily checked in the case of the unit 
square in the plane, 

sin(Tre cos(0)) sin(we sin(0)) 
X[ U2,U2]x[-1/2,1/2](ecos(0), e s i n ( 0 ) ) -  7recos(0 ) zrgsin(0) 

The case of a polygon is similar since we still have a quite explicit expression for 
the Fourier transform. Such a formula gets more complicated for an n-dimensional 
polyhedron and this general case will be handled through an induction argument 
on the dimension. Indeed, by the divergence theorem, the n-dimensional Fourier 
transform of a polyhedron is essentially a sum of the (n-1)-dimensional  Fourier 
transform of its faces. 

Some of the above estimates of the decay of Fourier transforms do not hold 
only for polyhedra but also for a large class of "regular" domains. Indeed, we shall 
see that  when the boundary of a domain /3  has finite Minkowski measure, that is 
IfxERn:d(x, 0B)<dl_<ec ,  then 

( f )l/p { 42+e)-(~+~)/~, 1<p<2, 1 I 2 B ( ~ ) I  p d ~  < - - I{e-<l~l-<2e}l 0<,r - e(2~-e) -1-(n-1)/p, 2<p<+cx~. 
The main result here is the L 2 estimate, which is a quite immediate conse- 

quence of the direct and inverse approximation theorems of Jackson and Bernstein. 

See e.g. [12]. Indeed (f{l~l_>o} I2B(~)] 2 d~) 1/2 is the best approximation in L2(R ~) 
of the function XB by means of entire functions of exponential type e. This best 
approximation is related to the L 2 modulus of continuity of XB and hence to the 
Minkowski dimension of the boundary OB. Observe that  for p_>2 the above esti- 
mates match with the corresponding ones for polyhedra. The estimates for p <2  are 
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a trivial consequence of the case p=2,  nevertheless they are sharp as the explicit 
example of a ball shows. 

The second part of this paper is devoted to the classical problem of estimating 
the number of lattice points in large domains. Let P be our polyhedron and let 
L)_>0, 0ESO(n), t E R  '~. Define the discrepancy D(L), 0, t) as the difference between 
the number of integer points in the set coO-1p-t, a dilated, rotated and translated 
copy of P,  and the expected number IgO-1p-tl=d~lPI, i.e. 

7)(~,0, t)---- ~ )Ce0 1P-t(m)-~lPI. 
m C Z  n 

Since this function is periodic with respect to translations, we may restrict the 
variable t to the torus T ~ = R n / Z  n. 

It is easy to check that D(~, 0, t) may be of the order of L) n-1 as L)--+oc. On the 
other hand, Hardy and Littlewood have shown that, in dimension two and for par- 
ticular choices of 0 which give suitable irrational slopes of the sides of the polygon, 
the error can be logarithmically small: 17)(~, O,t)l<_co, t log(2+O). An extension of 
this result to several variables has recently been proposed by Skriganov. See [5], 
[6], [15], [16]. See also [14], [19], [20], [1], [11] for related results. Our purpose is to 
extend, in a probabilistic framework, the result of Hardy and Littlewood to several 
variables. Our methods are different from the ones developed by the above authors, 
but we acknowledge the influence of the paper of Kendall [10]. Our result is the 
following, 

(i) supx>0 Al{0cSO(n), tET~:  lTP(O, 0, t)l >A}I <_c log~-1(2+~), 
(ii) fso(~) fT~ I~D(~), 0, t)l dt dO<c logn(2+Q), 

(iii) (fso(~)fTn 17?(~,O,t)lPdtdO)l/'<-c(2+~) (n-1)(1-1/p), l<p_<+oc. 
To prove these estimates, the idea is to use the Fourier expansion of the dis- 

crepancy, as a function of t E T  n, 

~(~, 0, t) = ~ e n 2 ,  (~0,~)e ~ '~ '~  . 

The mean square estimate of the discrepancy follows from Parseval's formula 
and the previous estimates for the L 2 decay of the Fourier transform. However, 
in our opinion, the main result is (i), since the case p = + ~  is quite immediate 
and the remaining cases, although they need a direct proof, may be considered as 
an interpolation between these extreme cases. We shall see that  the estimates in 
(iii) are sharp and we shall also give estimates from below for (i) and (ii). These 
estimates all together give an idea of the size of the discrepancy, which can be very 
large, but only around some singular points. In particular (i) shows that  

I{0 t Tn:  17)(p, 0, t) l > 1 log n-l(2+p)}[  _< cc. 
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We can give to the above result the following probabilistic interpretation. 
Throwing at random a dilated polyhedron 0P in the space, the difference between 
the number of integer points in it and its volume can be as large as the surface 
measure of the boundary, cL) n - l ,  however, the probability for this difference to be 

much greater than logn-l(2+Q) is very small. 
We also consider the discrepancy associated to domains more general than 

polyhedra. When the domain has a boundary with finite Minkowski measure, then 
the estimates on the Fourier transform when applied to the study of the discrepancy 

give 

( ~  ~S /T )l/p { C(2_~_~))(n--1)/2, l~p_~2, 
20 o, t)I p de dO dr  < 

O(n) n -- c(2+0)(~-1)0-1/p), 2 <p<_ +oc. 

Again these estimates are sharp and it may be interesting to compare them 
with the corresponding estimates for polyhedra. 

Finally, revisiting [1] and [11], we briefly consider the problem of the discrep- 
ancy associated to an arbitrary distribution of a finite set {zj}M1 of points in T n. 
Generalizing the previous definition without changing the notation, for a given do- 
main B contained in T n we define the discrepancy as 

M 
~(s ,  O, t) = ~ X~0 1,_t (z j ) -MsnlBI .  

j=l 

Assuming the set B satisfies alh I<_I((B-h) \B)U(B\(B-h)) I  <_blh I for suffi- 

ciently small Ihl _<1, we prove that  

(j~ql~s / T )1/2 ]7)(s,O,t)12 dtdOdr >cM (n-1)/2n 
o(,~) 

for suitable constants 0 < q < l  and c>0  independent of the distribution of points 
M {zjL:l. 
The 2-dimensional case of this result has been proved by Montgomery in [11], 

while the n-dimensional case has been proved in [1] by Beck assuming the domain 

convex. 

When this research started, the authors were visiting the International Centre 

for Mathematical Sciences in Edinburgh. We thank A. Carbery and A. Gillespie 

for the warm hospitality. The authors wish also to thank R. Schneider for bringing 

the paper [4] to their attention. 
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2. Average decay of  Fourier transforms 

Let X be a measure space and let 0 < p < c c .  The Lebesgue space LP(X) consists 
of all measurable functions with quasi-norm 

"g"Lp(X)= (/x 'g(x)'P dx) I/P< +oo. 

The space weak-nP(Z), or L~'~176 is defined by the quasi-norm 

Ilgllz , (x) = sup Al{x e x :  Ig(x)l > .k}l 1/p. 
k>O 

See e.g. [18]. 
The main result of this section is the following. 

Theorem 2.1. Let P be a compact polyhedron in R n. Then, for n>_2, 
(i) HXP(O')HLa'~176 ~ C  (2+o) -n logn-2(2+0) ,  

(ii) II;~P(t~')llLl(~,,_l)<C (2+t~) *qogn-l(2+0),  

(iii) IIXP(Q')IILP(P,, 1) <<-C(2+~) -1-(~-1)/p, l < p < + o O .  

Before starting the proof of the theorem we recall the explicit expression of the 
Fourier transform of the characteristic function of a polygon in the plane. 

Lemma 2.2. Let P be a polygon in the plane with counterclockwise oriented 
vertices {aj}jm=l . Denote by crj the unit vector parallel to the side [aj, aj+l] and by 
vj the outward unit normal to this side. Then, defining a ,~+i=a l ,  we have 

7YL 

j = l  

Proof. By the divergence theorem, 

/p  e-2~i~X dx = -(2rcl~D-2 /p  A[e-2~i~'~] dx 

m j[~ OvjO [e_2~ir dx 
= Z 

3=1 o,aj+*] 
m 

: __(271. i~i)__ 2 E(e_2rri{.aJ+le_2rri~.aj ) ~:Vj. [] 
j = l  3 

Proof of Theorem 2.1. From now on we assume L) large, since the estimates 
for ~) small are immediate. The proof of (i) is by induction on the dimension n, 
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starting with n=2 .  In this case the explicit expression of the Fourier transform of 
the characteristic function of a polygon shows that 2p(Qcos(*), Q sin(,))  is domi- 
nated by a finite sum of terms of the form ~-21 cos(*- r  Since the functions 
I COS(*--*j)1-1 are in LI,ec(Y],I) , the desired estimate for n = 2  follows. 

We now consider the case n>2.  By the divergence theorem 

m 

P J=~ 27rill 2 dx, 

where the Fj's are the faces of P and the vj's are the outward unit normals to these 
faces. 

Write x=(t,y) with t E R  and y E R  n- l ,  ~=~cr with g_>0 and a E E ~ - I .  Also 
write a=(cos(r162 with 0_<r and uEEn-2.  Let us choose a face F,  with 
unit normal v. We can assume that this face lies in the hyperplane {t=0} with 
outward normal (1, 0,. . .  , 0). Then 

iv.~ IF e-2~i~x /cos(*) ; /cos(*)2F(0sin(r  2--'~2 dx-- ~ e -2~viOsin(r d y -  27"(~ 

where XF is an (n-1)-dimensional Fourier transform. Hence, roughly speaking, 
the n-dimensional Fourier transform of the characteristic function of a polyhedron 
is a sum of the (n-1)-dimensional Fourier transforms of its faces, multiplied by a 
factor ~-1. Now we estimate the weak norm of 2 p  using the induction assumption 
on XF. Integrating in polar coordinates we have 

A {(cos(*) ,s in(O)r l )EEn_l:  ~ ; ~ F ( p s i n ( O ) r ] ) > A }  

f o r {  2~r t)A } sinn_2(r d," = A r] �9 En-2:  12F(~ sin(C)r])l > i cos(C)----- ~ 

By induction, the above term is bounded by 

CL0-1 ~07r 1ogn-3(2~-L0sin(r <CL)-n f00~r/2 1ogn-3(2@8) n-2 , 
(2+Qsin(r 1 sinn-2(*) dO_ ~ s as 

_< c e  - n  l o g n - 2  (~).  

The proof of (i) is thus complete. In order to prove (ii) and (iii) we start the 
induction with the trivial case n =  1. When n > 1 and 1 _<p < +o  c, arguing as before, 
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we bound 11s ~ 

fo'~f~n ~ ~ 2 F ( 6 s i n ( r 1 6 2 1 6 2  

7r 1 n 2 �9 n--1 
C f og (2-}-6sln(r sin,~_ 2 . . . . .  < log (6) 

< ~ J o  ~ ffp)acp_c 6 n i f p =  1, 

- c f~(2+osin(r162 i f p > l .  
6 v J0 

When p = + c ~  it suffices to control the decay of ~p with the L 1 modulus of 
continuity of XP as follows. 

s n e-2rri('x)(P(X) dx = - s  e-27ri('(x+((/2]~12)))~p(x) dx 

1 ( X p ( x ) _ x p ( x _ 2 _ ~ ) ) d x .  = ~ s  e - 2 ~ x  

Hence 1]: 
12.(01< o x . ( z ) - x P  x-2~T~ dx<_elq <. [] 

For a generic polyhedron the previous estimates cannot be improved, as the 
following theorem shows. 

T h e o r e m  2.3. Let S be a simplex in R n, n>_2. Then 
(i) IIs (2+6)-n log  n-2 (2+6) , 
(iX) IIXS(6')]ILI(En_I)>_C (2+0) -n logn-1(2+6) ,  

(iii) [];~S(6")HLp(~_I) >__C(2+6) -1 - (n - l ) /p ,  l<p__<+OC. 

Proof. We first prove (ii) and (iii). Arguing as in the proof of Theorem 2.1 we 
have 

n 

j=0 Y 

where the Sj 's  are the faces of S and the vj ' s  are the corresponding outward unit 
normal vectors. Since S is a simplex, all the vj 's  are different. Write ~=6 a  with 
6_>0 and a E E n - a .  Let 6>0  and let U={crE2n_l:tY'vo>cos((5)}.  Then, for large 6, 

C p 1/p C e -2~riecr'x d a l  > -  e -2"i~ dx da - 
D 

6 o j=l 
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By induction, as in the proof of Theorem 2.1 we get 

log~_~(Q) 
( /u  fs dx P J > c e n when p =  1, 1 c -2~ie~x da) 1/p 

o cQ -1-(n-1)/p when p >  1. 

Let us now consider the contribution of one of the faces Sj when j > 1. We may 
assmne that  this face lies in the hyperplane orthogonal to  v j = ( 1 ,  0 , . . .  , 0). Since 
the normal v0 to the face So is not parallel to this vj, if 6 is suitably small we may 
also assume that  V is contained ill {(cos(r162 ~]EEn-2}. We 
apply Theorem 2.1 to the (n-1)-dimensional  Fourier transform of Sj to get 

1 /U ~S e-2rci~'xdxPdo- c ~r-~/~ < ~ 12Sj (6 sin(r p sin n-2 (r de d~] 
j - -  n - - 2  

c ~/2 log~-2(er log~-2(e) 
i f p = l ,  

- c F / 2  62 n pc p d r  2p i f p > l .  

Hence the contribution of the faces Sj, j_> 1, is negligible when compared with 
the contribution of So. Therefore the proof of (ii) and (iii) is complete. 

We now prove (i). The idea is to show that if the estimate (i) fails, then (ii) 
fails as well. 

Let g be the non increasing rearrangement of ~s(~') ,  that  is g is a non neg- 
ative non increasing function, defined on the interval (0, IE~_I]), with the same 
distribution function as Xs(~'): for every A>0 

I{u �9 (0, Irn_~l):g(u) > ),}1 = I{~ �9 Y]n--1 : l Y s ( ~ ) l  > ~}1. 

See e.g. [18]. Then we have g(~)<_II2s(~.)IIL~(~_~)<_IS I, and if we assume that 

112s(~') IIL~,~(~n ~)--<e~ -n  l~ we also have g(~)_<e~ -n  log ~-2 (~)~-~. Hence 

112s(~') II L~(~,,_~) -- g(u) du 
dO 

~0 O-" logn-2(~) [ 1 ~  11 du 
_<lSl d~+~ ~ ~ -  ~-  

logn-1 (p) logn-2(p) 
= ~  ~ l o g ( I x n _ l l )  ~lsIp ~. 

Since we know, by (i), that  IIXS(~')IILI(Zn_~)-----CP -n log*~-l(P), we deduce that 
e cannot be too small. [] 
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The proof shows that  the above theorem holds true not only for a simplex but 
also for every polyhedron with a face not parallel to the others. However we cannot 
go much further since the example of a cube shows a different behavior. This fact 
seems to be related to the location of the zeros of the Fourier transform. 

T h e o r e m  2.4. Let Q = [ - � 8 9  �89 be the unit cube in R n, n>_2. 

(i) There exist two positive constants a and b such that for any positive ~, 

10gn-1(2+~0) 
a 

( 2 + o )  n 

. logn-1 (2+~) 
-< 112Q(Q')II  ( n-1) - < 0  �9 

(ii) I f  l<p_<+ec then there exist two positive constants a and b such that 

a(2 + Q) -3/2-(2n- 3)/2p <--112Q(~)IIL~(~ ~) ~ b(2 + ~) -1-(n-1)/p. 

Moreover, i f  l + ( n - 1 ) / p < _ 7 < _ 3 + ( 2 n - 3 ) / 2 p ,  then there exists a constant c and a 

sequence Qk--~+oc such that [[~Q(Ok.)[[Lp(~_~)=CO~ ~. 

Observe that when n = l ,  the Fourier transform 2[-1/2,1/2] (~)=sin(Tr~)/zr~ van- 
ishes on the 0-dimensional spheres {+k}k=l,2 ..... On the other hand, for n > l ,  the 
Fourier transform ~Q does not vanish identically on any sphere. In a sense, the the- 
orem says that the zeros of the Fourier transform influence the norm in LP(En_I), 
l<p_<oc, but not the norm in LI(E~_I).  

For simplicity of exposition we split the proof of the theorem into some lemmas. 

L e m m a  2.5. There exist two constants a and b such that for any positive ~, 

logn-1 (2+L)) 
a (2+e)n 

blOgn-l(2+Q) 
�9 

Proof. The estimate from above has been proved in Theorem 2.1. We start 
proving the estimate from below in the case n = 2  and again we assume 0 large. 

The Fourier transform of the characteristic function of the unit square is 

sin(Irp cos(b)) sin(To0 sin(b)) 
~Q(Ocos(b), 0sin(b)) = 7rQcos(b) 7rosin(b ) 

Let {bE [0, �88 I sin(zrQ cos(b))l_> �89 } :Uj_~l[aj, bj]. Since 

sin(1rp cos(b)) = sin (zr O- �89 2 +...) 
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we have a j , ~ ,  b j , . ~ ~ ,  with l~j~_cQ. Hence 

/o 2~ de> de 
sin(~0 cos(C)) sin(To0 sin(C)) f~/4]sin(zc~cos(r162 

7c0 cos(C) w0 sin(C) c6-2 J0 I sin(C) 

~ 1 ffJ > c6-2 sin(hi) I sin(Tre sin(C)) I de 

~o bj-aj  clog(e) 
~-c 6 -2E  sin(bj) -> 0 2 " 

j = l  

The proof of the case n > 2 is by induction on the dimension n. Using the same 
notation as in the proof of Theorem 2.1, we have Q=Q~= [-�89 �89 • and also 

sin(~t) ̂  

Hence 

- -  ~,~ 2 I2Q~ ~(osin(r sinn-2(r d~dr 

f~v/4 log n-2 (6 sin(C)) 
__ ~ C 1[) 1/2 sin(~0~os(r ( ~ ~  s inn-2(r  de 
> c l~  [] 

L e m m a  2.6. If l<p_<+oc  and if [sin(Tr6)I>c, then there exist two constants 
a and b such that 

ae -1-(~-I)/p <-II2Q(e')IIL~(~_~) --< bQ -1-(n-1)/p. 

Proof. Since the estimate from above has been proved in Theorem 2.1, we only 
need to prove the estimate from below. 

When 0 < r  we have ~sin(r  and 71"6COS((~)=71"0+O(0-1), SO that, 
for large 6, sin(~r6 cos(C))> �89 Therefore 

sin( 0cos( )/ ~Q,~ l(esin(r sinn-2(O)d~dr 

~ z / e /  sin(Tr0 cos(C)) p 
-> w0cos(r ~Q~ ~(6sin(r  sin~-2(C) dr]dr 

0 E~ 2 

f l / e  ~ cePo -p sinn-2(r d 0_~ a6 -p-n+1. [] 
,Io 
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L e m m a  2.7. I f  l<p___oo then 

Ir2Q(~)IILp(~ 1) ~ a~ -3/2-(2'~-3)/2p" 

Proof. When a/v/~<r  we have 7r~cos(r189 with 
a< t< /3 .  Therefore, if a and/3 are suitably chosen, then [ sin(TrQcos(r >c, and 

~ / ~  ~ ~ sin(r p . f / I sin(Tr~ cos(C)) ^ 

- L / ~ J ~  >c ~ 2 ~  

_> ccp~2-~-a'/21{r ~ ( ~ / v ~ , / V v ~ ) :  I sin(Tro sin(C)) I > e}l, 

where we have used the inequality, contained in Lemma 2.6, 

J~n-:  I~Qn (L) sin(O)~/)lPdr/> el&sin(O)] 2-~-p > c~ 1-~12-pl2, 1 

which holds whenever I sin(Tc0sin(r and C~/vZd < r  Since 

1{r E (C~/v/~, f l /x /~):  ] sin(~r~)sin(C)) I > e}] > C~O -112 

the desired estimate follows. [] 

L e m m a  2.8. I f  l<p_<+ec and if & is a positive integer, &=k, then 

ak-3/2-(2n-3)/2P <-ll2Q(k')llL~(~n_l) < bk-3/2-(2n-3)/2P. 

Proof. We only need to prove the estimate from above. By Theorem 2.1, with 
n -  1 in place of n, we have 

sin(~rk cos(C)) ~ P 
HxQ(k')]I~"~(En-~)=~0 L~_~ ~-kCOS-~ Q'~ l(ksin(r sin~-~(r162 

sin(~cos(r " <-- C]g--P--(n-- 2) .L sin-P(r de 

f 
~/4 

< ck -2p-(n-2) ] sin(27rk sin2(r162 -p de 
Jo 

< Ck-3p/2-n+3/2" [] 

We end this section by briefly considering domains more general than polyhe- 
dra, namely domains B whose boundaries OB have finite Minkowski measure. 
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T h e o r e m  2.9. Let B be a domain in R ~ and assume that, for every e>0,  

I{x E R n : d(x, OB) <a}l <cc .  

Then 

1 < {  e(2+Q) -(n+1)/2, l_<p_< 2, 

-- c ( 2 + ~ )  - 1 - ( n - 1 ) / p ,  2_<p<_+cx~. 

For the class of domains with boundaries of finite Minkowski measure these esti- 
mates are sharp. 

As we said, the case p = 2  of this theorem is a consequence of Jackson's approxi- 
mation theorem, however here we like to present a short direct proof. 

L e m m a  2.10. Let 0 be a function in L2(R n) and assume that 

( / R  ,r162 dx) U2<_c,h' U2. 

Then I$(~)12 d~) 1/2 < c(2+ Q) -1/2 . (fb~,_>o} 
Proof. It is enough to show that  for every nonnegative integer k, 

By Plancherel's formula 

s 1r dx=/R'~ [e2~ieh-ll2l~;(~)12 d~. 

The lemma now follows by splitting the set {2 k _< ]~] _< 2 k+l } into a finite number 
of pieces where ]e2~'h --1] >_c, for suitable h's with ]h]~2 -k. [] 

Proof of Theorem 2.9. Since 

R~ ]XB(x+h)--XB(Z)I2dx I((B-h)\B)U(B\(B-h))I 

_< I { x e R  n :d(x, OB)<h}l, 

the case p=2  of the theorem follows from the above lemma. Assuming this case, the 
other cases follow easily. Indeed when p = + c c  it suffices to bound the decay of XB 
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with the L 1 modulus of continuity of XB as in the proof of Theorem 2.1. The case 
2 < p < + o c  follows by interpolation between 2 and +oc. When p < 2  the estimate 
follows since the L p norm is not greater than the L 2 norm. 

We already know by Theorem 2.3 that  when 2 < p < + o c  the above estimates 
are sharp for simplices. When 1_<p<2 the estimates are sharp for domains with 
smooth boundaries with strictly positive curvature. See [9] and [7]. See also [20] 
for mean square estimates without curvature assumptions, or [13] and [11] for two- 
dimensional results proved under mild regularity assumptions. The sharpness of 
the estimates when l_<p<2 can also be checked directly when B is the unit ball in 
R ", since in this case 

~ B ( 4 )  = ]~l-n/2&/2(27rI4[) ~Tr-lI~l -(n+1)/2 cos(27rl~l--17r(n§ [] 

T h e o r e m  3.1.  
in R n, n>_2, and let 

3. In teger  p o i n t s  in p o l y h e d r a  

Let ~p  be the characteristic function of a compact polyhedron 

mEZ ~ 

with 0>_0, 0ESO(n),  t E T  n. Then 

(i) II~(~,',')llLl~<SO<n)•176 log~-l(2+Q), 
(ii) ]]/)(g,',')IILI(SO(n)• log"(2+Q), 
(iii) [[~D(g, . , .  )][L~(SO(~)xT~)<--c(2+~) (~-l)(1-i/p), l < p < §  

We split the proof of the theorem into several lemmas. 

L e m m a  3.2. Let X and Y be finite measure spaces and let L I , ~ ( X •  be 
the weak space of measurable functions on X • Y with 

IIFIIL~,~<X~Y> = sup Al{(x , y) E X x Y:  I F ( x ,  Y)I > A}I < +oo.  

Let also L I ' ~ ( X ,  L2(Y)  ) be the mixed norm space of measurable functions on X • Y 
with 

IIFllLI,~<X,L~<Y)) = sup ~l{x ~ X :  liE(x," )llz~<Y) > ~}1 < + ~ '  
k>O 

Then LI,~(X, r ~ ( r ) )  is contained into LI,~(X• and 

]]F]]zl,~(XxY) <~ cllFllzl,oo(x,z=(y)). 
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Proof. Let FELI'~(X,  L2(y)). Since the statement is rearrangement invari- 
ant, we can assume that  X = Y = ( 0 ,  1) equipped with the Lebesgue measure and 

also (fo IF(x,Y)I 2 dY) i/2 ~X--I" Then 

I{(x,y):O<x<l,  0 < y < l ,  If(x,Y)l>~)l 

~ - l + l { ( x , y ) : ~ - l < x < l ,  0 < y < l ,  IF(x,Y)I>~}I 

_<A-~+ I { y : O < y < l ,  IF(x,y)l>A}ldx 
1 ZI( ) 

_<A-~+ , A -2 IF(x,y)12dy dx 

_<A-I+A -2 x-2dx<_2A -i.  [] 
- - 1  

L e m m a  3.3. Let {fro} be a sequence of functions in Li,~(X).  Then 

( ~ m  2\  1/2 
If.~l ) < c ~ IIf~ll>,~(x>. 

L l ' ~ ( X )  m 

Pro@ Note that  the inequality lien IfmlllL~<x>~eE~ LII.,IIL~,~<x) may 

fail, since L 1,~176 is not normable, but the lemma holds since (2 .~  tf,~12) 1/2 can be 
much smaller than ~ m  If,~l' Recall that  for every a > 0  and p>0,  

Igl f lL~,~<x) = sup ~ f { x  ~ X :  Ig(x)l ~ > ~}1 
A>0 
supA~pl{zeX:lg(z)l>A}l= ~P = IlgllL~,oo(x). 
A>0 

Also, if 0 < q < l  one has the q-triangular inequality 

q 

Z E q < c  Ilg-~llL~ ~(x), 
g m  o o  - -  

m Lq, ( X )  m 

see e.g. [17, Lemma 1.8]. Hence 

2\ 1/2 
) 

2 1/2 
= ~ fm 

L 1 / 2 , ~ ( X )  

_<cEll 21/2 = ~  
~7~ 

[] 
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L e m m a  3.4. The following identity holds in the L2-sense, 
xoo-l~-~('~) :on Z ;,~(oom) e2~< 

m C Z  n 7TzEZ n 

Proof. 

./Tn (,n~CZ n)~e 1P-t(m))e-2~ik't dt= ~ez~ ];, Xoe-lP(m+t)e-2~ikt dt 

=/R~ X~ P(t)e-2~ikt dt ~n~p(~Ok). 

L e m m a  3.5. lID(& ,-)IIL~,~(SO(n),L~(Tn))__<C 1ogn-l(2+Q). 

Proof. First observe that, by the previous lemma and Parseval's equality, 

(fT 2)1/2 (E ) 1/2 
E XoO-IP-t(71t)--@nlPI dt = @n l~p(@Om)12 

n mCZ, ~ "m#O - 

Let us split the series in 0<lml_<Q ~-1 and [ml>@ n-1. 
Theorem 2.1(i), 

~On(o< m~<on IXP(~Om)I2) 1/2 LZ,oo(SO(n)) 
<-- c@n E 

0<lml<Qn-1 

<-- c@n E 
O< ]77~l < @r~ 1 

Also, by Theorem 2.1(iii) with p=2,  

~(iml>~o~ '~P(oOm)12) 1/2 LLo~(SO(n) ) 

~ ~ n  (iml~>e~_l ,~p(@Om),2) l/2llL2(SO(n)) 
( E )1/2 

= ~" 112.(0e-~)]lL(so(.)) 

( E )1/2 
_<ce" leml -"-~  <c .  [] 

I m l > e  n - 1  

[] 

By Lemma 3.3 and 

112e(oe-~) h~,~(so(.)) 

(2+io.~i). - 
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L e m m a  3.6. Let LP(SO(n),L2(Tn)) 
functions on SO(n) x T n with 

Then 

be the mixed norm space of measurable 

]]F[ILp(SO(n),L2(Tn)) = ( fSO(n) [/Tn lF(O,t)]2 dt]P/2 dO) l/P < +o0. 

c logn(2+~) if p=  1, 
II~(O,',')IILP<SO<~>,L~<T~>>~ C(2+o)(n--1)(1--1/P) if l <p<_ +oo. 

Pro@ Let 1 <p_<2. Arguing as in the previous lemma, by Theorem 2.1(iii), we 
have 

(~S F ]p/2 )lip 

Cd z lore[ 1-n-; <~ C~O(n--1)(1--1/P). 

When p = + o c  we have 

I1~)(~0,', " )IIL~176 ~ II 'D(Q,'," )]lLOO(SO(n)• '~) ~ CQ n-1 .  

The estimate for 2 < p < + o o  can be obtained by interpolation between 2 
and +oo. Finally, the estimate when p = l  can be obtained by splitting the se- 
ries ( ~ r  I~P(aOm)12) 1/2 in 0<lml_<L) n-1 and Iml>co n - l ,  as in the proof of 

Lemma 3.5. [] 

Proof of Theorem a.1. The estimate in (i) follows from Lemmas 3.2 and 3.5. 
If l_<p<_2 we have 

IIz~(Q,.,. )llLp(SO(n)• --< II~(Q," ,' )I[LP(SO(~),L~(T~)), 

therefore, when 1_<p_<2, the estimates in (ii) and (iii) follow from Lemma 3.6. 
The case p = + e c  follows from the inequality 

ID(~, 0, t)l-< 1{ x e R n  :d(x ,O(oO-1P-t ) )< !x/n~l'2 J 

The case 2 < p < + o c  follows by interpolation between 2 and +oc. [] 

The estimate (iii) in Theorem 3.1 is sharp. We suspect that  also (i) is best poss- 
ible since the log~-l(L)) result matches with related results in [5], [6], [15] and [16]. 
The following theorem summarizes what we know on this subject. 
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T h e o r e m  3.7. Let S be a simplex in a n with n>2. Then 
(i) liD(0,-, .  )llLl,~(SO(n)• logn-2(2+0),  
(ii) liD(o, " , '  logn- l (2+0) ,  

(iii) liD(o,-,. )IILP(SO(~)xTn)>--C(2+O) (~-1)(1-1/p), l < p < + e o .  

Pro@ Observe that for every k # 0  , 

]ID(O, " ," )[[LP(SO(n)• = on(/sO(n) fT~ mZcoXP(OOm)e2~im't P dt do)l/P 

~- on (/sO(n) IXP(OOk)lP dO) 1/p 

Then (ii) and (iii) are immediate consequences of the corresponding estimates (ii) 
and (iii) in Theorem 2.3. The case (i) follows from (ii) via an interpolation argument 
similar to the one used in the proof of (i) in Theorem 2.3. [] 

For the discrepancies associated to domains more general than polyhedra we 
have the following result, which is a companion of Theorem 2.9. 

T h e o r e m  3.8. Assume that the domain B satisfies, for every e>0,  

t{x R : OB) <all  <c=. 

Then the discrepancy associated to B satisfies 

(~f~2~ fT ~ 1/p { C(2+O) (n-1)/2, l < p < 2 , _  _ ID(~ -, 0, t)I '~ dt dO d~-/ < o(n) ~ - c(2-t-O) (n-1)(1-1/p), 2 <p < +oo. 

For the class of domains with boundaries of finite Minkowski measure these esti- 
mates are sharp. 

Proof. This result is contained in [3]. However the proof is similar to the one 
of Theorem 3.1. One only has to use the estimate for the decay of the Fourier 
transform provided by Theorem 2.9. [] 

We end this section with the following remarks. 
For n = 2  Tarnopolska-Weiss [19], improving a previous result of Randol [14], 

showed that,  for every c>0,  the discrepancy associated to a polygon satisfies 

fs ID(P'O't)ldO<-c~l~ 
0(2) 
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with c~ independent of t. This result has been stated for any dimension, but, for 
n>2 ,  the proof contains a minor mistake that ,  when corrected, gives the bound 
log ~+~ (2+ 6). Combining our estimates for the average decay of ~p with the argu- 
ments in [19] one can prove 

( f s  ) l / P < { c l o g n ( 2 + Q )  w h e n p = l ,  . 
ID(P'O't)lP dO - c(2+O) (n-1)(1-1/p) when l < p < + o c .  o(n) 

Observe that  these estimates give a different proof of the statements (ii) and 
(iii) in Theorem 3.1. 

Our second remark is of a somewhat different nature. We have seen that  in 
the case p=2  the discrepancies are essentially the same for a large class of domains. 
On the other hand when l < p < 2  the discrepancy associated to polyhedra is much 
smaller than the one associated to domains with smooth boundary with strictly 
positive curvature. The situation reverses when 2<p<+cx~, the discrepancy of 
domains with smooth boundary with strictly positive curvature is much smaller than 
the one of polyhedra. It is therefore natural to ask for the existence of intermediate 
discrepancies between polyhedra and convex domains with smooth boundary of 
strictly positive curvature. The answer is that  when p ~ 2  the situation may be 
chaotic. Indeed, if e>0  and ~)k--*+oc, then for most convex sets A the associated 
discrepancy 

T)(L) '0 ' t )=  E XoO-lA-t(m)--OnlAI 
m@Z n 

satisfies 

f S / T {  <l~ f ~  O, t)l dt dO 
o(n) ~ > L)~-~ (n--l)/2 for infinitely many k's. 

This result follows from the estimates for the discrepancies associated to polyhe- 
dra and to domains with smooth boundary with strictly positive curvature, through 
a category argument of Gruber in [4]. 

4. Irregularities of  distributions 

In this section we briefly revisit some results of Montgomery [11] and Beck [1] 
on the irregularities of distributions of finite sets of points in the torus. We start 
observing that  the results of the previous section still hold true rescaling the problem 
in the following way. Instead of fixing the lattice Z ~ and dilating the polyhedron, 
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one can fix the polyhedron and shrink the lattice. This is a particular case of the 

following. 
Assume that B is a domain contained in the torus T ~ with diameter smaller 

than 1 and let M {zj}j= 1 be a distribution of M points in T n. Generalizing the 

definitions we have been using throughout this paper, we now define the discrepancy 

as 
M 

Z~(e, O, t) = ~ ~O-lB-t(zj)-MenlBI, 
j - - 1  

where now e_<l and the rotation 0 and the translation t are in T n. This means 

to dilate, rotate and translate in R ~ and then take the quotient with respect to 

the lattice Z ~. Indeed, assuming that the diameter of B is smaller than 1, the 
projection R n ~ T  ~ is injective on eO-1B-t. 

If the points M {zj}j= 1 are chosen at random, then the mean square value of the 

discrepancy is proportional to v /M.  Indeed, since the discrepancy has the Fourier 

expansion 
M 

2 7 r i z j . m  n ~ 27r im. t  v ( e , 0 , t ) =  e X.(eO. )e , 
m#0 j=l  

a repeated application of Parseval's formula yields 

(/T, "" /Tn [foa/so(n) /W 'Z)(e'O't)'2 dtdO&J dzl ""dzM) 1/2 

E 1 dO de) 1/2 =v/M (m#o fO fso(~) le~2B(eOm)'~ 

On the other hand we have implicitly seen in the previous sections that the 

discrepancy of points evenly distributed on a lattice is smaller, since it is of the 
order of M (n-1)/2~ . The following result shows that this is a lower bound for the 

discrepancy of M points. 

T h e o r e m  4.1. Assume that B is a domain satisfying 

alh I < I( (B-h)  \ B)U(B\ (B-h)  )I <_ blh I 

for sufficiently small Ihl<l. Then there exist constants 0 < q < l  and c>0  such that 
Z M for every distribution of points { Y}j=l, 

]7?(e,O,t)]2 dtdOdc >_cM(n-1)/2n. 
o(~) n 

The proof of this theorem needs a refined version of Lemma 2.10. 
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L e m m a  4.2. Let r be a function in L 2 (R n) and assume that for some positive 
constants a, b and every h E R  n with Ihl<_l, 

alhl <-/R~ I r162  dx < blh I. 

Then there exist positive constants a, /3, % 5, such that, for every Q> I, 

Proof. Lemma 2.10 directly implies the estimate f{~e_<l~t<he} Iq~(~)i 2 d~<_/3/~. 

This lemma also implies the estimate f{l~l<~o} 1~121~(~)l 2 d~<_c~. Then we have 

JR n J R ~  

< 4~21h1~ f I~1= I~(~)1 = d~+4 f t$(~)1 = d~+4 f I$(~)12 d~ 
J{ 

<c('yQIhl2+5-1~-x)+4f 15(~)12 d~. 

Hence, if lh I = 6-],  7 is suitably small and 5 suitably large, 

I~(~)l~d~_> Ihl-~(-~olhl2+5-~-l)>_ - .  [] 
7e<i~i<6e} ~o 

Proof of Theorem 4.1. When ~ < M e  n I Ul _< 1-~/one obviously has I:D(e, 0, t) l>_ 
~/. Hence, if R=a~M -~/~ for a suitable w, 

Following [1], the proof will consist in blowing up this trivial estimate. As in 
the proof of Lemma 3.4 we have 

M M 
2 ~ i z j . m  n ~ 2 ~ i m . t  ~ x ~ 0  ~ - ~ ( ~ ) - M ~ I ~ I  = ~ ~ e ~ x.(~0~n)~ . 

j=l mT~0 j=l 
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Hence, by Lemma 4.2, if O<R<r<_l, 

m~O j=l 7" r O(n) 

~ mr ' - -  - -  

M 2(l+rlml)_n_X 
m~0 j=l  

> i n f  ((r'~2n(l+RIrnl) n+l) (R2n E ~ e  2~izj'm 2 ( l + R I m , ) - n - 1  ) 

( r )  n - 1 1  ~/:/~ / .  
Iz)(~, o, t)I ~ dt dO de. 

-R R n o(~) 

The desired estimate follows taking R=wM -1/n and r = l .  [] 

273 
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