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Uniform growth of analytic 
curves away from real points 

Riidiger W. Braun, Reinhold Meise and B. Alan Taylor 

1. I n t r o d u c t i o n  

Let V be a one-dimensional analytic curve in {(t, s)E C2: Is] < 1} such that  the 
projection map 7r(t, s)=s onto the second coordinate is proper on V. Then there is 
an integer u such that ,  except over a discrete subset of Is I <1,  

(1) V={(t j (s ) , s ) : l<_j<u,  ]s]<l}; 

that  is, V is the zero set of the monic pseudopolynomial with coefficients analytic 

for I s l< l ,  
u u - - I  

F(t, s) = H (t--tj(s) ) = t" § ~-~ aj (s)t j. 
j = l  j = 0  

Each of the branches tj(s) then has a Puiseux series expansion about s = 0  of the 
form 

~j (S) = tj ( 0 ) ~ - ~  dj, k S kIN 
k=l  

for some integer N>_ 1. Suppose that  there is a constant C > 0  and a rational number 
r=p/q, O<p/q<_l, such that  

I Imtj(s)l <_Clsl p/q, s real, Is[ < 1. 

This condition implies that  tj (0) is real and that  the first fractional power k/N that  
has a nonzero coefficient dj,k in the series must satisfy k/N>_p/q. Hence, 

(2) Itj(s)-tj(o)l<C'lsl p/q, I s l < l ,  l < j < ~  

for some constant C ~ which, a priori, depends on the curve V. We are going to 
prove tha t  the constant can be chosen independent of the curve V, in the following 
sense .  
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1.1. T h e o r e m .  Let u and p<_q be positive integers and C a positive number. 
Then there is a constant C'>0 ,  depending only on u, p, q, and C, such that each 
pseudopolynornial whose zero set V satisfies 

Itj(s)l<_C, Isl<l 
(a) 

I Imt j (s ) l<CIsF/q ,  s real, Isl<l, 

also satisfies 

(4) m~n max It~(j)(s)-tj(O)l <_ C'lsl p/q, Isl < 1, 
l<_j<_u 

where a ranges over all permutations of the index set {1, 2, . . .  , u}. 

Thus the estimate (2) holds uniformly, provided the tj are lined up in the right 
way. 

Theorem 1.1 will be used in Section 4 to extend a classical result about ze- 
ros of hyperbolic polynomials. Recall that  a homogeneous polynomial Pro(z) is 
the symbol of a differential operator with constant coefficients, hyperbolic with 
respect to the direction N = ( 0 ,  ... ,0, 1), if P,~(O,... ,0, 1)7~0 and the rn zeros of 
Zn~--~Pm(zl,... , Zn_l, Zn) are all real when (Zl,.. .  , z n - 1 ) E R  n - 1 .  Perturbing Pm by 
adding lower order terms, P ( z ) = P , ,  ( z )+Q(z )  with deg Q <rn, leaves the operator 
hyperbolic provided the zeros of z n H P ( z l , . . . ,  zn-1, zn) have uniformly bounded 
imaginary parts when (Zl ,... , z n - 1 ) E R  n-1. That  is, the imaginary parts of the ze- 
ros of P,~ are perturbed by only a bounded amount. We will use the estimate of the 
theorem to show that  in fact the zeros themselves are perturbed by only a bounded 
amount as long as ( z l , . . . ,  zn-1) are real (see Theorem 4.1). In fact, Theorem 1.1 
grew out of the at tempt  to derive the perturbation result of Wakabayashi [5] in the 
form given in Meise-Taylor-Vogt [3, Section 3], in a way similar to H6rmander's 
proof [2, 12.4.6], of Svensson's perturbation theorem. 

The proof is done in several steps. First, the pseudopolynomial case is reduced 
to the case of ordinary polynomials. Second, the principle of Tarski and Seidenberg 
yields an analytic one parameter family of algebraic curves where estimates are 
worst. Theorem 1.1 is proved by desingularizing the curve in the parameter space. 
This will finally reduce the problem to the case of an unramified covering, where it 
is trivial. The desingularization is done in a rather special way, which is possible 
because of the inequalities (3). This last part of the proof is close to HSrmander's 
proof [2, 12.4.6], of Svensson's theorem. 



Uniform growth of analytic curves away from real points 279 

2. R e d u c t i o n  to  a s e mi - a lge br a i c  1 - p a r a m e t e r  fami ly  o f  c u r v e s  

First, we reduce the problem to finitely many  parameters,  i.e., we replace the 
pseudopolynomial by an ordinary polynomial. Then, we use the principle of Tarski 
and Seidenberg to show that  the parameters  leading to the worst estimates lie on 
some analytic curve. In Section 3, the claim will be shown for that  curve. 

For 01, 02 > 0 define the disk and the bidisk 

/ \ (01 )  : - - - -{sEC= [ 8] < 01}, / \ ( 0 1 , 0 2 )  : = { ( t , s )  E C 2 :  It[ < 01, 181 < 02}. 

By H(G) we denote the space of all holomorphic functions on a domain G. 
For m c N  and 02, C > 0  let 12(02,m , C) denote the set of all analytic curves in 

A(C) x A(02) which are exactly m-sheeted over the s-plane, i.e., 

~2(02, m, C) = { F  e H ( C  x A(02)):  Vs 3tl (s) ,  ... , t,~(s) E C :  

))} Itj(s)l<_c, F(t,s)= I-[(t-tj(s 
j = l  

It  is possible to arrange the indices in such a way tha t  the functions tj: A(02) -~A(C)  
are continuous and, except on a discrete subset of A(02), locally holomorphic. We 
define, for scA(02 ) and FEI;(02,  m, C), 

(5) f ( s ,F )  : = m i n  max It~(j~(s)-tj(o)l, 
cr j = l , . . , m  " j 

where a ranges over all permutat ions of {1,. . .  , m}. 

2.1. L e m m a .  Fix r > 0  and m E N ,  and let M be the smallest nonnegative 
integer strictly larger than m r - 1 .  Then there i8 0 < 0 2 < 1  such that for each pseu- 
dopolynomial FEI2(1,  m, �89 there is a polynomial P of the form 

rn--1 M 
P( t , s )=t '~+ ~ ~ a i , j s i P ,  a i , jEC,  

j--0 i=0 

such that 

(6) min max I~-~(j)(s)-tj(s)l<~lsl foral l sc /X(02) ,  
j= l , . . . ,m 

where cr ranges over all permutations of {1, ... , m} and ri and tj are the roots of 
P and F respectively, i.e., 

? r t  77~ 

F(t, s) = [ I ( t - t j ( s ) ) ,  P(t, s) = 1-I( t-r j(s)) .  
j=l j=l  
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Proof. If 
m--I oo 

F(t's)=tm+ E E ai,jsitJ 
j=O i=0 

is the Taylor series expansion of F,  define P by 

m--1 M 

P(t's)=tm+ E E ai,jsitj" 
j = 0  i=0 

Note that  IF(t, s)l =rlj~=l It-tj(s)l <_2 m for (t, s)EA(1, 1), thus lai,jl<_2 m for all i, j .  
Fix sEA(o2), s#0 ,  where 62>0 is a sufficiently small constant, and choose one of 
the roots of F ( . ,  s), say tl(s). Let c=ls[r(8m) -1. Then the union of the intervals 
]@-,a+[ with a;=ltl(s)-tj(s)l•  , j = l , . . .  ,m, does not cover [0,�88 Hence 
there is RE]0, �88 with [R-Itl(s)-tj(s)ll>_e. For each t with It-tl(s)l=R 

IF(t, s)l = It-tj(s)l > H ] l t - t l ( s ) l - l t l ( S ) - t j ( s ) l l  >_c m 
j = l  j = l  

For those t, the choice of M implies 

m 1 m2rnl8lM+l ~rn 
FP(t,s)-F(t,s)l < - Y~ ~-~. 2mlsl i -  l _ l s  I < <_lF(t,s)l, 

j = 0  i>M 

provided ~)2 was chosen small enough. Thus, for s fixed, P ( . ,  s) and F ( . ,  s) have 
the same number of roots in {t: I t l (s ) - t l  <•}. We let a associate the tj in this disk 
to the ~-i in there and restart the procedure with a tj outside until all tj are covered. 

2.2. Notation. For m E N ,  MEN0,  an M + I  by m matrix (ai,j), and complex 
numbers s, t define 

m-- i M 

Q(s,t, (atj))=tin+ E E a~,jsitJ 
j=0 i-0 

Note that  Q is a polynomial in ( M + l ) m + 2  complex variables. Fix a rational 
number p/q in ]0, 1] and define 

M(L)2, m,p/q):={(ai,j) E c ( M + l ) x r n  : Q ( . , . ,  (ai,j)) E ]d(L)2, m ,  1), I Imtl < Isl p/q 
for all (s, t) E A(g2, 1), s real with Q(s, t, (ai,j)) = 0}. 

In applications of the principle of Tarski and Seidenberg, we identify the space 
C kxl of all complex k by l matrices with a real vector space of dimension 2kl. 
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2.3. L e m m a .  A(02, m,p/q) is a compact semi-algebraic subset of C (M+l)xm 

Pro@ By the continuity of the roots of a polynomial, the complement of 
{ (a id) :Q(s , . ,  (ai,j)) c12(~2, m, 1)} is open. The extra condition Ihnt I <_lsl p/q is 
closed. Since we have bounds on all roots of Q(s,. ,  (ai,/)) and this polynomial 

M is monic, we have bounds on the coefficients ~ i=0  ai,J s* and thus also on the ai,j. 
This proves compactness. Note also that  A(g2, m,p/q) can be written as 

A(~2, m,p/q) ={(ai, j)  E C ( M + l ) •  : Vt ,  8 C C ,  r E R :  

(Q(s,t,(a~,j))=O, Is12<~ ~ It12<1) 
and (Q(r,t, (ai,j))=0, r 2 < t) 2 ~ (Imt) ~q <_r2P)}. 

Thus the principle of Tarski and Seidenberg in the form given in HSrmander [2, 
remark before A.2.4], implies that  A(Q2, m,p/q) is semi-algebraic, keeping in mind 
that " A ~ B "  is the same as "(not A) or B" .  

Recall the definition of f from (5) and define f:  A(t)2) • A(~2, m, p/q)--~R by 

f(s,  (ai,j)) = f(s,  Q(s, . ,  (ai,j))). 

2.4. L e m m a .  The graph of f is semi-algebraic. 

Pro@ Denote by Sj the j - th  elementary symmetric polynomial in m variables 

J 

sj(xl, E 
i l  < . . . < i  d k=l  

The claim follows again from H6rmander [2, remark before A.2.4], and the de- 
scription of the graph G of f given below. There, tl  ,... ,t,~ denote the roots of 
Q(s,. ,  (ai,j)) for the given value of s, while t~176  are the roots for s=0 .  If 
we arrange them so that  r 2 := I t a - t  o 12 is maximal, then r=f(s ,  (ai,d)), provided no 
permutation of the tj and of the t o leads to a smaller value of the maximal distance. 

n The condition 1-Ij=l(t-tj)=Q(s, t, (ai,j)) for all t is expressed by comparison of the 
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coefficients. 

g ~- { (s, (aid), r )  E C x C (M+I) xm X R :  r ~ 0, (ai,j) C ,A(ko2, m ,  p/q), 
% 

3tl,. . .  ,t,~, to,... ,t~ e C  VT1,... ,Tin, TO,... ,T~ 

M M 

Sr~(t~,... , t~)= (--1) m ~ a~j , . . .  ,S~(t~,... ,t,O = -  ~ a~,,~_<, 
i=0 i=0 

s.m(t~ t~ = ( - ~ ) ' % , o ,  . . . ,  s~ ( t ~  t ~  = -ao,,,~_ ~, 
, ' "  0 2 7 2 [tl--t011:2, r 2 ~ [t2--t0212 ,r:2 ~_ Itm--tm[ , 
M M 

( S I n ( T 1 ,  Tin) = ( -1 )  m E a i , ~  S I ( T 1 '  Tin) = - E ai'm-lSi' , - * -  , * . .  

i=0 i=0 

S,~(T~ T,~ = (-1)mao,0,  . . . ,  $1 (TO,. . . ,  T ~  = -a0,m-1,  

IT 1 0:2 0:2 

2.5. L e m m a .  There are 41>0, an even integer b, and holomorphic maps 
s: A(c~I)--~A(02) and A: A(Q1)--~C (M+l)xm such that for A with -t)l</~<Q1 we 
have [s(A)[=A b and A(A)eA(o2, m,p/q) as well as 

sup{f(s ,  (ai,j)): Is I = A b, (aid) C A(p:2, m,p/q)} = f(s(A), A(A)). 

Proof. The graph G of f is semi-algebraic by Lemma 2.4. Thus also the set 

g= {(#,y,s,  (ai,j)) e R x R •  C xc(M+l) •  : (S, (ai,j),y) E~, ]sl 2 = # - 2 }  

is semi-algebraic. For fixed # > 0 the supremum g (#):= sup{y: (#, y, s, (a i j ) )  E s = 
sup{/(s ,  (ai,j ) ): Isl = 1/p, (aid) EA(0:2, m, p/q) } is by Lemma 2.3 obtained and finite. 
Thus, by HSrmander [2, A.2.8], there are C > 0  and semi-algebraic maps g and 
with 

(p, g(p), g(p), A(#)) c g for all # > C. 

This means that g (p )= f (g (# ) ,  (Si,j(#))), Ig(p) l=l /p .  By HSrmander [2, A.2.8], 
g and the components of A admit Puiseux series expansions for sufficiently large p. 
So, for some small 41 >0  and large even bEN, the maps s and A with s(k) =g(A -b) 
and A(A)=A(A -b) are holomorphic on A(Ol)\{0}.  Since they are bounded, they 
can be extended to the origin. Since A(Q2, m,p/q) is closed, it contains A(0). 

So far, we have reduced the compact family of analytic curves to a compact 
family of algebraic curves and then to an analytic one parameter family of algebraic 
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curves. This situation is now dealt with in our main lemma, the proof of which will 
be postponed to the next section. 

2.6. Notation. For L, EN, denote by 7-/(~,) the set of all functions h, holomorphic 
on the closure of C • A(O3, Q4), for suitable L)3, L)4 >0 depending on h, of the form 

/2 l / - - I  

(7) h ( t , )~ , s )=I I ( t - t j ( ;~ , s ) )= t "+Ea~- j (A , s ) t J ,  (~, s) E A(~a, L)4), 
j = l  j = 0  

where a~_j is holomorphic on the closure of A(O3, ~)4). 

2.7. M a i n  L e m m a .  For each pseudopolynomial hc~(p )  for which there are 
C > 0  and p, qEN, p.<q, such that 

(8) IImtj(;~,s)l<_Clsl p/q, (A,s) ER2NA(~)3,04), j = l , . . . , ~ ,  

there are C/,~t>0 such that 

(9) min max It~(j)()~,s)-tj(i~,O)l<_C'lsl p/q, (~,s) EA(5' ,~a) ,  
c~ j--1,...,u 

where ~r varies over all permutations of the indices {1, 2, . . .  , p}. 

Proof of Theorem 1.1. Let a curve as in (1) be given, i.e., a pseudopolynomial 
FE]2(1, y, C) satisfying Ilmtj(s)l<CIslP/q for all s C ] - l ,  1[. Replacing t by t/2C, 

_ 1 For r=p/q, choose M and the polynomial P as in Lemma 2.1. we may assume C -  ~. 
This P is of the form P(t ,s)=Q(s, t ,  (ai,j)) for some M + I  by p matrix (ai,j)= 
A. We claim that  AEA(~2,~,p/q). To see this, denote the zeros of P ( - , s )  by 

~-i(s), i = 1 , . . .  ,~. Then (6) implies I~(~)(s)l.<ltj(s)l+�89 for all sCA(~2) 
and lIIn~-~(3)(s)l<<_lsl p/q for all real s. This shows that AEA(~2, ~,p/q). 

For L)I, s(~), and A(~) as in Lemma 2.5, and Q as in 2.2 define 

h(t, ;~, s) = Q(s(;~), t, A(;~)). 

Then hE~(~,),  and h satisfies the hypothesis of Lemma 2.7 with C = I .  Hence there 

are C ~ and ~3, 64>0 with 

min max It~(j)(A,s)-tj(A,O)l<C'lsl p/q, (~,s) E A(~03, c04). 
j=I,...,L, 

In other words, f(s(A), A(A))<<C'Is(A ) I ~/q for A sutticiently small. Keeping in mind 
that  Is()~)l--)~ b, this implies by Lemma 2.5, for each s with Isl--~ b, 

f(s,  P) .< f(s(&), A(A)) < C'(~b) p/q ~ Clls[ p/q. 

If cr is the permutation corresponding to f(s,  P), and 7 the one from (6), then, for 
each j and small s 

It~o~(3)(s)-tj(O)l <_ It~o~(j) (S)-- T~(j)(S)I+IT~(j)(S)-- ~-j(O)I <_ (�89 +C')Isl p/q. 

Because It~(s)-t~ (0) 1_<2, the estimate holds also for larger Isl < 1 if we allow a bigger 
constant. 
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3. P r o o f  o f  the  main  l e m m a  

Our proof of the main lemma will be given in several steps. It follows that  of 
Lemma 12.4.7 of [2], using a reduction procedure based on the form of the power 
series expansion of h near a point. In Lemma 3.1 it is shown that  the claim is 
equivalent to the assertion that  the power series of h has a certain form. This 
property of h is obtained in Lemma 3.5 provided all the roots tj (A, s) coincide when 
restricted to the plane {s=0}.  In the other case, the proof proceeds inductively. 
The reduction consists in resolving the singularity of {(t, A):h(t, A, 0)=0} in the 
origin in such a way that  it extends to s#0 .  

Once and for all, we fix a rational number O<p/q<_l. 
The first lemma gives the relationship between the magnitude of the roots 

tj (A, s) and the form of the power series expansion. 

3.1. L e m m a .  Suppose that hcT-t(~,) satisfies h(t,O,O)=t ~, and let kEN0 be 
fixed. Then the power series expansion of h about the origin has the form 

(10) h(t,A,s): E aa,~,et~A~s~ 

if and only if there exists C such that the zeros tj (t, s) satisfy 

(11) Itj(A,s)l ~C(IAIP/k+bT/q), l ~ j ~ . ,  

in a neighborhood of the origin. Ilk=O, the term on the right hand side of (11) is 
interpreted as ClslP/q. 

y L,--1 j Proof. We have h( t , t , s )=t  +}-~j=0 a,_j(A,s)t as in (7). I f h  has an expan- 
sion in the form (10), then 

(12) aj(A,s)= ~ a~,~,~A~s ~. 
k/9+qo'>_pj 

If k_> 1, this implies 

(13) [aj(~, 8)1 ~ Cl(l~lP/k +lslP/q)Y, 

because whenever IAI<I, Isl<l, and k/9+qy>_/gj, we can decrease /9 and 7 to /~' 
and 7', not necessarily integers, satisfying k/9'/pj +qT'/PJ: 1 and then 

i~l~lsl~ ~ i~lr ~ k~' pj/k+q~lslpj/q ~ (l~lP/k+lslp/q)j" /9~ -IAI /93 



Uniform growth of analytic curves away from real points 285 

From the well-known estimate, It] < 2 maxj ]aj] l/j, for the magnitude of the largest 
root of the monic polynomial t" +al t ' - l+. . .+a, ,  we therefore conclude from (13) 
that  (11) holds in a neighborhood of the origin. When k=0,  the only change is that  
(12) holds for all fl when qT<pj. Hence, no monomials AZs ~ w i t h / ) > 0  and qT<PJ 
appear in the expansion, so the right hand side of (13) can be replaced by C]s] pj/q 
and the rest of the proof is the same as when k > l .  

Conversely, if (11) holds, then the coefficient aj (A, s), which is a sum of products 
of the roots tj(A, s) taken j at a time, satisfies the estimate (13) for some constant C. 
By Cauchy's inequalities for power series coefficients, this implies (12), which means 
that  

0~+~+~ 
Ot~OA~Os.ih(O, 0, 0) = 0 if pa+k/3+q7 < p~. 

That is, (10) holds. This completes the proof. 

3.2. Coro l la ry .  Suppose that hETI(~) satisfies (8) and h(t,O,O)=t ~. Then 
there is kcN0  such that the power series expansion of h about the origin has the 
form 

h(t, A, s) = E a~,',~t~A~s~" 
pc~A-k~+qT >p~, 

Proof. The hypothesis (8) implies that  each solution curve tj (0, s) of the equa- 
tion h(t(O, s), O, s)=0 has a Puiseux series expansion with leading term 

tj(O,s)=cjsr-4-..., ej•O, 

with r>p/q. Thus we can apply Lemma 3.1 to (t, A, s)~-+h(t, O, s) to get 

h(t, O, s) = E a~,~ 
pc~+q3~>p~ 

For all but finitely many of the triples (a,/~, V) with a~,z,~#0 a n d / ~ # 0  we have 
pa+fl+qT>py. Thus there are only finitely many conditions on k, which can all 
be satisfied. 

The following lemma will be used in the induction step. 

3.3. L e m m a .  Let h be a pseudopolynomial whose Taylor series expansion has 
the form (10) for fixed k and ..  Define T(h) by 

T(h)(t,  s) = h( Pt,  qs) Ap" , A # 0, 
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and as extended by continuity for ~=0.  Then T(h)E~(L,).  Furthermore, 
(1) if the zeros of h satisfy (8), then the zeros ofT(h)  also satisfy (8) with the 

same constant C, 
(2) if the zeros ofT(h)  satisfy the conclusion (9) of the main lemma, so do the 

zeros of h. 

Proof. It is clear that  T(h) is a pseudopolynomial. 
The range of T on A(L,) is contained in ~ ( , )  since the powers of t in the 

monomials t~)~Zs ~ are unchanged by the action of T. In particular, h(t, 0, 0) is 
unchanged by the action of T. It is also easy to check that  the zeros ~-j(s of 
tH(Th) ( t ,  )~, s) are given in terms of those of h, i.e., in terms of the {tj(A, s)}, by 

(14) Tj(~, s) - tJ(~k' )~q8) ~p , ~ r O, 

and by continuity for ~=0.  Therefore, if the zeros of h satisfy (8), then for real 
(~ , s ) ,  

I Im ~-j (~, 8)1 = la-Pl I I m t ~ ( ~  k , X%)I < Cl~-Pll~qsl p/q = CI81 ~/~, 

so (1) holds. 
To check part (2), note first from Lemma 3.1 that the zeros of hcA(u)  always 

satisfy (11). Therefore, if I~1 <_ c2 I sl k/q, there is nothing to prove since 

Itj (),, s ) - t ;  (),, 0)1 _< 2Cl(lalP/k+lslP/q) <_ 4C1C2181 p/q 

Consequently, in proving (2) we can assume that  

(15) 181 _< ~l.Xl q/k 

for some small positive constant & Rewrite the relation (14) as 

tj(~,8)=(~l/k)pTj(~l/k,8/(~l/k)q), 

where the notation means that  A1/k is any fixed value of a k-th root of ~. By 
hypothesis, the zeros ~-j of t~-~(Th)(t, ~, 8) satisfy (9) provided ~ and s are small. 
Therefore, provided I)~/k1<_51 and I8/()~l/k)ql<_52 , which is exactly the condition 
(15) satisfied by ~ and s, 

rain m a x  I t . ( j )  - tj (A, 0) 1 = rain ma~ I(A1/k) p (~-U)( A1/k, S ( ' ) ~ l / k ) - - q )  --  T j  (/~l/k 0))1 
a j a j 

<_ C'l,~l~/kls(,~ ~/k)-~l~/~ = C'lsl~/~. 
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Thus, the estimate (9) also holds for the zeros of t~-~h(t, ~, s). This completes the 
proof. 

We next want to write down the analytic graph t=P(A)  that  is "most tangent 
to" h(t, ,~, 0) =0  and an associated integer #(h) that  measures the degree of contact. 
Suppose that  h is a pseudopolynomial as in (7) with the additional property that  
h(t, O, O) has all its zeros at the origin t=0.  That  is, assume h(t, 0, 0 ) = t  ". The roots 
tj (~, 0) of h(t, A, 0) have Puiseux series expansions in positive fractional powers of A. 
However, the fact that  tj (A, 0) is real when ~ is real implies that  no fractional powers 
actually occur and that the coefficients are real, as has been observed by Chaillou 
([1, p. 9 and Lemma 2, p. 147]), i.e., there are c j jER  with 

j = l , . . . , , .  
l 

3.4. Definition. Let #=#(h) denote the integer (or +oc) 

# = sup{/: cj,z = ck,1 for all 1 < j, k < ~}. 

Also, let pz(A)=cj,1;~ z denote the common value of these terms for 1 < l < # .  

In other words, if we set 

(16) 

then 

or if # ( h ) = + o c  

3.5. L e m m a .  

P(a) 
l_<# 

tj(A,O)=P()~)+crj()~,O), l <j<_y, 

tj(A,O)=P(A), l<_j<_~,. 

Suppose hET-l(v) satisfies tj()~,O)-O, l<_j<_u. Then the main 
lemma, Lemma 2.7, holds for h. 

Proof. Fix a real number A near 0 and consider the Puiseux series expan- 
sion of the zeros tj(A, s) of the function of two variables, (t, s)~-~h(t, ~, s )= t '+  

v--1 j ~ j = 0  a,_j()~,s)t . By hypothesis, at s = 0  all p of the zeros t j() , ,0) are equal to 
zero so this series expansion has the form 

tj(A,s)=cjsrJ+o(IsrJ), Isl 

where rj is a positive rational number. If h satisfies the hypothesis (8), then we 
must have rj >_p/q. Therefore, the coefficients ak (~, s) satisfy 

lak( , )l=O(l lkp/q), real, 
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since ak is a sum of products of the roots t j(~, s) taken k at a time. Therefore, 

0~ ak(),, s) ~=0 Os~ = 0  i f q T < k p ,  ~ real, 

or  

Ot~os~h(O, ~, 0) = 0 if pa+q7 < PU, ~ real. 

Hence, the last equation also holds for all small complex ~ so the power series 
expansion of h(t, A, s) about the origin has the form 

h(t, ~, s) = ~_, a~,z,~t~AZs ~. 
pc~+qy>_p~ 

It then follows from Lemma 3.1 that  Itj(/~,s)]~Cll.Sl p/q, l<_j<_u, which clearly 
implies that  the conclusion (9) of Lemma 2.7 holds for h. This completes the proof. 

3.6. L e m m a .  Let ~i+,~j>c ai,j t i s j  be an analytic germ such that for at least 
two different pairs ( i , j )  with n i+mj=c  we have ai,jr Then there is a solution 
curve t=t(s) of ~ni+,~j>_c ai,jt(s) isj=O admitting a Puiseux series expansion of 
the form 

E t(s)=bos~V'~+ bls TM withbo~O a n d r l > - -  forl>_l, 
m 

l=1 

Isl small. 

Proof. This can be seen from the explicit construction of the Puiseux series ex- 
pansions of all branches of the solution as given, e.g., in Walker [6, III w Of course, 
there much more is proved than what we need here, so we sketch the calculation of 
the first term of the Puiseux series expansion. 

By hypothesis, the polynomial ~ i + , ~ j = c  ai,J bi has at least two terms, thus at 
least one non-zero root b0. Consider the holomorphic function 

F( t l , s l )=  E " i ni+mj-c a~,j(bo+t~) s 1 
ni+rnj>_c 

It satisfies F (0 ,0 )=0 ,  and, by hypothesis, it has a term ai,jtil with ai,j~O, i7~0, 
and ni+mj=c.  By Whitney [7, 1.10A], there is a solution tl(sl) of F(Q, Sl)=0 
satisfying tl  (0)=0 and admitting a Puiseux series expansion with positive exponents 
only. This completes the proof since 
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is a solution of our original equation. 

In the proof of the main lemma, we t ry  to split the zeros of the solution t(~, 0) 
in ~=0  by resolving the singularity. This leads to an inductive procedure. However, 
in general, it might happen that  this desingularization does not carry over to values 
of s different from 0. We show that the hypothesis excludes such a behavior. 

Proof of the main lemma, Lemma 2.7. Note first that  it is enough to show (9) 
for (~, s)EA(5, 5') for some (5'. It will then hold for (,~, s)C A((5, t)a) if we replace C'  
by the maximum of C' and some bound depending on the maximum of all Itj (),, s)l, 
(~, s) EA(5, t)4), which exists because of continuity. 

Let h E ~ ( u )  be given. We proceed by induction over u. If hET-{(1), then 
h(t, ~, s )=t - t1  (~, s) for a holomorphic function tl. Its power series expansion gives 

oo oo 

, ) - t l  o )=  b ,p, J = 
i=0 j--1 

This proves the claim for u = l .  
Suppose now that  the assertion is already shown for ~(>) ,  # = 1 , . . .  , u - 1 .  If 

for h E ~ ( u )  the restriction h(t, 0, 0) has several different roots r~, . . . ,  rL, then we can 
group the ty()~, s) accordingly, thus write on a possibly smaller domain A(t)~, t)~) 

and apply the induction hypothesis to each factor. 
So we only have to deal with the case that  h(t, 0, 0) has a u-fold root, which 

we may assume to be 0. For P as in (16), we define 

(17) h,(t, a, s) = n ( t - t j ( a ,  s ) - P ( a ) )  = n ( t - . j  (a, s)), 
j = l  j--1 

where 
aj()~,s)=tj()~,s)-P()~), l <_j<_z~, 

a r e  the roots of the pseudopolynomial h I (t ,  .~, 8 ) =  h ( t - P ( . ~ ) ,  .~, 8). 

This may lead to crj (~, 0)=0,  in which case the claim follows from Lemma 3.5. 
Otherwise, we denote the Taylor coefficients of hi by c~,~,~. Choose kl and k2 
relatively prime with 

k~ = min{r E Q : r > 0, pa+r/3+q 7 > pu for all a,/3, ~y satisfying c~,~,~ r 0}. k2 - - 
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There is only a finite number of relevant conditions, so the minimum exists. If kl =0,  
then the claim follows from Lemma 3.1. Thus we assume in the sequel kl/k2>O. 
Note that  then there are a l ,  ill, "Yl with c~ 1,zl,7~ S0,  pc~l +rill +qq/1 =pu, and fix S0,  
since r is minimal. Define 

h2(t, s) = hi(t ,  a k2, s). 

We denote the Taylor series coefficients of h2 by a~,z,7. Obviously, a~,k2fl,,~=c,~,~,~, 
and a~ ,~ , ,=0  if fl is not a multiple of k2. Thus 

pa+klfl+q7 >_pu provided a~,~,7 S O, 

and 

pozlq-klfll+q71 =PU, with fll S 0 and aal,fll,~l S 0. 

NOW, tWO cases have to be considered. 

Case 1. There are % ,  rio, 7o with pa0 + kl/30 + q70 =PU satisfying a~ o,Go,To S 0 

and floTo r  
In this case, explicit calculation of the least exponent in the Puiseux series 

expansion of almost any real A gives a contradiction to the hypothesis. To carry 
out this plan, fix a sufficiently small Ao>0 with 

O4) 

Z S o. 
fl=0 

Set 

# = m i n  mEQ:h2(t,  Ao, s)= E E a~,~,~t~Aflos7 " 
c~+mq,>_u fl=0 

Because of 7o>0  and ri0>0, the following inequality implies #>q/p: 

m> u-ao _ klflo+qTo > q 
7o PTo P 

There are at least two pairs ( a ,7 )  satisfying a + p V = u  and ~-~fl~_0a~,fl,,A0flS0, 
namely (u, 0) and the pair for which # is obtained. By Lemma 3.6, there is a 
solution curve t(s) of h2 (t(s), Ao, s)-O whose Puiseux series expansion starts with 
t(s)=botl/~+..., boSO. Choose k and m relatively prime with #=k/m. Since 
#>q/p>_l, we have k_>2. So at least on one of the intervals ] - G 0 [  or ]0, c[, r suf- 
ficiently small, there is a branch of the k-th root for which bo 81/~ is not real. This 
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implies It(s)l =O(I Im t(s) l) for the corresponding branch. Because of 1/#<p/q, this 
contradicts the hypothesis. 

Case 2. For all c~, fl, and "7 with a~,~,v7~0 and pc~+kzfl+qv=p~ we have 7=0  
or ,~=0. 

We apply the operator T of Lemma 3.3 wi th /~=kl  

h2(APt, A k~, A%) 
s )  = 

By that lemma, the hypothesis holds also for h, and it suffices to show the claim 
for ~t. Since fll~0, the hypothesis of the second case implies 71--0. Thus in the 
Taylor series expansion of h2 there is the non-vanishing term a~1,fll,0 tal A fil with 
pc~l+klfll=pp as well as t'. By Lemma 3.6, this implies that at least one of the 
roots ~j (A, s) of h2(t, A, s) has, in the (t, A) variables, a Puiseux series expansion 
with a leading term 

Crj()~,O)~-Cj)~P/kl-'~..., cj ~O, 

(necessarily a Taylor series in A, although this fact is not needed). By Lemma 3.2, 
none of the aj (A, 0) has a leading term with exponent strictly smaller than p/kx. 
Further, from the definition of P(A), it follows that  not all the leading terms of the 
aj(A, 0) are identical. That  is, cj•ck for at least one pair (j, k). However, 

- ( t -c j  -o(1)) ,  
V ) 5=1 

so h(t, 0, 0) has at least two distinct zeros. Thus, as at the start of this proof, 
factors on a possibly smaller domain into pseudopolynomials to which the induction 
hypothesis applies. Consequently, the conclusion of the theorem holds for h and 
then, by Lemma 3.3, also for h2. This completes the proof. 

4. Applications 

In this section we apply Theorem 1.1 to derive a result on the zeros of hyperbolic 
perturbations of homogeneous hyperbolic polynomials that  extends the theorems of 
Svensson [4], Wakabayashi [5], and Meise Taylor Vogt [3]. To do so, we first recall 
some facts on hyperbolic polynomials (see, e.g., Hhrmander [2, Section 12.4]). 

A polynomial P in n variables is said to be hyperbolic in the direction N =  
(0 , . . . ,  0, 1) if, with ~=(~1 , . . . ,  ~n)=(~ ', ~n), the polynomial in one variable ~n~-+ 
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! P(~ , ~ )  has degree m = d e g P  for every choice of ~ ' E R  n - l ,  and the zeros of this 
polynomial 

m 

= 

j = l  

satisfy 
] I m o z j ( ~ ' ) l < C  , ~ ' E R  n-1 .  

If P,~(~) is the principal part of P, i.e., P,~ is the homogeneous polynomial of degree 
rn given by the top degree monomials in P, 

P([ )=P.~([ )+Q([ ) ,  degQ < m, 

then 

where 

m 

= 

j = l  

/3j (~') is real for {' 6 R  n-1. 

Therefore, hyperbolicity of P requires that the imaginary parts of the zeros of 
P,~ are perturbed by the lower order terms in P by at most a bounded amount. 
Theorem 1.1 can be used to show that also the real parts of the zeros are perturbed 
only by a bounded amount. This is the case w({)--i of the following theorem. 

4.1. Theorem.  Let P be a complex polynomial of degree rn in n variables, 
p ,  ! m ! and let P,~ denote its principal part. Assume that ,~({ ,{n)=l]j=l({n--/3j({ )) 

and that all roots/3j are real whenever { 'ER n-1. If 

m 

j = l  

is such that 

(18) [Im c~j (~')1 ~ C~(l{'l), { / E R n - 1  , 

for some positive, continuous increasing function a~(t) with aJ(t)=o(t) and w(0)>0, 
then there is a constant C'>0  such that 

min max ]o~(j)(~')-/3j(~')] <_C'a~(]~']), ~ ' c R  n-l ,  
c~ l <_j  < _ m  " " 
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where the minimum ranges over all permutations cr of the set {1, 2, ... , m}. 

Proof. By the arguments used in the proof of HSrmander [2, Theorem 12.3.1], 
we get from (18) the existence of constants A, A', A " > 0  and a �9  1[ such that  

I~m~j(~')l <AI~'Ia+A ' for all ( � 9  n-1 (19) 

and 

(20) 

Next we let 

max(l,  t a) <_ A"w(t) for all t > O. 

m 

P=Pm+Q=~5, 
j=O 

where Pj is homogeneous of degree j ,  and we let 

p(,, t; r := ~ , '~-JP~ (r t), (~, t, r �9 c 2 • R n-1. 
j - 0  

Note that 

P(s ' t ; r  s '  ' ( s ' t ' ~ ' ) e ( C \ { 0 } ) • 2 1 5  

Hence, for s, t cA(1) ,  s e R ,  and r 1 4 9  ~-~ satisfying p(s, t; ~')=0 we have 

P s '  - - 0 i f s r  and P , ~ ( ~ ' , t ) - - 0 i f s = 0 .  

If s~0  we get from (19), for some j and ]~'1<1, 

(21) ]Imt]= < d +m' ]8[=A]~'[a]8]l-a§ 1-a 

for an appropriate constant C1 >0. Since, by hypothesis, P,~ is hyperbolic with 
respect to (0,... , 0, 1), the estimate (21) holds trivially when s=0.  

Multiplying Pm with a suitable constant, we may assume that  

P,~(o,t)=t% t � 9  

Hence there exists 50 > 0 such that  for each ~' �9 R n-  1 satisfying W] -< 60 the polyno- 
mial t~-+P,~(~', t) has all its zeros in ]t] < 3. Therefore we can choose 0<~2<1 such 
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that  for I~1<0~, 1~'1<60, all the zeros of t~+p(s,t;~') satisfy Itl<~. Hence we get 
from (21), Theorem 1.1, and a scaling argument that  there is a constant C~ such 
that for each ~ ' ~ R  ~-1, I~q<60, and s~A(~a) we have 

(22) nfin max I tr  ~1~21811-a. 
o- ~ < y _ < m  " " 

To conclude the theorem from this, fix { ' 6 R  ~-1 with I~'l _>260/02 and let s:=50/WI, 
r / :=s{ ' .  Then note that  for l<_j_<n we have 

and 

T// f// 

Hence (22) implies 

G 1 <jKry~ l < j < m l  

= m i n  max Isar <_C21sl 1 a. 
l_<j<ml " " 

By (20) this implies 

- c  / ~~ V ~  c2 (23) mino_ l_<j_<mmax I< , ( j ) (~ ' ) -~( r  _< C=lsl - a -  2 / [ ~ J  - ~ Ir176 -< c'~(l~' l) 

for some constant C' and an r  satisfying 1#1>_260/Q~ Since the roots & 
and aj depend continuously on ~' we see that  (23) holds for all ~ ' E R  ~-1 with a 
possibly larger constant C'. 

4.2. Ezample. Though the constant in Theorem 1.1 is a uniform one, the con- 
stant in Theorem 4.1 cannot be uniform, even if P ~  is fixed. This can be seen easily 
by considering the polynomials 

_P(~, 0.) : :  (~1 2 2 2 [0, 4 3. +a) +~2-~a, ac co[,~c 
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4.3. Coro l la ry .  Let P, P,~, and ca be as in Theorem 4.1. If the zeros of P 
satisfy (19), then there exists a constant C ' > 0  such that 

IP(~l,~n+it)l <_C111P,~(~f,~+it)l for all (~,t) e R  n+l, Itl _>ca(~'). 

Pro@ Using the notation from Theorem 4.1 we have for fixed (~, t ) E R  ~, t r  

pm(~l,~n+it) = m �9 I = 14 it+~n-flj(~ ),]" 
)) j=l  

By Theorem 4.1 we can assume that  the roots aj, flj are lined up so that  the choice 
~= id  gives the best estimate. Since all flj and ~,~ are real, we get for ]tl>ca(WI) 

P(~l,~n+it) < 1 - I ( 1 _  ~ C/ca(l~1[) <CIf. 
P'~(~l'~n+it) - j = l -  t - 

4.4. Remark. In the case ca-=l the corollary implies the necessary condition of 
Svensson for hyperbolic perturbations of homogeneous hyperbolic polynomials, as 
it is indicated in H6rmander [2, Theorem 12.4.6(i)]. For general weight functions 
ca, the corollary implies Proposition 3.6 of Meise Taylor Vogt [3], which was de- 
rived from the extension of Svensson's perturbation theorem to Gevrey classes by 
Wakabayashi [5, Remark after 1.2.5]. 

Note that  our proof of Theorem 4.1 is a modification of H6rmander's proof 
of Svensson's theorem. The modification consists in replacing [2, Lemma 12.4.7], 
by Theorem 1.1. In [3, 3.8], it was outlined that  Corollary 4.3 (resp. [3, Proposi- 
tion 3.6]) can also be obtained along the lines of Hbrmander's proof if one replaces [2, 
Lemma 12.4.7], by the following lemma, which is an easy consequence of the main 
lemma, Lemma 2.7. 

4.5. L e m m a .  If h is a pseudopolynomial which satisfies the hypotheses of the 
main lemma, Lemma 2.7, then there exist C1t>0 and 5/>0 such that 

Ih(itP,A, tq)l <_C"lh(itP, A,O)l for all (t,A) e R  2, Itl <51, I~1 <g,  

Proof. Using the same notation as in 2.6 we fix ( t , ) , )ER 2, t r  so that  ()~, tq)E 
A(~3, 64). Then we have 

h(itP'iLtq) I]~=l(itP-tJ(;Ltq)) r I (  tJ(A'O)-tJ()Ltq)) 
h(itP ~,0) - , "p = 1+ . YIJ =l(tt -tj()~,O)) j=l  itp-tj(/~,o) 
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By Lemma 2.7 we can assume that  the roots tj(&, tq) and tj(/~, 0) are lined up so 
that  the choice ~r=id gives the best estimate. Since ~ is real, the estimate (8) 
implies tha t  the roots tj (~, 0) are real. Hence (9) implies 

h(itp, &, 0) - ~ \ Itl p / - 

provided that  I~1 <6, where 5>0  is chosen according to Lemma 2.7. 
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