Ark. Mat., 35 (1997), 277-297
© 1997 by Institut Mittag-Leffler. All rights reserved

Uniform growth of analytic
curves away from real points

Riidiger W. Braun, Reinhold Meise and B. Alan Taylor

1. Introduction

Let V be a one-dimensional analytic curve in {(¢,s)€C?2:|s|<1} such that the
projection map = (t, s)=s onto the second coordinate is proper on V. Then there is
an integer v such that, except over a discrete subset of |s|<1,

1) V={(t;(s),s):1<j<w, |s| <1}

that is, V is the zero set of the monic pseudopolynomial with coefficients analytic
for |s|<1,

v

F(t,s)=]](t—t;(s) = t”+z_: a;(s)t’.

j=1
Each of the branches t;(s) then has a Puiseux series expansion about s=0 of the
form

ti(s)=t;(0)+ ) djps®N
k=1

for some integer NV >1. Suppose that there is a constant C'>0 and a rational number
r=p/q, 0<p/q<1, such that
| Tmt;(s)| <C|s[P/9, s real, |s|<1.

This condition implies that ¢;(0) is real and that the first fractional power k/N that
has a nonzero coefficient d;  in the series must satisfy k/N>p/q. Hence,

(2) t(5)—£;(0)| < C'|slP’4, Js| <1, 1<j<w

for some constant ¢’ which, a priori, depends on the curve V. We are going to
prove that the constant can be chosen independent of the curve V, in the following
sense.
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1.1. Theorem. Let v and p<q be positive integers and C a positive number.
Then there is a constant C'>0, depending only on v, p, q, and C, such that each
pseudopolynomial whose zero set V' satisfies

()| <C, |s] <1
|Tmt;(s)| < C|s|P/?, s real, |s| <1,

3)

also satisfies

. !
4) min max |t (;)(s)—t;(0)] < C'ls*/%, s <1,
where o ranges over all permutations of the index set {1,2,... ,v}.

Thus the estimate (2) holds uniformly, provided the ¢; are lined up in the right
way.

Theorem 1.1 will be used in Section 4 to extend a classical result about ze-
ros of hyperbolic polynomials. Recall that a homogeneous polynomial P,,(z) is
the symbol of a differential operator with constant coefficients, hyperbolic with
respect to the direction N=(0,...,0,1), if P,(0,...,0,1)£0 and the m zeros of
2P (21 5+ Zn—1, 2n) are all real when (21, ... , 2,_1) ER™ 1. Perturbing P,, by
adding lower order terms, P(2)=PF,,(z)+Q(z) with deg Q <m, leaves the operator
hyperbolic provided the zeros of z,—P(z1,... , 2n_1, 2,) have uniformly bounded
imaginary parts when (21, ... , z,—1) ER"!. That is, the imaginary parts of the ze-
ros of P, are perturbed by only a bounded amount. We will use the estimate of the
theorem to show that in fact the zeros themselves are perturbed by only a bounded
amount as long as (21 ,... ,z,—1) are real (see Theorem 4.1). In fact, Theorem 1.1
grew out of the attempt to derive the perturbation result of Wakabayashi [5] in the
form given in Meise—Taylor—Vogt [3, Section 3], in a way similar to Hérmander’s
proof [2, 12.4.6], of Svensson’s perturbation theorem.

The proof is done in several steps. First, the pseudopolynomial case is reduced
to the case of ordinary polynomials. Second, the principle of Tarski and Seidenberg
yields an analytic one parameter family of algebraic curves where estimates are
worst. Theorem 1.1 is proved by desingularizing the curve in the parameter space.
This will finally reduce the problem to the case of an unramified covering, where it
is trivial. The desingularization is done in a rather special way, which is possible
because of the inequalities (3). This last part of the proof is close to Hérmander’s
proof [2, 12.4.6], of Svensson’s theorem.
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2. Reduction to a semi-algebraic 1-parameter family of curves

First, we reduce the problem to finitely many parameters, i.e., we replace the
pseudopolynomial by an ordinary polynomial. Then, we use the principle of Tarski
and Seidenberg to show that the parameters leading to the worst estimates lie on
some analytic curve. In Section 3, the claim will be shown for that curve.

For g1, 02 >0 define the disk and the bidisk

Ao1):={scC:ls|<o}, Alo1,00):={(t,s)cC?: lt] < o1, 8] < 02}

By H(G) we denote the space of all holomorphic functions on a domain G.
For meN and g2, C>0 let V{(os,m, C) denote the set of all analytic curves in
A(C) x A(pz) which are exactly m-sheeted over the s-plane, i.e.,

V(g2,m,C) = {Fe H(CxA(g2)):Vs 3t1(s),... ,tm(s)€C:

!M%SQF@Q=H@%mm}

Jj=1

It is possible to arrange the indices in such a way that the functions ¢;: A(g2) —A(C)
are continuous and, except on a discrete subset of A(g,), locally holomorphic. We
define, for s€A(g2) and FeV(g2, m,C),

(5) fls, F)i=min_ max [to(;)(s)=1;(0)],

where o ranges over all permutations of {1,... ,m}.

2.1. Lemma. Fiz r>0 and meN, and let M be the smallest nonnegative
wnteger strictly larger than mr—1. Then there is 0<py<1 such that for each pseu-
dopolynomial FEV(1,m, $) there is a polynomial P of the form

m—1 M
P(t,S):tm+Z Zai’jsztj, Qs j eC,
§=0 =0
such that
(6) min max IToiy (8)=t5(8)| < 3|s|”  for all s€ A(p2),
o
where o ranges over all permutations of {1,... ,m} and 7; and t; are the roots of

P and F respectively, i.e.,

mn

Fit,5) =[] (- P(t,5) = (t=7(s))-

j=1 j=1
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Proof. If

m—1 oo

F(t,s)=t"+ Z Z a; js't)

§=0 i=0
is the Taylor series expansion of F, define P by

m—1

M

P(t,s)=t"+ Z

7=0 =0
Note that |F(t, s)| =T}~ [t—t;(s)|<2™ for (t,5)€ A(1, 1), thus |a; ;| <2™ for all 4, j.
Fix s€A(g2), s#0, where p3>0 is a sufficiently small constant, and choose one of
the roots of F( s), say t1( ). Let e=|s|"(8m)~!. Then the union of the intervals
Jaj,af | with a3 =[t1(s)—t;(s)|%e, j=1,...,m, does not cover [0, %s|"[. Hence

there is R€]0, 4|s| [ with ’R—ltl(s)—tj(s)HZfs. For each ¢ with |t—¢t;(s)|=R

m

| (t, 8) = T lt—=t;(s) |>HHt t(s)|=]ta(s)—t;(s)l[ =™

j=1
For those t, the choice of M implies
m—1 2mls|M+1

[P(t,s)—=F(t,s)| <> > 2ms|'= T <e™<|F(t,s)),

=0 i>M

provided g, was chosen small enough. Thus, for s fixed, P(-,s) and F(-,s) have
the same number of roots in {t:|t1(s)—t|<R}. We let o associate the ¢; in this disk
to the 7; in there and restart the procedure with a t; outside until all #; are covered.

2.2. Notation. For meN, M &Ny, an M+1 by m matrix (a; ;), and complex
numbers s, t define

,_.

M:

m—

Q(s,t,(a: ;) =t"+ a»Jsitj.

Il
=]

7j=0 <

Note that @ is a polynomial in (M+1)m~+2 complex variables. Fix a rational
number p/q in ]0,1] and define

Alo2,m,p/q) ={(ai ;) € CMHV*™:Q(- -, (a;;)) €V(02,m, 1), [Tmt| < [s[P/
for all (s,t) € A(g2,1), s real with Q(s, ¢, (a; ;) =0}.

In applications of the principle of Tarski and Seidenberg, we identify the space
CF*! of all complex k by [ matrices with a real vector space of dimension 2kl.
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2.3. Lemma. A(g2,m,p/q) is a compact semi-algebraic subset of CM+1xm,

Proof. By the continuity of the roots of a polynomial, the complement of
{(ai;):Q(s,, (a;;))€V(02,m,1)} is open. The extra condition |Im¢|<|s|P/? is
closed. Since we have bounds on all roots of Qs,-,(a;;)) and this polynomial
is monic, we have bounds on the coefficients Zf\io a; ;s' and thus also on the a; ;.
This proves compactness. Note also that A(g2, m, p/q) can be written as

A(gg,m,p/q):{(ai,j)EC(MH)X’”:W,SEC, recR:
(Q(s,t, (a5)) =0, |s* <3 = [t*<1)
and (Q(r,t, (a;;)) =0, r* <3 = (Imt)* <r®")}.

Thus the principle of Tarski and Seidenberg in the form given in Hérmander [2,
remark before A.2.4|, implies that A(g2,m,p/q) is semi-algebraic, keeping in mind
that “A=B” is the same as “(not A) or B”.

Recall the definition of £ from (5) and define f: A(ga) x A(02,m,p/q)—R by
s (aig) = F(s,Q(s, - (ai)))-

2.4. Lemma. The graph of f is semi-algebraic.

Proof. Denote by S; the j-th elementary symmetric polynomial in m variables

J
Si(Z1y e, Tm) = Z szk

i1 <...<i; k=1

The claim follows again from Hormander [2, remark before A.2.4], and the de-
scription of the graph G of f given below. There, t1,... ,t, denote the roots of
Q(s,+, (a;;)) for the given value of s, while ¢?,... ,t0, are the roots for s=0. If
we arrange them so that r?:=|t; —t?|? is maximal, then r=f(s, (a;;)), provided no
permutation of the ¢; and of the t? leads to a smaller value of the maximal distance.
The condition J[}_, (t—t;)=Q(s,t, (a;;)) for all 1 is expressed by comparison of the



282 Riidiger W. Braun, Reinhold Meise and B. Alan Taylor

coefficients.

G= {(s, (aij),r) € CxCWMHXmy R >0, (ai ) € Alo2,m,p/9q),

Tty s b, 10, 80 €CVTY, ... , T, TV, ..., 70 €C:

M M
St ... ,tm)=(—1)m2ai,osi,~- ;S1(ty s 7tm)=—zai,m—13iv
=0 1=0
S (80, 0 =(=1)™ag0, - ,S1(t9, 0 ,19) = —A0.m—1,
r? =t =12, 12> [t — 132, . ;72 2 [t — 10|
M M
(Sm(Tl g een ,Tm) = (_1)m Zai,osz s aes ,Sl (Tl yees ,Tm) = Zai,m_lsl,
i=0 i=0

Sm(Tlo 5res ’ng) = (—1)ma0’0 g een ,Sl (Tlo yees ,Tg%) = —ag,m—1,

Ty =T > | T, —T2%, ... ,| i =T > > 1Tm—Tg|Q> = |1y —T?|? zf"}.

2.5. Lemma. There are g1>0, an even integer b, and holomorphic maps
s:Ap1)—A(g2) and A:A(Q1)—>C(M+1)Xm such that for A with —p1 <A<g; we
have [s(\)|=A® and A(N)€.A(02,m,p/q) as well as

sup{f(s, (@) : [s|=X°, (ai;) € Ale2,m, p/a)} = F(s(X), A(N))-

Proof. The graph G of f is semi-algebraic by Lemma 2.4. Thus also the set
&= {( 5, (a:5)) € RxRXCxCMHM . (5. (a, ), y) €G, ]2 = =)

is semi-algebraic. For fixed >0 the supremum g(p):=sup{y:(g,y,s, (a;i;))e€}=
sup{f(s, (ai;)):|s|=1/p, (ai ;)€ Al02,m,p/q)} is by Lemma 2.3 obtained and finite.
Thus, by Hérmander [2, A.2.8], there are C'>0 and semi-algebraic maps § and A
with

(1, 9(p), 3(n), A(p)) €€ for all p>C.

This means that g(u)=f(3(u), (ai,; (1)), 18(x)|=1/p. By Hormander [2, A.2.8],
5 and the components of A admit Puiseux series expansions for sufficiently large .
So, for some small p; >0 and large even b€N, the maps s and A with s(A)=3(17?)
and A(\)=A(\?) are holomorphic on A(g;)\{0}. Since they are bounded, they
can be extended to the origin. Since A(g2,m,p/q) is closed, it contains A(0).

So far, we have reduced the compact family of analytic curves to a compact
family of algebraic curves and then to an analytic one parameter family of algebraic
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curves. This situation is now dealt with in our main lemma, the proof of which will
be postponed to the next section.

2.6. Notation. For veN, denote by H(v) the set of all functions h, holomorphic
on the closure of Cx A(ps, 04), for suitable g3, 04>0 depending on A, of the form

v v—1
(7) h(t, >‘7 S): H(t—tj(A,S)):tV—{-Za,,_j()\,s)tj, (/\,8) 6A(Q374Q4)7
j=1 =0

where a,,_; is holomorphic on the closure of A(gs, 04).

2.7. Main Lemma. For each pseudopolynomial he H(v) for which there are
C>0 and p,qeN, p<gq, such that

(8) |Imt]()\,8)f§0|8'p/q7 ()\,S)ERzmA(Qg,Q4), ]:17 » Vs

there are C', 8" >0 such that

9) min _max [to() (A 8)—t5(X, 0)[ < C"|s|p/q, (N, 8) € A(6, 04),
o j=1,..,v

where o varies over all permutations of the indices {1,2,... ,v}.

Proof of Theorem 1.1. Let a curve as in (1) be given, i.e., a pseudopolynomial
FeV(l,v,C) satisfying | Imt;(s)|<C|s[P/? for all s€]—1,1[. Replacing t by t/2C,
we may assume C'= % For r=p/q, choose M and the polynomial P as in Lemma 2.1.
This P is of the form P(t,s)=Q(s,t, (a;;)) for some M+1 by v matrix (a; ;)=
A. We claim that A€ A(p2,v,p/q). To see this, denote the zeros of P(-,s) by
7i(s), i=1,...,v. Then (6) implies |7,(;(s)|<[t;(s)|+5|s[P/9<1 for all s€A(g2)
and | Im 7,(j)(s)|<|s|P/? for all real s. This shows that A€.A(02,v,p/q).

For o1, s(X), and A(X) as in Lemma 2.5, and @ as in 2.2 define

h(t, A, s)=Q(s(N),t, A(N)).
Then heH(v), and h satisfies the hypothesis of Lemma 2.7 with C=1. Hence there
are C' and g3, 04 >0 with

min max |tg(j)()\,s)—tj(>\,0)|§C"|s|p/q, (A, 8) € A(ps, 04).
g g=1,..,Vv

In other words, f(s(A), A(X))<C’|s(A\)|P/? for A sufficiently small. Keeping in mind
that |s(A\)|=\?, this implies by Lemma 2.5, for each s with |s|=\?,

Fls, P)< f(s(N), AQN) S C'(APla < C'|sfP/e.
If o is the permutation corresponding to f(s, P), and + the one from (6), then, for
each 7 and small s

105 (8) =5 (0)] < [Eyeo(3) () = To ) (8) |+ |70y () =75 (0)| < (5+C7) s/
Because [t;(s)—1;(0)| <2, the estimate holds also for larger |s| <1 if we allow a bigger
constant.
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3. Proof of the main lemma

Our proof of the main lemma will be given in several steps. It follows that of
Lemma 12.4.7 of [2], using a reduction procedure based on the form of the power
series expansion of h near a point. In Lemma 3.1 it is shown that the claim is
equivalent to the assertion that the power series of h has a certain form. This
property of h is obtained in Lemma 3.5 provided all the roots ¢;(A, s) coincide when
restricted to the plane {s=0}. In the other case, the proof proceeds inductively.
The reduction consists in resolving the singularity of {(¢, A\):h(¢, A,0)=0} in the
origin in such a way that it extends to s£0.

Once and for all, we fix a rational number 0<p/q<1.

The first lemma gives the relationship between the magnitude of the roots
t;(A, s) and the form of the power series expansion.

3.1. Lemma. Suppose that he H(v) satisfies h(t,0,0)=t", and let k€Ng be
fized. Then the power series expansion of h about the origin has the form

(10) Rt A 8)= Y dapytNs
pa+kf+gy2py

if and only if there exists C such that the zeros t;(\,s) satisfy
(11) [t (A 8)| SCAPF+[sP/9),  1<j<w,

in a neighborhood of the origin. If k=0, the term on the right hand side of (11) is
interpreted as C|s|P/9.

Proof. We have h{t, A, s):t”—i—zjy;ol ay—; (A, s)t7 asin (7). If h has an expan-
sion in the form (10), then

(12) a;(A s)= Z Ao g\ 87,
kB+qv=pj

If k>1, this implies
(13) laz (A, 5)| < CLAP/R+(s[P/9)7,

because whenever |\ <1, |s|<1, and kG+qy>pj, we can decrease 8 and v to
and v/, not necessarily integers, satisfying k3’ /pj+¢7'/pj=1 and then

N 74 . / ) )
Ao <A 87 < RN A st < (sl
pJ
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From the well-known estimate, [¢|<2max; |a;|'/7, for the magnitude of the largest
root of the monic polynomial t* +a;t*~!+...+a,, we therefore conclude from (13)
that (11) holds in a neighborhood of the origin. When k=0, the only change is that
(12) holds for all 3 when gy<pj. Hence, no monomials A\®s” with 3>0 and gy<pj
appear in the expansion, so the right hand side of (13) can be replaced by C|s[P7/9
and the rest of the proof is the same as when k>1.

Conversely, if (11) holds, then the coefficient a; (A, s), which is a sum of products
of the roots ¢ (), s) taken j at a time, satisfies the estimate (13) for some constant C'.
By Cauchy’s inequalities for power series coefficients, this implies (12), which means

that
ootB+y

Ot ONBDsY
That is, (10) holds. This completes the proof.

h{0,0,0)=0 if pa+kB+qy <pv.

3.2. Corollary. Suppose that he H(v) satisfies (8) and h(t,0,0)=t". Then
there is k€Ng such that the power series expansion of h about the origin has the
form

h{t, A\, s) = Z a5t N 87,

pa+kB+gy2py

Proof. The hypothesis (8) implies that each solution curve ¢;(0, s) of the equa-
tion h(t(0,s),0,s)=0 has a Puiseux series expansion with leading term

tj(O,S):CjST—l-..., Cj7é0,
with r>p/q. Thus we can apply Lemma 3.1 to (¢, A, s)—h(t, 0, s) to get

h(t,0,8)= Z Qo017

pa+qyZpv

For all but finitely many of the triples (e, 8,7) with ao ,,7#0 and 8#0 we have
pa+B+qy>pr. Thus there are only finitely many conditions on k, which can all
be satisfied.

The following lemma will be used in the induction step.

3.3. Lemma. Let h be a pseudopolynomial whose Taylor series expansion has
the form (10) for fized k and v. Define T(h) by

h(M\Pt, Ak, \9s)

T(h) (tv A, 3) = NPV s

A0,
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and as extended by continuity for A=0. Then T(h)€H(v). Furthermore,

(1) if the zeros of h satisfy (8), then the zeros of T'(h) also satisfy (8) with the
same constant C,

(2) if the zeros of T(h) satisfy the conclusion (9) of the main lemma, so do the
zeros of h.

Proof. Tt is clear that T'(h) is a pseudopolynomial.

The range of T on A(v) is contained in H(v) since the powers of ¢ in the
monomials t*A?s” are unchanged by the action of T. In particular, h(t,0,0) is
unchanged by the action of T'. It is also easy to check that the zeros 7;(A,s) of
t—(Th)(t, A, s) are given in terms of those of h, i.e., in terms of the {t;(\,s)}, by

o tj ()\k, )\qs)

(14) (A 5) T

A#0,

and by continuity for A=0. Therefore, if the zeros of h satisfy (8), then for real
(A s),
| Tm 7 (A, 8)| = |A7P| [ Tm £;(AF, As)| < CIA7P||A9s[P/1 = C|s|P/1,

so (1) holds.
To check part (2), note first from Lemma 3.1 that the zeros of h€ A(v) always
satisfy (11). Therefore, if |A\|<Cy|s|*/9, there is nothing to prove since

It5(X, 5)=t5(A, 0)| S 2CL(IAP/*+|s[P/9) < 401 Gl [P/
Consequently, in proving (2) we can assume that
(15) |s| < 8|A2/*
for some small positive constant §. Rewrite the relation (14) as
ti(\,8) = (AFPr (AE, s/ (AR,

where the notation means that A\'/* is any fixed value of a k-th root of A\. By
hypothesis, the zeros 7; of t—(Th)(t, A, s) satisfy (9) provided A and s are small.
Therefore, provided |A\'/¥|<é; and |s/(A'/*)4|<&,, which is exactly the condition
(15) satisfied by A and s,

min max |t,(;) —t; (A, 0)] = min max |(A*)P (7, ;) (A, s(AVF) =) =75 (A, 0)))
a J g 7

<O\ AP R|s(AV Ry agpla = o7 s P/ e
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Thus, the estimate (9) also holds for the zeros of t—h(t, A, s). This completes the
proof.

4

We next want to write down the analytic graph t=P()\) that is “most tangent
t0” h(t, A, 0)=0 and an associated integer u(h) that measures the degree of contact.
Suppose that h is a pseudopolynomial as in (7) with the additional property that
h(t,0,0) has all its zeros at the origin £=0. That is, assume h(¢,0,0)=¢". The roots
t;(A,0) of A(t, A, 0) have Puiseux series expansions in positive fractional powers of A.
However, the fact that ¢;(A, 0) is real when A is real implies that no fractional powers
actually occur and that the coefficients are real, as has been observed by Chaillou
([1, p- 9 and Lemma 2, p. 147]), i.e., there are ¢;; €R with

tj(A,O)ZZCjJ/\l, j:].,... s V.
i

3.4. Definition. Let p=p(h) denote the integer (or +00)
p=sup{l:c;;=cg,; for all 1 <j,k<v}.
Also, let pl(/\):cj,l)\l denote the common value of these terms for 1<I<pu.

In other words, if we set
(16) PO =) pi(N),
I<p

then

or if pu(h)=400
ti(A,0)=P(\), 1<j<w.

3.5. Lemma. Suppose he H(v) satisfies t;(A,0)=0, 1<j<v. Then the main
lemma, Lemma 2.7, holds for h.

Proof. Fix a real number X\ near 0 and consider the Puiseux series expan-
sion of the zeros t;(A,s) of the function of two variables, (¢,s)—h(¢, A, s)=t"+
Z;’;& av—;(A, 8)t7. By hypothesis, at s=0 all v of the zeros t;(},0) are equal to
zero so this series expansion has the form

ti(A s) =c;s to(ls|7),  |s| <e(N),

where 7; is a positive rational number. If h satisfies the hypothesis (8), then we
must have r; >p/q. Therefore, the coefficients ax (A, s) satisfy

lak(, 8)] = O(|s[*/%), X real, |\ <6,
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since ay, is a sum of products of the roots t;(\, s) taken k at a time. Therefore,

oY

——ai(A, ) =0 if gy <kp, Areal,
as oo
or
oty
Sraggy (0 0) =0 if patgy <pv, Areal

Hence, the last equation also holds for all small complex A so the power series
expansion of h(t, A, s) about the origin has the form

ht, N s)= Y apytAs7.

pa-+qy2py

It then follows from Lemma 3.1 that |t;(},s)|<Ci|s|?/?, 1<j<v, which clearly
implies that the conclusion (9) of Lemma 2.7 holds for A. This completes the proof.

3.6. Lemma. Let ) . ...~ a; jt's? be an analytic germ such that for at least
two different pairs (1,7) with ni+mgj=c we have a; j#0. Then there is a solution
curve t=t(s) of 3, m;se i t(8)'s’ =0 admitting a Puiseuz series expansion of
the form

t(s) = bOS"/m—}-Z bis™ with by #0 and 7 > % forl>1, |s| small
=1

Proof. This can be seen from the explicit construction of the Puiseux series ex-
pansions of all branches of the solution as given, e.g., in Walker [6, ITI §7]. Of course,
there much more is proved than what we need here, so we sketch the calculation of
the first term of the Puiseux series expansion.

By hypothesis, the polynomial »_ .. . j=c @ij b® has at least two terms, thus at
least one non-zero root by. Consider the holomorphic function

F(ty,s1)= Z a; ;(bo +t1)i8§n+mj_c.
ni+mji>c
It satisfies F(0,0)=0, and, by hypothesis, it has a term a; ;t{ with a; ;#0, i#0,
and ni+mj=c. By Whitney [7, 1.10A], there is a solution #1(s;) of F(t1,s1)=0
satisfying ¢1 (0)=0 and admitting a Puiseux series expansion with positive exponents
only. This completes the proof since

t(s) = (bo+ta(s*/™))s™/™
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is a solution of our original equation.

In the proof of the main lemma, we try to split the zeros of the solution ¢()\, 0)
in A=0 by resolving the singularity. This leads to an inductive procedure. However,
in general, it might happen that this desingularization does not carry over to values
of s different from 0. We show that the hypothesis excludes such a behavior.

Proof of the main lemma, Lemma 2.7. Note first that it is enough to show (9)
for (X, s)€A(6,8") for some &'. It will then hold for (A, s)EA(8, p4) if we replace C’
by the maximum of C’ and some bound depending on the maximum of all |¢;(A, s)|,
(A, 8)EA(8, 04), which exists because of continuity.

Let heH(v) be given. We proceed by induction over v. If heH(1l), then
h{t, A, s)=t—t1(}A, s) for a holomorphic function ¢;. Its power series expansion gives

tl(/\, 8) —tl ()\, 0) = i i bi’j)\isj = O(S)

i=0 j=1

This proves the claim for v=1.

Suppose now that the assertion is already shown for H(u), u=1,... ,v—1. If
for heH(v) the restriction h(t,0,0) has several different roots 7y , ... , 7, then we can
group the ¢;(}, s) accordingly, thus write on a possibly smaller domain A(g5, ¢})

h(t, A, s) = ﬁ ( II ¢t s))>

F=1 My (0,0)=Tj

and apply the induction hypothesis to each factor.
So we only have to deal with the case that h(f,0,0) has a v-fold root, which
we may assume to be 0. For P as in (16), we define

v

(17) hl(t7 A, S) = H(t'—tj()‘a S) _P()‘)) = H(t_gj ()‘7 s)):

=1

where
aj(As)=t;(\,s)=P(N), 1<j<w,

are the roots of the pseudopolynomial hy (¢, A, s)=h{t—P(A), A, 5).

This may lead to ¢;(A,0)=0, in which case the claim follows from Lemma 3.5.
Otherwise, we denote the Taylor coefficients of h; by c4,3,,. Choose k; and ks
relatively prime with

k
k_l =min{r € Q:r >0, pa+rf+qy>pv for all a, 8, satisfying ca g, #0}.
2



290 Riidiger W. Braun, Reinhold Meise and B. Alan Taylor

There is only a finite number of relevant conditions, so the minimum exists. If k1 =0,
then the claim follows from Lemma 3.1. Thus we assume in the sequel kq/k3>0.
Note that then there are a1, 81, y1 with co, g, 4, 70, pa1 +rB1+qy1=pv, and 3 750
since r is minimal. Define

ha(t, A, 8) = hi(t, A\F2 ).

We denote the Taylor series coefficients of hg by aq,g,. Obviously, ¢o,k.8,y=Ca,8,7,
and aq g,=0 if 3 is not a multiple of k3. Thus

pa+ki f+qy>pr provided aq g, #0,

and
poy+ki1Bi+qy =pv, with 81 #0 and aq, g, v #0.

Now, two cases have to be considered.

Case 1. There are ag, 8o, vo With pag+kiBo+gyo=pv satisfying aq,, g,,~, 70

and Bovo#0.

In this case, explicit calculation of the least exponent in the Puiseux series
expansion of almost any real A gives a contradiction to the hypothesis. To carry
out this plan, fix a sufficiently small A\g>0 with

oo
Z Qag,Byv0 Ag #0.

B=0

Set

u:min{m € Q:ha(t, Ao, 8) = Z Zao‘vﬁﬁ tO‘Ags'y}.

a+my>v =0

Because of vo>0 and $5>0, the following inequality implies p>q/p:

— k
ms V700 otar _ g
Yo Py

There are at least two pairs («,v) satisfying a+uy=v and Z;o:o aa,gﬁ)\g #0,
namely (v,0) and the pair for which p is obtained. By Lemma 3.6, there is a
solution curve £(s) of ha(t(s), Ao, s)=0 whose Puiseux series expansion starts with
t(s)=bgt'/#+..., by#0. Choose k and m relatively prime with pu=Fk/m. Since
u>q/p>1, we have k>2. So at least on one of the intervals |—¢,0[ or 0,¢[, € suf-
ficiently small, there is a branch of the k-th root for which bys'/# is not real. This
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implies |t(s)|=0(]Im ¢(s)|) for the corresponding branch. Because of 1/u<p/q, this
contradicts the hypothesis.

Case 2. For all o, §, and 7y with a4 g,,7#0 and pa+k; 8+¢y=pr we have y=0
or 3=0.
We apply the operator T of Lemma 3.3 with k=k,

- APt L g
B, 2, 5) = P2PET AT

By that lemma, the hypothesis holds also for A, and it suffices to show the claim
for h. Since B #0, the hypothesis of the second case implies 43 =0. Thus in the
Taylor series expansion of hy there is the non-vanishing term aal,ghotal)\ﬁl with
pai+kiGi=pv as well as t¥. By Lemma 3.6, this implies that at least one of the
roots (A, s) of ha(t, A, s) has, in the (¢, \) variables, a Puiseux series expansion
with a leading term

O'j()\,O):Cj)\p/kl-‘i-..., Cj #0,

(necessarily a Taylor series in A, although this fact is not needed). By Lemma 3.2,
none of the ¢;(A,0) has a leading term with exponent strictly smaller than p/k;.
Further, from the definition of P()), it follows that not all the leading terms of the
0;(A,0) are identical. That is, ¢;#c, for at least one pair (4, k). However,

B . v o k1 v
2,0 =1] <t——J<—)\X]T’Q> =[] t—c;—o(1)),

j=1 j=1

SO iL(t,0,0) has at least two distinct zeros. Thus, as at the start of this proof, h
factors on a possibly smaller domain into pseudopolynomials to which the induction
hypothesis applies. Consequently, the conclusion of the theorem holds for A and
then, by Lemma 3.3, also for hy. This completes the proof.

4. Applications

In this section we apply Theorem 1.1 to derive a result on the zeros of hyperbolic
perturbations of homogeneous hyperbolic polynomials that extends the theorems of
Svensson [4], Wakabayashi [5], and Meise-Taylor—Vogt [3]. To do so, we first recall
some facts on hyperbolic polynomials (see, e.g., Hormander [2, Section 12.4]).

A polynomial P in n variables is said to be hyperbolic in the direction N=
0,...,0,1) if, with £€=(&1,... ,&)=(¢,&,), the polynomial in one variable &,
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P(¢,¢,) has degree m=deg P for every choice of ¢’€R"™!, and the zeros of this

polynomial
m

P(¢,6n) = [1(n—a;(€))
j=1
satisfy
|Tma;(¢)|<C, ¢ eR"L

If P, (€) is the principal part of P, i.e., Py, is the homogeneous polynomial of degree
m given by the top degree monomials in P,

then

m

fgn :H

where
B;(¢') is real for & e R™ 71,

Therefore, hyperbolicity of P requires that the imaginary parts of the zeros of
P, are perturbed by the lower order terms in P by at most a bounded amount.
Theorem 1.1 can be used to show that also the real parts of the zeros are perturbed
only by a bounded amount. This is the case w(£)=1 of the following theorem.

4.1. Theorem. Let P be a complex polynomial of degree m in n variables,
and let P,, denote its principal part. Assume that Pm(§’7§n):]_[;n:1(§n—ﬂj(§’))
and that all roots B; are real whenever geR L If

H —CY] é-:(g/,gn)ecn7
j=1
is such that

(18) [Imay (&) <Cw(€']), € eR™,

for some positive, continuous increasing function w(t) with w(t)=o0(t) and w(0)>0,
then there is a constant C'>0 such that

min max Jap()(€)~5(€)| < Cu()), &R,

o 1<5<
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where the minimum ranges over all permutations o of the set {1,2,... ,m}.

Proof. By the arguments used in the proof of Hérmander [2, Theorem 12.3.1],
we get from (18) the existence of constants A, A’, A” >0 and a€QnI0, 1] such that

(19) |Ima;(€)| < Al¢|*+ A" for all & eR"L
and
(20) max(1,t*) < A”w(t) for all t>0.
Next we let m
P=Pn+Q=> P,
3=0

where P; is homogeneous of degree j, and we let

p(s, ;€)= s"IP(€ 1), (s,t,€)eCIxR .

j=0

Note that
R ANN % 6, 3 !/ n—1
p(s7ta§>_8 P ;7g ’ (S,t,f)G(C\{O})XCXR .
Hence, for s,t€A(1), s€R, and &' €eR™ ! satisfying p(s, t;¢')=0 we have
!
<£s s) 0if s#0 and P, (¢,t)=0if s=0.
If s#0 we get from (19), for some j and |€/|<1,
!/ 1@

omes (£ >‘ . (A | Y= Al s Al <ol
for an appropriate constant C1>0. Since, by hypothesis, P,, is hyperbolic with
respect to (0,... ,0,1), the estimate (21) holds trivially when s=0.

Multiplying P,, with a suitable constant, we may assume that

(21)

Hence there exists 6o>0 such that for each & € R™~! satisfying |¢/| <8y the polyno-
mial t— P, (¢',t) has all its zeros in [t|<3. Therefore we can choose 0< g, <1 such
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that for |s|<g2, |&'|<8p, all the zeros of t—p(s, ;&) satisfy |t|<%. Hence we get
from (21), Theorem 1.1, and a scaling argument that there is a constant Co such
that for each ¢’ €R™ 1, |£']<&p, and s€A(gs) we have

(22) min  pax ltoiy(5,6")=1;(0,&)] < Cols|' .

To conclude the theorem from this, fix ¢ € R"~! with |£'|>28 /02 and let s:=80/]¢'],
n":=s&’. Then note that for 1<j<n we have
/ /

(5,05 (L )inl) =572 (g (1)) = 57 P(E (€)=

and
P(0, 850 ); 1) = P B0 = 5™ Pon (1,85 (L)) = 8™ Punl€', B5()) =0.
Hence (22) implies

/ /

2o ()5 (5)]

7

. 7 . 7 _ .
|5 min max o, ;)(§7)~55(&7)]=s| min max

e . 77_ A 1—a
o g o () -0
By (20) this implies
(23) min max Jawo)(€)—5E) < Calsl - = o 22} = Ll < e
o 1<5em o0 J =2 m 1) 8 B

for some constant €’ and all & €R"™! satisfying |£/|>26p/02. Since the roots §;
and «; depend continuously on & we see that (23) holds for all ¢€R™! with a
possibly larger constant C’.

4.2. Ezample. Though the constant in Theorem 1.1 is a uniform one, the con-
stant in Theorem 4.1 cannot be uniform, even if P,, is fixed. This can be seen easily
by considering the polynomials

P& a) =& +a)*+& -2, ac[0,00[, EcR>.
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4.3. Corollary. Let P, P,,, and w be as in Theorem 4.1. If the zeros of P
satisfy (19), then there exists a constant C” >0 such that

|P(€, & +it)| SO |Pr(€, €n+it)|  for all (£,8) eR™, [t >w(E).

Proof. Using the notation from Theorem 4.1 we have for fixed (£,t)eR™, t#0,

P& &nctit)  TLjm b4+ =55(87)) U (”msn B <5f>> ‘

By Theorem 4.1 we can assume that the roots «;, §; are lined up so that the choice
o=id gives the best estimate. Since all 8; and &, are real, we get for |t|>w(|¢'])

P& &ntit) | _77(1.. Cwl€DN < o
‘Pm(§'7€n+it) SE(“’ t )SC'

4.4. Remark. In the case w=1 the corollary implies the necessary condition of
Svensson for hyperbolic perturbations of homogeneous hyperbolic polynomials, as
it is indicated in Hérmander [2, Theorem 12.4.6(i)]. For general weight functions
w, the corollary implies Proposition 3.6 of Meise—Taylor—Vogt [3], which was de-
rived from the extension of Svensson’s perturbation theorem to Gevrey classes by
Wakabayashi [5, Remark after 1.2.5].

Note that our proof of Theorem 4.1 is a modification of Hérmander’s proof
of Svensson’s theorem. The modification consists in replacing [2, Lemma 12.4.7],
by Theorem 1.1. In [3, 3.8], it was outlined that Corollary 4.3 (resp. [3, Proposi-
tion 3.6]) can also be obtained along the lines of Hérmander’s proof if one replaces [2,
Lemma 12.4.7], by the following lemma, which is an easy consequence of the main
lemma, Lemma 2.7.

4.5. Lemma. If h is a pseudopolynomial which satisfies the hypotheses of the
main lemma, Lemma 2.7, then there exist C" >0 and & >0 such that

|R(itP, X, t)| < C”|R(itP, A, 0)|  for all (t,\) €R?, |t| <&, [N <&

Proof. Using the same notation as in 2.6 we fix (t, \)€R?2, t£0, so that (), t9)€
A(g3, 04). Then we have

h(it?, A 00)  TI_ (atP —t4( - (X, 0) =15\, 1)
h(itP, A, 0) — TT;_ (atP—t,( H< itP —t; (A, 0) )

Jj=1
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By Lemma 2.7 we can assume that the roots t;(\,t9) and ¢;(A,0) are lined up so
that the choice o=id gives the best estimate. Since A is real, the estimate (8)
implies that the roots ¢;(A,0) are real. Hence (9) implies

2 (1, O o
<I(+5) <

Jj=1

h(it?, A, 19)
h(it?, A, 0)

provided that |A| <8, where §>0 is chosen according to Lemma 2.7.
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