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Global rigidity theorems of hypersurfaces 
Haizhong Li 

0. I n t r o d u c t i o n  

This paper is a continuation of our previous paper [14]. In Section 1, we 
first study the Cheng-Yau's self-adjoint operator [] for a given Codazzi tensor 
field r  r on an n-dimensional compact Riemannian manifold. We ob- 
tain a general rigidity theorem (see Theorem 1.1) which generalizes Cheng Yau's 
works ([5]). One of our conditions is 

(0.1) IV0[ 2 > IV(tr r 

which is the natural generalization of one of the following two conditions, 

(1) tr r  
(2) (tr r  ]r =constant_>0. 

We also note that the condition (0.1) comes out naturally when we study the opera- 
tot []. Let M be an n-dimensional hypersurface in an (n+  1)-dimensional real space 
form Rn+l(c). Observing that  the second fundamental form tensor hij is a natural 
Codazzi tensor on M, in Section 2, we apply the study of Section 1 to these hy- 
persurfaces and obtain general rigidity results (see Theorem 2.1 and Theorem 2.2) 
which unify some existing results. Condition (0.1) becomes in this case 

(0,2) IvBI 2 ~ n21VHI 2, 

where IVB[2=Ei,j ,k h~jk, H=(1/n)•k hkk. Thus condition (0.2) is the natural 
generalization of one of the following two conditions, 

(1) H=constant ,  
(2) R-c=constant_>0,  where R is the normalized scalar curvature. 

The case (1) has been studied by many authors (see [24], [26], [17] and [2]); case (2) 
has been studied by [5] and [14]. Our rigidity theorems unify some existing results. 
In Section 3, we check the geometric meaning of our condition (0.2) for the simplest 
case n=2.  If M is a W-surface, then we find that  condition (0.2) is equivalent to 
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the concept "special W-surface" which was first introduced by S. S. Chern [6] for 
surfaces in R 3. Thus condition (0.2) can be considered a natural generalization of 
the concept of special W-surfaces to higher dimensional hypersurfaces. Our results 
in this section generalize Chern's results. Let M be an n-dimensional spacelike 
hypersurface in an (n4.1)-dimensional Lorentzian space form R~+l(c). Observing 
that the second fundamental form tensor his is a natural Codazzi tensor on M, in 
Section 4, we apply the study of Section 1 to these hypersurfaces and obtain some 
rigidity theorems which naturally generalize the existing results of Akutagawa [1], 
Ramanathan [21] and Montiel [15] about Goddard's conjecture [10]. In this section, 
we also propose two problems related to Goddard's conjecture. 

1. Cheng-Yau's  self-adjoint operator [] 

Let M be an n-dimensional Riemannian manifold, el ,... , en a local orthonor- 
real frame field on M, and col ,... , con its dual coframe field. Then the structure 
equations of M are given by 

(1.1) dwi = E ('dis A ~2j, &Jij = --02ji, 

J 

(1.2) dwij = E co,ik AcokS 4. ~'tij , 
k 

where 

(1.3) ~ j  = _1 ~ RiSk~k/~, 
k,l 

and 

Rijkl 4- Rijtk = 0, 

where aaij is the Levi-Civita connection form and Rijkt is the Riemannian curvature 
tensor of M. 

For any C2-function f defined on M, we define its gradient and Hessian by the 
following formulas 

(1.4) df = E fic~i , 
i 

(1.5) ~ fijcoj = dfi 4 - E  fjwji. 
J Y 

We know that  f i j=f j i  by exterior differentiation of (1.4). 



Global rigidity theorems of hypersurfaces 329 

Let r r174 be a symmetric tensor defined on M. The covariant 
derivative of r is defined by (see [5]) 

(1.6) Z = + E + Z 
k k k 

We call the symmetric tensor r  r a Codazzi tensor, if (see, for exam- 
ple, [9] or [23J) 

(1.7) r k = r 

The second covariant derivative of r is defined by 

(1.8) Er162162162 
l r a  m m 

By exterior differentiation of (1.6), we obtain 

(1.9) E r = E CmJf~'+E r 
1,k m m 

Therefore we have the following Ricci identities 

(i.i0) r162 -~- E CmjRmikl + E r 
m m 

Remark 1.1. The concept of Codazzi tensor on a Riemannian manifold is a 
natural generalization of the second fundamental form of a hypersurface in a real 
space form. The class of manifolds admitting Codazzi tensor fields is large (see [9], 
[19], [23]). 

We first recall the definition of the following self-adjoint operator [] introduced 
by Cheng Yau in [5]. 

Definition 1.1. Let r r be a Codazzi tensor field on a Riemann- 
ian manifold M. We define the operator [] associated to r by 

%J 

for any CZ-function f defined on M. 
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P r o p o s i t i o n  1.1. Let M be a compact orientable Riemannian manifold. Then 
the operator [] is self-adjoint. 

Proof. Let ~ij = ( ~ k  Ckk)~ij--r Then 

j /~ j 

where we make use of the fact that r is a Codazzi tensor field on M. We complete 
the proof of Proposition 1.1 by applying Proposition 1 of [5]. 

The Laplacian of the tensor r is defined to be ~ k  r and therefore 

Ar = ~ r 
k 

k k k k 

(1.11) = Z r r 
m,k m,k k 

k \ k /ij 

By use of (1.7), we have 

k /ij m,k m,k 

Let 2 2 2 ]r :~-~"i,j r IVr  r and tr r  Then equation (1.12) 
shows that  

(1.13) 1/klr162162162247 ~ r247 ~ r162 
i,j i,j,m,k i,j,m,k 

Near a given point p c M ,  we choose a local orthonormal frame field {el ,... , en} 
and its dual frame field {Wl,... ,wn} such that  r  r174 r at p. 
Then (1.13) is simplified to 

(1.14) 1A r 2 I I = IVr162 +1  ~Riji j()~i-)~J) 2" 
i i,j 

Denoting the second symmetric function of r by rn, we have 

(1.15) m = ~ AiAj = (tr r _ [r 
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Combining (1.14) with (1.15), we obtain 

(1.16) 1A(trr �89162162189 E Rij i j (~i-~j)  2. 
i i,j 

From Definition 1.1 of [], we have by (1.16) 

(1.17) D(tr r  �89162 r189 ERijij(~i-Aj)2. 
i,j 

Since [] is self-adjoint and M is compact, we get by integration of (1.17) 

(1.18) fM[IVr162 f M l  ~Rijij()~i--)~j)2=O. 

Our first result is the following theorem. 

T h e o r e m  1.1. Let r  r174 be a Codazzi tensor field on a Riemann- 
Jan manifold M. We assume the following condition 

(1.19) [Vr 2 ~_ [V(tr r 

(1) If M has positive sectional curvature, then all the eigenvalues of r  are 

the same on M. 
(2) If M has nonnegative sectional curvature, then we have IVr162 2 

and Rijij=O, when )~i~/~j  on  M. 

The following two lemmas show that  condition (1.19) is natural. 

L e m m a  1.1. If 

(1.20) tr  ~b = constant, 

then (1.19) holds. 

L e m m a  1.2. If the second symmetric function of r is a nonnegative con- 
stant, i.e. 

(1.21) m = E AiAj = (tr r _ 1r = constant _> O, 
i#j 
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then (1.19) holds. 

Proof. Taking the covariant derivative of (1.15) and noting re=constant ,  we 
have for each k 

i , j  

It follows that 

( )( ) (1.22) (trC)21V(trC)12=}-~'k ~r _< r Y~r =lOl~lVCl 2. 
i , j  , \ i , j , k  

On the other hand, from m = ( t r r 1 6 2  we get (1.19). This completes 
the proof of Lemma 1.2. 

C o r o l l a r y  1.1. Let ~ = ~ i , j  ~ijwi| be a Codazzi tensor field on a Riemann- 
Jan manifold M.  

(1) I f  M has positive sectional curvature and (1.20) or (1.21) holds, then all 
the eigenvalues of r are the same on M.  

(2) I f  M has nonnegative sectional curvature and (1.20) or (1.21) holds, then 
M is the closure of U o~, where each point of the open set oi has a product neighbor- 
hood N1 • x N1 such that the tangent space of each N,i is spanned by eigenvectors 
of r with the same eigenvalue. In particular, when M is locally irreducible, all the 
eigenvalues of r are the same. 

Proof. From Theorem 1.1, Lemma 1.1 and Lemma 1.2, we only need to prove 
(2) of Corollary 1.1. Under the assumptions equality holds in (1.19). We have 

r = ckr 

where ck are some numbers. If r =~iSij, w e  have 

( ;~i - Aj )aJij =0 ,  i r j. 

Using the fact that  ~ i , j  Rij~j(;~i-J~j)2=O, we can prove that M is the closure of 
Uoi ,  where each point of the open set oi has a product neighborhood N1 x... xNl 
such that the tangent space of each Ni is spanned by eigenveetors of r with the 
same eigenvalue. This completes the proof of Corollary 1.1. 

In this paper, we also need the following Mgebraic lemma which was first used 
by Okumura [18] (also see [26], [2] and [14]). 
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L e m m a  1.3. Let #i, i = 1 , . . .  ,n, be real numbers such that ~ i # i = 0  and 
2__ 2 ~i#i--/~ , where/3=constant>0. Then 

(1.23) n - 2  3 3 n - 2  

i 

and equality holds in (1.23) if and only if ( n -  1) of the #i are equal. 

Proof. We can obtain Lemma 1.3 by using the method of Lagrange's multipliers 
to find the critical points of ~ i  #~ subject to the conditions ~ #i =0 and ~ i  tt~ =/32. 
We omit it here. 

2. H y p e r s u r f a c e s  in a rea l  space  f o r m  

Let Rn+l(c) be an (n+l)-dimensional  Riemannian manifold with constant 
sectional curvature c. We also call it a real space form. When c>0,  Rn+l(c)= 
Sn+l(c) (i.e. (n+l)-dimensional  sphere space); when c=0,  R ~ + I ( c ) = R  ~+1 (i.e. 
(n+l)-dimensional  Euclidean space); when c<0,  Rn+l(c)=H~+l(c) (i.e. ( n + l ) -  
dimensional hyperbolic space). Let M be an n-dimensional compact hypersurface 
in Rn+I(c). For any pEM we choose a local orthonormM frame el ,... , en, en+l in 
R ~+l(e) around p such that  e l  , . . .  , en are tangential to M. Take the corresponding 
dual coframe {wl,. . .  ,w~,W~+l}. In this paper we make the following convention 
on the range of indices, 

I<A,B,C<_n+I;  l<i , j ,k<_n.  

The structure equations of Rn+l(c) are 

dwA = E a)AB ACdB~ CdAB = --02BA~ 
B 

dZOAB = E a)AC ACVCB --CWA AWB. 
C 

If we denote by the same letters the restrictions of WA, 02AB to M ,  we have 

(2.1) dwi = ~ 02ij ACdjt Cdij = --Cdji ~ 

J 

(2.2) dwij = E wikAwkj--�89 E Riywk4w, ,  
k k,1 

where Rijkl is the curvature tensor of the induced metric on M. 
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Restricted to M, Wn+l=0, thus 

(2.3) 0 = d~Zn+l = E Wn+iiAwi, 
i 

and by Cartan's lemma we can write 

(2.4) win+i ---- E h i j w j ,  h i j  = h j i .  
J 

The quadratic form B=~i,j hijwiQ~oj is the second fundamental form of M. The 
Gauss equation is 

(2.5) Ri j k l  -~ C( ~ik~jl --~il(~jk ) ~.- hik h j l  - hil h j k ,  

(2.6) n(n-  1 ) (R -c )  = n2 g 2 -[BI 2, 

where R is the normalized scalar curvature, H=(1 /n )~ i  hii the mean curvature 
and 2 2 IBI =~i,j hij the norm square of the second fundamental form of M, respec- 

tively. 

The Codazzi equation is 

(2.7) hijk = hikj, 

where the covariant derivative of the second fundamental form is defined by 

(2.8) Z = dh,j + + Z 
k k k 

Let r in Section 1 and hij=AiSij. We have from (1.18) 

(2.9) fM[IVB,2--n2IVHI2]~-/M I ~ Rijij(Ai- Aj)2=O. 

By use of (2.5), we have 

(2.10) �89 ~--~ R~y~y (A~-Aj) 2 =ncIBI2-n2H2c-IBI4+nH~-~A~. 
i,j i 

Let # i = A i - g  and [ Z [ 2 = ~  ,2.  We have 

(2.11) ~ - ' # i = 0 ,  [ZI2=IB[2-nH 2, 
i 

(2.12) E A~ -- ~ / ~  + 3HIZI 2 +nil  3. 
i i 
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Putting (2.11), (2.12) into (2.10), we get 

(2.13) �89 E Rijij(Ai-Aj)2 = [ZI2(nc+nH2-IZI2)+nHE#3. 
i , j  i 

By use of Lemma 1.3, we have 

1 ~ R~jij (~i-~j)2 (2.14) 
i,j 

_> (IBI 2 - n i l  2) (nc+2nH 2-  IBI 2 
k 

~ ] H l n ( n -  2) V/IBj2 nile ) 

Putting (2.14) into (2.9), we obtain the following key integral inequality 

/M [ Iv B[2 - n2 [v HI2 + ( IBI2 - nH2) 

•  nc+2nH2-lB]2 

(2.15) = fM[lVB?- 2'VHI2]+/M[(IBI2- H2) 
n ~ n3H 2 

•  nc+4(n_l) ) 

1 n ~/ nail 2 
•  [HI+ , n c + 4 ( n - 1 ) ) l  

<0. 

Note that we assume n2H 2 + 4 ( n -  1)c_>0, if c<0. 
From (2.15), we get the following result. 

T h e o r e m  2.1. Let M be an n-dimensional compact hypersurface in an ( n + l ) -  
dimensional real space form R ~+1 (c). If 

(2.16) 

and 

(2.17) 

then either 

IVB122n21VHI 2 

n 3 
nH 2 ~ IB[ 2 < nca 

2(n-l) 
_ _ H  2 n -2  v/n4H4+4(n_l)n2H2c ' 

2 ( n - 1 )  

[BI 2 _= nH 2 
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and M is a totally umbilical hypersurface; 
o r  

n 3 H2 n - 2  v /n4H4+4(n_l )n2H2c (2.18) IBI 2 =--ne+ 2 ( n -  1) 2 ( n -  1) 

and M has two different principal curvatures "~1 and An, i.e. 

n i l +  v/n2 H 2 + 4 k ( n -  k )c 
~1 . . . . .  ~k = 2k ' 

)kk_k l z ... ~ )~n 

for some k with l < k < n .  

n i l -  x/n2 H 2 + 4 k ( n -  k )c 

2(n-k) 

C o r o l l a r y  2.1. ([2] and [26]) Let M be an n-dimensional compact hypersurface 
in an (n+ 1)-dimensional real space form R n+l (c) with constant mean curvature H. 
If (2.17) holds, then either 

(1) IBI2=-nH 2 and M is totally umbilical; or 
(2) ]B] 2 =-nc+n3H2/2(n - 1) - ( n -  2)\ / /n4H 4 + 4 ( n -  1)n2H2c/2(n-  1), 

and case (2) happens if and only if 
(a) when H = 0 ,  then c>0  and M is a Clifford torus in Sn+i(c), 
(b) when Hr then c>0 and M = S  n 1XS1.  

Remark 2.1. Except the statement of classification the results (a) and (b) were 
first proved by Sun Ziqi in 1984 and published in 1987 (in Chinese) (see Theorem 1 
of [26]) under the guidance of Professor C. K. Peng. A complete statement of 
Corollary 2.1 was rediscovered by H. Alencar and M. do Carmo independently in 
1992 and published in 1994 (see Theorem 1.5 of [2]). 

Proof of Corollary 2.1. From Lemma 1.1 and Theorem 2.1 it follows that either 
]BI2-nH 2 and M is totally umbilical, or 

[B [2 ~ n c §  1 ) -  ( n - 2 ) V / n 4 H  4 + 4 ( n -  1 ) n 2 H 2 c / 2 ( n -  1). 

In the latter case, when H = 0 ,  we have c>0  and the conclusion comes from [7] or [12]; 
when H ~ 0 ,  we have IVBI=0 and n - 1  of the Ai are equal by Lemma 1.3. Let H > 0 ,  
without loss of generality, and A1 . . . . .  An-l~An.  Then from ( n - 1 ) A l + A n = n H  

and R l n l n - - A i A n §  

n H + v / n 2 H 2 + 4 ( n - 1 ) c  n H - ~ / n 2 H 2 + 4 ( n - 1 ) c  
AI= 2 ( n - l )  , An-- 2 

When c>0, M=sn-I(1/A1)• Sl(1/An); the case c<0  does not happen since M is 
compact. This completes the proof of Corollary 2.1. 
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C o r o l l a r y  2.2. ([14]) Let M be an n-dimensional (n_>3) compact hypersurface 
with constant normalized scalar eurvture R in an (n + l )-dimensional real space form 
Rn+l(c). Assume 

(1) R - R - c > O ,  
(2) the norm square IBI 2 of the second fundamental form of M satisfies 

(2.19) n~ ~ IB 12 ~ n[n(n- 1)/~ 2 + 4 ( n -  1)/~c+nc 2] 
(n-2)(nn+2c) 

Then either 

(2.20) [BI 2 ~n/~, 

and M is totally umbilical; or 

(2.21) IB 12 _ n [ n ( n -  1)R 2 + 4 ( n -  1)Re+he 2] 
(n-2)(nn+2~) 

and (2.21) holds if and only if c>O and M=sn-I(1/A1)xSl(1/An). 

Proof. Choosing r in Lemma 1.2, we have from the Gauss equation 
~2H2 -IBI 2 = n ( n -  1)~> 0, 

(2.22) IVBI 2 ~ n21VHL 2. 

Again from the Gauss equation (2.6), we find that  condition (2.17) is equivalent 
to (2.19), noting that the cases c_<0 do not happen since M is compact. Thus we 
obtain Corollary 2.2 from Theorem 2.1. 

Remark 2.2. When M is an n-dimensional embedded hypersurface in R n+l (c), 
Corollary 2.1 and Corollary 2.2 hold without the conditions (2.18) and (2.19), re- 
spectively (see [16], [22]) (in this case M is totally umbilical). 

Remark 2.3. From the main theorem on p. 1052 of [13], we can prove that 
condition (2.17) or (2.19) implies Ric(M)_>0. We also can prove that if 

n3H 2 n - 2  v / n 4 H 4 + 4 ( n _ l ) n 2 H 2 c _ e  ' nH  2 < IBI 2 <nc+ 2(n_ l~  2 ( n - 1 )  (2.17') 

or 

(2.19') nR ~ IBI 2 ~ n[n(n- 1)R2 +4(n- 1)/~c+nc 2] 
(n-2)(nn+2c) 
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holds for some small positive number e, then Ric(M)>a(e)>0 .  Thus from Bonnet 
Myers' theorem, Theorem 2.1 and Corollary 2.1 hold if we substitute the condition 
"compact and (2.17)" by "complete and (2.17')", Corollary 2.2 holds if we substitute 
the condition "compact and (2.19)" by "complete and (2.19')". In this case, it is 
not necessary to refer to Omori and Yau's generalized maximum principle as many 
people do. (See [20], [27].) 

Remark 2.4. Let M be an n-dimensional complete hypersurface in the (n+ l ) -  
dimensional Euclidean space R n+l. In this case, (2.17) becomes 

n2H 2 
n H  2 <_ IB[ 2 _< 

n - l '  
(2.17") 

and (2.19) becomes 

(2.19") n R <  IB? < R. 
- -  - - n - - 2  

From an inequality of Chen-Okumura [3], we know that  (2.17") or (2.19") 
implies that the sectional curvature K of/1/i is nonnegative, i.e., K_>0. Thus, from 
Hartman's theorem [11], we obtain the following result. 

P r o p o s i t i o n  2.1. Let M be an n-dimensional complete hypersurfaee in an 
(n+ l)-dimensional Euclidean space R n+l. I f  the mean curvature H is constant 

and (2.17") holds, or if  the normalized scalar curvature R is constant and (2.19") 
holds, then either M is totally umbilical, or M = S  ~-1 •  1. 

Choosing r  in Theorem 1.1 and noting that  Rij i j=c+AiAj ,  we 
obtain the following theorem. 

T h e o r e m  2.2. Let M be an n-dimensional compact hypersurface in an ( n + l ) -  
dimensional real space form R n+ l ( c). 

(1) I f  M has positive sectional curvature and (2.22) holds, then M is totally 
umbilical. 

(2) I f  M has nonnegative sectional curvature and (2.22) holds, then either M 
is totally umbilical, or M has the following two different principal curvatures 

n i l +  v/n~ H 2 +4k ( n -  k )c 
Az . . . . .  Ak= 2k ' 

Ak+l . . . . .  An = n i l -  v / n 2 H 2 + 4 k ( n - k ) c  

where l < k < n .  

When H=constant ,  we have the following corollary. 
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C o r o l l a r y  2.3. ([17]) Let M be an n-dimensional compact hypersurface in an 
(n+ 1)-dimensional real space form R n+l(c) with constant mean curvature H.  I f  M 
has nonnegative sectional curvature, then either M is totally umbilical, or c>0  and 
M = S ~ - k •  k, l < k < n .  

C o r o l l a r y  2.4. ([5]) Let M be an n-dimensional compact hypersurface with 
nonnegative sectional curvature in an (n+ l )-dimensional real space form R'~+l(c). 
Suppose the normalized scalar curvature of M is constant and not less than c. Then 
M is either totally umbilical, or c>0  and M = S n - k x S  k, l < k < n .  

Proof. Since we a s su me /~ -R -c= co n s t an t>_0 ,  we have by (2.6) 

(2.23) nSH 2 -  [BI 2 = constant _> O. 

Thus (2.22) holds by Lemma 1.2. We conclude that there are at most two constant 
and distinct s (thus we complete the proof of Corollary 2.4) by Theorem 2.2 and 
the assumption ~ i r  ;~iAj = n ( n -  1)R=constant .  

C o r o l l a r y  2.5. Let M be an n-dimensional compact hypersurface with non- 
negative sectional curvature in an (n+ l)-dimensional real space form R n+l (c) (c>_ 
0). Suppose the normalized scalar curvature R is proportional to the mean curvature 

H of M,  that is 

4nc  
(2.24) R = a H ,  a2 > n - ~ '  

where a is a constant. Then M is either totally umbilical, or c>0  and M = S  n-k  x 
S k, l < k < n .  

Proof. By use of the Gauss equation (2.6) and the assumption (2.24), we have 

(2.25) IBI 2 = n2 H 2 + n ( n -  1) (c -  all ) .  

Taking the covariant derivative of (2.25), we have for each k 

2 E hijhiyk = ( 2 n S H - n ( n  - 1)a)Hk. 
i,j 

It follows that 

- -  k " i , j  z 
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By (2.24) and (2.25), we have 

(2n2H - n ( n -  1)a) 2 - 4 n  2 IB 12 = (4n4H 2 + n  2 ( n -  1)2a 2 - 4 n  3 ( n -  1)Ha) 

(2.2 7) - n 2 (4rt 2 H 2 + 4n ( n -  1)( c -  all)) 

= n 2 ( n -  1) ( ( n -  1)a 2 - 4nc) > O. 

Combining (2.26) with (2.27), we see that  (2.22) holds. Thus we conclude that 
there are at most two constant and distinct Ai's by Theorem 2.2 and the assumption 
(2.24). This completes the proof of Corollary 2.5. 

3. Su r f aces  in a 3 - d i m e n s i o n a l  rea l  space  f o r m  R3(c )  

In this section we will check the geometric meaning of the condition 

(3.1) [VBI 2 _> n21VH] 2 

in the simplest case n=2 .  
Let M be a surface in a 3-dimensional real space form R3(c) with induced 

metric ds2=co~+w~. In this case the Gauss equation (2.6) is 

(3.2) 

that is, 

(3.2') 

and 

K = c + A I A 2 ,  

We have 

2 ( K -  c) = 4H 2 - IBI  2. 

2 2 2 2 2 
IVBI = h111+3hlx2  +3h221 +h222 

4IVHJ 2 = (h111~-h221)2~-(hl12+h222) 2 

: h 2 1 1  -b h221-}-h2112-}-h222--}-2hlllh221-}-2h112h222 . 

Thus we know that 

(3.3) IVBI 2 > 4]VH] 2 

is equivalent to 

(3.3') 2 2 
h112 +h122 _> hlllh122+hl12h222. 

We first recall a notion introduced by S. S. Chern for surfaces in 3-dimensional 
Euclidean space (see [6]). 
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Definition 3.1. Let M be a surface in a 3-dimensional real space form R3(c). 
At a point of M, let A1 and A2 denote the principal curvatures. We call M a W- 
surface if dA1 and dA2 are linear dependent, that  is, if there exist functions f and 
g, not both zero, such that  

(3.4) fdA1 + g A 2  = 0. 

We call M a special W-surface, if the functions f and g in (3.4) can be chosen to 
be positive, f > 0 ,  g>0.  

Now let M be a special W-surface, i.e. there exist functions f > 0  and g >0  such 
that (3.4) holds. 

By (2.8), it is a direct check that 

(3.5) hill = (,~i)1, hii2 = (,~i)2, i =  1,2, 

where d;~i = (Ai)lwl + (Ai)2w2, i =  1, 2. 
The equation (3.4) can be written as 

(3.6) f(Al)i+g(A2)i  = 0, i =  1,2, 

where f > 0 ,  g>0  on M. 
Combining (3.5) with (3.6), we have 

(3.7) fh111 +gh221 = 0, fhl12+gh222 = 0. 

Thus (3.3') holds, i.e. (3.3) holds. From Theorem 2.2, we obtain the following 
theorem. 

T h e o r e m  3.1. Let M be a compact special W-surface in a 3-dimensional real 
space form R 3 (c) with nonnegative sectional curvature. Then either M is totally 
umbilical, or M is fiat. 

Proof. The last statement of Theorem 3.1 comes from K - - 0  when ~1 ~ 2 .  

C o r o l l a r y  3.1. Let M be a compact surface in a 3-dimensional real space form 
R3(c) with nonncgative sectional curvature, i.e. K>_O. I f  

(3.9) a ( K - c ) + b H + d = O ,  

a, b, d being constants such that b 2-4ad>O,  then either M is totally umbilical, or 
M is fiat. 

Proof. Let F(;h ,  A 2 ) = a ( K - c ) + b H + d = O .  We have 

OF OF = a 2 ( K _ c ) + a b H + ~  0~10A2 > a 2 ( K - c ) + a b H + a d  = O. 

This completes the proof of Corollary 3.1. 
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Corollary 3.2. A convex special W-surface in the 3-dimensional Euclidean 
space R 3 is a sphere. 

Proof. We only need to note that  M is called convex, if K > 0  on M. 

Corollary 3.3. Let M be a complete surface in R3(c) with constant Gauss 
curvature K.  If K > m a x ( c ,  0), then M is totally umbilical. 

Remark 3.1. For n----2, our condition (3.1) is almost equivalent to the concept 
"special W-surface" first introduced by S. S. Chern [6]. Thus condition (3.1) can 

be considered a natural generalization of the concept of "special W-surface" to the 
higher hypersurfaces in Rn+l(c). 

4. Spacelike hypersurfaces in a Lorentzian space form 

Let R~+l(c) be an (n+l)-dimensional  Lorentzian manifold of constant cur- 
vature c; we also call it a Lorentzian space form. When c>O, R~+l(c)=S~+l(c) 
(i.e. (n+l)-dimensional  de Sitter space); when c=0,  R ? + I ( e ) = L  n+l (i.e. ( n + l ) -  
dimensional Lorentz Minkowski space); when c<0,  R~+l(c)=H~+l(c) (i.e. ( n + l ) -  
dimensional anti de Sitter space) (see, for example, [21]). 

Let M be an n-dimensional compact spacelike hypersurface in R~+l(c). For 
any pC M  we choose a local orthonormal frame el ,... , en, e~+l in R~+I(e) around 
p such that  el ,... ~ en are tangential to M. Take the corresponding dual coframe 
{wl ,... , wn, w,~+l} with the matrix of connection one forms being wij. The metric 
of R~ +1 (e) is given by ds 2 =~-~i w2 2 We make the convention on the range of - - 0 in+  1 �9 

indices that  l <_i,j, k<n. 
A well-known argument [4] shows that  the forms win+l may be expressed as 

Win+l=~-~j hijwj, hij=hji.  The second fundamental form B = ~ i , j  hijwi| The 
mean curvature of M is given by H =  ( l / n )  ~ i  hii. 

The Gauss equations are 

(4.1) 

(4.2) 

(4.3) 

Riykl = e(hikhyl--hizhyk ) -- (hikhyl -hilhya ), 

Rij ~- ( n -  1)c~ij - n H h i j  + E hi~hky, 
k 

n ( n -  1 ) ( R -  c) = - n 2 g  2 + [B] 2, 

where R is the normalized scalar curvature, and IB[2 =Ei , j  h?.~ the norm square of 
the second fundamental form of M, respectively. 

The Codazzi equation is 

(4.4) hijk=hikj ,  
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where the covariant derivative of hij is defined by 

E hijkwk = dh~j + E hkjwk~ + E hikwkj. 
k k k 

Let r in Section 1. We have from (1.18) 

L (4.5) [IV BI2- n21V HI2] + 
i , j  

By use of (4.1), we have 

(4.6) �89 ~Rijij()~i-)~j)2=nclBl2-n2H%+lBI4-nH~-~A~. 
i , j  i 

Let # i = A i - H  and IZI2=Y~i,2. We have 

(4.7) E # i = 0 ,  IZI2=IBI2-nH 2, 
i 

(4.8) E A~ = ~ Via + 3HIZI 2 +nil  3. 
i i 

Putting (4.7), (4.8) into (4.6), we get 

I ~ R~j~j(:~i-;~j)2 IZl2(nc-nH2 +lZl2)-nH ~v~. (4.9) ~ = 
i , j  i 

By use of Lemma 1.3 and (4.7) we have 

1 ~ Rij~j ( ~ -  ~)2 (4.10) 
i , j  

(IBI 2 - n i l  2) @ c -  2nHe + lBI 2 >_ 

Putting (4.10) into (4.5), we obtain 

(411/ 

+(IN[ 2 - n i l  2) (nc + lBI 2 -2n i l  2 

Note that  

(4.12) 

n(n-2) IHIvZIBI2_nH2 ). 

n(n-2) X / ~  IHIx/,BI2-nH2 ) ] <0. 

nc_2nH2+]BI2 n ( n - 2 )  IHIx/IB[e-nH2 

2 2 1 n 2 
4(~-1) ) 
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T h e o r e m  4.1. Let M be an n-dimensional compact spacelike hypersurface 
in de Sitter space S]+l(c). I f  [VBI2>_n21VHI 2 and H2<_4(n-1)c/n 2, then M is 
totally umbilical. 

Proof. Under the assumptions of Theorem 4.1, we have from (4.11) and (4.12), 

H2 = 4 ( n -  1) c , R i j i j = c - A i A j = O ,  whenAiCAj .  

Thus M has at most two distinct constant principal curvatures. We conclude 
that  M is totally umbilical from the compactness of M. This completes the proof 
of Theorem 4.1. 

T h e o r e m  4.2. Let M be an n-dimensional complete spacelike hypersurface in 
de Sitter space S~+l(c). I f  IVBI 2 >n21VHI 2 and H2<_4(n-1)c /n2-e ,  for some 
given small positive real number e, then M is totally umbilical. 

Proof. From (4.2) and the assumption we obtain 

Ri, = ( n - 1 ) c -  nH  A, + A~ = ( Ai - �89 nH)2+ (n -1 )c  - ~'n5-2 n~2 
(4.13) 

>_ ( n -  1)c- �88  2 >_ ~n2e. 

This completes the proof of Theorem 4.2 if we apply Bonnet Myers' theorem 
and Theorem 4.1. 

C o r o l l a r y  4.1. ([1], [21] or [15]) Let M be an n-dimensional complete spacelike 
hypersurface in de Sitter space S~+l(c) with constant mean curvature H satisfying 
H 2 < 4 ( n -  1) /n  2. Then M is totally umbilical. 

Proof. Since the constant mean curvature H satisfies H 2 < 4 ( n - 1 ) / n  2, we can 
choose e with 4 ( n - 1 ) / n 2 - H S > e > O .  We obtain Corollary 4.1 from Theorem 4.2. 

Remark 4.1. Theorem 4.2 is the best possible (n>2)  since Corollary 4.1 is the 
best possible (see [15]). 

Goddard [10] conjectured that complete spacelike hypersurfaces with constant 
mean curvature H must be totally umbilical. Later, Akutagawa [1] has proved that  
Goddard's conjecture is true when H 2 < 4 ( n - 1 ) c / n  2, if n>2 ,  and when H2<_c, if 
n=2 .  (Ramanathan [21] has independently studied the case n=2. )  It 'was pointed 
out that  the conjecture is false by Akutagawa [1] and Ramanathan [21] when H 2 >c, 
in case n = 2  and by Montiel [15] when H2>_4(n-1)c/n 2 in case n>2 .  Moreover, 
Montiel [15] solved Goddard's conjecture in the compact case without restrictions 
on the range of H.  In this paper, we also prove the following theorem. 
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T h e o r e m  4.3. Let M be an n-dimensional compact spacelike hypersurface in 
de Sitter space S~ +1 (c) with constant normalized scalar curvature R. If 

(4.14) n - 2  - - c < R < c ,  
n 

then M is totally umbilical. 

Proof. By (4.3) and (4.14) 

(4.15) n2H 2 -  IBI ~ ~ 0. 

Choosing r  in Lemma 1.2, we have 

(4.16) IVBI 2 ~ n 2 IVHI 2. 

On the other hand, from (4.3), we know that  

(4.1r) nc_2nH2 +[B[2 n ( n - 2 )  ]HI x/IBI2 - nH  2 >0 

is equivalent to 
(4.18) 

n - - 2  _ _ _  ne+ IB?+2(n-1) (R-e)  n - 2 ~ / ( I B ? + n ( R - e ) ) ( I B ? - n ( n - 1 ) ( R - c ) )  _>0. 
n n 

It is a direct check that  the assumption R>_(n-2)c /n  implies that  (4.18) holds. 
Thus from (4.11), (4.16) and (4.17), we can prove that M is totally umbilical just 
as the proof of Theorem 4.1. 

Comparing Theorem 4.3 with Montiel's result about constant mean curvature, 
we find that  the following problem is very interesting. 

Problem 1. Let M be an n-dimensional compact spacelike hypersurface in the 
(n+l)-dimensional de Sitter space S~+1(1) with constant scalar curvature. Is M 
totally umbilical? 

Now we consider two examples. 

Example 4.1 (see Example 2 of [15]). Consider the spacelike hypersurface em- 
bedded into S~+1(1) given by 

Mr {xES~+l(1)]  2 2=  = - x o + x  I - s i n h  2r}, 

with r a positive real number. The hyperspace Mr is isometric to the Riemannian 
product H I (1 -co th  2 r) • S n-1 ( 1 - t a n h  2 r) of a 1-dimensional hyperbolic space and 
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an (n-1)-dimensional  sphere of constant sectional curvatures 1 - c o t h 2 r  and 1 -  
tanh 2 r, respectively. Then M has two distinct principal curvatures 

/~1 . . . . .  An--1 = tanh r, An = cothr ,  

and 

Thus for any R satisfying 

R = 1-- ! ( 2 + ( n - - 2 )  tanh 2 r). 
~t 

n - 2  
(4.19) 0 < R < --, 

n 

we can choose some r such that  the hypersurface M~ above is complete, not totally 
umbilical and has constant scalar curvature R satisfying (4.19). 

Example 4.2. (See [15].) Consider the spacelike hypersurface in S~z+l(1) given 
by 

M r = H  n l ( 1 - c o t h 2 r ) •  ( n > 2 )  

with r a positive real number. Then A l - t a n h r ,  A2 . . . . .  An=cothr ,  R = 1 - ( 2 +  
(n-2)coth2r)/n.  

Thus for any R satisfying 

(4.20) R < 0, 

we can choose some r such that  the hypersurface M,. above is complete, not totally 
umbilical and has constant scalar curvature R satisfying (4.20). 

Combining Theorem 4.3 with Examples 4.1 and 4.2, we find the following 
problem interesting. 

Problem 2. Let M be an n-dimensional complete spacelike hypersurface in an 
(n + 1)-dimensional de Sitter space S~ + 1 (1) (n_> 3) with constant normalized scalar 
curvature R satisfying 

n - 2  
- - < R < I .  

n 

Is M totally umbilical? 

In this part of this paper, we consider the classification of the complete spacelike 
surfaces in the 3-dimensional de Sitter space $13(1) with constant Gauss curvature. 
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Proposit ion 4.1. 
Gauss curvature K satisfying 

(4.21) 

Then M is totally umbilical. 

Let M be a complete spacelike surface in SIS(l) with constant 

0 < K _ < I .  

where 

x~ = (x(s)2-1)  1/2 cosh r z(s) = (x(s)2-1)  1/2 sinh r x(s) > 1, 

r = ( - l+x (u )2+x ' (u )2 ) l / 2 ( x ' (u )2 -1 )  -1 du. 

Then the principal curvature along the coordinate t (resp. s) (see the proposition 
on p. 18 of [1]) is given by 

= - ( -  ] + x  lx ,  

.,X2 = -(x" +x ) l ( - l  +x2 +(x')2) 1/2. 

By the Gauss equation ~ ] ~ 2 = l - K ,  for any constant K<0,  and the equation 

x" + K x  = O, 

has a solution z ( s )=Acosh (~ /LKs ) ,  with a constant A>I .  It is easily verified 
that the spacelike surface above is complete, not totally umbilical and with K =  
const ant < 0. 

Example 4.4. (See Example 11 of [21].) For t>0  define ft: R2--~S~(1) by 

( x l , x 2 ) ~ - + ( t c o s h ( f - ~ ) , t s i n h ( f - ~ ) ,  

(l+t2) 1/2 cos((1+t22) 1/2 ) ,  (1 +t2) 1/2 s in(  (1 +~22)1/2 ) ) .  

Proof. Noting that K > 0  implies that M is compact by Bonnet-Myers' theo- 
rem, we obtain Proposition 4.1 by applying Theorem 4.3 to the case n=2.  

The following two examples show that there exist complete spacelike surfaces 
with constant Gauss curvature K, where K takes all possible values in the range 

Example 4.3. 
Sla(1), 

(Cf. pp. 17-18 of [i].) Let M be a spacelike rotation surface in 

f (s, t) = (x~ x(s) cos t, x(s) sint, z(s) ), 
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These surfaces have been studied by Dajczer and Nomizu [8], who have proved that  
ft  induces the standard fiat metric on R 2 and has principal curvatures t /(1 + t  2) 1/2 
and (1+t2)l/2 /t ,  i.e. K = 0 .  These surfaces are not totally umbilical and complete. 

The following proposition can be proved by a similar method as Theorem 41 
on p. 137 of [25]. 

P r o p o s i t i o n  4.2. There exists no complete spacelike surface in the 3-dimen- 
sional de Sitter space $3(1) with constant Gauss curvature K > I .  

Combining Proposition 4.1 with Proposition 4.2, we have the following theorem. 

T h e o r e m  4.4. Let M be a complete spacelike surface in the 3-dimensional de 
Sitter space $3(1) with constant Gauss curvature K > 0 .  Then M is totally umbilical. 

Remark 4.1. We conclude that  Theorem 4.4 is the best possible in view of 
Examples 4.3 and 4.4. 

Choosing r in Theorem 1.1 and noting that Rijij:c-Ai/~j, we 
obtain the following result. 

P r o p o s i t i o n  4.3. Let M be an n-dimensional compact spacelike hypersur- 
face with nonnegative sectional curvature in an (n+ l)-dimensional de Sitter space 
S~+l(c). Suppose that 

(4.22) IVBI 2 ~ n 2 IVHI 2. 

Then either M is totally umbilical, or M has two different principal curvatures. 

C o r o l l a r y  4.2. Assume that M is an n-dimensional compact spacelike hy- 

persurface with nonnegative sectional curvature in an (n+ l )-dimensional de Sitter 
space S{~+l(c). Suppose that one of the following conditions holds: 

(1) the mean curvature H is constant, 

(2) the normalized scalar curvature R is constant and not greater than c. 
Then M is totally umbilical. 

Proof. It is clear that case (1) implies (4.22). Now we assume that R - c =  
constant_<0. By the Gauss equation (4.3), we have 

n2H 2 - I B I  2 = n ( n -  1) ( c -  R) : constant _> 0. 

Thus (4.22) holds by Lemma 1.2. We conclude that  there are at most two constant 
and distinct Ai's by Proposition 4.3 and assumption (1) or (2). It follows that 
M is totally umbilical from the compactness of M. This completes the proof of 
Corollary 4.2. 
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C o r o l l a r y  4.3. Assume that M 'is an n-dimensional compact spacelike hy- 
persurfaee with nonnegative sectional curvature in an (n+ l )-dimensional de Sitter 
space s~+l(c).  Suppose the normalized scalar curvature R is proportional to the 
mean curvature H of M,  that is 

(4.23) R = a H ,  

where a is any constant. Then M is totally umbilical. 

Proof. By use of the Gauss equation (4.3) and the assumption (4.23), we have 

(4.24) ]B] 2 = n2H 2 - n ( n -  1 ) ( c - a l l ) .  

Taking the covariant derivative of (4.24), we have for every k 

2 E hijhijk = (2n2H+n(n - 1)a)Hk. 
i,j 

It follows that  

(4.25) 4IBI2IUhBI2 >_4 E hijhijk 
k 

By (4.23) and (4.24), we have 

(4.26) 

= (2n2H+n(n - 1)a) 2 ]VH[ 2. 

( 2n2 H +n(n-1)a) 2-4n21BI 2 = ( 4n 4 H2 + n2(n-1)2 a2 + 4n3(n-1)Ha)  

- n 2 (4n 2 H 2 - 4 n ( n -  1) ( c -  al l ) )  

= n 2 ( n -  1 ) ( ( n -  1)a 2 +4nc)  > 0. 

Combining (4.25) with (4.26), we find that  (4.22) holds. Thus we conclude 
that  there are at most two constant and distinct Ai's by Proposition 4.3 and the 
assumption (4.23). It follows that  M is totally umbilical from the compactness 
of M. This completes the proof of Corollary 4.3. 
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