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Continuous frame decomposition and a vector 
Hunt-Muckenhoupt-Wheeden theorem 

Sergei Treil and Alexander Volberg 

I n t r o d u c t i o n  

Statement of the problem. This paper  deals with the weighted norm inequalities 
for the Hilbert t ransform with matrix-valued weights. The main problem can be 
formulated as follows. Let W be a d x d  matrix weight, i.e. an L 1 function whose 
values are selfadjoint nonnegative d•  d matrices. We suppose that  the weight W is 
defined on the unit circle T = { z E C : I z I = I } .  

Let L2=L2(C d) be the space of square summable functions on T with values 
in C d, let H2=H2(Cd) be the corresponding Hardy space of analytic functions, 
and let P+ be the orthogonal projection in L 2 onto H 2. Let T denote the Hilbert 

transform, T= - i P + + i ( I -  P + ) . 
The question we are interested in is under what conditions on W the following 

weighted norm inequality for T holds (say for all f E L 2 n L ~ ) ,  

/T( W (~)T f (~), T f ( t) ) dt <_ C/T(W(~) f (~) ,  f (~) ) dm(~), 

where m is the normalized ( m ( T ) =  1) Lebesgue measure on T. Clearly this inequal- 

ity is equivalent to the same inequality for P+ (with another constant). 
If  we define a weighted space L 2 (W) as the space of all measurable Cd-valued 

functions on T satisfying 

2 % IlfllL,(W) (W(~)f(~), f(~)) dm(~) < ~ ,  

(of course we should factorize it over the subspace of functions of norm 0), then the 
last inequality means that  T (or, equivalently P+) is a bounded operator  in L 2 (W). 

(1) Partially supported by the grant DMS9622936 from the National Science Foundation. 
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If the dimension d equals 1 and everything is scalar-valued, the answer is given 
by the famous Hunt-Muckenhoupt  Wheeden theorem, which says that  the Mucken- 
houpt condition 

(supremum is taken over all intervals) is necessary and sufficient for boundedness 
of the Hilbert transform in L 2 (W). 

In the matr ix  case it was conjectured by the first author in IT] and proved in 
our paper  [TV1] that  the vector Muckenhoupt condition 

1 ~1/2 { 1 \1/2 
(A2) sup ( -~[ j['l W dm) ~ -~] f i W- l dm) < oe 

is necessary and sufficient for boundedness of the Hilbert t ransform in L2(W) with 
matr ix  weight. In this paper  we present an alternative proof of that  result. 

The main technical tool we are using here is a matr ix  version of a Lit t lewood- 
Paley type inequality that  gives an equivalent norm in the weighted L 2 space in 
terms of a weighted L 2 norm of the derivative of the harmonic extension (see The- 

orem 3.2 below). The scalar version was developed by us earlier in [TV2]. 
This equivalent norm inequality can be viewed as a continuous analogue of 

the wavelet type decomposition (the Haar system is a Riesz basis in L2(W)) that  
was used by us in [TV1]. But in this case a continuous "system of coefficients" 
(derivatives of harmonic extension) is over-determined, so it is more appropriate to 

call it a continuous fl'ame decomposition (see [D] for a discussion of frames). 
Although the main result about  boundedness of the Riesz projection is already 

known, we feel that  the technique we use is of independent interest and deserves 
separate consideration. In a sense the main result is Theorem 3.2 below about 
continuous frame decomposition, and boundedness of the Riesz projection serves as 
an illustration of the usefulness of this theorem. 

The advantage of the proof presented here is its simplicity. The disadvantage is 
that  it is applicable only to the Hilbert case p = 2  as far as we can see. In a sense we 
are just presenting a complex analytic proof of the Hunt Muckenhoupt Wheeden 
theorem for the case p=2 .  The matr ix  nature of weights and the underlying non- 
commutat ivi ty  of the problem make our task more difficult. On the other hand 
the proofs below are new even in the scalar case. The reader who does not like 

matrices may restore the scalar proof just by replacing (Wf, f) by Ifl2w every- 
where or may be referred to [TV2] where this has been done. One can obtain 
the preprint [TV2] from our homepages: h t tp : / /www.mth .msu ,  e d u / ~ t r e i l /  and 
http ://www. mth. msu. edu/~volberg/. 
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The difficulties. We would like to mention that  the problem cannot be reduced 
to the scalar case. The proof for the scalar case cannot be reproduced for matr ix  
valued weights. The main reason is that  the original proof by Hunt  Muckenhoupt-  
Wheeden [HMW] and all its modifications (see e.g. [GCRF] and [St]) make extensive 
use of maximal functions. And it is very difficult for us to imagine how one can 
introduce working maximal functions for matrix-valued weights. Indeed, for scalar 
weighted spaces we have a very simple but wonderful fact tha t  a function f belongs 
L p (#) if and only if I f] E LP(#). We do not have an analogue of this for matrix-valued 

weights, even for p=2 .  
As an illustration of what  kind of difficulties one can encounter in the vector 

case, let us present several very simple examples. It  is trivial in the scalar case 
that  if we have an integral operator  in L2(W) with positive (scalar) kernel, and we 
know that  an operator with a larger kernel is bounded, then the original operator 

is bounded too. This s ta tement  (even for scalar kernels) does not hold for weighted 
L2-spaees with matr ix  weights. Certainly if W(t) can be diagonalized by the same 
basis for each t E T ,  we do not have any difficulties. But this is not the case we 
are interested in. Another difficulty stems from the fact tha t  it is not true that  
every nonzero nonnegative operator  on C a is invertible when d > l ,  as it is when 
d = l .  For example, suppose we meet the expression (we do meet  such expressions 
while working with matr ix  weights) (A(I+B)- lx ,  ( I+B)-lx) ,  where A and B are 
nonnegative operators, B<I,  and x is a vector in C d. If A, B, x were numbers, the 
estimate from below �88 2 would follow. But no  estimate ~llxll 2 with 5>0  exists 

for operators. 

Carleson measures and (As) .  The observation is that  even though many scalar 
methods are not available now, there is at least one which still manages to survive. 
Let us remind the reader of the role of (A~)  weights. A positive function cannot be 
much larger than its average over I on a large portion of I .  If  we change the word 
"larger" to "smaller", we get the class of (A~)  functions (see various definitions 
of (A~)  on pp. 196-197, and 218 of [St]). In the classical case (see [St, pp. 200- 
205]) the class (Ao~) comes into play as follows. The singular integral operator 
is "factorized" through the maximal  operator M in the sense tha t  the weighted 

estimate IlHfllw<_Cllfllw is split into estimates 

and 

IIH fllw <_ CIIM flIw 

The main idea. 
and it comes from the scalar situation treated in [TV2]. 

IIM fllw <_ CIIfllw. 

In this paper  we use a different idea. The idea is very simple, 
The (A~)  condition, 
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which will now become the matr ix  (A2,~) condition, will be used to prove a certain 

estimate that  connects the weighted norm of f on the circle with the weighted norm 
of the gradient of the harmonic extension of f to the disc. 

This allows us to prove that  there exists an equivalent norm in L 2 (W), namely 
that  there exists a finite positive constant C such that  

IlfllL2(W) <_ [(W(z)Of(z),Of(z))+(W(z)Of(z),Of(z))](1-1zl2)dxdy 

< 2 
_ C I I I I I L 2 ( W ) .  

Here f(z) stands for the harmonic extension of the vector function f into the disc. 
The equivalence of this new norm is actually necessary and sufficient for WE (A2). 
The equivalence of norms is proved in Theorem 3.2. Now it will be trivial to prove 
the boundedness of P+ and P_. In fact, we diagonalize the operator P+ by using 

the new norm; if f = f + + f  defp+f+p_f, then Of(z)=Of+(z) and Of(z)-Of_(z), 
which means that  the new (equivalent) norm of f is just equal to the sum of the 
new norms of f+ and f .  See details in Section 4 below. 

The motivation. Stochastic processes. Let us consider a multivariate random 
stat ionary process. For simplicity we consider the case of discrete time. Let 142 be 
the spectral measure of the process; in our case this is a measure whose values are 
d • d nonnegative selfadjoint matrices. The reader can think of this as of a matr ix  
whose entries are complex m e a s u r e s  ~ti, j such that  for any Borel set E the matr ix  

E d {#i,j( )}/,j=l is nonnegative. 
The geometry of the process is described by the geometry of the sequence of 

subspaces znC ~, nEZ, in a weighted space L2 (W)=L2(W,  c a ) .  The space L2(W) 
consists of all functions on T with values in C a such that  

Ilfll2L2(Vv) def f (dW(t)f(t), f(t)) < oc. 

In this representation the past of the process is span{z~Cd :n < 0} and the future 
is span{znCd:n>_O}; the angle between past and future is nonzero if and only if the 

Riesz projection P+ is bounded in the weighted space L2(I/F). This property for 
s tat ionary Gaussian processes (the angle between past and future being nonzero) is 
in probabili ty literature called uniform mixing of past and future (see [R]). 

If the angle between past and future is nonzero, then for any vector e E C  d 
the angle between the subspaces span{z~e :n<0}  and span{z~e:n_>0} in L2(I/Y) is 

nonzero. If a measure p is defined on Borel sets E by p ( E ) - - 0 4 i ( E ) e ,  e) the last 
condition means that  the angle between antianalytic polynomials span{zn :n<0}  
and analytic polynomials span{zn:n_>0} in the (scalar) weighted space L2(p) is 
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positive. Equivalently, we can say that  the Riesz projection P+ (or Hilbert trans- 
form T) is bounded in the weighted space L2(#). It is well known that  this is 
possible if and only if the measure # is absolutely continuous and its density w 
satisfies the (scalar) Muckenhoupt condition (A2). 

Therefore, if the angle between past and future is positive, the spectral measure 
I/Y of the process is necessarily absolutely continuous, and the question about the 
angle gives rise to our problem. 

One can also consider completely regular multivariate stochastic processes and 
t ry  to characterize complete regularity in terms of spectral measure. For scalar pro- 
cesses this has been done in the article of Helson and Sarason [HS]. For multivariate 
processes we did that in [TV3], answering the question of V. Peller. 

Similarly, if we consider stationary processes with continuous time, we arrive 
at the problem about Hilbert transform on R. 

Operator theory motivation. There is a part of the theory of singular integrals 
that  treats Hardy spaces in R n. The passage from R 1 (or T)  to R n makes the theory 
immensely richer. At the same time the theory of vector valued Hardy spaces on 
T was developed for the needs of spectral theory of operators (see IN]), because 
the dilation theory of linear contractions (see IN]) reduces questions about bounded 
operators in Hilbert space to function-theoretic questions in a vector Hardy space. 
Even the finite dimensional case is known to be much richer than the scalar case 
(see IN] again). So the increase in dimension in this direction also enriches the 
theory. The connection with singular integrals becomes manifest if one considers 

Hankel and Toeplitz operators, given by formulae HFfdefp_(Ff)=(I--P+)(Ff); 
and TFfdefp+(Ff), where F is a d• matrix function and fEHP(Cd). One such 

problem that is very difficult already in the scalar case d =  1 was considered in [ACS], 
and then a similar problem was considered in IS1], [$2]. It is closely related to a 
two-weight estimate for the Hilbert transform that  is still open (see e.g. [TVZ], and 
the literature cited there). 

There is another classical problem for Toeplitz operators that  leads to a weight- 
ed estimate (with one weight) for the Hilbert transform. In fact, the invertibility of 
a Toeplitz operator TF on H p is equivalent (see [Si]) to the factorization F=G~G2, 
where G1, G2 are d x d outer matrix functions such that the following estimate hoMs 

(0.1) fT(V(t)P+f(t),P+f(t))dm(t)<C fT(W(t)f(t),f(t))dm(t), 

where W=G1G{, V=(G~I)*G~ 1. 
At first glance the matrix weights W=G1G~, V=(G~I)*G~ 1 seem to be dif- 

- - 1  oo  ferent, but the invertibility of TF implies easily that  F ELdxd, which means that  
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the matrix weights V, W are equivalent in the sense that there exists a constant C 
such that  for all e E C  d and for almost all t c T  

1 
(V(t)e, e)_< (W(t)e,  e)_< C(V(t)e, e). 

This is how one can come to the matrix weighted norm inequality considered in this 
paper. 

As far as we know, the first results about the matrix weight inequality were 
obtained by Steven Bloom [B1], [B2], who noticed that if the matrix weight W is 
assumed to be appropriately "smooth", then it can be diagonalized by a "smooth" 
unitary matrix function; furthermore, the operator of multiplication on this unitary 
matrix function commutes with P+ up to a compact term (because of "smoothness"). 
This approach leads to pointwise diagonalization of the estimate under consideration 
and so to the corresponding scalar problem. In the present work the matrix function 
W is a priori arbitrary. Rather than doing pointwise diagonalization (which is not 
available now) we prefer to come to global (almost) diagonalization of our operator 
in the weighted space L2(W). 

Acknowledgements. We are grateful to the referee whose remarks considerably 
improved this work. We are also grateful to Sheldon Axler who kindly agreed to 
read the paper and who made many useful remarks. 

1. Properties of matrix (A2) weights 

Given a matrix weight W and a set I c R  let us denote by W(I) the integral 

W(I)defffxWdm and by WI the average value W/efW(I)/lII, where m and I'1 
denotes normalized ( re (T)=1)  Lebesgue measure on T. Also for AED let W(1) 
denote the harmonic (Poisson) extension of W at t ,  

W ( A ) : = s  l - h i 2  
I1-  l dm( ) 

p It was shown in [TV1] that  if the Riesz projection P+, + ( E - ~  f(k)zk)  = 

•o f(k) zk is bounded in the vector-valued weighted space L 2 (W) then the matrix 
weight W satisfies 

(1.2) sup IIW(A)X/2W-X(A)I/211 < oo. 
AcD 

The ]ast condition implies (see the second part of Lemma 2.2 of [TV1]) 

sup II [ (W II < oo, 
I 
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where the supremum is taken over all arcs I C T .  The last condition is called the 
vector Muckenhoupt condition (A2), and the supremum is called the Muckenhoupt 
norm of W. 

We will need some properties of Muckenhoupt weights. One such property is 
that  (A2) implies (1.2). Of course it follows immediately from the fact tha t  P+ is 
bounded in the weighted space L 2 (W). We shall however present a direct and much 
simpler proof (see Corollary 1.4 below). 

L e m m a  1.1. Let W be a nonnegative, measurable, d •  matrix function on a 
measure space X,  #. Then 

fxII W(t)l I @(t) s d fx  W(t) d~(t) . 

Pro@ Since for a nonnegative d•  matrix A we have HAH <_traeeA<_dllAl[ , we 
can conclude that  

IlW@ll d#(t) < f x  t r ace (W(t ) )dp( t )  

=trace(fzw(t)@(t))  <d  f x w ( t ) @ ( t )  . D 

L e m m a  1.2. Let W be a d• d matrix Muckenhoupt weight, and A be a positive 
nonsingular d x d (constant) matrix. Then the weight 14; : = A W A  also satisfies the 
Muckenhoupt condition (A2) with the same Muckenhoupt norm. 

Proof. Clearly, I /V ,=AWIA and O / V - 1 ) I = A - I ( W - 1 ) r A - 1 .  The operator B =  

(WI) I /2A is a Hermit ian square root of WI,  which means B * B = W I .  Therefore we 
can write a polar decomposition for the operator B = ( W I ) I / 2 A = U ( W I )  1/2, where 
U is a unitary matrix.  Similarly, for an operator C =  ( (W-1) I )1 /2A  -1 one can write 
C=V(O/V-1) I )  1/2, where V again is a unitary matrix.  

Therefore 

B C *  = ( W i ) 1 / 2 ( ( W - 1 ) i ) 1 / 2  = U( ] /~ I )1 /2 ( (~V-1 ) I )1 /2V  *, 

and so 
II(Wx)l/2((w-X)r)l/2[[ = i i (w l ) l /2 ( (w-1) i ) l /2 l l .  [] 

The following two lemmas about  scalar (A2) weights are well known and their 
proofs are presented only to make the paper  self-contained. 

For an arc I C T  let A1 be the center point of the top cover of the corresponding 

"Carleson square", i.e., 1 - I A I = I 5  and AlIA I is the center of I .  
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L e m m a  1.3. Suppose a scalar weight w satisfies the Muckenhoupt (A2) con- 
dition 

(A2) sup{wx (w-1)x} =: C < oo. 
I 

Then for any arc I c T  the inequality w(A~)<_K(C)wI holds, where the constant K 
depends only on the Muckenhoupt norm C. 

Proof. Given an arc I let kI, k>0  denote the arc with the same center and 
of length klI I ( k I = T  for k>_l/]II). It is easy to see from the form of the Poisson 
kernel and the Muckenhoupt condition that 

OO OO 

_< A A 2 
k : 0  h : 0  (W-1)2kI  (W-1)2kI  

OO 

< A C E 2 - k ( ( w - X ) 2 k i ) - l .  
k=0 

The Muckenhoupt (A2) condition implies that  the weight w -1 is doubling, and 
therefore for any arc I we have (w-1)2i_> ( 2 - c ) - l w x ,  where the constant c depends 
only on the Muckenhoupt norm of w (or w -1, which is equivalent). Therefore we 
can continue our inequality to obtain 

OO 0<3 

w(A,) _< A C E  2-k ( (w-1)2k ' ) - I  -< A C E  2-k(2--~)k((W-1)I)--I 
k--O k--O 

<_ C'(w-1) i  <_ CC'wi .  [] 

C o r o l l a r y  1.4. If a d x d matrix weight W satisfies the vector Muckenhoupt 
condition (A2), then 

(A~) sup IIW(),)~/~w-~(~)~/~ll < ~ ,  
AcD 

where the supremum depends on d and the Muckenhoupt norm of W.  

We will call the condition (AS) the conformaUy invariant (or simply the in- 
variant) Muckenhoupt condition. 

To prove Corollary 1.4 we need the following result (Lemma 2.1 from [TV1]). 
Let k be a scalar-valued function in L2NL ~,  [[k[[2=l. Consider a subspace/C 

of L2(C d) given by 

/C def kCd = { k e : e  E cd},  

and let P denote the orthogonal projection (in the non-weighted space L 2 = L  2 (cd))  
onto /C. It is easy to see that  P is given by the formula 

P f  = k / f ( t )k( t )  dr. 
JT 
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L e m m a  1.5. Given a dx  d matrix weight W,  the projection P introduced above 
extends (from a dense set L2AL2(W)) to a bounded operator on L2(W) if and only 
if both weights W]k] 2 and W-1]k] 2 belong to L ~. In this case the norm of P in 
L2(W) is exactly 

ll/211 

Proof of Corollary 1.4. It follows from Lemma 1.5 (with k=[I[-I/2X~) that 
the Muckenhoupt condition (A2) is equivalent to the uniform boundedness of all 
averaging operators 1/; 

f '  ~ X r ~  f, fEL2(Ca) .  

Fix any direction (unit vector) eEC a, and consider the restrictions of these oper- 
ators on the subspace { fe : fEL2} .  It follows that the Muckenhoupt norm of the 
scalar weight w(t )=(W(t )e ,  e) is bounded by the Muckenhoupt norm of W for any 
eEC d, ]]e][=l. 

Lemma 1.3 implies that W ( A J < C W ~ ,  and similarly for W -1, W-I (AI )<  
C(W-~)~. (Here _< means inequality between associated quadratic forms.) By 
Douglas's lemma (see [Do]) there exist contractions T1 and T2 such that 

W(~I)I/~:CTIWI ~/~, W-I(A~)I/~=CT~(W-~)~ 1/~, 

and therefore 

Ilw(AJl/2w-l(~i)l/2]l ~ c2]Iwi~/2(w-1),I/2]]. [] 

L e m m a  1.6. If  a scalar weight w satisfies the Muckenhoupt (A2) condition, 
then 

w(A) 1/2<_CwU2(A) for all AED,  

where the constant C depends only on Muckenhoupt norm of w. 

Proof. Lemma 1.3 implies that the (A2) condition can be rewritten as 

sup w(A)w-1 (A) < c~, 
AED 

and the supremum depends on the Muckenhoupt norm of w. One can write 

w(A)w -1 (A) : [w(A)/exp{ (log w)(A)}] [W - 1  (/~)/exp{ (log W - 1  ) (,~) }]. 
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By the arithmetic-geometric mean inequality, the expressions in brackets are at 

least 1. Hence the Muckenhoupt condition is equivalent to the following two condi- 
tions: 

sup[w(/~)/ exp{(logw)(~)}]  < oo, sup[w-l()~)/  exp{(logw-1)(A)}]  < oo. 
XED XED 

From the first inequality and from Jensen's inequality we have 

W(,~) ~ C exp{(log w)(,~)} ~ C(w 1/2(,~))2, 

which completes the proof. [] 

L e m m a  1.7. Let W be a d x  d matrix weight satisfying the vector Muckenhoupt 

condition (A2). Then there is a constant C depending on d and on the Muckenhoupt 

norm of W such that 

IIW(~)ll ~C(llWII1/2()x)) 2 for all )~eD, 

where IIWII1/2(~) denotes the harmonic extension of IIWII1/2 at the point ~, 

Proof. Fix a unit vector e c C  d (llell =1).  As pointed out in the proof of Corol- 

lary 1.4 the Muckenhoupt norm of w = ( W e ,  e) is bounded by the Muckenhoupt 
norm of W. Therefore there exists C < o c  such tha t  

(W(A)e, e) < C[(We, e)1/2(~)] 2 for all ~ E D 

If we take e, Ilell=l, such that  (W(A)e,e)=ltW(A)ll we get the conclusion. [] 

2. C a r l e s o n  m e a s u r e s .  

Let us recall that  a positive Borel measure # in the unit disc is called a Carleson 
measure if 

~(Q,) _< ciii  

for any arc I on the circle. Here Qldef{z~D:z/ Iz l~L l - l z l < r S } .  The best con- 

stant C is called the Carleson norm of #. 

For a scalar, vector, or matr ix  function f on the circle T let f ( z ) ,  z E D ,  always 
denote the harmonic extension of f at z. 
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L e m m a  2.1. Let W be a harmonic function of n variables with values in the 
space of strictly positive dxd  matrices (W(x)=W(x)* >0 for all x )  Then 

A (log(det W)) = - trace W -1/2 W -1/2 . 

j = l  

Pro@ The proof is a good exercise in multivariate calculus. We need first to 
compute (O/Oxj) (log det W). We first notice that  log det W = t r a c e  log W. This is 
nice, because differentiation and trace commute. But there is a more important  
advantage in having trace here: trace(AB)=trace(BA). In general, it is difficult 
to differentiate a function of matrix W, the function log W being no exception. 
However, taking into account that  for any matrices A, B we have t r ace (AB)=  
trace(BA), we can immediately see that  for any analytic polynomial 

Ox~(trace(p(W)))=traee p'(W) , 

and therefore 

O--O--(log det W) : t raee(W-l  OW'~ 
Ozj \ Oxj /" 

So, using again the fact that  (traeeW)'=trace(W') one gets 

02 W) = trace ( W  -102W OW 
(2.1) cOxj ~(l~ \ oOxj~)-trace(W-lOWw-l~xj)'Oxj 

Here we have also used the fact that the inverse matrix (and the resolvent in general) 
is easy to differentiate, 

0 W_I=_w_IONw_ 1 
Oxj Oxj " 

Since W is a harmonic matrix-valued function, 

n 

E t r a c e  / -1 0 2 W \  = 0 .  
j = l  

To complete the proof it is enough to recall that  the similarity transformation 
A ~ T A T  -1 does not change the trace, so 

n ( OW 1 OW \ 
A(log(det W)) = -  ~--~traee \ W - I ~ z J W -  -~xj) 

j = l  

= -- @ trace(W-a/20W OWw-1/2 ~ ( w - 1 / 2 )  2 [] 
j = l  ~ OXj OXj /" 
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Now we would like to introduce the matr ix (A2,~) condition and the matrix 
invariant (A2,~) condition. In the first one we require the existence of a positive 
constant C such that  the following estimate holds for any interval (arc) I on the 

circle T,  

(2.2) log(det (WI)) - (log det W) i  _< C. 

Here ( . ) I  stands for the averaging over the interval I. The opposite inequality is 
true for any matrix function, as follows from the elementary observation that  

de t ( �89  > de t (A)de t (B))  1/2, 

which amounts in its turn to the arithmetic-geometric mean inequality (see the proof 
in [TV1]). Another remark is that  (A2,~) implies (but is not equivalent to) the 
fact that  ( d e t ( W ) )  1/d satisfies the usual scalar (A~)  condition. (Recall that W is a 
d x d matrix). In [NT] and [V] the whole spectrum of conditions (Ap,~),  p c  (1, oe) 
was introduced and widely used. In the scalar case all these classes become A~,  
but this is not so in the matrix case. We refer the reader to [NT] and [V] for details. 

But when we consider the case p=2  it is much more convenient to use the 
class of invariant (A2,~) matrix weights. We warn the reader that  it does not 
coincide with (A2,~) even in the scalar case d = l .  The convenience of invariant 

(A2,o~) becomes manifest in this section and stems from two facts: (1) (A2) implies 
invariant (A2,~); (2) invariant (A2,~) is a notion from complex rather than real 
analysis. 

T h e o r e m  2.2. I f  a matrix  weight W satisfies the invariant (A2,~) condition 

then the measures 

W(z)-l/21~W(z)lW(z)-l/2 2(1-1zl2)dxdy , 
2 W(z)-l/2(~W(z))W(z)-l/2 (1-,z,2)dxdy 

are Carleson measures. 

Pro@ We are given that  

(2.3) log(det (W(z))) - (log det W)(z)  _< C. 
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By Green's formula and Lemma 2.1 

'Slo  log(det(W(s)) ) - ( logdetW)(s)=-~ log Alog(det(W(z)))dxdy 

:_l llI, \ ox / 
( ~,_l/.OW(z)...,_,/.~"~ +tracet, W(~' N " '~' ) ) 

2 

x log _ d x  d y .  

Using the elementary inequality log(1/a)>l-a for 0 < a < l  and the fact that 
IIAII <trace A for a non-negative matrix A, we can estimate the last integral from 
below by 

1 f f  Ilw(z)_xl.ow(~)w z -11, 2log 1-gz ";'dxdy 
4--~//DII ~xx ( )  z - s  

>-ill W(z)-ll2OW(Z)ox W(z) -'12 2 (1-- ~l-gz 2)) dxdy 

= j s  wrz~_,l, ow(z) w(z)_l/2 2 (1 - I s l2 ) (1 - Iz [  2) 
J Ox  [l_Nz] 2 dxdy. 

Together with (2.3) this implies 

i f D  1-1812) Wz-1/2OW(z)wczS-W2 2(1-lzl2)dxdy<C for a l l s E D ,  
Ii-~zl 2 ( )  Ox " " 

which yields that the measure 

, .  

is a Carleson measure. 
The measure 

W(z)-I/2(~W(z))W(z) -'/2 2(1-,zl2)dxdy 

is treated similarly. [] 

Now let us show that (A2) implies invariant (A2.oo). Let us recall that (A2) 
is equivalent (see Corollary 1.4) to 

sup I lW(z)Xl2(w-~)(z) l l21l  < ce. 
zED 
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L e m m a  2.3. Let W be a matrix weight satisfying the (A2) condition. Then 
W satisfies the invariant (A2,o~). 

Proof. The vector Muckenhoupt condition (A2) implies that  W, W -1 ELl (T) ,  
and so log(det W ) E L I ( T ) .  Therefore there exists a factorization W = F * F  a.e. on 
T,  where F is an outer function in H2(Mdxd). 

Since F is an outer function in H 2, det F is an outer function in H 2/d. Therefore 

(2.4) I det F(z)  l = exp((log I det r l )  (z)) = exp (�89 (log det W)(z))  

It is well known that F*(z)F(z)<_W(z) for every zED.  There are many proofs 
of this fact, for example it admits a very simple operator-theoretic interpretation. 
The explanation we present here is more function-theoretic. Direct computation 
shows that  

A(F(z)* F(z) ) = 4(0F(z)*)(OF(z))  = 4(OF(z))* (OF(z)) > O, 

so for e E C  d the function IIY(z)ell 2 is subharmonic and coincides with (W(r e) 
on T. 

We can do the same factorization for W -1. Namely, let G be an outer matrix- 
valued function in  H2(Mdxd) such that W=G*G on T. We should point out to the 
reader that  in general G does not necessarily coincide with F -1. However, applying 
(2.4) to G one can conclude that 

(2.5) I det G(z)l = exp( l ( log  det W 1) (z ) )  = [det F(z)1-1. 

As we noticed already the Muckenhoupt condition can be rewritten as 

sup 
zED 

Therefore, 
sup ] det(W(z))  det((w-X)(z))]  < co. 
zcD 

Using (2.5) one can rewrite the last inequality as 

sup ([act W(z)/I det F(z)12] [det W -1 (z)/I det G(z)12]) < oc.  
zED 

Since 

and 

_< W(z) 

G(z)*a(z) < 
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the expressions in brackets are at least 1, so, taking (2.1) into account 

sup [det W(z)/exp((log det W)(z))] = C < 0% 
zED 

or equivalently 

(2.6) log(det (W(z))) - (log det W)(z) _< C, 

where the constant C depends only on the dimension d and the Muckenhoupt norm 
of W. 

3. E q u i v a l e n c e  of  n o r m s  

L e m m a  3.1. Suppose a matrix-valued weight W satisfies the matrix Mucken- 
houpt (A2) condition, and let # be a Carleson measure. Then 

/D(w(z)f(z) ,  f(z)) dr(z) < C iT (W(~)f(~), f(~)) d~(~) 

for any vector-function f E L2(T, W), where the constant C depends on the dimen- 
sion d, the Muckenhoupt norm of W, and the Carleson norm of r .  

Proof Consider an operator J:L2(m)-~L2(r) (both L 2 spaces are vector- 
valued), 

(if f)(z) = W(z)l/2 (W-1/2 f)(z). 

To prove the theorem it is enough to show that the operator 57 is bounded. We are 
going to show that its formal adjoint 57* 

/D 1-1z12 
(57" f ) ( ~ )  = W - 1 / 2 ( ~ )  [I_~z[ 2 W(z) l /2 f (z)  dr(z) 

is bounded. Direct computation shows 

IIJ* fll2= fD /D l IT (W-I(~)W(z)I/2 f(z) '  W(s)I/2 f(s)) (1--]z12)(1--ls]2)[l_~1211_$~12 drn(~)] 

• dr(z) dr(s)  

(1-lz12)(1-ls12) dm(t~)] -< fD fD [fT IIW(s)Z/2w-I(~)W(z)I/2II 11-~[211-~l 2 
• LIf(z)ll IIf(s)ll dr(z) dr(s). 
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It is easy to estimate the inner integral. Namely, 

ll-~zl = IX-~{+~{-~zl  <_ II-~t~l +1~1 I { -z l  _< I1-~,~1+ 11-2t~1, 

SO 

and finally 

(3.1) 

I1-~{l-]11-~Cl - ]  _< I I -~z l - ] ( l l -~c l - l+ l l -~C l -1 ) ,  

I1-~1-~11-~1-2 < 211-~z1-2(11-~{I-2+11-2~1-~). 

Assume without loss of generality that Is]~ Izl. Then 

(1-1z?)(1-I,P) 
T IIW(s)I/2w-I(~)W(z)I/211 ii_z~12ll_g~12 dm(~) 

-< Ii-~zp ]IW(s)I/2w-I(~)W(z)I/2II 

(( 1-1zP)(1-1d 2) (1-18P)(1-1zp)'~ dm(~) 
x i1_~12 § 11_~12 ] 

-< [l_~zl 2 (1-lzl 2) IIW(s)~/2w-x(~)W(s)X/2[I 

1-1~? x IlW(s)-X/2w(z)l/211 ~ dm({) 

+ ( 1 -  Isl =) s IIW(s)l/2w(z)-X/211 

1-1~P dm(~)). x IIW(z)Z/2w-x(~)W(z)l/2]l i1_~12 

The weight W satisfies the Muckenhoupt condition (A2), hence 

fT IIW(~)]/~w-~(r d.~(r <_ c < 

and 

SO 

fT 1--IZP dm(~) < c < <~, I IW(z)X/2w-l (~)W(z)X/2l l~  _ 

fT llW(s)~/2w-l(~)W(z)X/Zll (1- IzlZ)(x- Isl 2) 

( X-lzp 1-lsl211W(s)l/2W(z)_~/21l ) _<C ii_~sp IlW(s)-X/2W(z)l/2l[-} ii_~sl 2 
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Therefore, to prove the embedding it is enough to prove that  an integral operator  

with kernel 

1 - [z [  2 HW(s)-I/2W(z)I/2H+ ,1-[8t2^ t[W(s)I/2W(z)-I/2][ 
I1-~12 I I -~sp  

is bounded in L2(#). Since each summand can be obtained from the other by 
interchanging s and z, it is sufficient to estimate only one, i.e., to prove that  an 
integral operator with kernel, say, 

K(z, s) = 1-I~12 1/2 --1/2 tT_T~l~llW(s) W(z) II 

is bounded. 
Now we are going to apply the Senichkin-Vinogradov test  to this integral op- 

erator. This test is a powerful weapon in proving that  a certain kernel gives a 
bounded operator in L 2 (#). The reader can find a 5-line proof in Lecture 7 of [N]. 
Let us also quote the work of Kolmogorov and Seliverstov [KS] pointed out to us 
by E. Stein, where the trick of doubling the kernel was probably used for the first 

time. 
We need to estimate 

s K(z, 8)K(z, t) dt,(z) 

fD 1--1sl i--ltl 2 = i1_~1211_~tf 211W(~)l/2W(z)-l/21111W(t)1/2W(~)-1/211d~(~ ) 

By (3.1) above 

(3.2) I1-~sl-211-~t1-2 _< 211-~tl-2(I 1-~sl-2 +11-  ~tl-2). 

The product of norms can also be easily estimated: 

IIW(s)I/2W(z)-I/211 HW(t)I/2W(z)-I/2[I 
= tlW(s)l/2W(z) -1/2 II l]W(t)l/2W(s)-l/2W(s)l/2W( z)-1/2 II 

(3.3) < IIW(s)l/2W(z)-l/21l IIW(t)l/2w(s)-l/21l [IW(s)l/2w(z)-l/211 
= IIW(s)l/2W(z)-lw(s)l/211 IIW(t)l/2w(s) 1/211 
<_ I IW(s)l/2w - t  (z)W(s)1/2 II IIW(t)l/2w( )-1/2 II, 

and similarly 

(3.4) 
llW(8)l/2w(z)-a/2 tl IIw(t)X/2w(z)-l/2 II 

IIw(t) 1/2w-1 (z)W(t) 1/2 II II w(s)l /2w( t)-1/2 II. 
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Combining (3.2), (3.3), and (3.4), we obtain 

DK(Z, s)K(z, t) dp(z) 
1 2 

_<2( _~[[W(t)l/2W(s)-l/21, fD II--sZl 21-]s]2 "W(s)a/2w-l(z)W(s)l/2IIdp(z) 

1-1sl2 fD 1-1tl~ lIW(t)l/2w-l(z)W(t)l/2I]d'(z))" +~l lW(s) l /2w( t ) - l /211  11_2tl 2 

If we show that  

(3.5) i i _ ~ z l  2 IIW(s)l/2w-l(z)W(s)l/211 d#(z)  < C < oc, 

where C depends on d, the Muckenhoupt norm of W, and the Carleson norm of #, 
then 

i) K(z, s)K ( z, t) dp(z) <_ C(K(s ,  t)+ K(t, s)), 

and we are done. 
To prove (3.5) we first notice that  it is easy to see that  for a fixed s E D  the 

weight W(s)I/2w-I(. )W(s) 1/2 is a Muckenhoupt weight (see, e.g., Lemma 1.2 or 
Lemma 3.5 of [TV1]), and its Muckenhoupt norm is at most the Muckenhoupt norm 
of W -1 (or, equivalently, of W). Let us prove (3.5) for s=0.  By Lemma 1.7 (see 
also Lemma 3.6 of [TV1]) 

D [[W(O)a/2W a(z)W(O)l/2[[ d#(z) <_ fD((H(W(O)I/2w-Iw(o)I/2II(z))I/2) 2 d•(z) 

_< CSD(II (W(O)ll2w-Iw(o)ll2111/2(z))e d#(z), 

and since the measure # is a Carleson measure 

DII (W(O)l/2w -1 (z)W(O)l/2) 1/2 II 2 dp(z) 

<_ C L II(W(O)~/2W-~(~)W(O)~/2)l I dm(~) 

= c f~ IIw(o)X/2w -~(~)w(o) 1/2 II din(C) 

=c'  w(o)'/2w-'(o)w(o) 1/' <_c". 
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We use here that  f IIWIl<_dll f WII , by Lemma 1.1 (see also Lemma 3.1 of 
[TV1]), for nonnegative d• d matrix functions W. The last inequality in the chain 
is a particular case of the matrix (A2) condition. 

To prove (3.5) for general s let us introduce a new variable ~=(z-s ) / (1-$z)  
(so z=(~+s)/(l+~2)) and a new measure/~, 

(zs) ,  ls2 
~(~(a)) = ~ d , ( z )  = li_~zl~ d , ( z ) .  

Let us also introduce a new weight W, 

w ( ~ ) = w ( ~ ) =  \ 1 + ~ / '  

i.e., W is obtained from W by composing it with a M6bius transformation. Clearly 

~-1(~) = w- l (z)  = w_l  \ ~ - ~  } 

Then the leR-hand side in (3.5) can be rewritten as 

/ n  IIW(O) ~ /2~ -1  II d~(~). (~)~(0)1/2 

Since W is a Muckenhoupt weight and /~ is a Carleson measure (here the 
conformal invariance of Carleson measures is used, see, e.g., [G, p. 239]), we have 
reduced the inquality (3.5) to the case s=0 ,  which we have already proved. [] 

T h e o r e m  3.2. Let W be a matrix Muckenhoupt (A2) weight, and let f be a 
vector-function in L2(W) such that f ( 0 ) = 0 .  Then there exists a constant C such 
that 

/. //o -~ (W f, f)  dm< [(W(z)Of(z), Of(z))+ (W(z)Of(z), Of (z))] (1 -I~1 ~) dx dy 

< cfT(wf, f) 

Proof. Applying Green's formula we get 

/ ;  l / f  D 1 (W f, f)  dm= ~ A[(W(z)f(z), f(z))]  log ~-~ dx dy. 
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Since for Izl _<r< 1 we have IAf(z)l<_C(r) fT If] din, the logarithmic singularity 
log(1/Izl) above does not matter  and 

ffD 1 /fD A[(W(z)f(z), f(z)))] log ~ dx dy ~ A[(W(z)f(z), f(z))] (1 -Iz[ 2) dx dy, 

where x means equivalence in a sense of two-sided estimate. 
Using the formula A = 4 0 0 = 4 0 0  we obtain 

1A[(Wf, f))] = O0[(Wf, f)] 

= (OWOf, f) + (OWf, Of)+ (OWOf, f) 
+ (OWf, Of) + (WOf, Of) + (WOf, Of) 

= 2 Re(OWf, Of) + 2 Re(0Wf ,  Of) + (WOI, Of) + (WOf, Of). 

Mutiplying by 1-Iz t  2 and integrating over D we get 

A 2 ~fff A[(W(z)f(z), f(z))](1-1zl 2) dxdy 
JJD 

= 8 ff. [Re(OWf, Of) + R e ( 0 W f ,  Of)] (1 -Izl 2) dx dy (3.6) 

+4 ffD[(WOf, Of)+(WOf, 0f)](1-Izl 2) dx dy. 

Let us denote the second term on the right side by 4B 2. Note that  B 2 is exactly the 
integral from the statement of the theorem. We already know that fw(Wf, f) dmx 
A 2, so to prove the theorem we need to show that AxB. 

Let us estimate 

f /D Re(OW f , 0f)(1  -Iz l  2) dx dy 

.fin Re(W(z)-l/2OW(z)W(z)-l/2W(z)l/2 f' W(z)l/2of)(1- Izl2) dx dy 

< / /~  ]]W(z)-l/2OW(z)W(z) -1/21] IIW(z)l/2fll HW(z)~/2Of]l (1 -Izl 2) dx dy 

(//o < NW(z)-I/2oW(z)W(z)-I/2H2(W(z)f(z),/(z)) (1-Iz l  2) dx dy) 

• (ffD(W(z)Of(z),Of(~))(l-lzT)dx dy)h~/2. 

The second integral in the product is estimated above by B 2. 
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The first one is also easy to estimate. By Theorem 2.2 the measure 

II W(z)-l/2OW(z)W(z)-1/2 II (1 -I z 12) dx dy 

is Carleson, so Lemma 3.1 implies 

/D [[W(z)-l/2OW(z)W(z)-l/2H2(W(z)f(z), f(z)) (l --[zl 2) dx dy 

< C fw(Wf ,  f)  dm< C'A 2. 

Therefore 

/D Re(OWf, Of)(1-1zl 2) dxdy CAB, <_ 

and similarly 

fD Re(OW f , 0 f ) ( 1 - I z l  2) dx dy < CAB. 

Summarizing the above, one can write 

A 2 < CAB+4B 2 

yielding A<_C'B. Rewriting (3.6) as 

4B 2 = A 2 - 8 / / D [Re ( O Wf ,  Of)+Re(g)W f, 0f)]  (1 - Iz ]  2) dx dy 

and applying the same trick we obtain 4B2<_CAB+A 2, so B<_C'A. [] 

Let us make an important  remark concerning Theorem 3.2. In [TV3] it is 
proved that  if the weight W satisfies the iavariant (A2,~),  then the equivalence of 
norms stated in Theorem 3.2 holds for analytic f and also for antianalytic f .  One 
does not need the full s trength of (A2) to do t h a t - - a  "one sided condition" invariant 
(A2,~) suffices. This looks like a contradiction. After all, if we have the equivalence 
of norms for all analytic polynomials and for all antianalytic polynomials, why not 
add these relations to get the equivalence of norms for all harmonic polynomials? 

But there is certainly no contradiction. We cannot add, because to do that  with a 
certain estimate we need that  the angle between analytic and antianalytic spaces 
be positive. But this is not guaranteed by invariant (A2,~).  Only (A2) works, as 
we saw in Theorem 3.2. 
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On the other hand, we can still add the following inequalities from [TV3] 

w(W(~)f+(~), f+ (~)) dm(~) <_ C f/n(W(z)Of+(z), Of+(z))(1-Izl ~) dxdy, 

(z),Of_(z))(1-[zl2)dxdy, 

and to get from invariant (A2,~) the following one sided estimate involving any 
defp ~ p - 

function f = f + + f _  = + J +  _J  and its harmonic extension f(z) 

~ (W(~)f(~), f({)) dm(~) < C .fin (W(z)V f(z), V f(z))(1-lzl 2) dx dy. 

You see that  the angle estimate is not needed here. It appears only in the converse 

estimate. 

4. B o u n d e d n e s s  o f  t h e  H i l b e r t  t r a n s f o r m  

Now it is trivial to prove that  if W satisfies the Muckenhoupt (A2) condition 
then the Hilbert transform (or, equivalently, the Riesz projection P+) is a bounded 
operator in L 2 (W). We present a formal proof for the sake of completeness. 

Consider a weighted vector-valued L2-space 7/=L2(W(z)(1-[zl2)) of functions 

on D with values in C d, 

]]fll~ = .f/n(W(z)f(z),/(z)) (1 - ]z]  2) dx dy. 

Let L~ (W) = { f  �9 L 2 (W): f(0)  =0}. Theorem 3.2 asserts that the mapping 

f ,  ,Of(z)@Of(z) 
gives a representation of L~(W) as a subspace of 7/07-/ (with equivalent norm). 
Here again f(z), zED, denotes the harmonic extension of f .  

Consider an operator P+ on 7/07-/, 

P + ( f |  = f |  

The operator P+ is obviously bounded, and its restriction to Lg(W) is nothing but 
the Riesz projection P+. Therefore P+ is bounded on L~(W). To complete the 

proof note that  for f �9 
P+f = P+(f - f(O))+ f(O). 

The operator 
f ,  ~ 1.f(0)  

is a bounded operator in L2(W); it was shown above in Lemma 1.5 that  its norm 
is exactly IIW(O)1/2(W-l(O))-1/211. Since f-f(O)eL~(W), the operator P+ is 

bounded on L 2(W). 
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