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On the 
and 

average distance property 
certain energy integrals 

Reinhard Wolf 

A b s t r a c t .  One  of our  ma i n  resul ts  is the  following: Let  X be a compac t  connec ted  subse t  of 

t he  Euc l idean  space  R n and  r(X, d2) t h e  rendezvous  n u m b e r  of  X ,  where  d2 denotes  t he  Euc l idean  

d i s tance  in R n. (The  rendezvous  n u m b e r  r(X, d2) is t he  un ique  posit ive real n u m b e r  wi th  the  

p rope r ty  t h a t  for each posit ive integer n and  for all (not  necessari ly d is t inc t )  xl ,x2, . . .  , Xn in 

X ,  the re  exis ts  some  x in X such t h a t  ( l / n )} -~n=l  d2(xi, x)=r(X,  d2).) T h e n  the re  exis ts  some  

regular  Borel probabi l i ty  measu re  #o on X such  t h a t  t he  value of f x  d2 (x, y) d#o (y) is i ndependen t  

of  t he  choice x in X ,  if and  only if r(X, d2) = s u p ,  f x  f x  d2 (x, y) d#(x) dtt(y), where  t he  s u p r e m u m  

is t aken  over all regular  Borel probabi l i ty  measu re s  tt on  X .  

1. I n t r o d u c t i o n  

In 1964 O. Gross published the following remarkable result. 

T h e o r e m .  (Gross) Let (X,d) be a compact connected metric space. Then 
there is a unique positive real number r( X,  d) with the property that for each positive 
integer n and for all (not necessarily distinct) x l ,  x2 ,... , xn in X ,  there exists an 
x in X such that 

n 
! d(x , x) = r(X, d). 
n 

i=1 

For a proof of this theorem see [6]. An excellent survey on this topic is given 
in [4]. See also for example [9], [10], [11], [15], and [16]-[19]. 

Remark 1. 
(a) In the situation of Gross's theorem we say that  (X, d) has the average 

distance property with rendezvous number r(X,  d). 
(b) �89  where D(X,d )  is the diameter of X. For a 

proof see Theorem 2 in [6]. The positive real number re(X, d )=r(X,  d ) / D( X ,  d) is 
often called the dispersion or magic number of X. 
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(c) Graham Elton first generalized Gross's theorem in the following sense (for 
a proof see [4]). 

Let (X, d) be a compact  connected metric space. Then r(X, d) is the unique 
positive real number with the following property: for each regular Borel probability 
measure # on X, there exists an x in X such that  

x d(x, y) dp(y) = r(X, d). 

Moreover there are regular Borel probabili ty measures # and y on X such that  

for all x in X.  

(d) r (X,d)=infmax [ d(x,y) d#(y)=supmin J[x d(x,y) d#(y), 
]* x E X  J X  ~ x C X  

where the infimum and supremum is taken over all regular Borel probability mea- 
sures # on X. For a proof see [4]. 

It  turns out, that  for a given compact  connected metric space (X, d) the explicit 
calculation of the rendezvous number r(X, d) is often rather dil~icult. For example 
r(X, d) is still unknown for such a nice space X as a general ellipse in R 2 and d the 
Euclidean distance. 

As pointed out in [4] the key trick for calculating r(X, d) in some cases is to find 
some regular probabili ty measure #0 o11 X such that  the value of f x  d(x, y) d/to (y) 
is independent of the choice of x. 

Then by the definition of r(X, d) and Elton's generalization of Gross's theo- 

rem we get r(X, d )=fx  d(x, y)dpo(y) for an arbi trary choice of x (compare with 
Theorem 1 in [10]). 

S. Morris and P. Nickolas used this result to calculate r(S n, d), where S n is 
1 the sphere of radius ~ in the Euclidean space R n+l equipped with the Euclidean 

distance d, n_> 1. They show the following theorem. 

T h e o r e m .  (Morris, Nickolas) Let S n and d be defined as above and let ~ be 
the normalisation of the usual n-dimensional Lebesgue measure on S n, then we have 

f s  2n-1 [ r ( � 89  
=  r(�89 

for any x in S ~, where F is the gamma function. 

For a proof see [10]. 
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In [4] the existence of such a #0 is used to calculate r(X~,  d), where X~ is any 
1 subtending an angle p at the centre and d denotes the arc of a circle with radius 

Euclidean distance in R 2 (see Example 5 in [4]). 
Unfortunately such a probability measure #0 does not exist in many cases (for 

example all convex compact subsets in the Euclidean space R n, which are not line 
segments), because of the following result due to David Wilson. 

T h e o r e m .  (Wilson) Let X be a compact connected subset of a rotund normed 

space. (This means that nx+yll < Ilxll+ IlYll unless x and y are linearly dependent. 
Observe that the Euclidean space R n, for any n, is a rotund normed space.) 

Suppose that, for some regular Borel probability measure #o on X the value 

of f x  IIx-Yll d#o(y) is independent of the choice of x, and that X is not a line 
segment. Then no three points of X are colinear. 

For a proof see Proposition 2 in [4]. 

Remark 2. If we consider normed spaces which are not rotund, the situation 
can be rather different: 

For example let X = { x E R 2 : � 8 9  1)llz+Ux+(1 , 1)111)=2}, where I1" II1 de- 
notes the usual 1-norm in R 2. Since (1, 1) and ( - 1 , - 1 )  are elements of X, the regu- 

1 lar Borel probability measure #0 on X, defined as tto = ~ (5(1,1) +6(-1,-1)) (6x denotes 
the point measure concentrated on x) has the property, that  f x  IIx-Yll I d#0(y)=2 
for all x in X. But we get easily that  X = { x = ( x l , x 2 ) E R 2 : m a x ( I x z l ,  Ix21)_<l} and 
hence X is convex. 

In [11] P. Nickolas and D. Yost first noted the connection between Gross's 
theorem and certain energy integrals studied in earlier papers on distance geometry, 
especially by R. Alexander and Z. B. Stolarsky (see also G. Bj6rck in [2]). A survey 
on this topic is given in [1]. See also [13] and [14]. 

In [11] Nickolas and Yost give a new proof of a result essentially due to Stolarsky 
(see Theorem 2 in [13]), which also follows from the earlier work of BjSrck (see [2]). 
They also find an elegant proof in the case n = l  by using Gross's theorem. 

1 in the Eu- T h e o r e m .  (Stolarsky, BjSrck) Let S n be the sphere of radius 
clidean space R n+l equipped with Euclidean distance. Then we have 

where the supremum is taken over all regular Borel probability measures # on S n. 

For a proof see Proposition 4 in [11]. 
We will generalize this result in Proposition 3 of this paper (see also the above 

mentioned theorem of Morris and Nickolas). 
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In this paper we develop a close connection between the relation of the smallest 

upper bound of energy integrals of the form fx fx d(x, y) d/t(x) d/t(y), /t a regular 

Borel probability measure on the compact connected metric space (X, d), and the 

rendezvous number r(X, d) on one hand, and the existence of some regular Borel 

probability measure/to on X such that the value of fx d(x, y) d/to(y) is independent 
of the choice of x, on the other hand. 

The last part of the paper will use a uniform distribution method for recursive 

approximation of such a/to (if it exists), in the case of compact connected subsets 

of the Euclidean space R n. 

2. B a s i c  def in i t ions  and  n o t a t i o n  

Let (X, d) be a compact  metric space. By C(X) we denote the Banach space 
of all real valued continuous functions on X equipped with the usual sup-norm. By 
M(X) we denote the space of all regular Borel probabili ty measures on X. 

It is well known tha t  M(X) equipped with the w*-topology (a ne t / t~  tends to 

/t if and only if fx f(x) d/t~(x) tends to fx f(x) d/t(x) for all f in C(X)) becomes a 
compact convex space, such that  the w*-topology can be metrized (for example by 
the so called Prohorov metric). For x in X let ~x, 5x E M ( X ) ,  be the point measure 
concentrated on x. 

It follows that  the set {5~ :x c X }  is the set of extreme points of M(X) and hence 
the Krein-Milman theorem applies, that  M(X) is the w*-closure of the convex hull 
of {5~:xeX}.  For basic properties of M(X) see for example [3] and [12]. With  d2 
we always denote the Euclidean distance in some R n. 

Now we follow essentially the notation of Bjbrck in [2]. 
For any (/t,/:) cM(X) • M(X) we define 

r(/t'")= fx fx 
F o r / t E M ( X )  let d .  be defined as 

Of course 

I(,)=• 

d , :X- - -~R,  d•(x)=/xd(x,y)d#(y ). 

• = j Ix d.(x)+(x). 
The positive real number M(X, d) is defined as 

M(X,d)= sup 
~eM(X) 

I(.). 
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It is easily shown that  

�89 d) <_ M(X ,  d) <_ D(X,  d), 

where D(X~ d) denotes the diameter of X.  
Furthermore Pl in M ( X )  is called maximal if M ( X ,  d)=1(#1) and P0 in M ( X )  

is called d-invariant if the function d~o is constant on X. 

3. T h e  resu l t s  

The first proposition is an easy consequence of w*-compactness of M(X) ,  men- 
tioned in Theorem 1 in [2] for the case d=d~, A>0. 

P r o p o s i t i o n  1. Let (X, d) be a compact metric space. Then there exists some 
maximal measure #1 in M(X) .  

The next result is due to BjSrck. 

T h e o r e m .  (BjSrck) Let X be a compact subset of the Euclidean space R n. 
Then we have: 

(1) The maximal measure #1 in M ( X )  is unique. 
(2) Let X~I be the support of the unique maximal measure #1. It follows that 

(d2),1 ( x )=M(X ,  d2) for all x in X~I and 
(d2),I(X)<__M(X, d2) for all x in X .  

Moreover X~I is a subset of the boundary of X for n>_2. 

For a proof see Theorems 1, 2, 3 in [2]. 
The first part of the following theorem follows easily from the definition of 

r(X,d)  and M ( X , d )  and is mentioned on p. 267 in [2] for d=d~, a>O. 

T h e o r e m  1. Let (X, d) be a compact connected metric space. Then Ce have: 
(1) r ( X , d ) ~ M ( X , d ) .  
(2) If  r ( Z , d ) = M ( X , d ) ,  then there is some d-invariant measure #o in M ( X ) .  

The question arises if the existence of some d-invariant measure #0 implies 
r(X,  d) = M ( X ,  d). In general the answer is no, because of the following result. 

P r o p o s i t i o n  2. There is some compact connected metric space (X, d) with 
some d-invariant measure #o, such that r( X,  d )< M(X ,  d). 

Now it turns out that the so called quasihypermetric property implies the 
reversed implication in Theorem 1, part (2). Let us recall the definition and some 
examples for quasihypermetric spaces. 
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A metric space (X, d) is called quasihypermetric if 

• cicjd(xi, x j )  < O, 
i , j= l  

for all n E N ,  x 1 , . . .  ,X n in X and all cl ,... , c ~ E R  with e l -~ - . . . -~Cn=0 .  

Furthermore remember that  a real linear normed space E is called embeddable 
in Lp (for some fixed l_<p<oc) if there exists some measure space (ft, E ,# )  and a 
linear isometry T from E into Lp(ft, E, #). 

In [8] P. L@vy proved that  (E, I1" II) is embeddable in Lp, 1_<p_<2, if and only 
if, for all n E N ,  Xl ,... , x n E E  and all cl ,... , c n E R  with c l + . . . + c ~ = 0  we have 

IIx -xj IIp _< 0 
i , j = l  

In [5] it is shown that  R ~ equipped with the usual p-norm (1 _<p_< oc) is embeddable 
in L1 if and only if 1_<p_<2. 

Furthermore it is known that  each two dimensional real normed space is L 1 
embeddable (for example see [7]). 

Prom all this we have the following examples for quasihypermetrie spaces: 
(1) The Euclidean space R n, n_>l. 

(2) The n-dimensional space R n equipped with the usual p-norm, 1_<p_<2, 
n > l .  

(3) All two dimensional real normed spaces. 

The n-dimensional space R n equipped with the usual p-norm, 2 < p <  co, n_> 3 is not 
quasihypermetric. 

Back to the question raised after Theorem 1 we have the following theorem. 

T h e o r e m  2. Let (X, d) be a compact connected quasihypermetric space with 
some d-invariant measure #o in M ( X ) .  It follows that r (X,  d ) = M ( X ,  d) and #o is 
mazimal on X .  

We obtain the following corollary. 

C o r o l l a r y  1. Let (X, d) be a compact connected quasihypermetric space. 
Then there exists some d-invariant measure #o in M ( X )  (which is then maxi- 

mal too) if and only if r (X,  d ) = M ( X ,  d). 

Since many papers on Gross's theorem deal with the Euclidean case (for ex- 
ample see [11] and [15]) the following result is of special interest. 
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P r o p o s i t i o n  3. Let X be a compact connected subset of the Euclidean space 

R ~. Then there exists some d2-invariant measure Po in M ( X )  if and only if 
r (Z ,  d ) = M ( X ,  d). 

Moreover if  such a Po exists, it is unique and P o : P l ,  where #1 is the unique 
maximal measure on X due to the theorem of Bj6rck mentioned above. 

Compare this result to the theorem of Stolarsky (resp. Bj6rck) mentioned in the 
introduction of this paper. (Let (X, d ) :  (S ~ - 1  d2) and #0 : # 1  :A ,  the normalized 
Lebesgue measure on Sn-1.) It is worth noticing that  the proofs of this theorem 
given in [13] and [2] used the quasihypermetric property of the Euclidean space 
R n in a more or less hidden form (see Theorem 1 in [13] and Lemma 1 in [2] and 
compare with formula (*) resp. (**) in the proof of Theorem 2). 

Remark 3. If a compact connected space (X, d) has a d-invariant measure/to 
in M ( X ) ,  it is not unique in general. 

For example, let X : S  1 and d(e% ~{~) =min(l~-91,  12~- ( ~ - 9 )  1) for 0_<~, 9<  
1 27r. It follows easily that for all 0<a<Tr  the measures # ~ = ~ ( 6 ~  +5~.~(~+~)) are d- 

invariant on (X, d). 

We now focus our attention on compact subsets (X, d2) of the Euclidean 
space R n. Stolarsky showed (see Theorem 2 in [14]) that  the term 

N 
1 

r ( S n - l ' d 2 ) - ~  Z d~(~,x3)  
i,j--1 

is essentially the L2-cap discrepancy of the finite point set { x l ,  ... , XN} on X = S  ~-1, 
the Euclidean sphere for all n > 2. 

Therefore a sequence (XN)N>_I on S n-1 is uniformly distributed with respect 
to #0=#1 =)~ (the normalized Lebesgue measure on S n - l )  if and only if 

N 
1 

N~ Z d~(x~, xj) ~ r(S ~-1, d~), as N ~ ~ .  

i,j=l 

We generalize this as an easy consequence of Bj6rck's theorem. 

P r o p o s i t i o n  4. Let (X, d2) be a compact subset of the Euclidean space R n 
and #1 its unique maximal measure, due to the theorem of Bjhrek. 

Then a sequence (XN)N>_I in X is uniformly distributed with respect to Pl if 

and only if 
N 

1 
N 2 E d 2 ( x i , x j ) - + M ( X ,  d2), as N--+oo. 

i,j=l 

From this we obtain the following result. 
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P r o p o s i t i o n  5. Let (X,  d2) be a compact connected subset of the Euclidean 
space R ~ such that r (X ,  d 2 ) = M ( X ,  d2). 

Furthermore let/to be its unique d2-invariant measure, p0=/ t l ,  /tl the unique 
maximal measure on X (see Proposition 3). 

Now choose some arbitrary point Xl in X .  For N>_I choose some point XN+l 
in X ,  which exists by Gross's theorem, such that 

N 
1 

Z d(x~, XN+I) _> r(X,  d:). 
i = 1  

Then the so obtained s e q u e n c e  (XN)N>_I in X is uniformly distributed with respect 

to #o. 

As a consequence of Proposition 5 we obtain the following recursive method for 
approximating both r (X ,  d2) and lt0 if (X, d2) fulfills the conditions of Proposition 5. 

C o r o l l a r y  2. Let (X,  d2) be as in Proposition 5. Now choose some arbitrary 
point xx in X .  For N >  I choose some point XN+ 1 in X such that 

N N 
1 1 

i = 1  i = 1  

Then we have: 
(1) The so obtained sequence (XN)N>_I in X is uniformly distributed with re- 

spect to #o. 
(2) 

N 
1 

a s  

i , j= l  

We illustrate Corollary 2 by a very simple example. 

Example 1. Let X=[0 ,  1]. Of course p o E M ( X ) ,  #0=�89 is the unique 
d2-invariant measure on (X, d2) and hence 

r(X, d2) = 1(d2(0, 0)+d2(0, 1)) 

Now we construct a s e q u e n c e  (XN)N>_I in X as given in Corollary 2. 
Let x l = 0 .  Hence x2=1.  Now x3 can be chosen arbitrarily, let us say x3=0.  

Hence x4 = 1 and so on. Therefore (for example) 

= [  0, i f N i s o d d ,  
X N  [ 1, if N is even. 
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It follows that 

and 

where 

We see that  

and 

N 2 - 1  1 

x j )  = 
1 3' 

i , j = l  
2' 

if N is odd, 

if N is even 

N + I  160 q 
N 2 

P N  = 16 1 
3 ~ 

N - 1  15 
N ~ 1, i f N i s o d d ,  

if N is even 

N 

1 ~ 5xi. ~ N  = - ~  
i = 1  

N 
1 1 = r(X, d2) 

i , j = l  

1 #N---~ (60 +51)= #0 (with respect to the w*-topology), 

as N--+ oc. 

As an application of Corollary 2 we give the following concluding examples. 

Example 2. Let (X, d )= (S  1, d2). Notice that  the well-known van der Corput 
sequence (which is uniformly distributed on the torus S ] with respect to the nor- 
malized Lebesgne measure/~--#0 on $1) follows the construction method given in 
Corollary 2. 

Example 3. Let (X, d)= (T, d2), T the Reuleaux triangle, which consists of the 
vertices of an equilateral triangle in R 2 together with three arcs of circles, each 
circle having centre at one of the vertices and endpoints at the other two vertices. 
Without loss of generality take T such that  the diameter of T is equal to 1. 

This space (T, d2) is of special interest, because it is conjectured in [4] and [11] 
that  re(T, d2)=g(R2), where g(R 2) is the supremum of the numbers re(X, d2) as X 
ranges over all compact connected subsets of the Euclidean space R 2. (Remember 
that  re(X, d2)=r(X, d2)/D(X, d2), where D(X, d2) is the diameter of X.) 

The calculations given in [11] indicate that  r(T, d2)=m(T, d2) lies between 
0.6675276 and 0.6675284. We did some calculations for M(T, d2) and conjec- 
ture that  r(T, d2)=M(T, d2). Following this trace computer calculations (applying 
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iV 5 Corollary 2) lead to X 1 , . . .  , XN on T such that  ( l / N )  Y~.i=l ~ is almost d2-invariant 
on T. 

We are working on a paper  in which exhaustive computer  calculations will 

hopefully light up the question, if indeed such a d2-invariant measure P0 exists on 
T and what it looks like. 

4. T h e  p r o o f s  

Let us first collect some simple well-known properties of functions related to a 

metric d. 

L e m m a  1. Let (X,d) be a compact metric space. Then we have: 
(1) For each # in M(X)  it follows that Id , (x) -d , (x ' ) l<d(x ,x ' )  for all x ,x '  

in X .  
(2) Let (f,~)n>_l be a sequence in C(X) and f in C(X) such that fi~(x)-+ f(x),  

as n-+oc for all x in X and I fn(x)- fn(x ' ) l<cd(x,x ' ) ,  I f ( x ) -  f(x ') l<cd(x,x ')  for 
some c > 0  and all x, x' in X and all n> l. Then Ilfi~- fll--+O, as n--+oo, in C(X).  

(3) Let (#,~)~>_i be a sequence in M(X)  and # a M ( X ) .  If #~--+#, as n--~oo, 
with respect to the w*-topology of M(X) ,  it follows that I(#n)-+I(p), as n--+oo. 

Proof. (1) follows by triangle inequality and (2) is obtained by routine calcula- 
tions using an e-net for X by compactness. Now let #~--+#, as n-+oc,  with respect 
to the w*-topology on M(X) .  Hence d,~(x)-+d,(x), as n-+oc,  for all x in X.  
Applying (1) and (2) we get I ld. .~-d.[l~0,  as n--+ec, in C(X). Now 

_< lid.,. - d .  II + II(~, ~ ) - i ( ~ ) l .  

Again #~--+# implies I(#,#,~)--+I(l*,#)=I(#), as n--+oo, and so we are done. [] 

Proof of Proposition 1. The assertion follows by compactness of M(X)  and 
Lemma 1, part  (3). 

Proof of Theorem 1. (1) By Remark  1, part  (c) take some # in M(X)  such 
that  d,(x)>_r(X, d) for all x in X.  Hence M(X,  d)>_I(#)>_r(X, d). 

(2) Again choose some/~ in M(X)  such that  d,(x)>>_r(X, d) for all x in X.  

Let us assume that  there exists some x0 in X such tha t  d,(xo)>r(X,  d). Define 
e > 0 such that  d, (Xo) =r(X,  d) +e and let ~ =  (r(X, d) +e)/(r(X,  d) +2e).  Of course 
we have 0 < A < l .  Now let z~eM(X), z/=Ap,+(1-A)fizo. Since 4(x)>_r(X,d) for 
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all x in X we get M(X, d ) > I ( # ) > r ( X ,  d) and since r(X, d)=M(X, d) this implies 

r(X, d)=I(#). Now it follows tha t  

C 2 
r( . )  = ~ r ( . )  + 2 ~ ( 1 -  ~)d.  (x0) = r(X, d) ~ r(X, d) +2~ > r(X, d) = M(X, d), 

which is a contradict ion to the definition of M(X, d). Therefore du(x)=r(X , d) for 

all x in X and #o=# is a d-invariant measure on X.  [] 

Proof of Proposition 2. Consider R 3 equipped with the usual oo-norm. Define 

x0 -- (1, 1, 1), x I = ( - - 1 ,  ] ,  1), X 2 = ( 1 , - 1 ,  1), x3 = (1, 1 , - 1 )  

and 
] 3 

f : R 3 - - ~ R  as f(x)=-~(l[x-x~llc~+llx+x~llo~). 
i=0  

It  is easy to see tha t  A_CR 3, A={xER3:f(x)_< �88 is a compact  convex centrally 
symmetr ic  subset of R 3 with 0 in the interior of A. 

Let X={xER3: f (x )  �88 and d be the metric induced by the oc-norm. Since 

{xER3:f(x)<�88 is an open convex subset of A, (X,d) is a compact  connected 

metric space. Now f ( x i )= f ( -x i )=7  for 0 < i < 3  and hence xi and -x i  are elements 
of X for 0 < i < 3 .  Define Po in M(X) as 

3 
1 5 ,0=~Z( ~+~ ~). 

i=0  

By the  definition of X it follows tha t  #0 is a d-invariant measure on X and r(X, d) = 
3 7 Since f (~, 0, 0 ) =  7 we obtain tha t  x 4 =  (3, 0, 0) is an element of X.  Let u belong 

to M(X), u = ~ ( 6 ~ o + 6 _ ~  ~ +6x2+5~3+6_x4). It  follows tha t  

M ( X ,  d)  _> [ ( / J )  =~.g>44 7 = r ( Z ,  d). [] 

Proof of Theorem 2. Let n E N  and x l ,  ... , xn be elements in X.  Choose arbi- 

t r a ry  c~i, ... , (~n, f l l ,  ... , fin E [0, i] such that 

ai  = 3i = 1. 
i = l  i=1 

Now let c i = c t i - f l i  for l < i < n .  Since c i E R  and ~i~=1 ci=O the quasihypermetr ic  
proper ty  of (X, d) implies the formula 

(,) I ~ihx.~ +I flihx~ < 21 c~i6x~, ihx~ �9 
- -  \ i - - i  - -  - -  
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Of course the function (#, u)~--~I(p, u) on M(X) • M(X) is w*-continuous in each 
variable. Together with the fact that  M(X) is a compact metric space, the K r e i ~  
Milman theorem (see Chapter 2 of this paper) and applying Lemma 1, part (3) 
yield the formula 

(**) I ( . )  + I (u )  _< 2• ~,) 

for all/~, u in M(X). 
By assumption there exists some #0 in M(X) such that  d,o (x)=r(X, d) for all 

x i n X .  
Let u=#0 in formula (**). Hence 

I(#) <_ r(X, d) for all # in M(X). 

Therefore M(X, d)<_r(X, d) and applying Theorem 1, part (1) we get 

M(X,  d) = r(X, d). 

Since M(X, d)=r(X, d)=I (#0)  we obtain that  #0 is maximal on X. [] 

Proof of Corollary 1. Apply Theorem 1, part (2) and Theorem 2. 

Proof of Proposition 3. Apply Corollary 1 and Bjhrck's theorem, part (1), 
mentioned above. 

Proof of Proposition 4. L e t  (XN)N>_I be a sequence in X which is uniformly 
distributed with respect to Pl- Hence ( l / N )  ~ N  1 5x~--~pl, as N---~oc, with respect 
to the w*-topology on M(X). Now Lemma 1, part (3) applies 

N2 d2(x/,xj)=Z asX-  . 
/ , j = l  /=1 

On the other hand consider some sequence (XN)N>_I in X such that  

N 
1 

N 2 Z d2(xi,xj)--~M(X, d2), as N---~oc. 
i,j--1 

Since M(X) is a compact metric space (see Chapter 2 of this paper) the set of 

all accumulation points of ( ( l /N)~g /= l  5xi)N>l is not empty and each accumula- 
Nk tion point # in M(X) can be obtained by some subsequence ((1/Nk) ~-~i=1 5~)k_>1 

tending to # in the w*-topology on M(X). Hence we get 

1 Nk 
x2 Z M(X,d ) 

k i,j=l 
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and 

i , j= l  ": 

by Lemma 1, part (3), as k--+oo. Therefore we have I(#)=M(X, d2). Applying 
Bj6rck's theorem, part (1) we get #=#1. [] 

Proof of Proposition 5. By definition of (XN)N>_I we get 

r(X, d2) = M(X, d2) >>_ I E 5x+ = ~-~ 
i=1 / 

N 
N - 1  

d2(x, x j ) ~ - - r ( X ,  d2). 
i , j : l  

Hence 
N 

1 
N 2 E d2(xi,xj)--+r(X, d2)=M(X, d2), as N--+oc. 

i , j= l  

Applying Proposition 4 we obtain that  (xy)N>_t is uniformly distributed with re- 
spect to P l  ~-]~0. [ ]  

Proof of Corollary 2. (1) By Remark 1, part (d) we have 

N 
1 

maXxcx -N E d2(x+'x) >- r(X, d2) 
i=1 

for all N > I .  Hence by definition of (XN)N>_I and Proposition 5 we are done. 
(2) Applying part (1), r(X, d2)=M(X, d2), #0=#1 and Proposition 4, the as- 

sertion follows. [] 
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