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On the vector valued 
Hausdorff-Young inequality 

Mats Erik Andersson 

Abstract. This paper studies Banach space valued Hausdorff-Young inequalities. The 
largest part considers ways of changing the underlying group. In particular the possibility to 
deduce the inequality for open subgroups as well as for quotient groups arising from compact sub- 
groups is secured. A large body of results concerns the classical groups W n, R n and Zk. Notions 
of Fourier type are introduced and they are shown to be equivalent to properties expressed by 
finite groups alone. 

I n t r o d u c t i o n  

This paper presents a study of the vector valued Fourier transform and deals 

with a possible analog of the Hausdorff-Young inequality. The realm will be that 

of locally compact Abelian (LCA) groups together with their Haar measures and 

general Banach spaces. 
Recall that  the Hausdorff Young inequality for complex valued functions on a 

group simply states that  

II~'Gf]lL~,(~) <~ ClIflIL~(G) 

for suitable normalizations of the group G and its dual G. Here p' denotes the 

conjugate exponent and ~-c is the Fourier transform on G. In the sequel, when 

there is no doubt about which group is intended, the Fourier transformed function 

will often be written f .  For infinite groups the inequality can hold only in the range 
l < p < 2  and we will unless otherwise stated only consider such values for p. To 
be precise, this inequality is first proved for LI(G)AL~'(G) and then the operator 

is extended to the whole space LP(G). The proof of the inequality for these flmc- 
tions with strong integrability, viz. L 1 nLP~ was one of the very first applications of 

and indeed a motive for the development of interpolation theory. The tool is the 

Riesz-Thorin interpolation theorem and this is the basis of the so called complex 
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interpolation functors. We will presently see that  the vector valued version will aid 
in determining the outcome of different interpolation methods. 

The obvious generalization is to deal with Banach space valued functions in- 
stead of just complex valued ones. The question is now to decide whether the 

Fourier t ransform can be extended to a bounded operator 

~a: LP(G, E) --~ L p' (G, E) 

where we deal with the Lebesgue-Bochner spaces. We assume throughout that  E 
is a non-zero complex Banach space. We will also agree always to choose the dual 
measure on G, as determined by the group G. Another way to phrase this, is that  

we require Parseval 's identity for complex valued functions to read 1lfll2=llf[[2. 
Definition. 
(1) M(G, E,p) denotes the operator norm of 5co for its action from LV(G, E) 

into L p' (G, E). 

(2) Bp=~/pl/P/ptl/P' denotes the Babenk(~Beckner constant. 
$ 

Note that  the quantity M(G, E,p) does not depend on the choice of Haar  

measure on G, due to the definition of the Fourier transform. By interpolation 
between P arseval's formula and the inequality [[ ]]] or ~[] f []1, we find M(G, C, p)< 1 
for every group G. The basic examples to be remembered are M ( T ,  C , p ) = l  and 
M ( R  n, C, p)=B~. The second is a highly nontrivial improvement first obtained by 

Babenko [Ba] for those exponents that  make p '  into an even integer and then by 
Beckner, in the very important  paper  [Be], in general. Even though the Babenko-- 
Beckner constant is derived on the real line it plays a vital role also for the circle 
group. The importance will show in this paper  and is also illuminated from another 
aspect in the second part  of the author ' s  paper  [A2]. As general examples with 
M(G, C,p ) - -1  we have all compact,  as well as all discrete groups. This is due to 
the behavior of constant functions and point masses respectively. A qualitative 

answer has been obtained by Russo [Rul]-[Ru5] in case l < p < 2 :  M(G, C , p ) < l  if 
and only if G does not have an open and compact  subgroup. In all remaining cases 
M(G, C, p ) =  1 obtains. Let us in passing decide to denote the canonical finite cyclic 
groups by Z ,~=Z/nZ .  

In contrast  to the complex valued case it turns out that  even for the simple 
spaces E=Lr(X) it is impossible to derive a Hausdorff-Young inequality for the 
whole range l < p ~ 2 .  It  is well known that  the full range appears  for Hilbert spaces 
and no other. This suggests a notion. 

Definition. A Banach space E is said to be of G-Fourier type p in case the 
norm M(G, E,p) is finite. 
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Remark. This corresponds to the notion of weak G-Fourier type as defined 
in [M2]. The present name will be elaborated further in Section 3. For the classical 
groups the notion is used in [P1], [P2], [M1], [CS]. 

The main motivation for this paper  is observations made in interpolation theory 

by Lions-Peetre [LP], Peetre [Pl], Cwikel-Sagher [CS] and Milman [M1], [M2]. It  is 
well known that  complex interpolation unfortunately produces spaces that  are hard 
to identify. Tha t  is in contrast to the real method which often gives identifiable 
spaces. The observations referred to imply that  knowledge on Fourier type makes it 
possible to equate the outcome of complex and real interpolation. Some examples 
are helpful. 

T h e o r e m .  ([P1], [CS]) Suppose that f t= (Ao, A1) is a Banach couple such that 
A 3 has R-Fourier type pj. Then (Ao, At)o,p and [Ao,At]o both have R-Fourier type 
Po , where 

1 1 - 0  0 
- -  - - 4 - - -  

Po Po Pl 

T h e o r e m .  ([P1]) Suppose that fi~=(A0, At)  is a Banach couple such that Aj 
has R-Fourier type pj. One obtains 

1 1 1 - 0  0 
(Ao,A1)o,p C [Ao, A1]o C_ (Ao,At)o,p,, - _ ~___. 

P Po Po Pl 

The first result is useful to establish that  type p implies every other type r 
in the interval rc[1 ,p]  for the same group. This is so since every Banach space 
trivially is of type 1. The second theorem makes it possible to equate the resulting 

interpolating spaces in many  concrete cases. 
Judicious use of the theorems by the above mentioned authors has led to results 

for interpolation of Besov and Sobolev spaces, trace and Schatten classes as well 
as some martingale analogues. A basic question is whether R-,  Z- and T-Fourier 
type is one and only one concept. In the papers cited all three notions are used. 
The first to give thought  to this was Bourgain [B2]. An affirmative answer can be 
extracted from [A2]. 

Another link is towards type theory within the borders of the geometric theory 
of Banach spaces. The reason for a connection to exist is the presence of an inter- 
action between the Rademaeher  functions and the Walsh functions. The latter ones 
collectively constitute the group dual to the Cantor group Z ~ = { 1 , - 1 }  N. Recall 

that  Rademacher  type p means that  for some C and all n 

- llL2([0,tl,E) " j = l  
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for all xj E E  and where the r j  are the Rademacher  flmctions. After Kahane it is well 
known tha t  2 may be replaced by any 1 < r < o c .  Hence Z~-Four ie r  type implies 
the same Rademacher  type. In [M2] this is noted and commented, whereas [P2] 

remarks on the more general probabilistic connection. 
In the other direction Bourgain [B1], [B2] has results that  each Rademacher  

type result forces a weaker Fourier type. Explicitly, in case p >  1, Rademacher  type 
p implies T-Fourier type p* for some p* in ]1, p[ only depending on p. Unfortunately 
it is not yet possible to fully characterize Fourier type for any single infinite group. 

As the original research was completed and printed in [All I was informed of the 
concurrent but independent research of Garc/a-Cuerva, Kazarian and Torrea [GKT], 
which was kindly communicated to me in manuscript  form. There is of course some 
overlap but the two presentations follow different aspects of a beginning theory. 

The present work is above all concentrated on the algebraic dependence on the 
group G. In addition, the goal has been to establish the results in a way to decide 
how the bound M(G, E,p) depends on the group. The paper  [GKT] on the other 
hand focuses on the geometric restrictions on E imposed by Fourier type. There 
a thorough investigation concerning the exact exponent p yielding Fourier type is 

presented. Most important ly  they treat  Orlicz spaces. 
During the revision of this work Fernando Cobos pointed out a further closely 

related paper  by KSnig [K]. 
The purpose of Section 1 is to present the basic results that  connect the different 

bounds M(G, E, p) as the group changes. A short selection of concrete calculations 

is included. The proofs of the factorization theorems are parti t ioned into Sections 2 
and 3. The first of these relies heavily on measure theory. Finally, Section 4 deals 
with questions on how Fourier type may be established and to what extent a smaller 

number of test groups would suffice. 
The author would like to acknowledge the comments  of Jaak  Peetre and Yngve 

Domar  as well as those of the anonymous referee that  critically and notably helped 

to improve the presentation. 

1. Specific bounds 

In this section some known bounds on the quanti ty M(G, E, p) are collected for 
natural  groups and simple Banach spaces. In addition, we will prove some general 
bounds on M(G, E, p) and recall a few relations between different bounds from [A2]. 

To begin with let us record an immediate observation. 

P r o p o s i t i o n .  For each subspace FCE the bound M(G,F,p)<M(G,E,p) 
holds. In particular M(G, E, p) > M(G, C, p). 
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Proof. The supremum involved is performed over a smaller space when deter- 
mining M(G, F, p). 

In order to efficiently study the Hausdorff-Young inequality we will need to 

deduce its validity when the group is enlarged. Specifically we want to s tar t  out 
with small groups and extend them. As in all areas of group theory there are 

factorization theorems of different kinds. For the present purpose we need to relate 
the Hausdorff-Young inequality on the whole group to the inequalities on a subgroup 
and its factor group. To be specific: 

T h e o r e m  1.1. For each closed subgroup H of an LCA group G 

M(G, E,p) <_ M(G/H, E,p)M(H, E,p). 

The pa th  for establishing the theorem is somewhat  cumbersome and is therefore 
deferred to the next section. The model of proof is the same tha t  Weil followed in 

his demonstrat ion of the Plancherel theorem on LCA groups: a property on H 
and G/H is often t ransportable  to G. We will use a relativized Fourier t ransform 
(cf. [Re]). 

Ideally, one would also like to bound the quantity M(G, E,p) from below in 
terms of the subgroups. This turns out to be tricky and apparently calls for a 
number  of cases. For the t ime being we will content ourselves with two results, 

each of which will be referred to when mentioning factorization in their respective 
contexts. 

P r o p o s i t i o n  1.2. In case G~-GI ~G2 there are bounds 

M(G1, E,p)M(G2, C,p)  < M(G, E,p) < M(G1, E,p)M(G2, E,p). 

Proof. The rightmost inequality follows from the theorem above. A much sim- 
pler proof is readily obtained through the factorization of the characters on G1 OG2. 

A careful proof is writ ten out in [GKT]. For the leftmost inequality we make a sim- 
ple construction. Given gECc(G1, E) the complex valued function h in Co(G2) is 
chosen arbitrarily. Our test  function will be f :  G-*E, f(tl,t2)=g(tl)h(t2). Then 

one easily finds .T'G f ( O1, 02 ) = ]c GI g( ot ).TG2 h(~2). Consequently 

from which 

Ilfllp=llgllpllhllp and limb flip' =llfc gll 'liTc hllp', 

117c gllp, _ 117cfll , /II b=hll , 
ffgll  Ilfll  / trhll  

follows. The freedom in the choice of h allows us to deduce the leftmost inequality. 
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Let us recall a version of the most important direct sum for topological groups. 

Decompos i t i on  of  L e A  groups.  Let G be an LCA group. There exist an 
integer n>_O and an LCA group G1 having an open and compact subgroup such that 
G~_R'~ OG1. 

This is a standard result in the theory and may be found in e.g. [Re]. The 
most important use of the lower estimate above stems from the known numbers 
M ( R ~ , C , p ) = B p  and M ( G , C , p ) = I  for each group G with a compact and open 
subgroup (cf. the introduction). 

P ropos i t ion  1.3. When H is an open subgroup of an LCA group G the fol- 
lowing bound obtains: 

M(H, E,p) < 2~l(a, E,p). 

Propos i t i on  1.N. For compact subgroups H the following holds: 

M ( G / H , E , p )  < M(G,E,p) .  

As the best proof of these uses an integral representation developed for the proof 
of Theorem 1.1 we will return to them in due time. Observe that Proposition 1.3 
is false for general closed subgroups: M(Z, C , p ) = l  and M ( R / Z ,  C , p ) = l  exceed 
M(R,  C, p) =Bp. 

A very useful concept throughout functional analysis is duality. It turns out 
in the present context that the duality of Pontryagin and the one in Banach space 
theory fit together perfectly. 

P ropos i t i on  1.4. The bound in the Hausdorff-Young inequality is preserved 
under duality: 

M(G,E,p)  =M(G,E ' ,p ) .  

Proof. We begin by proving that M(G, E',p)<_M(G, E,p). To that end let 
f n f: G--~E' be simple: = ~ k = l  fk~A~, ~ IAkl<~c- It follows that 

IIflILp' (O,E,, = s u p {  }~ a(a)llf(a)H da l aE Cc(G), Ilallp : 1 }  

= s u p s  da, 
a ~h(~) 

where h(a) E E, with IIh(a)II <- a(a). Fortunately 

k J A a  k k 



On the vector valued Hausdorff-Young inequality 

whence the measurability of a~+fA k (r(x) dx guarantees 

IIfII Lp' (5,E,) = s u p { R e / ~  {f(c~), h(a))dcrlhE Cc(G,E), Ilhllp,E = l }. 

However 

whence 

hO)> = s dx, 

tlf[[Lp' (d,E') <-- sup [ tlf(x)lIE' llh(-x)[[~ dx < sup I[fIIp,E' IIh[lp',E 
h JG h 

<_ M(G, E, p) sup [[fllp.E' Ilhllp,E = M(~,  E,p)Ilf[Ip,E,. 
h 

Thus we conclude M(G, E',p)<_M(G, E,p). Applying this a second time yields 

M(G, E",p) < M(G, E',p) < M(G, E,p), 

which upon embedding into the bidual proves the equality 

M(G, E,p) = M(G, E',p) = M(G, E",p). 

The sought result follows when we apply this equality to the group G instead of G. 

Remark. The assumption of the Radon-Nikodym property as done in [M2] is 
clearly superfluous. 

A key observation emerges from this and manifests that finite dimensional 
subspaees carry all information. 

Corollary.  M (G, E, p) = M (G, E", p). 

Pro@ This follows from the preceding proof or simply by two applications of 
the proposition. 

The beginning of a theory for transference of the Hausdorff-Young inequality 
was attempted in the earlier paper [A2]. As we will see below, the results therein 
are sufficient to equate R-Fourier and Z-Fourier type, thus linking [CS l and [M2]. 

A closer examination of the proof of [A2, Theorem 2] reveals the first line in 
the next result. 
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Propos i t ion  1.5. ([A2, Theorems 2, 3, 5, 6]) 
(1) M(T, E,p)<_liminf~_.~ M(Zn, E,p). 
(2) M(Zk ,E ,p )<Bp lM(T ,E ,p )  for all k>2. 
(3) M(Rn, E ,p)<M(H,E,p)<BBnM(Rn,E,p) ,  H = Z  n or W n. 

The third line is simply the straightforward generalization of the corresponding 
one-dimensional results proved in the earlier paper. The second statement will be 
refined in Proposition 1.11 below. 

In the vein of [M2] and the introduction, the most important conclusion is the 
following result. 

Theo rem 1.6. 
(1) The notions of H-Fourier type p for H=R,  T and Z coincide. 
(2) Every Banach space satisfies 

Bp sup M(Zn, E, p) < M(H, E, p) < lira inf M(Zn, E, p), 
n n ~ 3 c  

where H = T  or Z. 
Hence a necessary and sufficient condition for Z-Fourier type p is that the quantity 

Ap(E) = lim inf M(Zk, E,p) 
k--+oc 

be finite. 

Proof. The three type notions coincide by the third inequality in the preceding 
proposition. For the case H = T  the inequality (2) is just the first and second 
statements of the proposition. Using duality the case H = Z  appears. This latter 
case quantifies the equivalence between (periodic) Z-Fourier type and the condition 
in the statement. 

Remark. For definiteness let us record the quantitative behavior that can be 
extracted from the theorem: 

M(Zk, E,p)<B~IAp(E) ,  k>2,  

BpAp(E) < M(Z, E,p) < Av(E), 

BpAp(E) < M(T, E,p) < Ap(E), 

B2pAp(E) <_ M(R, E,p) < Ap(E). 

Let us next check that the dimension of a torus in no way affects its behaviour 
under the Hausdorff-Young inequality. This result will play an instrumental part 
in many of the results whose statements deal with transference procedures. 
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T h e o r e m  1.7. M(Z,  E , p ) = M ( Z  k, E,p) for every kEZ+. 

Proof. Due to M(Z  k-I  , C, p ) =  1, it is obvious that  the left-hand side is less than 
or equal to the right-hand side by an application of Proposition 1.2 with G1 = Z  and 
G2--Z k-1. In the other direction we consider a simple function f :  Z k--~E. The key 
ingredient to make this function into a similarly behaving one on Z is 

P m : T  ~T k, 0, ,(0, m 0 , . . . , m k - 1 0 ) ,  m e Z + .  

This function winds the "thread" T around the "plate" W k. The given func- 
tion f gives rise to its Fourier transform f :Tk--~E.  We may from it introduce 
a new function fro: Z--*E through the relation Y z f m = f o P m .  Since the sum f(0_)= 
~ a e z k  f (n)  e-in'~ has finitely many non-zero terms, the form of the embedding Pm 

shows that  ]m is a simple function. Furthermore the frequencies present in foP,~ 
are expressed as polynomials in the parameter m with the coefficients determined 
by n c Z  k. Hence there is an integer m0 > 1 such that  ]m assumes exactly the same 
values as f once m>mo.  In particular Ilfllzk,p=ll]mllz,p. Since the orbits Pm(W) 
become dense in T k, in the sense that  each rectangle I =I1 x I2 • . . .  • Ik satisfies 

sT '0 s.O XI ~ ~ XIj (mjO) dO dO = ~-~ --* xb(O) ~ = III, as m---~ ec, 

we recognize that  continuous g: Tk--*C satisfy 

iT dO iT dO g~ Pm ~ ---+ k g (2-~k ' as m --~ oc. 

In the present situation that  fact yields 

II fll w k,p' = ,,li~n II f ~  IiT,p' < lirninf M(Z,  E, p)II fm II Z,p = M(Z,  E,  p)II f II Zk,p. 

The usual density arguments extend the inequality to all functions. From this 
follows M ( Z  k, E, p) < M ( Z ,  E,  p). Hence equality must hold. 

By duality we get the best formulation. 

C o r o l l a r y .  M ( T ,  E , p ) = M ( T  k, E,p),  k> l. 

C o r o l l a r y .  M ( T , E , p ) = M ( T ~ , E , p )  and M ( Z , E , p ) = M ( Z ~ , E , p ) .  Here 
the infinity is interpreted as the direct sum on Z and the direct product on T .  

Proof. The dual of the direct product is the direct sum of the duals, so it is 
enough to study Z ~ .  Since the direct sum with infinitely many terms is the limit 
of direct sums with a finite number of terms, and since the bounds are computed 
by means of simple functions, which for all purposes can be viewed on some finite 
product, the statement follows. 
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C o r o l l a r y .  M ( F, E, p)= M ( Z, E, p) for each free non-trivial A belian group F 
with the discrete topology. 

Proof. When f :F -* E  is simple the set {xEFIf(x)~O} may be viewed as a 
subset of some Z k. A density argument  concludes. 

C o r o l l a r y .  M ( R  n, E,p)<M(S,  E ,p)<B~nM(R n, E,p), H = Z  or T. 

Proof. This follows from Proposit ion 1.5(3) and Theorem 1.7. 

Remark. The right-hand inequality is optimal  when E =  C. 
In Section 3 we will have need of a result to switch between T ~ and Z m. The 

critical point is tha t  this must be done in a uniform manner  that  does not change 

with the dimensions. 

T h e o r e m  1.8. BpM(T n, E, p) ( M ( Z  m, E, p) (_BplM(T n, E, p), m, n>_ 1. 

Proof. This is by now a straightforward computation.  In order of appearance 

we use Theorems 1.7, 1.6, 1.6 and 1.7 again: 

M ( T  n, E,p) = M ( T ,  E,p) < lim__.inf M(Zn ,  E,p) 

_< B p l M ( Z ,  E,p) = B p l M ( Z  m, E,p). 

The other half is similar or for that  mat te r  follows by duality. 

A striking use of Theorem 1.7 is to compare the spaces E and E ' .  Recall 
that  as a corollary of duality M ( R ,  E,p)=M(R, E',p) holds, since R is essentially 

selfdual (the s tandard normalization can be recovered). The important  feature is 
that  E and E' appear  simultaneously. When we consider T ~ the situation changes 
dramatically. With  Proposit ion 1.5 we can only derive a relation tha t  depends on 

the dimension. However, the last theorem offers help. 

T h e o r e m  1.9. BpM(T n, E, p) < M ( T  "~, E ' ,  p) < B p  1M(T,~, E, p), m, n >_ 1. 

Proof. Applications of the Theorems 1.7 and 1.8 with duality in between pro- 

vide the calculation 

M(T n, E,p) = M ( T ,  E,p) = M(Z,  E',p) <_ B p l M ( T  m, E',p). 

This is the first half of the statement.  For the second half a similar calculation with 

M ( T  n, E',p) as start ing point is performed analogously. 

As a last use of Theorem 1.7 let us return to finite groups. The way to interpret 
Theorem 1.6 is that  finite cyclic groups are similar to the circle group itself; they 
are also from the present viewpoint discrete circles. But how do products  of cyclic 

groups behave? There is a result akin to the one-dimensional theorem. 
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T h e o r e m  1.10. Every Banach space satisfies for each n>_l 

/~p sup M(Zkl • • Zk, ,  E, p) <_ M(H, E, p) <_ lim inf M(Zk~ • • Zk,~, E, p). 

Here H = T  or Z and the supremum is taken over integers kl ,... ,kn_>2. For limit 
inferior the condition that all kj--~ oc is added. 

Proof. By the first corollary to Theorem 1.7 we need to prove the inequalities 
with H replaced by T ~. The right-hand inequality is derived exactly is in [A2, 
Theorem 2] with the exception that  now one deals with step functions on I n and 
approximation with discrete uniform measures on a torus. 

The left-hand inequality is but little more laborious. Writing W (n) (_0) for the n- 
dimensional heat kernel on T ~, some simple use of the Poisson summation formula 
tells us that  

w(n)(_0)= 1~I W(1)(Oj) and W ( n ) ( m ) =  l~I W(1)(mj). 
j=l  j=l  

This factorization makes it straightforward to derive the analog of [A2, Lemma 2]: 

lckZ n 

for each s_E Zkl • • Zk, viewed as a subset of Z n. In the formula above we used 

_ k = ( k l , . . . ,  kn) ,  k _ z n = { ( k l a l , . . .  , k n a n ) l a j  e Z } ,  and ~}n)=W(n)/llW(n)llp. The 
computation is now conducted in a manner similar to [A2, Theorem 5]. 

To end this part on structure theorems we will refine Proposition 1.5 and 
illustrate that  a local Hausdorff-Young inequality on T deserves study in its own 
right. 

Definition. The local Hausdorff-Young bound on T is given by 

Cp(t) = s u p { l l r 1 6 2  Ir T--+ C has support in an arc of length < t}. 

From [A2] we note that  Cp(27r/d)=Bp for p'=2d an even integer. In addi- 
tion Bp<Cp(t)<l  for all p'<2d, t<27r/d. Building on this SjSlin [S] established 
limt--.0 Cp(t)=Bp for all p. For general groups a related notion appears at the end 
of this section. 
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P r o p o s i t i o n  1.11. M(Zm, E,p)~Cp(27r/m)-~M(T, E,p). 

Remark. Since Bp~_Cp(t) this result is possibly better than the earlier one. 
However, the two statements coincide as soon as p~=2d~_2m. 

Proof. Consider an arbitrary f :  Zm-~E. Viewing T as [-Tr, Tr] we choose any 
continuous r T--*C with support in [-Tr/m, 7r/m]. The basis of the proof is the 
identity 

) It z J l l p ,  llr = II](k)llE Ir  p' 
- -  . 1  o c I O  

m--1 m-1 ^ i ~ ^ I) 

l=0 j=--~c 

Define first fl: Zm---~E, fl(j)=e-2'~ilJ/mf(j), from which follows f l (k )=f (k+l)  and 

IIflllp=llfllp, Ilfzllp,=llfllp, for all 1. Consider the mapping 

P : n ( z m )  > C(T),  Ph(0) = ~ h(k)* O- �9 
k=0 

The assumption on the support guarantees II Pftllp,T=ml/Pllf~llpllOllp. Moreover 

m--1 fT Q 2~:  ) Pfz(n) = ~ fz(k) r 0 -  e_i,~0 dO 
27r k=0 

= mr 

There follows an expression for the sequence norm: 

A ~-1 L ^ , \ l /p'  
- -  j ~ - o c  

and finally from this 

m--1 m--1 
l i f z ~  f i l ~ ,  ^ p . . . .  'lie[[p, = m - P  ~ [[~[[pP', ~- m-p M ( T , E , P )  p ~ [[ Pft[I p' 

/=0 l=0 
m--1 

=m-P 'M(T ,E ,P)  p' ~ m p /p ft pP'[]O[[Pp ' 
/=0 

= M(T,  E,p) p' Ilfll~' Itr 
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The earlier identities yield 

llTzmfllp' IIr < M ( T ,  E,p). 
I l f l l p  l l ~ l l p  - 

Taking supremum over all possible ~b shows that  

"~'z,nf[[p'~,,f,,p -tip (2~,)_<M(T.E.P).�9 . 

Since this holds for every f :  Z m - ~ E  the proof is finished. 

The next goal is results on specific spaces satisfying the Hausdorff-Young in- 
equality. To that  end we need a general form of Minkowski's inequality. Generality 
in the sense of a-finiteness is not enough: it must be applicable to general regular 
measures. In striving for complete generality the obstacle of measurability appears. 
The difficulty is that  Borel a-algebras are not preserved under the formation of 
products. Explicitly, B(X)| is contained in but is not necessarily equal to 
B(X • Y). In the usual case of o-finiteness, however, they do coincide. As I have 
not been able to find a proof in the literature of the inequality in this generality, I 
will supply such a proof here. 

P r o p o s i t i o n  1.12. (Minkowski's inequality) Let A and B be regular measure 
spaces and r > l. Consider a bounded, lower semicontinuous function f : A • B---~ 
[0, oc[, such that b~-~ fA f(a, b) da is bounded. Then 

[/. ( fa f (a, b) da)~ db]l/~ <- /A [ s f (a, by db]l/~da. 

Proof. Write J(b)=fA f(a, b) da. By [C, Propositions 7.4.4 and 7.6.4] J is lower 
semicontinuous. The semicontinuity allows change of order in (*) below (see [C, 
Exc. 7.6.2]), where Hhlder's inequality is also used, 

"J": = /B /A J(b)r-l f(a'b)dadb (*) fA (/B J(b)r-l f(a'b)db) da 

< /A (/B J (b)~ db)l-1/~ (/B f (a, b)~ db)l/rda 

="J"'- l  ffA ( f  f(a,b)~ db)l/rda. 

This inequality is the claimed one as soon as HJ]]~<oc. To arrive at that  fact we 
multiply J with the characteristic function Xu, where UC_B is open with compact 
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closure. Now XuJ is still lower semicontinuous and I[XuJ[[,- is finite. Thus the 
inequality above proves 

I,XcJJl~ <_ fA (]Bf(a,b)~ db)l/~da. 

Finally we use regularity [C, Proposition 7.4.4] of the measure to remove the factor 

Xu and hence arrive at the sought inequality. 

Remark. There is an alternative assumption that  more clearly exhibits the 
role of measurability. When one considers simple 13(A)| and in- 

tegrable functions, the equality (*) is still valid [C, Exc. 7.6.3] and IIJIIr may be 
recovered immediately. By approximation the Minkowski inequality can be contin- 
ued to integrable and B(A)| functions. The reason is that  such 

functions have supports  within rectangles with a-finite sides. 

P r o p o s i t i o n  1.13. Let (X, u) be a non-zero regular measure space, G an LCA 
group, and E a Banach space. In case l_<p_<2 and p<_r<_p ~ we have 

M(G, L"(X, E),p) = M(G, E,p). 

Proof. Let F=L"(X,  E) and consider an arbi trary function fECc(GxX,  E). 
Notice that  $Ca[x~--~f(g, x)] (o.)= [x~Jzafx(o.)]. There are compact sets K C_X and 

LCG such that  x E K  c implies JZafx(o.)=O respectively tEL ~ implies f z ( t )=0 .  The 
continuity and boundedness of f as well as of gzaf guarantees that  we may apply 
Minkowski's inequality where indicated with an asterisk 

]p'/r y/p' 

�9 y _< I ~ a f x ( a )  p do- dz 

< M(G,E,p)r f x  If:~(t)lP dt dx 

~ M(G, E,pyIIfll~P(a,r). 

The crucial point is that  each of the inner integrals in front of an asterisk is over 
a compact  set. Since the considered functions are dense in LP(G, F), the bound 
M(G,F,p)<_M(G, E,p) obtains. However, LP(G,F) contains a subspace isometric 

to E,  whence the equality follows. 
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Coro l l a ry .  Each Hilbert space H satisfies 

M(G,H,p)=M(G,C,p),  1_<p_<2. 

Proof. We have H~L2(X) for a discrete space X. 

For the next result recall the spaces ~LP(H, E) consisting of all strongly mea- 
surable functions u: H--+E endowed with the n o r m  IlulIJ:LP(H,E)= II~HUlILp(~,E ). 

P r o p o s i t i o n  1.14. Let G and H be LCA groups and E a Bausch space. Under 
the assumptions p<r<p', l < p < 2  an operator bound holds: 

M(G, ~L~(H, E),p) = M(G, E,p). 

Proof. Since ~L~(H,E)~-L~(FI, E) isometrically the preceding proposition 
proves the statement. 

These two propositions are valid in the range p<r<p'. If one tries to get 
beyond those tame exponents the behaviour drastically changes. 

Examples. Here we distinguish the cases (.) l<r<_p and (**) p'<_r. In order 
to illustrate the mechanisms determining the order of growth of M ( T  ~, l~,p), we 
need a local Hausdorff-Young inequality; in the setting of T it has been discussed 
by the author in the second part of [A2]. To be general we define ~=~(G)  as the 
supremum of all n admitting a function fECc(G) such that  n translates of it have 
disjoint supports. Next, LM(G, C,p) is taken as the supremum of ]]]llp'/llfllp as 
n-+~ of all possible admissible functions f .  The basic examples are these: 

(L1) ~ (G)=cardG,  LM(G, C , p ) = l  for discrete groups G. 
> n (L2) ~(W '~) =oo, LM(T '~, C,p) B p .  

(a3) LM(W 
They originate from the usual Hausdorff-Young inequality and from [A2] (see 
also [S] for more on (L2)). Let, furthermore, the letter d<oc  denote the dimension 
of the Lebesgue space in question, whereas its companion d equals rain(d, ~(G)). 
Some basic calculations on the bound M(G, E, p) are collected for reference: 

(M1) 
(M2) 
(M3) 
(M4) 
(MS) 
(M6) 
(M7) 
(MS) 

M(G, L r ( X ,  C,p)ll lli.Jr-1/Pll Id in ease (,). 
LM(G, C,p)dl/~-I/P<M(G, Lr(X, t,),p) when (*) holds. 
M(Z, l~(X),p)=d 1/~-1/p under condition (*). 
Bpdl/~-I/p<M(T, lr(X),p)<d 1/~-1/p in case (.). 

M(T,  1 ~ (X), p) =d Vp'- 1/~ provided (**) holds. 
Bpd 1/p'-1/~ _<M(Z, 1 ~ (X), p) <d 1/p'-1/~, given (**). 
M(Zn, l~(X),p)=max{1, k 1jr-lIp, k 1/p'-l/r } for k=min(n,  d) and r>_l. 
M ( R  n, l ~ (X), p )=Bp  max{l,  d 1/~-1/p, d 1/p'-1/~ } for r >  1 arbitrary. 
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The reasoning behind the various claims will mostly be sketched. Recall 
Hardy's characterization of equality in the Hausdorff-Young inequality on Z: only 
the point masses on Z yield equality. By analysing when Minkowski's inquality is an 
equality and applying this knowledge to the proof as conducted in Proposition 1.13, 
one quickly establishes a basic characterization. 

P r o p o s i t i o n .  The Hausdorff Young inequality on LP(Z, l~,~) is an equality in 
the cases: 

(1) f o r p < r < p '  if and only if f :  Z---+l~,~ is a point mass; 
(2) for r=p  if and o n l y / f f = ( f l  ,... ,fro), fk: Z ~ C ,  is such that each fk is a 

point mass. The support of the coordinate functions fk possibly depends on k. 

Remark. The counterparts on T are of course the exponential functions that  
dualize the special solutions above. After ILl we know that on R n the corresponding 
functions are the Gaussian maximizers. 

These special functions and their analogs yield the lower bound (M2) in the 
list of examples. The upper bound (M1) is contained in the inequality below. Using 
Minkowski's inequality we get 

p ,,r/p' 11/r ,,',,..-: [:. (/. ,:,-'-I" ]1,.._< [/. (/. ,,,..,.) '-J 
~r/p ]l/r 

..j 
]i/p <_M(G,C,p)llz.fl'/'-l/P[/c~lfFd,.d. j 

<_ M(G,  C, p)Ilull lit--lip II Id IIL'(.)-~L.(.)II f II.,.. 

Together they prove (M3) and (M4). After dualization also (M5), (M6) and (MS). 
The remaining piece (M7) just needs a slight correction in case n<d.  

2. T h e  f a c t o r i z a t i o n  t h e o r e m  

This section is devoted to a proof previously left unfinished. The main result 
mentioned earlier was Theorem 1.1. Before embarking on the proof itself it should 
be remarked that  the labour would be very much lessened were we only to consider 
open and compact subgroups. 

The basic representation in Theorem 2.1 is taken from [Re], [R], [Bo]. The key 
facts from the integration theory of locally compact spaces and regular measures 
are conveniently found in Cohn [C] and Reiter [Re]. Throughout  this section we let 
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E denote a fixed Banach space and p a fixed exponent obeying 1<p_<2. In order to 
enhance readability we at times use the multiplicative notation for residue classes, 
i.e., tH denotes the same as t+H.  

Consider the subspace KHC_C(G) consisting of all functions invariant with 
respect to H-translat ion.  Each fCKH may be identified with a unique function 
in C(G/H).  This identification will be denoted ~ (cf. the comments  after the 

theorem). The point of deviation from [R], [Bo] is that  the presentation by these 
authors involves a choice of representative for xH in G, in place of the present tilde. 

The price we pay is a slightly heavier notation. 

T h e o r e m  2.1. (Weil's formula [Re, 3.3.3i]) Let G be a locally compact Abelian 
group and H a closed subgroup. There are then Haar measures #G, #~ and ~G/H 
such that for every f ECc(G) 

/a  f(x)  dpa(x)-~ s (s f ( x  +h) d#H(h)) ~ (zH) dpa/H(XH). 

Proof. When feC~(G) the function g:G---~C, x~-~fg f (x+h)dpH(h)  is well 
defined and continuous. Obviously it is translation invariant for xEH. Conse- 

quently the object fC/H ~(xH)dpc/H(XH) is meaningful. However, 

f ~Cc(G), , fa /H( fHf (X+h)d l~H(X))~(xH)d#a/H(XH)  

constitutes a positive translation invariant functional on Cc(G). Hence the claim 
follows. 

In the following text  two different operators ~ will be used. One will act on 
functions with arguments  in G and the other on functions with arguments in G. 
As there is no risk of misinterpretat ion we will not distinguish the two with differ- 

ent symbols. In addition the very same notat ion will be used in the vector space 
valued case as well as for lower semicontinuous functions which are translation in- 
variant over a subgroup. This lat ter  use is implied in the following generalizations 
of Theorem 2.1. 

P r o p o s i t i o n .  The same representation is valid for compactly supported, con- 
tinuous Banach space valued functions. 

T h e o r e m  2.2. (Weil's formula IRe, 3.3.3iii]) The representation in Theo- 
rem 2.1 holds also in case f: G--*[0, oc] is lower semicontinuous. 

The present integral representation is a necessary technical tool to factorize 
the group in a form suitable for the Hausdorff Young inequality. The idea of the 
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proof is to relativize the Fourier t ransform on G to the subgroup H and its cosets. 
Then Weil's formula can be used separately on H and G/H in order to establish the 

Hausdorff-Young inequality on G start ing from its validity on H and G/H. The 
main reason that  the following preparations turn out to be rather tedious is that  no 
simplifying assumptions are made. Most notably we avoid any form of a-finiteness. 
As a consequence we must first establish a few preliminary lemmas in order to be 

sure we may use a version of Minkowski's integral inequality. 

L e m m a  2.3. The function (a, t)~S~(t)=fH f(t+h)a(t+h)dh, d•  is 
continuous for each f ECc(G, E). 

Proof. We fix once and for all U0 C G to be a neighbourhood of zero, such that  
U0 is compact.  Since the group addition is continuous from G • G to G, the set 

Ko =supp  f + U 0  is compact.  
Consider next a pair (a0, to) EG • G. We want to prove continuity at tha t  point. 

Pick c > 0  arbi t rary and put 

5=e/(l+'HN(-to+Ko)'+2 fH"f(to+h)"Edh ), 

where I-I denotes measure in H.  Tha t  5>0  follows from fECc(G, E). 
Precisely as in the complex valued case there is a symmetric  neighbourhood 

UC_Uo of zero such that  

x - y e U  ~ IIf(x)-f(y)ll<5. 
In addition we may assume that  U also fnlfills 

x,y~Ko, x - y C U  ~ lao(x)-ao(y)l<5, 
since a0 is continuous. Finally we may choose an open set U* in G containing a0 

such that  a c U *  implies la(x)-ao(x)l <5 for all xEKo. 
With these choices any (a, t) in U*x  (to+U) satisfies 

IS~(t)-S~o (t0)l < / .  IIf(t+h)- f(to§ llE dh 

+/~ IIf(t0 +h) l i e  (la(t  +h )  - a 0 ( t  +h)  l + Ja0 (t+h) -ao(to +h)1) dh 

<_ ~ IIf(t+h)- f(to+h)llE dh+25 ~ ]]f(to+h)rlE dh. 

But gnsupp[f(t+h)- f(to +h)] C_HA ( - t 0 -  g + s u p p  f )  C H N  ( - t o  +K0) ,  whence 

ISr (to)t <_ 51HA(-to+Ko)l+25 /H Ilf(t~ llE dh < e. 

Therefore the function is continuous at every point. 
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C o r o l l a r y .  (1) (a, tH)~-~S~(tH) is continuous from G• to E. 
(2) (aH• • is continuous from G/H • • to R. 

Proof. (1) is immediately clear in view of the identification ~. When ~ H  • 
an easy calculation gives S~, (tH)=~(tH)S~ (tH). The continuity from G • G/H to 

[0, oc[ for (a, tH)~--~I[S~(tH)[IE is consequently carried over to the function in (2). 

L e m m a  2.4. The function aH• (fC/H IIS~(tH)II~ dtH)~ is continuous and 
bounded. 

Proof. We fix one a0EG and consider an arbitrary ~>0. We may then choose 
an open neighbourhood U of a0 such that  

c~EU ~ Ic~(x)-~0(x)I<c f o r a l l x E s u p p f .  

Considering a EU we get that  

whence 

/G/H "S~(tH)- S~~ dtH <-EP /o/H (/H "f(t +h)llE dh) ~pdttt =cpM' 

where M<ec, since (fH [[f(t+h)llE dh)~PECc(G/U) �9 V~e deduce 

(/C/H IIS (tH)II  dtH)I/P- (/G/H IIS.o(tH)II  

<_ (fG/ lllg (tH)ll-llg, o(tH)ll[P 
( / G - -  ~ x l/p <_ IISo(tH)-S~o(tH)IlPdtH) ~ e M  1/p. 

/H 

This says that  a~-*fa/H IIS~(tH)IIP dtH is continuous. Recalling from the corollary 

that  IIS~(tH)I l depends only on a H •  (and of course tH), the continuity in the 
statement follows. As for boundedness the compact support of the function f used 
in S~ produces a compact subset K =  (supp f ) + H  of G/H such that the integration 
in the function we study here really takes place over the fixed compact K at all 
times. This guarantees boundedness. 

We are now in a position to prove that  the Hausdorff Young inequality can be 
studied on each factor alone. 
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T h e o r e m  2.5. For each closed subgroup H of an LCA group G 

M(G, E,p) <_ M(G/H, E,p)M(H, E,p). 

Proof. Consider a function fECc(G, E). Weil's formula provides us with 

.~Gf(a):  /G/H (/H f(x  +h)a(x +h) dh)~(xH) dxH, 

IlfllP = [J;/H ( /H IIf(x +h) IIPE dh) ~ (xH) dxH] 1/p. 
For a successful proof we must prepare the choice of measures. 

C l a i m .  ([Re, 5.5.4]) The Haar measures involved can be chosen in such a way 
that the Planeherel formula holds with standard normalization for each of the pairs 
(/ZG,p~),(pH,~t~/H__) and (PG/H,FtH• Hence Theorems 2.1 and 2.2 hold for 
each setting ( #a, P H ~ PG / H ) and ( # ~, /Z H • , " p C / H  • ) simultaneously. 

Accepting this fact we simply denote every integration by means of the respec- 

tive variable. Employing the technical notation So(x)=fu f(x+h)a(x+h)dh one 

finds 2rGf(a)= fC/H S~(xH) dxg. 
For ~?EH • we then see that  

(1) S~v(x ) = ?](X) /H f (x  +h)~r(x +h) dh =-~(x)So(x) 

from which follows f S~n(xH) d x H = f  ~(xU) S~,(xH) dxg. This should be inter- 

preted as a restriction identity 

(*) H i ~E, ~l' >~Gf(crTI):2FG/HSa(~])" 

At this point we finally know all we need in order to derive the proper inequal- 

ity. The mapping ~ H [ [ ~ G f ( a ) l [ ~  is a continuous function on G. Consequently 

Theorem 2.2 proves 

Using the formalism in (*) we may apply the Hausdorff-Young inequality on G/H 
to find 

\~p '  /p 
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In the light of Lemnm 2.4 Minkowski's inequality applied to ]] S~ (xH)[[ ~ (all) p and 

r=p' /p  yields 

Y Y $l~Gfll~, <_ M(G/H,  E, p)P IIS~(xY) II•(aH• • dxH 
/H /g • 

= M(G/H,  E, p)P' 

The equality is due to the fact tha t  r /EH • calls for IIS~,;(xH)[I~)ILS~(xH)II= 
llfHf(X+h)~,(h)dhLl=ll,%f(x+.)(~,lH)] 1. The inner integral allows another ap- 
plication of the Hausdorff Young inequality, but on H this time, 

\~ ]l/p 

= M(G/H,  E, p)M(H, E, p)Ilfllp. 

Since the compactly supported functions are dense in LP(G, E), the claimed in- 
equality follows. 

3. F a c t o r i z a t i o n  i n t o  a s u b g r o u p  a n d  i ts  q u o t i e n t  

Section 1 also postponed two results on factorization from below, expressing a 
perfect dependence under additional circumstances. The second can be viewed as 
dual to the first. 

L e m m a  3.1. Let H be an open subgroup of an LCA group G. Then H • is 
compact. It is furthermore possible to choose the Haar measures in a way such that 
# H • 1 7 7  ~tGIH:~tH and p~-~t~/H• , where r • is the natural 
isomorphism. 

Proof. Based on HZ~_G/(H•177 compactness of H • is equivalent to 
openness of H.  We may now normalize the Haar  measures according to the claim in 
the last section and in addition take PH• (H•  = 1 and consequently l=[llit~,H• = 

[Ii II ,G/  =,G/; ;  ({0}). 
Next let UC_H be open in H and hence also in G. In particular Xu is lower 

semicontinuous and Theorem 2.2 yields 

~G(U)= fG/H ( fH Xu(x+h)d#H(h))  ~ ( x H ) d x H =  / ;  xu(h)d#H(h)=#H(U).  
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Regularity of the respective measures applied to a Borel set AC_H proves 

#G (A) = inf{#c  (U) I A C_ U C H, U open} = inf #H (C) = #H (A). 

Hence the trace of Pc over H coincides with PH. 
To determine the image measure in the s ta tement  one considers HA-translat ion 

invariant, continuous, and nonnegative functions g. Using p H  • ( H  A) = 1 and Theo- 
rem 2.2 we find tha t  

/~ gd#~ = /~/H• g(aH• d#O/H• (~H• 

In particular we can apply this to I~-afl 2 when fECc(H)CCc(G), to get 

: I.F.sr' : 

The last equality is due to the trace formula which yields ~Gf(a)=.~sf(a]H). 
Remembering that  .~HCc(H) is dense in L2(H),  one immediately deduces 

/~ XA dI~: /~/Hx XA~ dPO/HX" 

This proves that  the natural  isomorphism r H--~G/H • has the required property. 

L e m m a  3.2. Let H be an open subgroup of an LCA group G and let gE 
Cc(H, E) be extended to be zero on G\H. Denote the extension by f . Then 

II~:Hgllr I/~:GIIIr 
Ilgllp,H IIfll~,G 

Proof. As remarked earlier, each of the quotients are independent of the chosen 
Haar  measures, as long as Plancherel 's formula is valid. Hence we may use the 

normalization from Lemma 3.1. The restriction #G]H = # H  implies 

Ilfltp,c=Ilgllp,H, ~cf(~)=-rHg(~IH), ~ G .  

An application of the second identity together with Theorem 2.2 and Lemma 3.1 

I I ~ f l l p ,  ~ = 
, / H  • 

=/~/Hj_ 

shows tha t  

II~Hg(~IH) II r  (all• d#~/H• (all• 

It.,~:Hgllp' ,~)-1 d/Je/H • = l _  II~'Hgll r d~. 
JH 



On the vector valued Hausdorff Young inequality 23 

The two expressions relating norms combine to yield 

I["~Hgllp,,~ _ I['TGfllp',O 

Ilgllp,n Ilfllp,a 

which concludes the lemma. 

P r o p o s i t i o n  3.3. 

lowing bound obtains: 
When H is an open subgroup of an LCA group G the fol- 

M(H, E,p) < M(G, E,p). 

Proof. Let gECc(H, E). We extend it to fECc(G, E) through the prescription 
flH=g and flH c =0.  According to Lemma 3.2 and the Hausdorff-Young inequality 

II~Hgllp' _ II~Gfllp' ~ M(G, E,p),  
}lgllp Itfllp 

and the proposition follows. 

Remark. The main obstacle for general closed subgroups is that  the extension 
need not be continuous any longer. 

P r o p o s i t i o n  3.4. If the subgroup H is compact in G, the quotient group obeys 

M(G/H, E,p) < M(G, E,p). 

Proof. Based on H~_G/H • one sees tha t  H is compact  if and only if H a is 

open in G. Hence duality can be applied and Proposition 3.3 for H • shows 

M(G/H, E,p) = M(H • E',p) < M(G, E',p) = M(G, E,p). 

4. F o u r i e r  t y p e  a n d  g r o u p  r e d u c t i o n s  

One way to describe the geometry of a particular Banach space is to prove 
tha t  it satisfies the Hausdorff-Young inequality for some group. This makes for a 
far more specific instrument than  the usual type theory. As was mentioned earlier, 
information of this kind has implications in interpolation theory. In the first section 
a few results point in the direction that  it should be possible to test  only a few 
groups in order to conclude the necessary properties. This section is devoted to the 
proofs that  smaller classes of groups indeed determine the geometry of the space. 
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Definition. 
(1) A Banach space E is said to be of G-Fourier type p in case M(G, E,p) is 

finite. 

(2) The space possesses strict G-Fourier type p when M(G, E,p)<_ 1. 
(3) It  is said to be of universal (strict) Fourier type p in case it is of (strict) 

G-Fourier type for each group G. If there is a common operator bound, i.e., 

sup c M(G, E , p ) < ~ ,  we say that  E has uniform Fourier type p. 

Remark. I t  must be pointed out that  this terminology differs from that  of 
Milman [M2]. There Fourier type is the present strict type whereas weak Fourier 
type in that  paper  corresponds to our Fourier type. I have chosen a new phrasing, in 
the first place to keep the analogy with (Rademacher) type theory and secondly as 
an indication towards the fact that  the strict property leads to a very easy theory 
once factorization is available. Presently we will see that  universal and uniform 
Fourier type coincide as notions. 

P r o p o s i t i o n  4.1. If  G ~ R  n • G1 is the decomposition of G with n maximal, 
then 

M ( T ,  E,p)M(GI ,  E,p)  > M(G, E,p) >_ B~ max{~$(G1, E,p), M ( T ,  E,p)) .  

Hence a Banach space is of each G-Fourier type if and only if it enjoys the property 
for every group with a compact-open subgroup. 

Proof. The result follows from the factorization theorem for direct sums in 
conjunction with the proposition that  compares _~/(R '~, E,  p) to M(T ,  E, p). 

P r o p o s i t i o n  4.2. In order to decide M ( G, E,p) < ~ it is sufficient to examine 
at most three groups: two compact and one discrete or vice versa. These three are 
determined by the group G alone. 

Proof. It  is sufficient to check T and G1. Denoting the open and com- 
pact subgroup of Gz with H,  factorization proves finiteness of M(H,  E,p) and 
M(G1/H,  E,p) to be necessary and sufficient. The discrete group is G1/H. As an 
alternative to T one may test Z. 

T h e o r e m  4.3. Let G be a discrete LCA group. Then 

M(G, E, p) = sup M(Go, E, p), 

where supremum is taken over all finitely generated subgroups Go of G. 

Proof. Start  with an arbi t rary simple function f :  G--~E. The subgroup Go 
generated by the support  of f is finitely generated. Lemma 3.2 says that  

rl~cofl lp,  ~o _ II~cfl l~,  o 

IIfNp,ao Ilfllp,a 
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Upon application of the appropriate suprema one finds 

IlYGof[[p,,Oo 
M(G, E,p) = s u p  sup = s u p M ( G o ,  E,p). 

Co s simple 1If lip,Co Co 

As a corollary we get a result on the geometry of the space. Let us denote 
by 7) the collection of discrete Abelian groups and by/C the collection of compact 
Abelian groups. 

C o r o l l a r y  4.4. supc~z ) M(G, E, p)-----SUpn,H finite J~(  z n  X H,  E~ p). 

Proof. It is known [G] that a finitely generated Abelian group is isomorphic to 
Z ~ x H for some natural  number n and some finite Abelian group H. All these are 
included in 7) when discretely topologized. Hence the theorem proves the equality. 

C o r o l l a r y  4.5, supcet  c M ( G, E, p) =SUPn,H finite M( T'~ x H, E, p). 

Proof. This follows from the first corollary and duality. 

Observation. Again we see how the Hausdorff-Young inequality is determined 
by finite dimensional conditions. The theorem and its corollaries express that  it 
is always enough to check at most a countable number of well behaved groups to 
decide on even the most intricate group. 

These corollaries will allow us a reasonable characterization of universal strict 
Fourier type. Let us introduce two properties of Banach spaces. 

Definition. 
(1) A Banach space E is said to have the property (P) (with exponent p) if 

each prime number k gives M(Zk,  E , p ) = l .  

(2) It has property (F) when suphr finite M(H, E, p) < oc. 

Fac t .  The Banach space E has property (P) if and only if its dual E ~ has. 
Likewise with (F). 

Proof. By duality M(H, E ,p )=M(H,  E',p) for each finite Abelian group. 

P r o p o s i t i o n  4.6. The following are equivalent for a Banaeh space E. 
(1) It has property (P). 
(2) It satisfies supcEv M(G, E, p) = 1. 
(3) s u p a ~  M(G, E , p ) = l  holds. 

Proof. That  the condition (2) implies (1) is obvious. In the other direction 
the condition on prime cyclic groups proves by factorization that  M(H, E, p )=  1 for 
each finite group H.  In addition, Theorems 1.6(2) and 1.7 prove M ( Z  ~, E , p ) = l  for 
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each n. Factorization then guarantees M(Z'~ x H, E,  p )=  1 and Corollary 4.4 shows 
that  (2) holds. 

Using duality as always we see that  (3) is equivalent to (2) with the change 
that  E ~ should replace E in (2). By the preceding argument E satisfies (3) if and 
only if E' has property (P). By the fact above this is the case precisely when (1) 
holds for E itself. 

T h e o r e m  4.7. A Banach space is of universal strict Fourier type p if and only 
if it enjoys property (P) with exponent p. 

Proof. We need only assume (P), the other direction being trivial. From Propo- 
sition 4.6 we conclude M(G,E ,p )=I  for each compact or discrete group. In par- 
ticular M ( R  ~, E,  p) < M ( T ,  E,  p) = 1. 

Consider a group G1 with an open and compact subgroup H. Then G1/H is 
discrete and factorization produces 

M(G1, E,p) < M(H, E,p)M(G1/H, E,p) = 1. 

On grounds of Proposition 4.1 we are done. 

One should wonder whether property (P) can be stated as a single condition. In 
fact it can be expressed with a single group. One such group will emerge presently. 

The next step is of course to rid ourselves of 'strict' in the theorem and find 
the corresponding result. To begin with we will dispose of the universal notion 
altogether. In order to improve the bounds in the key lemma below let us note 
an improvement of Proposition 1.5(1). It is not strictly needed for the lemma but 
enables a final enhancement of Corollaries 4.4 and 4.5. 

L e m m a  4.8. For each finite group H 

M ( T  n • H, E,  p) _< lim inf M(Zkl x... • Zk,~ • H, E, p), 

when all k j - - ~ .  

L 
Proof. Consider a step function f :  T '~ xH---~E, i.e., f = ~ z = l  alXA, for (~tEE, 

At=Iz x {hi}, hl E H  and It is a rectangle in T '~. For fixed hi the corresponding Iz 
are disjoint. 

We next construct fk: Zk x H--~E, where k =  (kl ,... , kn), Z k :  Zkl • • Zk~, 
through the prescription 

f k ( j ,  h) = f ( e 2 ~ ( J l / k ' l , . . .  , e 2~( jn /k~l ,  h). 



On t he  vector  valued Hausdor f f  Young  inequal i ty  27 

It is somewhat tedious but perfectly straightforward (see [A2]) to derive, as all kj 
tend to infinity, that  

]]fk[[L~(Z~_• ----~ ]lf]]i,(T~• 

~Z~_xHfk (j, ']) ' ~CT~ • rT), * lcH.  

Proceeding analogously to [A2, Theorem 2] one finds 

liYZ • <-- lira inf 7vl (Zk_ x H, E, p)IITi[LP(T~ •  

which establishes the result. 

T h e o r e m  4.9. sup M(G, E,p)= sup M(H, E,p)= sup M(G, E,p). 
GE~D H finite G E ~  

Proof. In view of Lemma 4.8 the rightrnost equality follows from Corollary 4.5 
(every finite group is trivially compact). Dualizing, the lemma also yields the left 
side thanks to Corollary 4.4. 

L e m m a  4.10. The two notions of universal and uniform Fourier type coin- 
cide. 

Proof. Clearly universal Fourier type is a weaker notion than uniform Fourier 
type. Hence suppose the Banach space E enjoys universal Fourier type p. We want 
to find a uniform bound on M(G, E,p). 

Consider the group Q / Z  and write Q for the direct sum of a countable number 
of copies of Q/Z .  We supply Q with the discrete topology. Let M=M(Q,E,p).  
Since Q / Z  contains an isomorph of every finite cyclic group, the large group Q 
contains a copy of each finite group. Trivially each finite subgroup H is open in Q. 
Hence 

M(H, E,p) <_ M 

by Proposition 1.3. In particular by Theorems 1.6 and 1.7 

M(Zn,  E,p)<_M, M ( T ~ , E , p ) < M ,  n>_l.  

Theorem 4.9 gives for each compact or discrete group 

M(G,E,p)<AI. 

Continuing as in the last part of Theorem 4.7, we find for each LCA group 

M(G, E,p) <_ M ( T  '~, E,p)M(G~/H, E,p)M(H, E,p) < M 3 . 

Thus we have arrived at uniform Fourier type. 
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T h e o r e m  4.11. A Banach space E is of uniform Fourier type p if and only 
if it has property (F). 

Proof. This proof is entirely contained in the proof of the preceding lemma. 
The only difference is tha t  the bound M is extracted from the (F)-property and the 

group Q does not enter the picture at all. 

Remarks. 
(1) In retrospect the proof of Lemma 4.10 shows that  the properties (P) and 

(F) may be replaced with the corresponding bound for the single group Q. But 
with Q being such a horrid group, nothing is really won through a restatement.  As 
an alternative Z2 | G Z4•... will do once discretely topologized, but it is still a 
very unwieldy entity. 

(2) The essential difference between (P) and (F), i.e., strict type and uniform 
type respectively, is the dimensionality. With strict type there is no problem in 
forming any kind of direct sum of groups, whereas without the constant 1 it is hard 
to get higher dimensional groups with a bounded operator norm. The factorization 
simply does not allow control of growth of the norm as the number of factors grows. 

(3) The lesson Theorem 4.11 presents, is that  a space not of every G-Fourier 
type has to have the bound M(H, E, p) arbitrari ly large for finite groups. 

To understand bet ter  the geometric influence of the group on the Banach space 
there are two questions that  point in directions not completely answerable by this 
paper. 

Question 4.12. Is it always true that  M(Gn, E ,p )<M(G,E ,p )  for infinite 
groups and all integers n_> 1? 

Question 4.13. Is there an infinite dimensional Banach space with the property 
M ( Z ~ , E , p ) ~ M ( Z ~ , E , p ) ?  Does Walsh Fourier type p force Fourier type, i.e., 
does finiteness of M ( Z ~ ,  E, p) imply the same for M ( T ,  E,  p)? These three groups 

seem to be the most  obvious source where counterexamples may be found. 
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