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On the solvability of linear partial differential 
equations in spaces of hyperfunctions 

Paulo D. Cordaro(1) and Jean-Marie Tr4preau 

It  is well known from the theory of linear partial  differential equations in spaces 
of smooth functions and distributions, see HSrmander [11], [12], that  the solvability 
of a differential equation is related to the non-existence of a solution of the homoge- 
neous adjoint equation with compact  singular support,  and that  this may be used 
to obtain semi-global existence results from the microlocal s tudy of the adjoint o1> 
erator. In this paper  we show that  a similar strateg5 ~ is possible in the framework of 
hyperfunctions. Actually, we shall consider in this paper  the more general case of a 
system of differential equations without compatibil i ty conditions in the framework 
of hyperfunctions on a maximally real manifold in C ~ with low regularity. 

The first section of the paper  may be considered as a continuation of Sehapira 
[26], [27], in which it was shown how functional analysis can be used in the hyper- 
function theory of differential operators.  We first recall the fact that  hyperfunetion 
solvability is insensitive to the geometry of the boundary  of the domain (Theo- 

rem 1.2) and show that  finite dimensional obstruction to solvability never occurs 
(Theorem 1.3). Then we characterize the hyperfunction solvability of a differential 
operator  in terms of the validity of an a priori inequality for the adjoint operator  
(Theorem 1.4). The main result of this section is perhaps Theorem 1.6 which states 
that  the non-confinement of analytic singularities for the adjoint operator  is a suf- 
ficient condition for the hyperfunetion solvability. This is similar to Theorem 1.2.4 
of H6rmander  [11]. 

In Section 2 we give several examples of how the functional analysis s tatements  
of Section 1 apply to obtain seemingly new existence theorems or new proofs of 
classical existence theorems, as corollaries of already available, sometimes deep, 
microlocal results. Such topics as holonomic systems, hypo-analytic structures or 
analytic differential equations of principal type on R "  are touched on. Theorem 2.2 

(1) Partially supported by CNPq, Brasil. 



42 Paulo D. Cordaro and Jean-Marie Tr6preau 

gives a very simple proof of the local solvability of the last "compatibili ty equation" 
of a maximally overdetermined system. Theorem 2.6 states the solvability of an 
analytic differential operator of principal type on R n, satisfying the Nirenberg-  

Treves condition (P). Theorem 2.7 establishes a weak maximum principle for the 
hypo-analytic functions, when the hypo-analytic complex is solvable in top degree. 

The converse assertion is conjectured and discussed in some special cases. 

In Section 3 we establish the solvability of an analytic differential operator  of 
principal type satisfying the Nirenberg-Treves condition (P), in the framework of 

hyperfunctions on a maximally real manifold in C ~ with low regularity. The proof 
follows the s trategy introduced in H6rmander [12] for the C a solvability, that  is 

we prove the non-confinement of analytic singularities for the adjoint operator.  
However, the needed microlocal results are not available and we use the microlocal 
t ransformation theory of Kashiwara and Schapira [16] to obtain them. It  allows us 
to reduce the problem to the analysis of the concrete operator  c9/c9zl acting at the 

boundary  of a strictly pseudoconvex domain in C ' .  This is similar to what was 
done in Tr~preau [31] to prove the microlocal solvability of an operator satisfying the 
weaker condition (ko). Unfortunately, it is not clear how to get local from microlocal 

solvability, so we shall rely on the method but not on the main result in [31]. 

1. L o c a l  s o l v a b i l i t y  a n d  n o n - c o n f i n e m e n t  o f  singularit ies  

1.1. N o t a t i o n  

For any h E N ,  we denote by z = ( z l , . . .  ,Zn) the variable in C n with norm 
Iz[=max~_ 11zi[, and we define d z = d z l A . . . A d z n .  If K c C  n and e>0 ,  then K~ 
denotes the set of all z E C  n which lie at a distance < e  from K;  if h is a function 
K - - ~ C  d, we set 

thl  = sup  Ih(z) l .  
z E K  

We shall use the terminology FS and DFS to refer to the class of Fr~chet- 
Schwartz spaces and to the class of all strong duals of Fr6chet-Schwartz spaces, 
see Grothendieck [6], KSthe [19]. Let (9 be the sheaf of holomorphic functions 
on C n. If ~ c C  n is open, then (9(~), endowed with the semi-norms I " [K, K C C ~ ,  
is an FS space. An analytic functional r on ~ is an element of the dual space 
O1(~); it is carried by a compact  set K c f ~  if for every e > 0  there exists C such 
that  I r  ~ for all hc (9 (~ ) .  Let K c C  n be a compact  set; the space (9 (K)  

of germs of holomorphic functions at K,  endowed with the locally convex limit 
topology, is a DFS space with the FS space (9 ' (K)  as strong dual, r  acts 
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on every space O(K~) and the topology of (9'(K) is induced by the semi-norms 

JV(h)l 
sup 

heo(g~) IhbK~ 

If fg is pseudoconvex and the compact set K c f ~  is O(f~)-convex, then O(f~) is dense 
in O(K) and O'(K) can be identified with the space of analytic funetionals on f~ 
which are carried by K.  

1.2. H y p e r f u n c t i o n s  a n d  a n a l y t i c  f u n c t i o n a l s  

Let M be a maximally real manifold in C n (actually we might replace C n 
by a Stein manifold), that  is a totally real n-dimensional submanifold of C '~, of 
class C 1. Sato's theory of hyperfunctions extends to this situation (see Harvey I81, 
Harvey-Wells [9]) and so does the mierolocal theory of Satc~Kawai-Kashiwara [25] 
(see Kashiwara Schapira [16]). We denote by /3  the sheaf of hyperfunctions on M. 
For the sake of simplicity, a section of .A.=(.91M will be called analytic even if M is 
not real analytic. Though this is not essential, we shall assume that  M is orientable, 
and in fact oriented, in order to avoid difficulties in identifying A with a subsheaf 
of/3. 

We shall adopt the point of view of Martineau [20] about Sato's theory by 
identifying compactly supported hyperfunctions with analytic functionals carried 
by M. Martineau assumed M real analytic but it was proved by Harvey and 
Wells [9] that  his results remain valid when M is of class C 1. Let us recall the 
content of Theorem 2.2 in [9], which is important  in this respect: 

There exists a fundamental neighborhood system J: of M with the following 
properties: (i) each UeJ  z is pseudoconvex, (ii) O(V) is dense in O(V) if U, V e J  z 
and U c V ,  (iii) each compact set K c M  is O(U)-convex for each UEJ ~. 

To summarize, we shall use the following notation. 

Notation 1.1. The set M c C  n is an oriented maximally real manifold of class 
C 1, with 0 c M .  The set ~ denotes a pseudoconvex neighborhood of M with the 
property that  every compact set K C M  is O(~)-convex. 

With this notation (9'(K) is identified with the space of analytic functionals 
on ~ carried by K,  if K C M  is compact. Let us recall that  /3 is a flabby sheaf on 
M and that,  if U c c M  is open in M (the notations U and OU always refer to the 
closure and the boundary of U relative to M),  the identity 

B ( u )  = 
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holds. 
Some of our results are local near 0EM;  then we may shrink M and take 

f t = C  n in Notation 1.1. Some other results, like Theorem 1.4 and Theorem 1.6, 
are global and concern an open subset U c c M .  Let us already emphasize the fact 
that  these results do not apply to compact  manifolds: it will be assumed that  U 
has no compact  connected component,  with the consequence that  the restriction 
map O(U)--+O(OU) is injective by the uniqueness of analytic continuation, and as 

a result that  O'(OU) is dense in O ' (U) .  
For the sake of simplicity we embed L~o c (M) as a subsheaf of/3 in a noncanon- 

ical way by identifying f with the analytic functional 

f (h)=/Mf(Z)h(z )dz  

when f has compact  support.  This is not invariantly defined, but using another 
analytic non-vanishing density a(z) dz for the identification would not change much 
to what  follows, since u~--~au is a sheaf isomorphism of B. In particular .4 is identified 
with a subsheaf of B. Also, if M is of class C m, there is a canonical injective sheaf 

! mapping from the sheaf D,,~_ 1 of distributions of order m - 1  on M to the sheaf B, 
which induces the obvious restriction map on compactly supported sections (see [9, 
Theorem 3.5]). 

By a differential operator  on M, we shall always mean an operator 

0 5  P= Z ao(z)  
lal_<m 

with analytic coefficients as E.4(M).  The adjoint operator tp of P is the differential 
operator  on M defined by 

lal_<m 

The operator  P acts on analytic functionals carried by M by the formula 

PC(h) = r if h E O(f~), 

and this action extends as a sheaf homomorphism of B. On the other hand, P acts 
on the sheaf O, hence on the sheaf .4 by restriction, 

P(flM) =" (Pf)IM. 
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This action can also be described as follows: if M is of class C "~ and l < k < n ,  then 
O/Oza induces a vector field Lk of class C "*-1 on M, determined by the property 
tha t  O/Ozk--Lk is antiholomorphic. Actually, dzl ,  ... , dzn induce a basis of 1-forms 
of class C m-1 on M and L1,  ... , LT~ is the dual basis of vector fields on M. Clearly 

Of/OZk = L k f  if f is analytic, so Of/Ozk is well-defined if f is of class C 1 and the 
definition agrees with the hyperfunction definition, since if f has compact  support  

Ozk \ azk I 

due to Stoke's formula (the notat ion dzk means that  dzk is omit ted in the wedge 
product).  Thus, if M is of class C "  and P is of order m, the action of P on 
hyperfunctions is compatible with the natural  action of P on functions of class C m 
and our identification of functions with hyperfunctions. 

1.3. Local solvability and a priori inequalities 

Let us consider d differential operators P1, . . .  ,Pd on M and the following 
associated "underdetermined" system P: 

d 

(1 .1 )  P( l, . . . ,  = p u, = f .  
i= l  

The adjoint system is the "overdetermined system" tp defined by 

(1.2) tp f = ( tp l f  , .." ,t pdf )  = (ul ,... , Ud). 

A main idea in Schapira [26], to circumvent the fact that  the topology of B(U) is 
not separated, was to notice that ,  if A: B---+B is a sheaf morphism, A: B(U)---~B(U) 
is onto if and only if the map  A': O ' (U)  • O'(OU)---+O'(U) defined by (r ,)~-*Ar 
is onto. This remark is useful, since 0 ' ( 7 )  and.(_9'(OU) are gentle FS spaces which 
tolerate the use of functional analysis. 

We first recall the fact (this is Proposit ion 2 in [26]) that  local and global solv- 
ability are the same on small open sets, when hyperfunction solutions are allowed, 

and as far as there are no compatibil i ty conditions! Hence such phenomena as P -  
convexity play no role in hyperfunction solvability. Let us denote by/~0 the space 
of germs of hyperfunctions at 0 c M .  

Theorem 1.2. The following properties are equivalent: 
(1) The map P: Bd---*Bo is onto. 
(2) There exists an open neighborhood U of 0 in M such that P:13(u)d---+B(U) 

is onto, hence by the flabbiness orB, P: 13(v)d---~B(V) is onto for every open subset 
V c U .  
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Proof. (2) ~ (1) by the flabbiness of/3. Let us assume that  property (1) holds. 
Let V k c c V c c M  be open neighborhoods of 0 in M, with Ak Vk={0} �9 The space 

Ek = {(r r .) ~ O'(~)  • O'(~/k) d • O'(~\Vk):  r = P ~ + . }  

is a closed subspaee of a Fr6chet space, hence a Frdehet space. If 7rk: E k ~ O ' ( V )  
denotes the projection on the first factor, then Uk 7rk(Ek)=O'(V) by property (1). 
By Baire's category theorem and the open mapping theorem, ~rk(Ek)=O'(V) for 
some k. Finally, property (2) holds true with U=Vk, thanks again to the flabbiness 
of B. [] 

In the preceding argument, let us replace property (1) by the weaker hypothesis 
that  P: Bg~Bo has a range with finite codimension, so that  for some 01 ,... , ON E 
O'(V),  B0 is spanned by the range of P and the germs defined by 01,... ,0X. 
Considering the space 

N 

Ek = < ~ (r r ~, a )E  O ' ( V ) x O ' ( v k ) d •  r  P ~ + y +  ~ a{Oi } 
i : 1  

and repeating the previous proof, we obtain that,  for some Vk =U,  the map O'(U) d x 
, N O'(OU) x C N--*O'(U), (~, ~, a ) H P ~ + u + ~ i = l  a{O{, is onto, hence a homomor- 

phism. We deduce from this that  the map (~, ~ , ) ~ P W + u  has closed range, hence 
is surjective, since its range is dense. This shows that local solvability in the space 
of hyperfunctions is insensitive to finite dimensional obstructions (see Section 2.1 
for a simple application of this fact to holonomic systems). 

T h e o r e m  1.3. I f  P: Bdo-~I3o has a range with finite codimension, then P is 
onto. 

We now show that  the solvability of P in 13(U) is equivalent to an a priori 
inequality for tp. This improves a result of Sehapira [26]. 

T h e o r e m  1.4. Let M, f~ be as in Notation 1.1 and U c c M  an open subset 
without compact connected component. The differential system (1.1) on M induces 
a surjective map P: B(u)d----~].~(U) if and only i~ for every small ~>0 there exist 
7/>0 and C such that 

(1.3) Ihiv. <_C(ItPhlv~+ihi(ov)~) yor aU h ~ O ( a ) .  

Proof. The map P: B(u)d--~B(U) is onto if and only if the map of FS spaces 

o'(~)  d • o ' (ou)  ~ (r , P ~ + .  ~ o'(U) 
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is onto. Since U has no compact  component,  this map  has dense range, hence it is 
onto if and only if its range is closed. Consequently, this map  is onto if and only if 
the range of the transpose map  T 

O(U)  ~ h, �9 ~ T h  = (tPh, hlou)  ~ O(U)  d x O(OU) 

of DFS spaces is closed, or (see [19, p. 18]) sequentially closed. This is the case 
if (1.3) holds: if Thk converges, it converges in O(u~)dx  O((OU)~) for some e>0;  

since O(~t) is dense in (9(0),  (1.3) implies that  the sequence hk is bounded in Uv 
for some 7>0 ,  hence admits  a subsequence converging in O(U).  Conversely let us 
assume tha t  the (injeetive) map  T has closed range. It  induces an isomorphism 
from O(U) onto its image, so h k ~ 0  if Thk--*O. If (1.3) did not hold for some 
small e>0 ,  we could select a sequence hkEO(f~) with Ihklcr~/k=l while Thk--*O, a 
contradiction. [] 

1.4. Solvability and non-confinement of  singularities 

We now come to the main result of this section, which is a hyperfunction version 
of Theorem 1.2.4 of H6rmander  [11]. We shall deal with an open set U c c M  and a 
differential system (1.1) of order m. Let F be a subspace of B(U) with the following 
property. 

H y p o t h e s i s  1.5. The space F is a Frdchet space such that 

�9 O ( U ) c F  with continuous injection, and 

�9 if  A C C  n is open and Q is a differential operator on M of order <m,  then 
the space 

{(f, g) e F • O(Zx): gJun~ = QfJ~7n~ } 

is closed in F •  

It  is not clear whether there always exists a Fr~chet space with these properties. 
However, if P is of order m and M is of class C "~, we can take F = c m ( u ) .  If M 
is smooth, a stronger s ta tement  is obtained by taking a smaller F in the following 
theorem. For example, if M is real analytic, it may be interesting to take a Gevrey-  
Beurling space of functions as a space F. 

T h e o r e m  1.6. Let M be as in Notation 1.1 and U c c M  an open set without 

compact connected component. I f  the differential system (1.1) on M is of order m 

and FCI3(U)  is a Frdchet space as in Hypothesis 1.5, the following condition is 

sufficient for  the induced map P: B ( u ) d ~ B ( U )  to be onto: 
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If  f is any hyperfunction in a neighborhood of U such that f iu  cF ,  f is analytic 
in a neighborhood of OU and tp f  is analytic in U, then f is analytic in U. 

Proof. Given ~>0  small, we shall show that  the estimate 

(1.4) h �9 0(~), lhlo,~ < C(llhl~-IIr+l~Phl< +lhl(ou)~) 
holds for some r/>0, some C, and some continuous semi-norm I1" IIF o n  F. The 
a priori inequality (1.3) must then hold for r / < ~ ,  since, if it did not, we could 

select a sequence hkeO(f~) with Ihklu,,--1 while Itphkl<+lhkl(og)~O; since the 

inclusion O(U)---~F is continuous, IIhktglIf would be bounded, hence also Ihklg, 
by (1.4), and we would reach a contradiction: some subsequence would converge 
uniformly in Un', to 0 close to OU, hence everywhere by the uniqueness of analytic 
continuation. 

If A c C  n is open, we denote by O~ the Banach space of bounded holo- 

morphie functions on A, with the norm l IA. Let us consider the subspace 

E = {(f,  g, h):  gig = tPfig, hlgn(ou)~ =/bn(0~m } 

of the Fr6chet space F x O ~ (U~)d x O ~ ((OU)~). Due to Hypothesis 1.5, E is closed, 

hence a Fr~chet space. By the assumption in the theorem, E is the union of the 
closed balanced convex sets E(k) consisting of all ( f , g , h ) � 9  such that  f is the 
restriction of a function ]�9176176 with Iflv, i ~ <_k. By Baire's theorem, one of 

these sets is a neighborhood of 0 in E,  which implies the est imate (1.4) and finishes 
the proof of the theorem. [] 

In general, there is no reason why the sufficient condition for solvability in 
Theorem 1.6 should be necessary. It  is however locally the case when P has constant 
coefficients; recall that  we do not assume M=R~L so this covers the case of a 
differential operator  on R n biholomorphieally equivalent to a differential operator  
with constant coefficients. 

T h e o r e m  1.7. If  the open set U c c M  is small enough and P has constant 
coefficients, then P: B(u)a--+B(U) is onto if and only if every hyperfunction f in a 
neighborhood of U, satisfying that f is analytic in a neighborhood of OU and that 
tp f is analytic in a neighborhood of U, is actually analytic in U. 

Proof. Let us recall how local approximation by entire flmctions is obtained 
in Baouendi-Treves [1], using the Gaussian kernel. Performing a complex linear 
transformation, we may assume that  the tangent space to M at 0 is R ~. For c>0 ,  
let us define 

1 
e C 
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If eEO ' (U) ,  U C c M ,  r  )) is a n  entire function and 

O~zk- ~zk ' k = l , . . . , n .  

The following property follows from the proof in [1], provided U g 0  is small enough 
(this condition can be dropped in the case M = R n ) .  

The function r is analytic close to zEU if and only if O~ converges uniformly 
in a complex neighborhood of z as ~---*0 +. Moreover, Oe then converges to the 
holomorphic extension of r 

Let us now assume that  P: B(U)a---,B(U) is onto, so that  (1.3) holds, and let 
us assume that  U is so small that  the previous property holds for a neighborhood V 
of U in M. Let f be as in the statement of the theorem and 0EO~(K),  U C K C V ,  
such that  r  f in a neighborhood of U. By the previous property, 0~ converges in 
a complex neighborhood of OU while tpeE=(tPO) ~ converges in a complex neigh- 
borhood of U. We deduce from (1.3) that  r converges in a complex neighborhood 
of U, hence f is analytic, thanks again to the previous property. [2 

2. Examples, applications and remarks 

In this section we give several examples of how the results of Section I apply 
to hyperfunction solvability. 

2.1. Ordinary differential equations and holonomic systems 

Let us first consider the case of an analytic operator 

m di 

i=0 

on an open interval I c R ,  with m>_0 and am~0.  It is a theorem of Sato, and in fact 
a simple (striking) application of Sato's theory, that  P: B ( I ) ~ B ( I )  is onto. We note 
that  hyperfunction solutions of tPf=O may have confined analytic singularities: the 
Dirac measure 5 satisfies zS=0, the smooth function f which is 0 on ] - o c ,  0] and 
e -1/~ on ]0, + ~ [  is analytic outside 0 and satisfies (z2(d /dz) -1) f=0.  However the 
condition in Theorem 1.6 is locally satisfied, using as a Fr~chet space F an ad hoc 
space of ultradifferentiable functions. 
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L e m m a  2.1. If  J c c I  is an open interval, there exists s > l  such that, if u 
belongs to the Gevrey-Beurling space G(S)( J) and tPucA(  J), then u c A (  J). 

Proof. Ramis [24] has computed the index of P acting on any space of formal 
power series with coefficients satisfying a growth condition of Gevrey type. Similar 
results certainly hold for the usual spaces of Gevrey functions. The partial  result 

of Komatsu  [18] is however more than sufficient for our purpose. We sketch a proof 
using both references. The claim is of a local nature, so we may assume that  0 C J  
and 0 is the only point of J at which am vanishes. Let 0 >  1 be the irregularity 
of the operator tp at 0 (see [24] or [18] for a definition) and ~ the Taylor series of 

uEG(S)(J) at 0. As tPfi----t-~uEO0, it follows from [24] or [18] that  ~E(.90 provided 
s < a / ( a - 1 ) .  Taking 1 < s < c r / ( a - 1 ) ,  we find tha t  u is locally the sum of an analytic 
function and a G (s) function v with ~=0,  hence tPv=O. It  follows from Lemma 4 
in Komatsu  [18] that  v=O. [] 

Using the finiteness theorem of Kashiwara [15 I. we shall obtain a local analogue 
of the just mentioned theorem of Sato, for holonomic systems, as an obvious conse- 
quence of the flmctional analysis Theorem 1.3. Though the following results extend 
to the general case, we shall assume that  M = R  '~ for the sake of simplicity. Let 29 
denote the sheaf of (analytic) differential operators on C n, and let us consider a 

general system of differential equations, that  is a coherent left 29-module A// near 
0 E C  n. The module M admits  a free resolution 

p1 p2 pn  p~+l  
0 +---- . ~  +------- 29do +____ 29dl i 29dn 

where p 1  p2 , . . .  , p n  ... are matrices of differential operators,  acting on the right. 

Applying the functor Horn( . ,  B0) to it, we obtain the complex 

0-----+ B d~ p1 Bd p2 p,, Bd p,~+l 1 _ _ _ _ _ > . . .  ) n ______+ " " ,  

where p k  acts on the left. The k th cohomology space Extk(Yk4, B0) of this complex 

does not depend, up to an isomorphism, on the choice of the above resolution of M .  
Kashiwara proved in [14] vanishing theorems that  imply the existence of a resolution 
of length <n ,  

p1 p2 P~ d 
0 ~ ,M ~ 29~o ~ 29dl ~ ... +--- 29 '~ ,1 0, 

SO Extk(2~4, B0)=0 for k>n. We refer to Kashiwara [1.5] for the notion of a holo- 
nomic system and the fundamental  result that  the spaces Extk(A& B0) are finite- 

dimensional if AJ is holonomic. In particular P~: B dn-~ --+B0 ~ has a range of fi- 

nite codimension and an obvious generalization of Theorem 1.3 gives the following 
vanishing theorem, which was obtained by Schapira in [28], using a very different 
method. 
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T h e o r e m  2.2. Let ~[  be a holonomie D-module defined near 0 EC ~ and I3o 
the space of germs of hyperfunetions at 0 E R  ~. Then Ext~(Ad, ~o)=0.  

Let us consider again the more concrete equations (1.1) and (1.2). It is quite 
clear that  the surjectivity of P: Bd~Bo  only depends on the right ideal Z of D 
generated by P1 ,... , Pa near 0EC '~. Let us consider the germ 

V(P)  = { (z, r E T* C'~: a(Q)(z, r = 0 for all Q E Z} 

of a complex variety in T*C '~ over 0, where ~r(Q) denotes the principal symbol of Q. 
It is a well-known theorem of Sato-Kawai-Kashiwara [25] that  V(P)  is involutive. 

T h e o r e m  2.3. If V (P)  is Lagrangian, then P: Bg--~Bo is onto. 

Pro@ Let J be the left ideal generated by tP1,... ,tPd. The left D-module 
M = D / J  has V(P)  as its characteristic variety, hence it is holonomie. We could 
conclude invoking Theorem 1.6 and the results of Honda [101 which imply that  an 
analogue of Lemma 2.1 holds in the general case of a holonomic system. 

We shall instead present a different approach, identifying P with the last com- 
patibility condition of a holonomic system; we owe the following proof to P. Schapira. 
We start  with a free resolution of length n of the right D-module A f = D / Z  

(2.1) O+--]V'e---D d~ ,P D dl( ....... . . .*---D d'* , O, 

where d0= i ,  dl=d and fi(Ai ,Ad) d , ' "  = ~ i = 1  PiAi. We recall the following re- 
sults of Kashiwara, see [14, Theorem 3.1.2 and Proposition 3.1.7], which hold 
for any left (respectively right) holonomic module: Ex@(A[,D)=O if j C n  while 
Af*:=gx@(H,  D) is a right (respectively left) holonomic D-module. Thus, apply- 
ing the functor ~ o m 9 ( . ,  D) to the resolution (2.1), we obtain the resolution 

0 > D a~ Q ~  D e~ >... ----, D a" ~ H*  ,0, 

of the holonomic left D-module Af*. Here we have used the canonical identification 
of Hom~(D dk , D) (morphisms of right D-modules!) with D dk . It remains to identify 
the morphism Q; by the definitions, we have, using obvious notation 

Q(A) = Q(B ~-~ AB)  = ((B1,. . .  , U~) ~-+ AF(B1 , . . .  , Bd)) : (AP1,. . .  , APd). 

This means precisely that  equation (1.1) is the n TM "compatibility system" of the 
holonomic module Af*. Theorem 2.2 applies. [] 
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2.2. Differential equations with  constant coefficients 

We now consider the case of an operator P ~ 0  with constant coefficients. If 
M = R  ~, it is well known that  the analogue of the Malgrange-Ehrenpreis The- 
orem for systems holds true in the context of hyperfunctions, see Komatsu [17] 
or Schapira [27]. The proofs in [17], [27] make use of the Malgrange-Ehrenpreis 
Theorem. In the case of a single operator, a simpler proof of the surjectivity of 
P: B(U)--~B(U) is well known when U c R  n is bounded, using the existence of a fun- 
damental solution E of P: if fEB(U) ,  f = r  for some ~ C O ' ( 0 )  and u = ( E * r  
solves P u = f .  We note that  another proof of this fact is possible, which does not 
use the existence of a fundamental solution but the classical and easier fact that, if 
U c c R  n, there is an estimate 

IlullL~ <_ClltpullL 2 for all u e C ~ ( U ) .  

In fact we can state, more generally, the following theorem. 

T h e o r e m  2.4. Let M,  ~ be as in Notation 1.1 and assume that M is smooth 
and that P1 ,... , Pd have constant eoeLficients. I f  the inequality 

(2.2) IlulI/=<_CII PUlIH N for a l lucC~C(M) ,  

holds for some C and some Sobolev no.  I1" IInN, then P: is onto 

for every open set U c c M without compact connected component. 

Proof. Let c > 0  and r  a function which is 1 in a neighborhood of 0 .  If 
hEO(~) ,  applying (2.2) to the (holomorphic) partial derivatives of sufficiently high 
order of Oh, Sobolev's inequality on the left-hand side and Cauchy's inequalities on 
the right-hand side, we obtain [hlff <<C(ItPhl~:~ + [hl(o~,)~ ). Replacing h by h( -+r  
I~l small, and taking into account the fact that  P commutes with translations, we 
obtain the a priori inequality (1.3). Theorem 1.4 applies. [] 

2.3. Differential operators of  principal type 

The result in this section will be generalized in Section 3, so we shall be brief, 
referring the reader to Section 3 for any notation which might be used here without 
having been introduced. We first note that  if U c c R  '~ is open and P is an elliptic 
differential operator in a neighborhood of U, t P f E A ( U ) ~ f E A ( U )  by a theorem 
of Sato. Theorem 1.6 applies: P:B(U)-~B(U)  is onto, hence P:.A(U)---~.A(U) is 
onto, again by Sato's theorem. However this is a weaker result than the classical 
existence theorem of Malgrange, since in Malgrange's theorem, P is defined merely 
in U, not necessarily in a neighborhood of 0 .  
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We now consider a differential operator P of principal type satisfying the con- 
dition (P) of Nirenberg-Treves. I t  would be tempting to obtain the hyperfunction 
solvability of P directly from a known L ~ estimate,  tha t  of Nirenberg-Treves [23] 
if M is real analytic, tha t  of Beals-Fefferman [2] if M is merely smooth,  using a 
substi tute of Theorem 2.4. We have not been able to find this substitute. Of course, 
this can be done when P has order one. 

T h e o r e m  2.5. I f  M is smooth and P is a differential operator of order" one 
whose principal part is a non-vanishing vector field, then P:/~0--+B0 is onto if and 
only if P satisfies condition (P) in a neighborhood of 0 in M.  

Proof. We only discuss the sufficiency of the condition. By performing standard 
reductions, we may assume tha t  P=O/Ozl ,  so P induces a complex vector field 
on M. In this simpler situation, it is an earlier result of Nirenberg and Treves tha t  
condition (P) implies the est imate (2.2) with N = I ;  later on Treves improved it to 
N = 0 ,  see Treves [34]. [] 

The  case when M = R  ~ can also be settled without much effort. The  proof 
follows the s trategy introduced by HSrmander in [12], but  the needed microlocal 
results are ah'eady available. The case of a maximally real manifold with low regu- 
larity will be t reated in Section 3. 

T h e o r e m  2.6. Let U C C R  ~ be open and let P be an (analytic!) differential 
operator on a neighborhood of U, of principal type on U and satisfying condition (P) 
the.re. I f  no complete bicharacteristie of P over U lies over a compact subset of U, 
then P: B(U)~13(U)  is onto. 

Sketch of a proof. By a complete bicharacteristic of P, we mean a Nagano 
leaf B in T ~ C  n of the vector distribution spanned by the radial vector field and 
the real and imaginary parts  of the Hamilton field of P,  with the property tha t  B 
is contained in the characteristic variety of P. Let f E B ( U )  be analytic close to 
OU, with ~PfEA(U) .  If 0 C 2 ~ C  n, either 0 is a non-characteristic point of tp, or 0 
is a characteristic point of "finite type",  or 0 is a characteristic point of "infinite 
type" and belongs to a complete bicharacteristic of tp; 0 cannot belong to the 

microsupport  (or analytic wave front set), in the first case by Sato's theorem, in 
the second case by a theorem of Trdpreau [30], in the third case, since we assume 
that  the complete bicharacteristies of P escape every compact  subset of U, by a 
theorem of Hanges-SjSstrand [7]: if B is a complete bicharacteristic of tp over U, 
either B is contained in the mierosupport  of f ,  or B does not meet it. Note that  [7] 
is concerned with classical solutions of tp, which is sufficient for our purpose, due 
to the formulation of Theorem 1.6, but  the result is actually true for hyperfunction 
solutions as shown in an unpublished mamlseript  of the second author. [] 
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2.4. H y p o - a n a l y t i c  s t r u c t u r e s  

The notion of a hypo-analytic s tructure is defined in Treves [34]. I t  is locally 
equivalent to the da ta  of a maximally real manifold M c C  '~ and a partial  de Rham 
system O/OZl ,... , O/OZd. For the sake of briefness, we shall only consider this local 
model, keeping in mind tha t  the next results can be given an invariant meaning in 
terms of the underlying hypo-analytic structure; we refer to Cordarc~Treves [4] for 
details. So, we consider a maximally real manifold M C C ~ and the equations 

d o u i = f ,  
(2.3) P(ul ,... , Ud) = E Oz, 

i=1 

(2.4) tPf =-( Oof 1 ,... , 0 Z )  : ( U  1 ,... ,Ud). 

From Theorem 1.4, we deduce that ,  if P is solvable, the solutions of tPu=O satisfy 

a weak max imum principle. 

T h e o r e m  2.7. Let Uc  c M be open and assume that P: 13(u)d-+B(U) is onto. 
Then, if ucC~ satisfies tpu=O, [u I has no strict local maximum. 

Proof. We may assume U as small as we wish and take g t = C  n in Notat ion 1.1. 

By the flabbiness of B, P:I3(V)d--*I3(V) is onto for every open set V c U .  By 

Theorem 1.4, we have 

Ihlv <_ Clhl(ov)~ 
for all hcO(C n) satisfying the equation tph=O. Applying this inequality to h k, 

taking k TM roots and letting k--++oc, we obtain that  the inequality holds with 

C = I .  Letting c-~0 +, we get 

Ihlv <_ Ihlov. 

To finish the proof, we note that if u i8 a continuous solution and zEU, by the 
Baouendi-Treves approximation theorem, there exists a sequence Uk E O(C n) such 
that  uk--~u uniformly in a neighborhood of z in M,  and tpuk--+0 in a complex neigh- 
borhood of z. We can solve tpvk=tpu k with vkcO(C n) and vk--+0 in a complex 
neighborhood of z. Defining hk =uk  - v k ,  we have, if W is a small open neighborhood 

o f z  in M, Ihklw <lhklow, hence lUlw <lUlow. [] 

It  is tempting to make the conjecture that  the strong maximum principle ( that  
is, lull: < lulOK for every continuous solution of tpu=O and every compact  set KC U) 
is a necessary and sufficient condition for P: I3(u)d---~I3(U) to be onto, if U is small 

enough. We hope to return to this question in the future. Here we shall only 
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illustrate this conjecture by evoking a few known results. First, in the case of a CR 
structure (in our local model this corresponds to the case when the system tp and 
the Cnuchy-Riemann system induce on M a system of d vector fields Z1 ,... , Zd 

such tha t  (Re Z1 ,... , Re Zd, Im Z1 ,... , Im  Zd) has rank 2d), the strong and the 
weak max imum principles are equivalent and are equivalent to the fact tha t  the 

Levi form of the structure is definite at  no point. This is a consequence of a result 
of Berhanu [3]. In the special but important  case of a CR structure associated to 
the induced Cauchy-Riemann system C~N on a real hypersurface N C C  m, this is 

equivalent to the hyperfunction solvability of P. This is a consequence of more 
general results of Michel [21]. It  is an interesting situation, since the solvability 
in the smooth category is not known in that  case (see however Michel [22], where 
solvability is obtained in some spaces of Gevrey functions, including the space of 
analytic functions). Another important  case where the result is known to be true is 
the case, in some sense opposite to the CR case, when d=n-1: it is then a special 
case of the result of Cordaro-Treves [5]. We shall not pursue this question further 
here. 

Let us set z=(z', z"), with z'=(zl, . . .  , Zd), z"=(zd+ l  , ... , z~) and let ~: z~--*z" 
denote the projection. An analytic solution of tPu=O on M extends to a holomor- 

phic function which does not depend on z f. The maximum proper ty  in Theorem 2.7 
depends, roughly speaking, on the topological geometry of the fibers of 7~IM on the 
one side, on the holomorphic geometry of the space of the fibers on the other. In 
the case of a CR structure, the fibers are points and the structure coincides with its 
space of fibers; the opposite case is when d=n-1,  see Cordaro-Treves [5]; in that  
case the projection takes its values in C so the holomorphic geometry is trivial, and 
everything depends on the topology of the fibers. We shall end this section with a 
sufficient condition for solvability in terms of the topology of the fibers only. 

T h e o r e m  2.8. Suppose that the open set U c M  is small enough and that, 
for all zo E U, the fiber {zEU:z"=z~ J} has no compact connected component. Then 
P: B(u)d---~13(U) is onto. 

Proof. We first recall the content of Lemma 2.2 in Treves [33]. If  U is small 
enough and the assumption in Theorem 2.8 is verified, for every c>0 ,  there exists C, 
such that ,  for every z E U, there exists a piecewise smooth curve "y: [0, 1]--~ U~ with 
the following properties: "7(0) =z ,  ~/takes its values in the complex fiber C 4 • {z"} 
of z, ~ (1 )cOU and y has length < C .  If h E O ( C  n) we may write 

h(z )=h(~/ ( l ) ) -~  Oh=h(~/(1))- f O'h, 

where 0 '  s tands for the partial  holomorphic differential with respect to z ~. Thus 

Ihlo <_ CJO'hlu  +lhl0u. 
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Arguing as at the end of the proof of Theorem 2.4, we obtain the a priori inequality 
(1.3). [] 

3. C o n d i t i o n  (P )  o n  a m a x i m a l l y  rea l  m a n i f o l d  

3 .1 .  S t a t e m e n t  o f  t h e  m a i n  r e s u l t  

Let M c C n be an oriented maximally real manifold of class C a and 

0 ~ (3.1) P :  Z ao/z) o 

a differential operator  of order m, defined and holomorphic in a complex neighbor- 

hood ~ of M. The main result of this section is the following result. 

T h e o r e m  3.1. Assume that M is of class C sup(3'm) and let U c c M  be an 

open subset without compact connected component. I f  P is of principal type on U, 
satisfies condition (P) on U, and if no complete bicharacteristic of P over U lies 

over a compact set in U, then P: B(U)--*B(U) is onto. 

The meaning of the hypothesis in this s tatement  will be made precise in Sec- 
tion 3.2. Theorem 3.1 is a hyperhmction version of Theorem 7.3 in HSrmander [12]. 
Actually we follow the s trategy introduced in [12] to obtain it, that  is we prove the 
non-confinement of analytic singularities for the adjoint equation. M being of class 
C "~, we may then apply Theorem 1.6. However we only need that  M be C a in the 
following statement,  from which Theorem 3.1 follows. 

T h e o r e m  3.2. Let M be of class C 3 and P a differential operator of principal 
type on M,  satisfying condition (P), with the property that no complete bieharae- 

teristic of P lies over a compact subset of M.  I f  uEI3(M) is analytic outside a 

corn, pact subset of M and Pu  is analytic, then u is analytic. 

Proof of Theorem 3.1. If the hypothesis in Theorem 3.1 is satisfied, Theo- 
rem 3.2, applied to the operator tp on U, shows that  the condition in Theorem 1.6 
is verified, taking F = C ~ ( U )  as a Fr6chet space. [] 

We saw in the proof of Theorem 2.6 how the property of non-confinement of 
singularities in Theorem 3.2 follows from known results when M is real analytic. 
In the general case the non-confinement property depends on microlocal results on 
the singularities of u when Pu  is analytic, which may be of independent interest. 
They are announced in Section 3.3. The proof of these s ta tements  is reduced in 
Section 3.4, using the microlocal t ransformation theory, to the proof of similar 
s tatements  for the operator O/OZl acting at the boundary of a strictly pseudoconvex 
domain in C n. This simpler situation is dealt with in Section 3.5. 



On the solvability of linear partial differential equations in spaces of hyperfunctions 57 

3.2. G e o m e t r y  o f  c o n d i t i o n  (P)  

Let T*C n be the holomorphic vector bundle of (1~0) forms )~=~'~=1 ~idzi, 
with coordinates (z, ~)=(Zl ,... , zn, ~1 .... , ~n). It  is endowed with the canonical 

i n one form #----~i=1 ~idzi. The holomorphic symplectic form icr=id# gives rise to 
the two real symplectic forms Re ia and Im ia.  The conormal bundle of M is the 
real vector bundle T[uC ~ over M with fiber 

(3.2) (T~4Cn)z= { A e T * C n  :ReAIT~M=O}, z e  M. 

I t  is a submanifold of T*C n, actually a maximally real manifold in T * C  n, with 

the important  properties that  it is R-Lagrangian (i.e. R e i d  vanishes on it, this is 
obvious) and I-symplectic (i.e. I m i a  is non-degenerate on it, this is easy). Hence # 
induces a real one form pM and a a real symplectic form a M o n  T~I Cn . We shall 

denote by { - , - }  and H the Poisson bracket and the Hamil ton map on T * C  n, by 
{ "," }M and H M the Poisson bracket and the Hamilton map  on T~xC '~ associated 

�9 n with the symplectic form a M. W e  note that  the radial field ~L)=~i=l  ~ ( / O ~ i )  is 
related to the canonical one form by the formula i o = - H ( i # )  and we define the radial 
vector field ~M =_HM(pM) o n  T ~ C  ~ by analogy. A basic fact to compute brackets 

on T~4C n is the following formula which holds when a and b are holomorphic, 

(3.3) {a ,b }M=i{a ,b}  on T ; I C  n. 

Finally, we shall denote by 2F~IC '~ the manifold obtained from T~4C '~ by removing 
the zero section and by S ~ C  '~ its quotient space under the natural  action of R +*. 
We have the natural  maps 

" *  n 7r T ~ C  �9 n , S M C , M .  

The principal symbol p of the operator  P is the homogeneous holomorphic 
function on T*f~ defined by 

p ( z , ~ ) =  ~ a ~ ( z ) ~ .  
I~l=m 

Its zero set is the complex characteristic variety of P,  the points of which are the 
characteristic points of P.  We shall also denote by p the restriction of this function 
to T ~ C  n. A characteristic point 0E~b~C n, or its image 7 r ( 0 ) = 0 E S ~ C  '~ will be 
called a characteristic point of P over M,  or simply a characteristic point. M being 
of class C 3, T ~ C  ~ is of class C 2 and, if q e C 2 ( T ~ I C  '~) is a real function, H M is a 

C 1 vector field with well-defined integral curves. An integral curve of Hq M on which 

q=0  is called a bicharacteristic of q; since HqMq=O, q=0  on an integral curve of 

Hq M if q=0  at some of its points. Here an integral curve is a C 1 map  ~y: I - - ~ 2 ~ C  n 

d e f i n e d  o n  a non-empty interval I c R ,  such that  ~/(t)=HqM(2/(t)) for all t e I .  
We shall always assume tha t  P is of principal type�9 
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Definition 3.3. The operator P is of principal type if dpA#r at every char- 
acteristic point OET~C n. 

Using the Hamil ton isomorphism, an equivalent condition is that  HpAQr 
at 0. Since T ~ C  n is maximally real, other equivalent conditions are dpApMr or 
H M A ~ M r  on T ~ C  n at 0. We recall the formulation of condition (P). 

Definition 3.4. The operator  of principal type P satisfies condition (P), if there 
is no C 2 complex-valued non-vanishing homogeneous function q in T ~ C  '~ such that  

Im  qp takes both positive and negative values on a bicharacteristic of Re qp. 

Condition (P) is necessary for the hyperfunction solvability of P ,  if P is of 
principal type; this is a consequence of the stronger result that  a weaker condition, 
the so called condition (~),  is necessary for the microlocal solvability of P.  Actually 

condition (~)  is also sufficient for the microlocal solvability of P (see Tr~preau [31] 
or the updated and more easily available version in Hhrmander  [13, Chapter  VIII), 
which in some sense is a much stronger result than the one obtained below, but 
unfortunately it is not clear how to get local from microlocal solvability. 

Let 00 E~b~4C n be a characteristic point and let O(00) be the Sussmann orbit 
of 00 (see [29]) for the vector distribution F on T~xC n with fiber 

(3.4) Fe = RHM,(o)+RHIMmv(O)+RoM(o), O E :r?v,C n, 

(the rank of Fe may depend on 0). More precisely, a point 0 belongs to 0(00) if there 
exists a continuous curve ~: [0, 1]-+5fi~,C n and real numbers 0=t0 < t l  <.. .  <tN =1,  

such that  7(to)=0o, "YI[t~,t~+I] is an integral curve of a vector field 

Xi = ai H ~  p + bi Hi~ p + cio " 

with C 1 coefficients hi, bi, ci, i=O, ... , N - I ,  and V(1)=0. The orbit 0(0o) has a 
natural  s tructure of a C 1 manifold (its topology may be finer than the one induced 
by T~4C~), such tha t  the injection O(00)--§ '~ is an immersion. Note that  the 
notion is global, even the dimension of the orbit may shrink as M is shrunk. 

The vector space (3.4) and the definition of the orbit 0(0o) are not invariant 
under multiplication by an elliptic operator,  since HaMp=aHpM+pH M. However, 

this formula shows that  the fact that  the orbit is contained in the characteristic 
variety of P is invariant and tha t  the orbit is also invariant in that  case, since Hap 
is proportional to Hp when p =  0. Using the fact that  the orbit of 0 is homogeneous 
by the definition of the vector distribution F,  we define the orbit o(v~) of a point 
v~ES~C ~ to be the projection in S* C n of the orbit of any point 0E~b~C n with M 
~(0)=~. 
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Definition 3.5. A non-empty set B C S* M C n is called a complete bicharacteristie 
of P (over M)  if B is contained in the characteristic variety of P and is the orbit 
of one, hence of any, of its points. 

If OeS~i C~ and 0eTr- l (0) ,  then 7r.H~v(O ) M  and ~r.H~tmp(O) depend on 0, but 

RTc.H~ep(O ) M  and RTr.HM_(0)v do not depend on 0., due to the homogeneity of p: 
Fo has a well-defined image 7r. (Fo)cToS~t Cn, which depends only on 0, and which 
we denote by Eo, 

Eo=RIr.HMp(O)+RTr.H~p(O),  OE Tr-l(O). 

Since P is of principal type, Eo is a one or two dimensional vector space. 

Definition 3.6. A bieharaeteristic interval of P is a C 1 curve 7: I-~S*M Cn, 
I c R  a non-empty interval, such that  ET( t )=RT ' ( t  ) for every t e l ,  and p ( 7 ( t ) ) = 0  
for some, hence for all, tEI.  

If we identify two bicharacteristic intervals which coincide up to reparametri-  
zation, there is an obvious notion of a maximal bicharacteristic interval. For the 
classification, it is convenient to endow S~IC n with a complete Riemannian met-  
ric (by the completeness assumption, a curve of finite length is relatively corn- 

. n pact in SMC ), so that  we may assume that  a maximal bicharacteristic interval is 
parametr ized by arc length; then the parametr izat ion is unique up to the orienta- 
tion and a translation in R.  Let 7: I--*S~t C~ be a maximal  bicharacteristic interval 

parametrized by arc length. If to E R  is an endpoint of I ,  clearly 7(t) has a limit as 
t-+t0, t E I .  Looking at a bicharaeteristic of R e p  or I m p  through the limit point, 
it is clear that  toCI. So, either I ~ R  and V is a complete bicharacteristic over M, 
or I = ] - o c ,  a] (or I = [ a ,  +oc[  according to the orientation), or I=[a, b]. In the last 
two cases we shall refer to 7(a),  7(b) as the endpoint(s) of 7. 

Condition (P) has strong consequences on the geometry of the complete bichar- 
acteristics of P .  Let us recall the following theorem of H6rmander  [12]. 

T h e o r e m  3.7. We assume that condition (P) is satisfied. If  the orbit o(0) 
of ~)=~r(O)e S* M C n contains a characteristic point ~' with dim/~o' =2,  then o(~) is 
a complete two dimensional bicharacteristie. Moreover, if one identifies any two 
points of the orbit which belong to the same bicharacteristic interval, the resulting 
C~ has a natural structure of a Riemann surface. A function u in o(0) is 
"holomorphic" if HpM(UoTr)=0 on 0(0) (then u induces a well-defined function on 
the reduced orbit). 

The first part  of this s tatement  is contained in [12, Proposit ion 2.1 and Propo- 
sition 2.4], the second part  in [12, Section 4]. Presumably, the description of the 
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complex structure of the reduced bicharacteristics should be simpler in our setup 
than in [12], because P is analytic, if M is not. 

Let 1;c S ~ C  n be (the projection of) the characteristic variety of P over M and 
~9E1;. If d imE~=2 ,  then o(~))C1; by Theorem 3.7: starting from 0 and following 
successively (the projection of) integral curves of M M H~e p o r  Hhnp, one stays in 1; 
and travels through a two dimensional complete bicharacteristic of P.  If dim Eo = 
1, but 0 is the limit of a sequence of points 0~E1; with d im Eo ,=2 ,  then clearly 
o(zg) C1; by continuity, hence 0 belongs to a one or to a two dimensional complete 
bicharacteristic of P.  Thus we have the following lemma. 

L e m m a  3.8. If  condition (P) is satisfied, the characteristic variety 1;C S ~ C  '~ 
of P over M is the (not necessarily disjoint) union of yb, the union of all one or 
two dimensional complete bicharacteristics of P over M,  and the set 1;~ defined 
by 

(3.5) l ;0 = {0 C 1; : dim Eo, = 1 for all O' E 1; close to 0}. 

Roughly speaking, Theorem 3.2 will follow in Section 3.3 from the propagation 
of singularities along the bicharacteristic intervals and the complete two dimensional 
bicharacteristics of P and the hypoellipticity of P at certain points in 1;0. For these 
points, the following lemma will be used. 

L e m m a  3.9. We assume that condition (P) is satisfied. Let tg=zr(0)c]; ~ and 
let a be a complex positively homogeneous function of class C 2 near O, wzth H~ eM ap/~ 
oM 5 0  . Let 7a be the germ of the bicharacteristic of Re ap through O, with 7a (0)=0. 
The property that 

� 9  ap takes a negative value on "~a (] -- E~, 0[) or a posi t ive  value on %(]0,  +r 
for every small ~ > O, 
does not depend on a. I f  it is satisfied, z9 is called a point of positive type. 

Proof. We may assume that  

ep/\L 0 5 0 ,  nimp/\  ~ = o  at 0. 

A s  HRMee ap = (Re a)HMp--(Ira a)H~Smp at 0, Re a(O)50 if the condition in Lemma 3.9 
is satisfied, so we may write a =  (1+i/3) Re a. If ~3=0, that is p is multiplied by a non- 
vanishing real function, the bicharacteristic of Rep is preserved, with the preserved 
or reversed orientation depending on the sign of a. and the same happens to the 
sign of Imp; the invariance is clear in that  case. It remains to consider the case 
of a = l + i / 3 .  We have to look at the sign of 3 R e p + I m p  along the bicharacteristic 
of R e p - / 3 I m p .  As R e p = / ~ I m p  along this bicharacteristic, this is the same as 
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the sign of ( l + f l  2) Imp, hence as the sign of Imp. We use a homotopy argument. 
Let 7t be the bicharacteristic of Re p - t f l  Imp through 0, 0 < t < l .  If (for example) 
Imp takes a positive value on 70(]0, +el )  for all e>  0 and is < 0 on "~1(]0, +c[), by 
the condition (P) and continuity, Imp  must be zero on "Yt (]0, +e l )  for some t E [0, 1]. 
Then 7t( ]0, +el  ) is contained in the characteristic set of P, hence its image in S ~ C  "~ 
is a bicharacteristic interval, since it is contained in -t2o This implies that  70 ( ]0, +e l )  
and 3 ' l ( ]0 ,+e[)  have the same germ of image near 0, which is a contradiction. 

3.3. Propagat ion and non-confinement of  singularities 

In this section we reduce the proof of Theorem 3.2 to microlocal results con- 
cerning the singularities of u, when Pu  is analytic, and their propagation. We first 
recall a little of Sato's theory for maximally real manifolds with low regularity. Let 
g denote the sheaf on T*C ~ of microdifferential operators; we shall also consider 
g as a sheaf on S ~ C  '~, using the homogeneity. The sheaf CM of microfunctions 
is a flabby sheaf of g-modules on S~vIC ~ with the other main property: there is 
a sheaf morphism BM---~V.CM compatible with the natural action of differential 
operators, such that  the support of the image of a section u of BM is the micro- 
support of u. Concerning the notion of the microsupport, for the time being, we 
need only mention that  a hypeffunction is analytic near a point z E M if and only if 
its microsupport does not meet the fiber of z in S*MC n. The proof of Theorem 3.2 
depends on the next three microlocal results. 

Theorem 3.10. Let P be an operator of principal type and let b be a bichar- 

acteristic interval of P.  I f  it is a microfunction defined in a neighborhood of b and 
Pi t=0 ,  then either the suppo~t of it contains b, or it does not meet b. 

As a special case, complete one dimensional bicharacteristics propagate singu- 
larities. This is also the case for complete two dimensional bicharacteristics, at least 
when condition (P) is satisfied. 

Theorem 3.11. Let P satisfy condition (P) and let B be a complete one or two 
dimensional bicharacteristie of P.  I f  it is a microfunction defined in a neighborhood 
of B and Pi t=0 ,  then either the support of it contains B,  or it does not meet B .  

Finally, for points in )30 (see (3.5) and Lemma 3.9), we have the following 
result. 

Theorem 3.12. Let P satisfy condition (P) and let OEV ~ be a point of positive 
type. I f  it is a micro]unction defined in a neighborhood of ~) and Pi t=0 ,  then 
does not belong to the support of it. 
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Proof of Theorem 3.2. Let uEB(M) be analytic outside a compact  set K c M  
and such that  Pu is analytic. We must prove that  u is analytic. Assuming it is not 

and that  ~ belongs to the support  of the microfunction ~CCM(S~tC n) associated 

to u, we shall reach a contradiction. 
The point ~ must  be a characteristic point of P since by Sato 's  theorem, P 

is invertible at every non-characteristic point. The point O does not belong to a 
complete bicharacteristic of P ,  since by Theorem 3.11, this bicharacteristic would be 
contained in the support  of ~, hence lie over K,  which is forbidden by the assmnption 
in Theorem 3.2. As a consequence, ~E12~ b. By Theorem 3.12, vqEV ~ cannot be a 

point of positive type, hence with the notation in Lemma 3.9, Imap must be ~ 0  on 
7 ( ] - ~ ,  0]) or on 3'([0, +s[  ), which by the definition of V ~ implies that  v~ belongs to 
a maximal  bicharacteristic interval 3 :̀ I ~ S ~ C  n. Since ~)~V b either I=[t- , t  +] or 

I =  [0, +eel.  In the first case, we may select a non-vanishing homogeneous complex- 
valued function a such that  H M apA ~M r  along 7r -1(3`), hence 3  ̀is the projection 

of a bicharacteristic of Re ap. Now, as 3' is maximal  and contained in V ~ Im ap must  
be r  somewhere on the left (respectively on the right) of 7 ( t - )  (respectively 3`(t +)) 
on the bicharacteristic of Re ap. Using condition (P), it is then clear that  at least 
one of the endpoints of 3  ̀ is of positive type, which is forbidden by Theorem 3.12 
and the propagation along ~. So I= [0 ,  +~c[. Since the support  of fi lies over K,  

so does 3  ̀ by Theorem 3.10, hence it has a cluster point ~)0 as t--*+oc. Then vg0 
belongs to a complete one dimensional bicharacteristic lying over K (see the proof 
of Theorem 7.1 in [12]), which is not allowed by the hypothesis in Theorem 3.2. [] 

It  may be worth mentioning that  we have obtained the non-confinement of 

analytic singularities as a by-product  of simple s ta tements  about  the existence of 
analytic singularities and their propagation. The case of C ~ singularities is much 
more complicated, see the analysis of HSrmander in [12]. 

3.4. C o m p l e x  c a n o n i c a l  r e d u c t i o n  

We shall now reduce the problem to a model problem. This is similar to what 
was done in [31] apart  from the fact that  we shall use the t ransformation theory of 
Kashiwara and Schapira [16] in place of the earlier but less general t ransformation 
theory of Kashiwara and Kawai. 

Let F t c C  ~ be a strictly pseudoconvex domain of class C 2, near its boundary 

point 0EN:=0f~ ,  and f a defining function of f~: 

(3.6) • := {z: f(z) < 0}. 

We still define the conormal bundle T~vC '~ by (3.2) and it is still the case, due 
to the assumption that  the Levi form is non-degenerate, that  T~vCnCT*C n is 
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maximally real, R-Lagrangian and I-symplectic. We shall use the same notation 
as in Section 3.2, with superscript N,  for the objects associated with the induced 
symplectic structure. The manifold T } C  n is defined by the equation 

r?vc  = ( z , ; ) : ] ( z ) = O ,  ~ j = k  (z) f o r l _ < j < n a n d s o m e ~ R *  . 

We shall work on the outer component T )+C ~ of T } C  ~, defined by taking k >0  in 
(3.7), and the outer component 

(3.8) S[,~C n = T~+Cn/R +* 

of S ~ C  ~. Since its fiber at z E N  consists of just one point, we shall often identify 
S~+C ~ with N, using co: S~+C~---+N. The role of the sheaf of microfunctions will 
be played by the sheaf on N of "holomorphic functions on the f~ side of N modulo 
holomorphic flmctions on N".  More precisely, we introduce the sheaf CN on N or 
S~v + C n with stalk at z E N: 

(3.9) C~,z = fire o(/',n~)/o(,~), 
Gz 

A running through the set of all open complex neighborhoods of z. The sheaf CN 
is a sheaf of g-modules. 

Let us return to the situation considered in Section 3.3. Let P be of principal 
type and 7r(O)~ES*MC ~ be a characteristic point of P. We can find a homoge- 
neous holomorphic canonical transformation X of T* C '~, defined in a complex conic 
neighborhood of O, such that  the complex characteristic variety of P is transformed 
into the complex hypersurface {fl =0}, while ~b~C ~ is locally transformed into the 
outer conormal bundle to the boundary N ~ 0  of a strictly pseudoconvex domain of 
class C 3 in C n (we refer to Section 5 in [31] or Section 7.4 in [13], where this state- 
ment is proved when M = R  ~, but the proof does not use this fact). By the theory of 
Sato-Kawai-Kashiwara [25], 32 can be quantized as an isomorphism ~: X,Eo--*gx(O), 
in such a way that the principal symbol a(Q) of a microdifferential operator Q is 
transformed according to the formula a(~(Q))=a(Q)ox -1. In particular, a(~(P))  
vanishes at order one on {41 =0} and by another classical result of [25], there exists 
an elliptic, hence invertible, microdifferential operator A defined in a conic complex 
neighborhood of 0 such that  ~(AP)=O/Ozl.  

Finally, by the transformation theory of Kashiwara and Schapira (see [16, The- 
orem 11.4.9]), X can be locally quantized as a sheaf isomorphism ~: X.CM----*CN, 
which is compatible with the transformation of microdifferential operators, that  is 

~(Qu) =~(O):~(u). 
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So any microlocal s ta tement  about  a differential operator  of principal type on 
a maximally real manifold M of class C 3, whose formulation is invariant under 
canonical transformations and multiplication by an elliptic operator,  has only to be 

tested in the case of the simple operator 0/c9zl acting at the boundary  of a strictly 
pseudoconvex domain of class C 3. This is, almost, the case for the s tatements  in 

the previous section. So, from now on, we shall consider the operator 

0 
(3.10) cOzl :CN.0 ) ON,0. 

3.5. The  s t u d y  of  the  mode l  

We consider now the operator  (3.10). We use the notation 

z'=(z2,. . .  ,zn), Z"=(Z2,... ,Zn-1), Zk=Xk+iyk for k=l , . . .  ,n. 

Since the non-characteristic case is trivial and our problem is invariant under a 
local biholomorphism that  preserves the equation Ou/Ozl-=O, we may perform an 
elementary reduction (we refer to Section 2 in [31] or Section 7.1 in [13] for the 
details of this reduction), so that  ~ has a local equation 

(3.11) ~ := {z : f (z) := -x,~ +h(z~, z", y,~)2 +g(yl, z", y,~) < O}, 

with hEC 2, gEC 3, 

(3.12) h ( 0 ) = g ( 0 ) = 0 ,  d g ( 0 ) = 0 ,  Oh(O)/Ox~O. 

Let ~ECN,o, O~/Ozl=O, and let u be a holomorphic representative of ~. As 
Ou/Ozl EOo, solving Ov/Ozl=OU/OZl with VEOo, replacing u by u-v ,  we see that  
we may assume tha t  Ou/Ozl =0.  In this situation, it is easy to show, see [31], [13], 
that  u=vo5 for some holomorphic function v in a "local projection" of ~t under the 
map  

(3.13) , c  

Localizing everything near 0 E C n, we define 

~ : = { z : l x l l < c ,  ly l l~C,  IXnI<C, Izttl~-Iynl<V, f(xl+iyl ,z ' )<O}, 

N:={z:IxlI<C, lyll<s IXnl<C, IzHl§ f(xl§ 
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In the sequel, we shall assume that  0<r/<<c<<l are chosen small enough. Then it 
is represented by a function u=vo5 where vEO(A)  and A c C  n-1 is the open set 
defined by 

A : = { Z : I x n l  <s Izttl-~lynl <?], -Xn--~-G(zt",yn) < 0 } ,  

where G(z", yn)=minlml<_~ 9(yl, z", yn). We note that  A is a supergraph of a Lip- 
schitz function since, with ~=(z" ,  y,~) and an obvious notation, we may write 

G(~') - a(~) = g(Yl (~'), ~') -g(Yl  (~), ~) <_ g(Yl (~), ~') -g(Yl  (~), ~) ~ Cl(- l. 

Whether  0 belongs to the support of fi or not depends, on one hand, on the po- 
sition of the fiber 5 -1(5(0)) of 0 with respect to ft, on the other, on the holomorphie 
convexity of A at 5 ( 0 ) = 0 E C  n-1. We have the following lemma. 

L e m m a  3.13. The following properties hold for 0<r/<<e<<l. 
(1) If 5(0) EA, or if 5(0) E0A and 5(0) belongs to the envelope of holomorphy 

of A, then O does not belong to the support of it. 
(2) If  6(O)EOA, then either the support of it contains the set NN5-1(5(0)), or 

it does not meet it. 
(3) If  S(O)EOA and A: D---~fX ( D c C  denotes the open unit disc) is an analytic 

disc with A(0)=0,  the following property holds: 0 does not belong to the support of 
it irA(D) intersects A, while if A(D)cOA,  then the projection of the support of 
either contains or does not meet A(D). 

Proof. Properties (1) and (2) are self-evident. To prove property (3), we argue 
as in [32, Lemma 3.2]. Let us assume that  v is holomorphic in the union of A and a 
small ball around A(~-0) (TOED\{0}, A(~'0) may belong to A or not) but  cannot be 
holomorphieally extended near 0EC n-1. Introducing (as in [32, Lemma 1.2]) the 
envelope of holomorphy A of the union of A and this small ball, this means that  
0 ~ A. We shall reach a contradiction. Set e = (0, ... , 0, 1)E C '~- 1 and let d(z) denote 
the euclidean distance of zEA to the boundary of fX. Since A ( D ) C A  and A is a 
supergraph of a Lipsehitz function, A(r)+i teEA,  for small t > 0  and every r E D ,  
and d(A(~-)+te)>_t/C. On the other hand, d(te)<_t, since 0E0~x. The function 
ut (T)=- log  d(A(T)+te), t>0 ,  is subharmonic in D, uniformly bounded in some 
disc of center T0, radius 0>0, Using the mean value property we obtain 

_ [ [  ut (7) dr -< 1 (Qr-TrO 2) ( -  log t /C) - l o g t  <ut(O) < J JD +Tro2M). 

Letting t-+0 +, we reach a contradiction. [] 
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The differential operator O/OZ 1 is of principal type, with principal symbol ~1' 
To emphasize the link with Section 3.3, we shall use the notation 

P = ~1 IT<, c" .  

Taking (3.7), (3.11), (3.12) into account, we have 

of k_(2h Oh k (2 h oh 
p = k ~ z i ,  R e P = 2 \  Oxi/I,  I m p = - ~ \  ~ 

The characteristic points over N are thus defined by h=0,  Og/Oyi =0. Our task is 
now to establish a link between the properties of the symbol p and its Hamiltonian 
field, which occur in the statements of Theorems 3.10-3.12, and the properties in 
Lemma 3.13, which are stated in terms of the fibers and the image of the map 
5: (zl, z')~-*z'. For example, we would like to recognize a bicharacteristic interval, 
or a characteristic point of positive type, by looking at the behaviour of the function 
yl~--~Og(yi, z", yn)/Oyi. This will be possible, thanks to the following lemma. 

L e r n m a  3.14. Let OET~vC n be a characteristic point with dpAdpA# N =0 at 0. 
In the coordinate system (xl,Yi, x", y', k ) , we have 

i 0 . _ 0  0 
H N =  ~ z l - - z a ~ z i + 8 - ~  at O, 

with a=(ah/O21)(Oh/Ozi)  -1, /3EC. 
Hence, 7r.H N is tangent to the zero set E = { h = 0 }  of Rep at 7r(0), and if we 

I t  ! use (Yl, x , y ) as a coordinate system on E, we have 

7r, H N  p 0 = a - -  at Tr(O), 
Oyl 

/ I with I /,I >0.  

Proof. By our assumption we have the relation 

(3.14) d~l = a d ~ l + i b s  at 0, 

"*  n on T ) C  , for some a, bEC. Using only formula (3.3) we get 

( H ~ , d z j } - = { ~ l , z j } N = i { ~ l , z j } = i ~ l j ,  j = l , . . .  ,n. 
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Using (3.14) and formula (3.3) we compute 

7% 

o ' : 1  

=-igd~j at0, j = l , . . .  ~n. 

To compute a, we rewrite (3.14), 

and chase the coefficients of dzl and d21 in this equality, in our coordinate system. 
For the sake of simplicity, we shall write f~l for Of/Ozl, etc. We note that  the te rm 

ibkOf gives no contribution, since at 0, f ~  = 0  and dx,~=dg with g~ =0,  ge~ =0.  As 

f ~ ,  f ~  do not depend on xn, we obtain 

f ~  ,~ = afz~ ~,  f~  e~ = af~ ~. 

By addition we get fe~ ~ =afzl ~ .  As g does not depend on xl and h = 0  at 0, we 
obtain a=hel/h~ 1 and the first part  of the lemma. 

The second part  follows, since the formula for Hf f  gives H~h=O at 0 and 
N __1 Hp y l - ~ ( l + ~ )  with real par t  c~=h2zl/41hz~l 2. [] 

We are now in a position to prove the s ta tements  of Section 3.3. 

Proof of Theorem 3.10. If b~0 is a bicharacteristic interval of O/Ozl, then b is 
the projection of an integral curve of HNep along which p=0 ,  and the condition in 

Lemma 3.14 is satisfied. Hence h=0 ,  Og/Oyl = 0  along b, and by Lemma 3.14, z",  Yn 
are constant = 0  along b; hence also 9(Yl, z", yn)=g(yl, 0, 0) is constant =0  along b. 
So z~=0 on b and b = N D ~ - I ( 0 ) ,  and Lemma 3.13, proper ty  (2) applies. [] 

From now on we assume that  O/Ozl satifies condition (P) on S~v+C ~, though 
this is perhaps not necessary for the next result (we shall avoid proving an analogue 
of the Hanges-SjSstrand Theorem [7] in our context, condition (P) simplifies things). 

Proof of Theorem 3.11. Theorem 3.10 applies to one dimensional bicharacter- 
isties, so we consider the case of a complete two dimensional bicharacteristic. We 
must be careful since its definition is global while our reduction is local. How- 
ever, this is not important  for the following reason: if ~ belongs to a two dimen- 
sional bicharacteristic, and also to a bicharacteristic interval, as propagat ion along 
a bicharacteristic interval has already been established, we may localize our s tudy 
close to an endpoint of it. Hence we may assume without loss of generality, that  
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v~ does not belong to, or is an endpoint of, a bicharacteristic interval. Then it is 
easily seen that  the complex structure of the reduced two dimensional bicharac- 
teristic through 0 is locally determined and the following argument is meaningful. 

By Theorem 3.7, we may assume that  there exists a germ of a two dimensional 
manifold 0CB c N such tha t  the space obtained by shrinking any bicharacteristic 
interval in B to a point has a complex structure, the holomorphic functions of which 
are induced by solutions of HNu=O. We note tha t  the map  6 is well defined on 
the reduced space, since a bicharacteristic interval projects in a fiber of 6 by the 
proof of Theorem 3.10. It is holomorphic since Hp~'Zj=i{C~, z j } = 0  if j > l .  Hence 
5: B--~C n-1 may be locally considered as an analytic disc, as in Lemma 3.13, prop- 
erty (3). The lemma applies (actually A is pseudoconvex [31] and 6 ( B ) c O A  but 
we do not need these facts.) [~ 

Proof of Theorem 3.12. It  is an immediate consequence of Lemma 3.13 and the 
following result. 

L e m m a  3.15. With the notation in Lemma 3.13, ~(0)EA if OEI; ~ is a point 
of positive type. 

It  was proved in [31] that ,  if Imp=-kOg/Oyl does not change sign from - to 

+ along any bicharacteristic of Re p, it does not change sign from - to + along any 
integral curve of O/Oyl. No such result holds for sign changes from + to - .  The 
main ingredient in the proof of Lemma 3.15 is that  this is however the case on the 

p a r t / ;  ~ of the characteristic variety, when condition (P) is satisfied. 

Proof of Lemma 3.15. We identify S~v+C n with N and we parametrize the zero 
set E={zcN:h(z)=O} of R e p  by Yl, x",  y'. The vector field HN~p induces a vector 

field 7r.HN~p on E (because p is homogeneous of degree 1) and by condition (P), 
Og/Oyl does not change sign along its integral curves. We shall use the homotopy 

Xt=(1- t )Tr .HNep+t~  0 < t < l .  
/)Yl ' - - 

between the vector fields 7r.HNep and O/Oyl on E. By the definition (3.5) of l; ~ 
and Lemma 3.14, we have near 0, 

0 Og 
Xt = at ~ with cq > 0, if Oyl = O. oYl 

It  is then a consequence of the Bony-Br6zis lemma, see [13, Lemma 7.3.4], applied 

to :hOg/Oyl, tha t  Og/Oyl does not change sign along the integral curves of Xt, 
0 < t < l .  We may assign a sign s(t) to t: s(t)=-l,O, +1, depending on if Og/Oyl 
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takes a negative value in every neighborhood of 0, or is - 0 ,  or takes a positive 

vatue in every neighborhood of 0, on the half integral curve of X t  ending at 0. 

If s(0)>0, then s ( t )>0  for all t, since otherwise, by continuity, s(t) would vanish 

for some t, which would mean that  the half integral curve of X0 ending at 0 is 

a bicharacteristic interval. This is a contradiction. So s (1)>0 and g(yl ,0)  is a 

nonconstant nondecreasing function on I -e ,  0], hence takes negative values, which 

implies that 6(0)EA, with the notation in Lemma 3.13. The other case in the 

definition of a point of positive type can be treated similarly. [] 
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