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Maximal invariant subspaces 
in the Bergman space 

Hfikan Hedenmalm(1) 

1. I n t r o d u c t i o n  

Let A 2 be the space of all complex-valued holomorphic functions f on the open 
unit disk D that  are subject to the boundedness condition 

(/o I l f l l d=  = I f ( z ) l  2 dS(z) < +~c; 

here, dS(z)=dx dy is area measure in the plane (z=x+iy). This space is usually 
called the Bergman space. A closed subspace 34 of A 2 is said to be invariant (or 

z-invariant) if z34 is contained in 34. Since the operator of multiplication by z 
is bounded below on A 2, z M  is a closed subspace of M .  We define the index 
of the invariant subspace 34 to be the dimension of the quotient space 3 4 / z 3 d ,  
with values in the set {0, 1, 2 , . . . ,  +oc}.  We will at times refer to this number 
as ind(34). The index of 34 can only equal 0 if 34 is the zero subspace. There 
are invariant subspaces of arbi t rary index [4], [6]. Let z[34] denote the operator  on 
A2/34 induced by z, 

z [ M ] ( f + 3 4 )  = zf+34. 

The invariant subspaces of A 2 are ordered with respect to inclusion. Thus an 
invariant subspace 34 is said to be maximal if the only invariant subspace strictly 
containing it is tlle whole space A 2. For each a E D ,  the invariant subspace 

Ada = { f  e m2: f(c~) = 0} 

is maximal,  because its codimension is 1. The question is: are there any other 
maximal  invariant subspaces? One reason why maximal  invariant subspaces are 
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of interest comes from the analogy with the Gelfand theory of maximal ideals in 
commutative Banach algebras. Another is the following: an invariant subspace A~ 
is maximal if and only if the operator z[M] lacks nontrivial invariant subspaces. 
So, if in some way a maximal invariant subspace A/I could be found with infinite 
codimension, we would have an example of an operator on an infinite-dimensional 
separable Hilbert space which lacks nontrivial invariant subspaces. 

The following result is proved in this note. 

T h e o r e m  1.1. If  A4 is a maximal invariant subspace, then A/~=M~ for some 
oLED, where as above 

A/I~ = { f  E A2: f(c~) = 0}. 

Let Af be a given invariant subspace in A2~ and suppose the invariant subspace 
Jr4 is maximal with respect to containment in Af. If in this situation the dimension of 
Af/A/I always equals 1, then every operator on infinite-dimensional separable Hilbert 
space possesses nontrivial invariant subspaces [6]. So, in a sense, the main theorem 
provides weak support for this conjecture. It is conceivable that  the methods used 
here can be extended so far as to prove that  in the above situation d i m N / M = l  
whenever Af has finite index. However, handling the then remaining case when 
ind(A/) = + c ~  apparently is at par with the invariant subspace problem. 

2. The  proof  of  the  main  t h e o r e m  

We suppose M is a maximal invariant subspace in A 2, which is not of the type 
A//~, and shall t ry  to obtain a contradiction. Introduce the zero set of A4, 

Z ( A 4 ) = { z E D : f ( z ) = O  for all f E • } ,  

and note that  by maximality, we must have Z(A/[)=0, for otherwise jk4 would 

indeed be contained in one of the M s .  

L e m m a  2.1. The index of M equals 1. 

Proof. Suppose, for the sake of argument, that  i nd (~d)> l .  Then zA4 has 
codimension larger than 1 in A/I, and thus cannot coincide with the larger invariant 
subspace A4 NzA 2, which has codimension 1 in A/L Consider the invariant subspace 
Af with 

z/V= .M~zA 2, 

which thus contains ~4 as a strictly smaller subspace. By the maximality of A/l, we 
should have A ;=A 2, but this is impossible, because then ~4 would have to contain 
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zA 2, and thus coincide with zA 2. The contradiction obtained proves the assertion 
of the lemma. [] 

We proceed to look at the spectrum a(z[A~]) of the operator z[]M]: by defini- 
tion, A �9 C is in o(z [Ad D if and only if the the operator A - z [ M ]  fails to be invertible. 
By Lemma 2.1, Z(Ad)=0,  and so by [5], a(z[M]) is a closed subset of the unit cir- 
cle T.  It is well known that  if the spectrum of an operator is disconnected, then 
the operator has nontrivial invariant subspaces; one can show this using the Shilov 
idempotent theorem. Hence the only case that  concerns us is when a(z[Ad]) is a 
connected subset of T,  and this can happen in three ways: a point, an arc, and the 
whole circle. In order to discard the two latter possibilities, we shall estimate the 
norm of the resolvent ( l - z [ A J ] )  - I  for , ~ 6 C \ T .  Let us form the extremal function 
GM for the invariant subspace A4, which is the function which among all functions 
in Ad of norm 1 has the largest value (in modulus) at the origin. Since i n d ( ] v / ) : l  
and Z(A4)=0,  the function GM has no zeros in D [3]. We can now use the con- 
struction in [5] to estimate the norm of the resolvent inside the unit disk, and the 
result is 

for some constant C. Outside the unit disk, we shall be happy with the unsophis- 
ticated estimate 

1 
II(>,-z[M])-lll < II(~-z)-l l l  < - -  ~ �9 C \ D .  

- - 1 _ 1 ~  I , 

These estimates are radial, and if we take the log-log of the bounding function, 
it is integrable. This means that  there is a non-quasianalytie functional calculus 
operating on z[Ad], so that  if cr(z [M]) is an arc or the circle, then z[Ad] has nontrivial 
invariant subspaces (see [7], [21). The only remaining case is when the spectrum is 
a point, which by rotational symmetry can be assumed to be 1. 

P r o p o s i t i o n  2.2. If  Af is an invariant subspace with ~(z[N~)={1}, then, for 
some fiE]0, +oc[, Af coincides with AfZ, the invariant subspace of all functions f in 
A 2 with 

lim s u p ( l - t )  log [f(t)[ <_ - 3 .  
t--*l 

The proof of the proposition is standard; let me nevertheless supply some hints 
on how to construct a proof. For/3_>0, N'2 is a closed invariant subspace, as can be 
seen by applying H p theory to a smaller tangential disk at 1 (for /3=0,  Af~ is the 
whole space). Now select ~ by requesting that  it be the smallest such that  AfCAfv. 
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The extremal function [3] Gar for N" can be shown to have an analytic extension to 
C \{1}  [5], and since it generates N" [1], its logarithmic residue at 1 is 

lira ( l - t ) l o g  IG~(t)l = - ~ .  
t--,l- 

One shows that G2r can be multiplied by an H ~r function to obtain the classical 
inner function 

u f ~ ( z ) = e x p (  /3 l + z ~  
2 1----;/' 

which is known to generate Afz, whence the conclusion Af=Af2 follows. 

It is now clear that  no invariant subspace J~f with a(z  [Af] )=  { 1} can be maximal, 
which concludes the proof of Theorem 1.1. 

Remark. It should perhaps be pointed out that  the result obtained here is in 
no way peculiar to the unweighted Bergman space. In fact, there is a large class 
of weighted Bergman spaces where the same holds true. It should be mentioned in 
connection with this that  Aharon Atzmon recently found a one-parameter family 
of invariant subspaces with spectrum a ( z [ • ] )  equal to {1} for radially weighted 
Bergman spaces where the spaces contain holomorphic functions of very rapid 
growth in the disk. 
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