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Zero sets of holomorphic functions in the bidisk

Joaquim Ortega-Cerda(!)

Abstract. We characterize in geometric terms the zero sets of holomorphic functions f in
the bidisk such that log|f]€ LP{D?) for 1<p<oco.

1. Introduction

In this work, we study some geometrical characterization of the analytic vari-
eties in the bidisk D?={2€C?:|2;|<1, |z2|<1} defined by a holomorphic function
with some restriction on its growth. In a strictly pseudo-convex domain, this kind of
problems are better understood and, for instance, there is a complete characteriza-
tion of the zero sets of holomorphic functions in the Nevanlinna class (see [K], [S]).

In the bidisk much less is known. Nevertheless there are some cases where the
zero sets have been described. For instance in the class of holomorphic functions
such that log|f|€ L' (D?) (see [C] and [A]). In this work we consider a variant of
this problem, namely functions such that log|f|€LP(D?). We obtain a complete
characterization of the zero sets of this class. This problem is closely related to one
considered by Beller in one variable (see [B]), where he studied the zero sequences of
functions such that log* |f|€ LP(D). This problem in one variable has been further
studied in [BO]J.

Acknowledgments. This work is part of my Ph. D. thesis and I want to express
my sincere gratitude to my advisor Dr. Joaquim Bruna for all his help and attention.

2. Zeros of functions with log | f|€ LP(D?)
2.1. Statement of the results

In this section we will give a complete characterization of the zero sets of
holomorphic functions, f€H(D?), such that log|f|€LP(D?). Our main tool will
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be the Poincaré-Lelong theorem [Le] that shows that this problem is related to the
problem of solving the equation i09u=0 with good estimates on u in terms of ©.
In order to state the theorem we need to introduce some notation.

Let © be a closed positive (1,1)-current in the bidisk; for any z€D and fixed
0<e<1 let D, be the small disk

Dz:{geD; == <5}.
11—z

If © is a closed positive (1,1)-current then it can expressed in coordinates as

2

O(z) =1 Z 6;;(z) dz; Ndz;,

ij=1

and 6,1(21, z2) is a positive measure in the first variable, if we fix z3, because ©
can always be expressed as i0Ju, where u is plurisubharmonic; thus 6;;=A4, ©>0.
Accordingly 6#22(z1,20) is a positive measure in the second variable if we fix z;.
Therefore we can define 6y1(D,,, 22) as

611(D, , 22) =/ db11(¢, 22).

¢eD.,

Provided with this notation, we can state our main theorem.

Theorem 2.1. Let © be a closed positive (1, 1)-current on the bidisk, then the
equation

i00u=0©
has a solution u€ LP(D?) for a p, 1<p<oo, if and only if the function
(]') f(z1722)=011(D21722)+022(zlang)

belongs to LP(D?).

The disks D, and D,, that appear in the statement of condition (1) depend
on ¢ but the condition itself does not. This can be proved in a way completely
analogous to the case of one variable in {L1]: Let 0<é<e<1, we call

s (2) =011(D., (€), 22)-

Then we have the following proposition.
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Proposition 2.2. (Luecking) The function ss€LP(D?) if and only if ».€
LP(D?).

Theorem 2.1 has an immediate corollary for zero-varieties. Fixed z€D?, we
consider the cross formed by

C.={CeD?*;(1=21, (EDLYU{CED?;(a=2, (€D, }.
Let ny (z) be the number of points that an analytic variety V meets the cross C,

(counted with multiplicity), then we obtain the following result.

Corollary 2.3. The analytic variety V is the zero set of a function f with
log | f1€ LP(D?) if and only if ny € LP(D?).
Proof. If we take into account the Lelong—Poincaré theorem, the corollary is in

fact a reformulation of Theorem 2.1. O

Remark. Theorem 2.1 and Corollary 2.3 have direct generalizations to the case
of the polydisk D™ with n>>2. In this setting, the geometric condition that appears
in the theorem is fe LP(D"™), where

f(z):Z&ii(zl 4 aee 7DZ1' Zn)
i=1

For the sake of simplicity in the computations we will give the proof in the case
n=2, although the same proof can be carried out in higher dimensions. Moreover
we will not consider the case p=1. This case is already known, it has been studied
by Charpentier [C, p. 58] and Andersson [A, Thm. 1]. The theorem that they prove
is the following.

Theorem 2.4. (Charpentier) If we have a closed positive (1,1)-current © in
the bidisk, there is a solution ue L'(D?) to the equation

i00u=0
iof and only if
2(1—|z1|2)2611(z)+(1-|zQ|2)2022(z) < +00.
D

This weighted Blaschke condition is equivalent to condition (1) when p=1.
Indeed, if we apply Fubini’s theorem,

L on(Dess e +0m(as, Doy dm(a) = [ D200 (o1. )+ D e, 22)
D2

= [ A=l () + 1 o))

We will divide the proof of Theorem 2.1 into two parts. In the first one we will
show the necessity of condition (1); in the second one, which is slightly more tech-
nical since we need estimates of some integral kernels, we will show the sufficiency.



106 Joaquim Ortega-Cerda

2.2. Proof of the necessity of (1)

The scheme of the proof is the following: We start by a Riesz-type decompo-
sition of the plurisubharmonic function u. We evaluate it at the origin, and get a
new decomposition by composing u with the automorphisms of the bidisk. This new
decomposition has better properties than the original for our interests. This tech-
nique has been used in one variable, at least by Pascuas in [P], Ahern and Cuckovié
in [AC] and Luecking in [L.2]. The necessity of the condition follows immediately
from the new decomposition.

Let ue PSH(D?)NLP(D?), 1<p<occ. We consider the decomposition of v into

(2) u = [u]+ L{804],

where II[u] is the orthogonal projection of u onto the pluriharmonic functions with
the natural scalar product in L2(D?), i.e.

Mal(e) = 7 [ #(¢.pu() (),
where the kernel is
(¢, 2)= . + : -1
1022 (1-Gry)? (1-20) (-2

A priori, this decomposition is valid only in the case p=2, but, since the kernel
defines a bounded operator in LP(D?) for 1 <p<co, we can extend the decomposition
to all LP spaces.

The other term in the decomposition (2) has an integral expression of the type

Liodu(z) = [ 1(6.2)n00u(0),
¢eD?

and the function L[6] is the minimal solution in L2(D?) of the equation 90v=

©. Note that in view of (2), the operator L is just determined on closed (1,1)-

currents ©.

The computation of the kernel I(¢, z) and the estimates of its size were carried
out by Andersson in [A]. The expression of the kernel [(, z) is not unique. There are
other kernels that give the same solution. Instead of writing down I((, z) explicitly,
we exhibit L as a linear combination of compositions of explicit operators. In the
statement that follows A; B, denotes the integral operator

A, Ba[0)(2) = / a(C1. 21) Ab(Ca, 22) AB(C),

¢eb?
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and the kernels appearing are

(1-[g) (A=) 2(1—|<|2ﬂ
(6,2~ sl E e e )
w°<<,z)=idw§
Z(1-[¢)”) | 2(1-[¢%)
P |t e |
~ 2
e Ol®)
e o “
NQd—i(C—)ﬂAﬂ,
i d¢AdC
Mo e gy
Theorem 2.5. (Andersson) Let us call
(4) L=TMy+MI+T1 Ko+ K\ To—~T1 To + M1 I, — My P, + T1 K.
Then
L[98u](z) = / 2)NOFu(C)

gives the second term of the decomposition (2).

From the explicit decomposition (2) we can already draw some conclusions.
Since w€ LP by hypothesis, then I1[u]€ L?. Therefore, because of decomposition (2),
we conclude that L{@0u]€ LP(D?). This is a necessary condition on 8du if ueLP.
In fact, since the operator L solves the 89-equation, we can say that L[©]€ LP(D?)
is a necessary and sufficient condition for the existence of an L? solution to the
i00u=6 equation. This condition is poorly handled, since the kernel that defines
L is not of constant sign and therefore there are cancelations in L[©] that do not
allow to obtain geometric conditions in the variety associated to ©.

We will find another decomposition of u composing with the automorphisms
of the bidisk. In order to avoid some technical difficulties, we will assume that
u€C>®(D?). Afterwards, using an appropriate regularizing process, we will get the
general case.

Let us call

[ Gtza Qa2 2
Tz(g)—(——1+clzl,—1+<2z2), (zeD?.
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We define u,(¢)=uo7,({). We have u,(0)=u(z) and applying the decomposition
(2) to the function u, at the origin we get

®) w@= [ o)+ [ U¢0)n00u.(0)

We take the first integral on the right hand side of (5), and we make the change of
variables n=r1,((),

/ﬁe (¢, 0y (¢) = / (7 (C) dmi(Q)

2
—|zf 1—lzz|2)

= u — — dm(n).
/77€D2 (n)<|1—~’11771|2 |1—Zam2|?

Now we will prove that the operator R defined by

0.2 Zlzl2 VP
Rl = [t (G2 2 Y am),

[1-Zyml? [1—Z2me|?

is bounded in LP(D?), i.e. | R[u]{p<|lullp. In order to do so, we will use Schur’s
lemma.

Lemma 2.6. (Schur) Assume that (X, ) is a measure space and K a measur-
able non-negative function defined in X x X. Let T be the integral operator defined
by K,

/ K(z.y)f(y) duly).

Let p be such that 1<p<oo and q be such that 1/p+1/q=1. If there is a constant
C>0 and a positive measurable function h such that

/ K(z,y)h(y)?du(y) <Ch(z)? for p-a.e. z€X
and
/ K(z,y)h(x)? dp(y) <Ch(y)? for p-a.e. y€ X,

then T is bounded in LP(X,du) with norm less than or equal to C.

In our case we take h(w)=(1—|w[?)?(1—|w2|?)?, with a properly chosen 8
such that —1<3<0. The estimates needed in the hypothesis of Schur’s lemma
come from the inequality ([R, Prop. 1.4.10])

(|11 IZIZ])B dm(z) S (1—|w|2)a_ﬁ+2, if a>—=1and a—3+2<0.
D w
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We have proved that if ue LP(D?), then

/ 1(C, 0)AOBu. (¢) € LP(D?)
¢eD?

with LP-norm controlled by that of u. Now, considering the expression (4) of {(C, z)
and taking into account that t(¢,0)=0, p(¢,0)=p((,0)=r°(¢,0), we obtain

/C Dzl((,O)/\aéuz(C)

6 . )

= [ o on(Ga, 00 NGy (G, 0)(Ga)elGa Al N 00r ).
¢

cD?2 2m

Let us consider the first term in the right-hand side of (6). For bidegree reasons it
is enough to consider

(1-[2[*?

md@ Ad(a,

D202 (C) = 022(7:(C))
and therefore

/C il 0)ds NG ADB ()
(]2 [P 6P -mP) (1l Y,
_/gem (1 g + )( ) 22(C1, C2)-

1—(ozy |1—(a2,|? 1-Gizf?
From the second term in the right hand side of (6) we only have to consider

_ 2)2 _
0101u,(C) 2911(Tz(C))(\—11‘;|<211_;L‘)4‘dC1 Ad¢y,
and therefore

[ mli,00o(ca)icandGa 0B ()

ceD?
2 _ 2 _ 2

=/ (log 21—(1 +(1 16115 (12| ))911(@&2)‘
(1€D

1_61751 |1_€:121|2

Both terms of (6) are therefore negative and moreover

z—¢

(=[PP (1|2
1—5,2

1-Czf*

? L A=lGPA-l)
=G

1
].Og — 5
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In consequence,

(7) /< ] (1—|<‘11|2)Z(1—‘iz1|2)2911(@,22)ELp(Dz)
1€ - 21

with norm controlled by the norm of u. Obviously, the same happens if we permute
the indices, since the solution L[©] is symmetric in both variables.
Finally, note that for (1€D,,,

1-Ciz |~ 1=z [P 1[G
From (7) we can conclude

1611(Dz,, 22)|lp S |-

From this inequality, we can obtain the general case (recall that we have only proved
the necessity when u€C>(D?)). For an arbitrary ue LP(D?) we pick a sequence
of u,€C*(D?) such that u, —u in L?. Since the convergence in L? implies the
convergence in the distribution sense, O™ =9u,, —ddu=0), weakly.

We want to check that ||61,(D.,, 22)||, <oc. But, for any function ¢ €C*°(D?)
positive with compact support, and if 1/p+1/¢=1 the following holds

[/132 $(2)011(Dz,, 22) dm(z)

lim /m W(2)0 (D, , 22) dm(z)

< M ffunflp ¥l S fulipllle,

thus we have obtained the desired result. O

2.3. Proof of the sufficiency of (1)

We will show that condition (1) is sufficient in order to obtain a solution u€
LP(D?) to i00u=0O. We assume initially that © is a closed positive (1,1)-form
and that ©€C>(D?). We will show that under this hypothesis the solution L{©]e
LP(D?) with controlled norm. Later on we will drop the regularity hypothesis. In
order to show this we will make use of the expression of I(¢, z) that we have given
in {4), i.e.

(8)  U(¢,2) =7 Amg+my AT +1y Aka+ky Aty —E) Ata+1my Adg—mi APz -+t Aka.

Recall that the definition of the kernels that appear in (8) are given explicitly in (3).
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We need the following bounds of the moduli of the respective kernels that can
be found in [A],

11232 =
o Im(¢,2)] < (l11—|§€,|zl)2_ [1+log} 1<_CZzH’
(¢, ) <~
~1-Cz)?

where ¢, 2z€D. The terms of the type Ty K, are

— > 1-]¢f?
d dNO(C) = D(zy, 22).
/ceD2 t(C1,21) A A 0 Cm)(Coma) 2AO(() = D(z1, 22)

We are going to rewrite D(z1, 22) in a more convenient way. Since t({1,21)=0 when
|¢1]=1, by Stokes’ theorem

2

Gl

C2—22
2

822(¢) dm/(C)

= (1=]G)(1-(2)
0= , d —
/geanz e 2) Cl/\(1—6222)(1—|Z2|2) o

———(1-1:1)(1-(2) 1-(oze

— a , D l
/CGDZ i 21)(1—C222)(1“|Z2|2) Gz
P (1—|C2|2)(1—4222)] 1-(222
+/Cem {2, [(1—sz2)(1—{22|2) o8 G-z

An immediate computation yields the following estimates

2
012(¢) dm(C)+D(21, 22)-

- 1
|5c1t(C1721)|5ma
‘6 A-]G)(A-Cz)| . 1 .
P (1-Gz)(1-|zf?) |~ -T2l
Hence,
1 1-|¢|? 1-(oza |?
D < 0 d
R e A U e ERGELD
1-|¢1 )2 1 1-Coza |
1 0 d .
*laﬂu—aaPLﬂaP°g@—m 612()] dm(¢)
Finally, as
log 1-(oz 22 (1_|C2|2),(1~|Z2I2) i C2~_22 21’
C—22 1—Cy22]? 1-(p22l 2




112 Joaquim Ortega-Cerda

we can estimate D(z1, z2) as follows,

- 2
Dealls [ 2 UGl (mog 1-Goz

¢cep? [1-( 21]? [1-(p22)? 222
G2 1-16,12 oz |2
+/ 1 |_C1| |7C2| (1+10g&1 Ca22
¢ep? |[1-(y21]? [1-(p22[? C2—22

We claim that |L[O](z)| is controlled by a sum of terms of the type

! (1-16[*) ( CQ )
11
( ) /C€D2 |1 Clzl|2 |1 4-222|2 CQ
1-1G? 1-1¢) ( ll_c
12 1k I o] 12222
" '/C€D2 =212 [1—-(y2202 Hlog Ca—29
(1—|C1|2)2( 1-Go 2)
’ T (e~ 25) dm(Cy).
) /cleD 1-C 22 1+log 6011(C1. 22) dm(C1)

Gi—21
Indeed, in (10) we have already seen that T3 K, is bounded by (11)+(12). The
term in 717, is smaller than (12) and moreover (9) implies that M, I5 is bounded
by (13) and Py My, TIM, by (11). Similar estimates apply to the kernels we obtain
by permuting indices in the previous ones, like TIJAf, KT, and M P,. We will
show that under the hypothesis (1) all of them belong to LP(D?). The terms of
type (11) and (12) will be considered jointly by means of the following two lemmas.

)922<<> dm(¢)

(10)

)xemm dm(¢).

)922«) dm(¢),

)w 21(C) dm(),

Lemma 2.7. The condition (1) implies
(1—|<112)2011(Dz|);(|1—|<2|2)2022(Dz> e I*(D?),

(1[G (1= |6P)8elD.) .,
o) € L7(D%),

where D, =D, xD,, and |D,| is the Lebesque measure of D.

Proof. Indeed, consider the operator 1 defined as

1
|Dw| CED,,

It is bounded from LP(D) to L?(D). If we apply this operator to the function
f(z1,22)=011(D;,, z2) (as a function of z,) and to g(z;, 20) =6a22(z1, D.,) (as a func-
tion of z;), we have proved the first part of the statement of the claim. The second

Y[ (w) = If(O))dm(¢), weD.
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is an immediate consequence of the first. In fact, by the positivity of the current
O, one has

(1-1G 1) A=1G)16121(D:) _ (1—|41|2)2¢911(Dz)+(1—|Czl2)26722(Dz)~
1D | - |D: | |D-|

And this function belongs to LP(D?). O

Lemma 2.8. If i1 is a positive measure in the bidisk such that

——"\(If']) € L(D?),
then B )
du(¢) ( ] 1-C222 ) LP(D?
/CEDZ TR 1+log aml )€ (D?).

Proof. We will split the integral that we want to estimate into two parts

dp(C) dp(¢)
14 — — — 1
ey /D |1—<lzll2|1—czz2|2+/ceoxozz 11—z ]2(1=[¢2[%)? °

As the function

1-(o2 ?

Go—2z2

1
1—(17 21—z

is plurisubharmonic, we have the sub-mean inequality

1 < 1 dm(n)
1-C221-G2f? ~ Dl Jyep, 11-m22|1-n2222

If this inequality is inserted in (14) we get that the first integral in (14) is bounded
by

1 dm(n)dp() 1 du(¢) dm(n)
/geD2 /neDc D¢l [1=m 21 [2[1-n222[? —/nen'z /(eD,, |D¢l [1-mz2[1-ma 2

S/ (D) dm(n)

neD? | Dy IL—mz 2|1 —mZ|?

Now, Schur’s lemma implies that the kernel

1
1—m 2 21 —n222)?’
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defines a bounded operator in LP(D?) and hence we can conclude that the first term
in (14) is in LP(D?). The second one is a bit more involved.
Due to the subharmonicity of the function

1
|1—CA121|2/
we have, as before,
/ du(Q) 1 1-(oz |?
¢eDxD,, [1-{ 21 (2 (1-[C2[?)? Ga—22
dm(n) 1 1-(ozo |
S - log du(¢)
-/CGDXDZ2 /nepgl (1=l 1-721% (1-]G2?)? " 7| Ga—22
1 du(¢) 1-Gozp 2)
= _— L lo dm(n)
/nen = Uéé’ T2 —TGPR 8| Gz

= A(21,22).

We want to prove that A€ LP(D?). Since 1/|1~17jz;|? defines a bounded operator
from LP(D) to LP(D),

/ |A(z1, 22)|P dm(z)
z€D?2

du(¢)
< 2o !
~/ 5 (/<DD =[P (1—[¢P)%

Now we apply Jensen’s inequality to estimate this by

s 2
1—(222
G2 —22

)mwmw.

1-Goze |

H(Dn XDzz)p_l
z22€D [ (€D,
222

ned Jep., (1=|G17)*P(1-[C )%

log” du(¢) dm(n) dm(zz).

If € D¢, (), then D,, C D¢, () for some §>¢. Since the hypothesis of the lemma is
independent of ¢, we may assume that D,, C D, and D, C Dy, . If we apply Fubini’s
theorem we get the estimate

w(D¢) o
/CeD2 LZE%‘<12(1-|<1t2)2p< —[C2[?)% g’

Since

= 2
1-(ozo
22

dm(n) dm(z2) du(().

1-(oz |
222

dm(z2) dm(n) < (1-161*)*(1-1G 1%,

P
/”IGDC1 1Og
Z2€D<2
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we get as a final bound

(D)
§/C€D2 (1—|€1|2)2p—2(1_|<2|)2p_2 du(()

It is then enough to show that this last integral is bounded by

p(D:)? -
/zeD2 (1—|z1]2)%P(1—|22|)?» dm(z).

In order to check this

u(D)P
/zem (1—|2z1]2)2P(1—|2e|) %> dm(z)
- pw(Dz)P~! -
_/ b2 (T—[21 PP (1~ 22l %7 /CEDZd"(Od (2)
u(DZ)P!
/CGDQ/zeDC —1¢1])2P(1—12]) 2P dm(z) du(Q)

_ u(DZyP~1 au(C).
—/cem (1=|z12)?P72(1—|(2|)?P~? g

With this, we have proved the lemma. O

(15)

Now, combining Lemmas 2.7 and 2.8, taking

du(¢) = (1=1¢1 ) (1 ~1C2[*)1012(O)] dm(C)

and

dp(¢) = (1—|C2 )2622(C)dm(()

respectively we see that the terms (11) and (12) belong to LP(D?).

In order to finish the proof of the theorem it remains to estimate the terms
of type (13). In order to control it we split it into two parts, according to the
contribution of D¢ and D,, in the integral. The contribution of D, is bounded by

(1—=1¢11%)%011(¢1, 22)
(16) /CIED T dm(Cy).

Due to the subharmonicity of

C(Clazl) = m:
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we have

/ (1=167)%*611(G1, 22) dm(C1)</ Mdm(ﬁ)-
¢ €D C - ¢ C

[1—¢ 21[2 €D [1-( 212

Since ¢(¢1,21) is a kernel that defines an operator bounded from LP(D) to LP(D)
and, by hypothesis (1), 81, (D,,, zo) € LP(D?), it follows that (16) belongs to L (D?).
The contribution of D, is bounded by

1(1

log
/Cvl EDzl C

We want to prove that
1-(12y

/ (/ log
2eD? \J(1eD,, G—21

In order to check this, we apply Jensen’s inequality and estimate the integral by

1
/ / 611(D,,, z2)P " log? ﬁ
2€D? J¢ €D, G1—

We apply Fubini’s theorem, integrating first in z1, and obtain the estimate

/ 011(Dey s 22)7 " (1- 11122012 (Cr. 22) dm(Cr).
¢i€D

911(C1 22) dm((y).

p
011(<1, zz)dm(Cl)) dm(z) < 400,

011(¢1, 22) dm(C1) dm(z).

If we now argue as in (15), this is in turn bounded by

/ 011(D21,22)” dm(z)
zeD?
Therefore we have already proved that there exists a solution u of i99u=© with

llullp S N1011(D2,, 22) |+ 1022(21, Dz, ) |l

if ©€C>(D?). In the general case, by a standard regularizing process (see for
instance [C]), we can find a sequence ©"—© in a distributional sense and with
©"cC>(D?), in such a way that

1671 (D=, 22)lp+ 16055 (21, Dz, ) lp S 1011 (D, 22) p+1022(21, D=2 )lp-

We have already proved that there exists a sequence u, with i8du, =" and such
that

”uan S; ”011(D21 ’ 22)||P+“922(Z13 DZz)“P'

There is a subsequence such that u,, —u with i90u=0 and

lullp S1611(Dzy s 22)llp+1022(21, Dzp)llp- U
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