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Zero sets of holomorphic functions in the bidisk 

Joaquim Ortega-Cerd/~(1) 

Abstract.  We characterize in geometric terms the zero sets of holomorphic functions f in 
the bidisk such that log IfIELP(D 2) for l<p<oo. 

1. I n t r o d u c t i o n  

In this work, we s tudy some geometrical characterization of the analytic vari- 
eties in the bidisk D 2 =  {zEC2: i z l l<  1, ]z2]< 1} defined by a holomorphic function 
with some restriction on its growth. In a strictly pseudo-convex domain, this kind of 
problems are bet ter  understood and, for instance, there is a complete characteriza- 

tion of the zero sets of holomorphic functions in the Nevanlinna class (see [K], [S]). 
In the bidisk much less is known. Nevertheless there are some cases where the 

zero sets have been described. For instance in the class of holomorphic functions 
such tha t  log I / l e L I ( D  2) (see [C] and [A]). In this work we consider a variant of 
this problem, namely functions such that  log ]fl ELP(D2) - We obtain a complete 
characterization of the zero sets of this class. This problem is closely related to one 
considered by Beller in one variable (see [B]), where he studied the zero sequences of 
functions such that  log + Ill ELP(D) - This problem in one variable has been further 
studied in [BO]. 

Acknowledgments. This work is par t  of my P h . D .  thesis and I want to express 
my sincere grati tude to my advisor Dr. Joaquim Bruna for all his help and attention. 

2. Zeros  o f  f u n c t i o n s  w i t h  log I l l  E L P ( D 2 )  

2.1.  S t a t e m e n t  o f  t h e  r e s u l t s  

In this section we will give a complete characterization of the zero sets of 
holomorphic functions, f E H ( D 2 ) ,  such that  log IfIELP(D2).  Our main tool will 
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be the Poinca%-Lelong theorem [Le] that  shows that  this problem is related to the 
problem of solving the equation iOOu=19 with good estimates on u in terms of 19. 

In order to state the theorem we need to introduce some notation. 
Let 19 be a closed positive (1, 1)-current in the bidisk; for any z E D  and fixed 

0 < c < 1  let Dz be the small disk 

If 19 is a closed positive (1, 1)-current then it can expressed in coordinates as 

2 
O(z) = i o j(z) dz, Ad j, 

i , j=l  

and On(zl , z2)  is a positive measure in the first variable, if we fix z2, because O 
can always be expressed as iOOu, where u is plurisubharmonic; thus 0 u = A , l u > 0 .  
Accordingly 022(Zl, z2) is a positive measure in the second variable if we fix Zl. 

Therefore we can define Oll(Dzl, z2) as 

Oll(Dzl,Z2)=/ dOll((,z2). 
ED~ 1 

Provided with this notation, we can state our main theorem. 

T h e o r e m  2.1. Let 0 be a closed positive (1, 1)-current on the bidisk, then the 
equation 

iOOu = 0 

has a solution ueLV(D 2) for a p, l < p < ~ c ,  if and only if the function 

(1) f ( Z l ,  Z2) ----- 011(Dzl, z2)+O22(Zl, Dz~) 

belongs to LP(D2). 

The disks Dzl and Dz2 tha t  appear  in the s ta tement  of condition (1) depend 

on c but the condition itself does not. This can be proved in a way completely 
analogous to the case of one variable in ILl]: Let 0 < 5 < c <  1, we call 

Xt(Z) = 011(Dzl (c), z2). 

Then we have the following proposition. 
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P r o p o s i t i o n  2.2. (Luecking) The function z~ELP(D 2) if  and only if x~E 
LP(D~). 

Theorem 2.1 has an immediate corollary for zero-varieties. Fixed z E D  2, we 
consider the cross formed by 

C ~ = { ~ c D 2 ; ~ I = Z l ,  @ E D ~ 2 } t J { ~ E D 2 ; ( 2 = z 2 ,  ~IEDz,} .  

Let nv (z) be the number of points that  an analytic variety V meets the cross C~ 
(counted with multiplicity), then we obtain the following result. 

C o r o l l a r y  2.3. The analytic variety V is the zero set of a function f with 
log ]f[E LP(D 2) if and only if nvELP(D2). 

Proof. If we take into account the Lelong-Poincar5 theorem, the corollary is in 
fact a reformulation of Theorem 2.1. [] 

Remark. Theorem 2.1 and Corollary 2.3 have direct generalizations to the case 
of the polydisk D n with n > 2. In this setting, the geometric condition that  appears 
in the theorem is fELP(Dn),  where 

n 

f (z )  = Z 0ii(zl ,  . . . ,  D~,, . . . ,  z=). 
i = 1  

For the sake of simplicity in the computations we will give the proof in the case 
n=2 ,  although the same proof can be carried out in higher dimensions. Moreover 
we will not consider the case p =  1. This case is already known, it has been studied 
by Charpentier [C, p. 58] and Andersson [A, Thm. 1]. The theorem that  they prove 
is the following. 

T h e o r e m  2.4. (Charpentier) If  we have a closed positive (1, 1)-current 0 in 
the bidisk, there is a solution u E L I ( D  2) to the equation 

i00u = 0 

if and only if 

D (1-[zll2)~Oil(z)+(1-]z2[=)2Ou2(z) < +~o. 

This weighted Blaschke condition is equivalent to condition (1) when p = l .  
Indeed, if we apply Fubini's theorem, 

D: 011(D~l'z2)+O22(z1'D~:) drn(z)= /D= [Dz1[O11(zl'z2)q-lDz2[O22(z1'z2) 

(1-Iz  ?) oH (1-Iz: J:):e:2 (z). 

We will divide the proof of Theorem 2.1 into two parts. In the first one we will 
show the necessity of condition (1); in the second one, which is slightly more tech- 
nical since we need estimates of some integral kernels, we will show the sufficiency. 



106 Joaquim Ortega-Cerd~, 

2.2. P r o o f  o f  t h e  necess i ty  o f  (1) 

The scheme of the proof is the following: We start by a Riesz-type decompo- 
sition of the plurisubharmonic function u. We evaluate it at the origin, and get a 
new decomposition by composing u with the automorphisms of the bidisk. This new 
decomposition has better properties than the original for our interests. This tech- 
nique has been used in one variable, at least by Pascuas in [P], Ahern and Cuekovi6 
in [A(~] and Luecking in [L2]. The necessity of the condition follows immediately 
from the new decomposition. 

Let uEPSH(D2)f~LP(D2), l < p < o c .  We consider the decomposition of u into 

(2) u = II[u] +L[a0u],  

where II[u] is the orthogonal projection of u onto the pluriharmonic functions with 
the natural scalar product in L2(D2), i.e. 

where the kernel is 

= 

1 
II[u](z) = 7 / D 2  7r(r z)u(r din(C), 

1 i 
F- --1. 

(1 - r  (1 - r  2 (1 -z1~1)2(1-22~2)  2 

A priori, this decomposition is valid only in the case p--2, but, since the kernel 
defines a bounded operator in L p (D 2) for 1 < p < ~ ,  we can extend the decomposition 
to all L p spaces. 

The other term in the decomposition (2) has an integral expression of the type 

L[abu](z) : / /(r z)AOOu(~), 
Jr ED 2 

and the function L[O] is the minimal solution in L2(D 2) of the equation iOOv-~ 
O. Note that  in view of (2), the operator L is just determined on closed (1, 1)- 
currents (3. 

The computation of the kernel I(r z) and the estimates of its size were carried 
out by Andersson in [A]. The expression of the kernel/(~, z) is not unique. There are 
other kernels that  give the same solution. Instead of writing down 1(r z) explicitly, 
we exhibit L as a linear combination of compositions of explicit operators. In the 
statement that  follows AIB2 denotes the integral operator 

A1B2[(9](z) = Jr162 a(r z,)Ab(r z2) AO(r 
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and the kernels appearing are 

(3) 

(1 -  [~]2)(1- [zl2) (1-1~]2"~21 1 [log 24 = ~-Izl 2 , 
m(r = }--~ k I 1 - r  I i -z ( : l  2 k l l - r  

~0(r = i dC A dr 

i [~(~-'r  ~ ) 
t(r z) = ~ -r  

i (1-1r ~) k(r = 
2~ ( 1 - ~ z ) ( r  

i(r z) = 26(r  dC Ad~, 

i dCAd~ 
p(r z ) -  2~ (1 -~z)2  

~(1-1r de, 
-t (1_ (.2) 2 

de, 

T h e o r e m  2.5. (Andersson) Let us call 

(4) L = I I~176  - TIT2 + M l h  -M1P2+T1K2. 

Then 

L[OOu](z) = JCcD2/(~' z)AOOu(~) 

gives the second terTn of the decomposition (2). 

From the explicit decomposition (2) we can already draw some conclusions. 
Since uEL p by hypothesis, then II[u] CL p. Therefore, because of decomposition (2), 
we conclude that  L[OOu] ELP(D2). This is a necessary condition on OOu if uEL v. 
In fact, since the operator L solves the cOcS-equation, we can say that  L[O] cLP(D 2) 
is a necessary and sufficient condition for the existence of an L p solution to the 
iOOu=O equation. This condition is poorly handled, since the kernel that  defines 
L is not of constant sign and therefore there are cancelations in L[O] that  do not 
allow to obtain geometric conditions in the variety associated to O. 

We will find another decomposition of u composing with the automorphisms 
of the bidisk. In order to avoid some technical difficulties, we will assume that  
u c g ~ ( D 2 ) .  Afterwards, using an appropriate regularizing process, we will get the 
general case. 

Let us call 
Tz(~) = ( ~I-]-Zl ~2-1-Z2 ~ r  2. 

k1+r 1+r �9 
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We define uz(~)=uo~-~(~). We have uz(O)=u(z) and applying the decomposition 
(2) to the function Uz at the origin we get 

(5)  (zt= t(CO)AOO z(r 

We take the first integral on the right hand side of (5), and we make the change of 
variables rl=r~ (4), 

~ED27r(~,O)uz(~)= ~eD2UZ(7-z(~))dm(~) 

1-1z l: 1-1z:r  
= feD~ u(rl) ( l l -  Z~r~]2 l l-  z2,,2l e ] 

Now we will prove that  the operator R defined by 

R[u](z) = L~D2 U(rl) ( ] l--'z"21_217/112 [1-22T]212 "~2 dm(rl) ' 

is hounded in LP(D2), i.e. ]]R[u]]]p<]]u]l p. In order to do so, we will use Schur's 
lemma. 

L e m m a  2.6. (Schur) Assume that (X, p) is a measure space and K a measur- 
able non-negative function defined in X x X.  Let T be the integral operator defined 
by K, 

T f ( z )  = Jx  K(x, y)f(y) d#(y). 
[ *  

Let p be such that l < p < o c  and q be such that 1/p+ l /q=l .  If there is a constant 
C > 0  and a positive measurable function h such that 

xK(X,  y)h(y) q d#(y) <_ Ch(x) q for x �9 X #-a.e. 

and 

/xK(x,y)h(x)Pd#(y)< h(y) p for yCX,  #-a.e. 

then T is bounded in LP(X, d#) with norm less than or equal to C. 

In our case we take h(w)=(1-]wl]2)Z(1-1w212) 3, with a properly chosen /3 
such that  - 1< / 3<0 .  The estimates needed in the hypothesis of Schur's lemma 
come from the inequality (JR, Prop. 1.4.10]) 

/D (1-1zl2)~ dm(z)<(1-lw]2) ~-;3+2, i f c ~ > - i  and c~- /3+2<0.  
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We have proved that if uELP(D2),  then 

f eD~ I(r 0)A03u,(r c L'(D 2) 

with LP-norm controlled by that of u. Now, considering the expression (4) of l(~, z) 
and taking into account that  t(~, 0)=0,  p(~, 0 )=p( ( ,  0)=Ir~ 0), we obtain 

~ e D  /((~, 0) AOOu~ (~) 
(6) 

~B~ ~ (~(r 0)dr Adr +~(r 0)5~ (r162 Aden)/~00~z (r 

Let us consider the first term in the right-hand side of (6). For bidegree reasons it 
is enough to consider 

(1 -Iz~ I~) ~ d~2Ad~2, 0202Uz(~) = 022(Tz(~) ) [1+ff222t 4 

and therefore 

eD2 m((1,0)50 (~2)d~2 Ad~2 AOOUz (~) 

f* I Zl--~l 2~_ (1--1~II2)(X--lZl12))O11(~1,Z2). 
= /logl ~ = 

leD \ [ 1--fflZl I1-Cxzll 2 

Both terms of (6) are therefore negative and moreover 

lZ@z2 4 (1-1r 2) < 1 (1-tr 2 
log i i _~z l  2 _ - ~  iz_Czl ~ 

(1-1z112) ~ 
01011Zz(~) = 011 (Tz(~)) 114_~1z114 d~l Ad~l, 

and therefore 

~ ED2 m(~2, 0)d~l Ad~l AOOuz (~) 

- - -  i -_  r ) ~= ~1, r 

From the second term in the right hand side of (6) we only have to consider 
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In consequence, 

(7) ( l _1(112)2 ( l _ lz~12)e O1~ ( ~ , z2 ) e LP (D2) 
lED II--~1%114 

with norm controlled by the norm of u. Obviously, the same happens if we permute 
the indices, since the solution L[O] is symmetric in both variables. 

Finally, note that  for (1EDz, ,  

l l - < ~ 1  ~ i-Iztl 2 _~ 1-I(112. 

From (7) we can conclude 

II01~ (Dzl, z2)ll~ ~ II~II~. 

From this inequality, we can obtain the general case (recall that  we have only proved 
the necessity when uCC~(~)2)). For an arbitrary uELP(D 2) we pick a sequence 
of unCC~(D 2) such that  u ~ u  in L p. Since the convergence in L p implies the 
convergence in the distribution sense, @n =Obun---* OOu = O, weakly. 

We want to check that  IlOll(Dzl, z2)llp<OC. But, for any function r  2) 
positive with compact support, and if 1/p+l/q= 1 the following holds 

D r z2) drrt(z) = n]iHioc/D 2 W(z)O[*i(D~l, z2) drn(z) 

< lim IlUnllpllWllq < Ilullpll~llq, 
n ----+ 5x2  

thus we have obtained the desired result. [] 

2.3. P r o o f  o f  t h e  suf f i c iency  o f  (1) 

We will show that  condition (1) is sufficient in order to obtain a solution uE 
LP(D 2) to iOOu=O. We assume initially that  O is a closed positive (1, 1)-fornl 
and that  OEC*C(D2). We will show that under this hypothesis the solution L[O] E 
LP(D 2) with controlled norm. Later on we will drop the regularity hypothesis. In 
order to show this we will make use of the expression o f / ( ( ,  z) that  we have given 
in (4), i.e. 

(8) /((, z) = 7r ~ Am2 -[- fn,1 ATr 0 +{1 Ak2 -F~I At2 --{1 At2 +rn i  Ai2 --m] Ap2 + t l  Ak2. 

Recall that  the definition of the kernels that appear in (8) are given explicitly in (3). 
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We need the following bounds of the moduli of the respective kernels that can 
be found in [A], 

(1-KI=)= l+log I'~(~,z)l ~< i~_~z12 ~ , 

(9) 
l - K ?  

It((:, z)l < i i_~zl e , 

where ~, zGD. The terms of the type T~K2 are 

j f  D2 t(~l, Zl) d~  A 
1-1GI 2 

(1-~2z2) (~2-z2) 
dG AO(0 = D(zl, z2). 

We are going to rewrite D(zl, z2) in a more convenient way. Since t((1, Zl)=0 when 
](1]=1, by Stokes' theorem 

0 ~ t((l,Zl)d(zA (1-1~212)(1-~2~2)' II-~z~ = : l o g  - 7 - - - -  A O ( r  
eOD~ ( 1 - C 2 z 2 ) ( 1 - 1 z 2 1 2 )  q 2 - z 2  

= ~  Or (1-1C2P)(1-G22) lo 1-(~2z212 
eD~ (1-~z2)(1-lz2l 2) g ~ 022(C)drn(() 

-[-f~EO 2 t(~l, Z1)O~2 [ (1-1GI2)(1-r ] log 1-~2z~ 2012(~) dm(~)+D(z], z2). 
[(1-~2z2)(1- Iz212) J ~2-z2 

An immediate computation yields the following estimates 

1 
[0r Zl) ~< 11_~.1~1[2, 

OG (1-IGI2)(1-Gz2) < 1 
(1-r ~ 1-Iz21 = 

Hence, 

[D(Zl,Z2)[~ 1 1_[~2[2 ~ 2  
ED~ I1--C~z]l 2 1--1z212 log 022(0 dm(~) 

- 2 

j f  1--]~112 1 log ~ 1012(() dm((). + 
e m  I1-~]~1121-1~212 1~2-z~  

Finally, as 

- 2 

l o g  1 - ~ ' 2 z 2  _ (1-1r 
I G - ~  I I I - r  ' 

if (2-z2 _>~, 
1 - r z2 
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we can estimate D(zl, z2) as follows, 

(10) 

[D(zl,z2)[~ 1 (1-]G[2)u (1+log 02~(~)dm(~) 
~D~ [1--~1z1[ 2 [1--~2z21 "~ 

+f~eD; 1--[~112 1--'@[2 (1+log ~]2),012t(~)dm(s 
II-  z l I1-4   12 

We claim that IL[O](z)[ is controlled by a sum of terms of the type 

(11) j feD2 l (1 - ] s  
Ii- lZll 2 11- 2z212 

(12) f~ 1-[~112 1-[s (l+log[1-~2z212~lO121(()dm(~), 
ED 2 I1--(~1Z112 11--~2Z212 k I s 2-Z2 I // 

(13) /r (1-]~112)2 ( l+ log  1:~1zl 2~011(r 
1cD [1--~1Z1[ 2 \ [ (~1 -Z1 [ / 

Indeed, in (10) we have already seen that [FIK2 is bounded by (11)+(12). The 
term in TIT2 is smaller than (12) and moreover (9) implies that MII2 is bounded 
by (13) and PxM2, II~ by (11). Similar estimates apply to the kernels we obtain 
by permuting indices in the previous ones, like II~ K1T2 and Mlfi2. We will 
show that under the hypothesis (1) all of them belong to LP(D2). The terms of 
type (11) and (12) will be considered jointly by means of the following two lemmas. 

L e m m a  2.7. The condition (1) implies 

(1-]C1]2)2011(Dz)+(1-[C2[2)2022(v~) ~ LP(D2), 
IDol 

(1-IC~ 12)( 1 -  IC212)10121(D~) c LP(D2), 
IDz] 

where Dz=Dz~ • and [Dzl is the Lebesgue measure of D~. 
Proof. Indeed, consider the operator ~b defined as 

1 fc If(C)l dm(s  w E D.  r  eD~. 

It is bounded from LP(D) to LP(D). If we apply this operator to the function 
f(zl, z2)=Oll(Dz~, z2) (as a function of z2) and to g(zl, z2)=022(zl, D~) (as a func- 
tion of zl), we have proved the first part of the statement of the claim. The second 
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is an immediate consequence of the first. In fact, by the positivity of the current 
0,  one has 

(1-1<112)(1-1~212)10121(Dz) < (1-1(112)20n (D=) 

tDzl - ID=I IDA 

And this function belongs to LP(D2). [] 

(1 -]<212)1022 (D=) 
+ 

L e m m a  2.8. If # is a positive measure in the bidisk such that 

,(Dz__)) e LP(D2), 

then 
/ d#(~) ( l + l o g  17~2Z2 2"~E LP(D2). 

~D~ l l - - ( z l l 2 i l - ~ 2 z ~ i  2 \ I ~2 -~2  t / 

Proof. We will split the integral that we want to estimate into two parts 

dr(C) ~_jfEDxD~ 2 [ d#(~) lo 11-~2z2 ]2 
(14) /D= II--~lZlI=II--(=z=I = 1--~1q1=(1--1~=?) = g[ ~- - - -~  [ " 

As the function 
1 

is plurisubharmonic, we have the sub-mean inequality 

1 1 [ dm(~) 

11-r < ~ J,~Dr I1--~1~1211--~2~2 12. 

If this inequality is inserted in (14) we get that the first integral in (14) is bounded 
by 

E D  2 c D r  [D<[ [1-~12112[1-7/122l 2 = ~D~ <D,, ID<[ I1-~1211211-~222I ~ 

< ~ ~(D,) d,,~(,7) 12 
eD= IDnl 11-~12112i1-~222 " 

Now, Schur's lemma implies that the kernel 

1 

Ii-m~11211-~2~212' 
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defines a bounded operator in LP(D 2) and hence we can conclude that the first term 
in (14) is in LP(D2). The second one is a bit more involved. 

Due to the subharmonicity of the function 

1 

Ii-~lZll 2' 

we have, as before, 

d#(() 1 1 -  ~2z2 2 
~'•  I i -~ lZl l  2 (1-1~21~) ~ log 

f fv dm(~) 1 log 1-~az2 2dp(~ ) 
5 (1 -1v12)211-#z112(1-1r  = I q = - = :  I EDxD:,  2 ED~ 

= ~ D  1 ( ~  GCD" d#(~) log 1-~2z2 2 ) dm(~) 
]1--(/Z1[ 2 , ,  ~2CDz2 (1--[r/[2)2(1--[C2[2) 2 ~ / 

= A(zx, z2). 

We want to prove that AELP(D2). Since 1/l l-r/zl]  2 defines a bounded operator 
from LP(D) to LB(D), 

fzzeD~ ]A(zi' z2)l p dm(z) 
2 p 

J , ,~D  ',gVcD,• (1 -1 '11 : )~ (1 -1G1: )  ~ ~2-z~ / 

Now we apply Jensen's inequality to estimate this by 

eD J r (1-1r162 2v 

If z2 EDr (r then Dz2 cDr (6) for some 5>e. Since the hypothesis of the lemma is 
independent of z, we may assume that Dz2 cD<~ and D,~ cDr If we apply Fnbini's 
theorem we get the estimate 

~ED2 j~zT!GD, 1 p(D~) log p 1-- ~2Z2 2 
2ED,~ (1-1r 2~ ~2- ~2 dm(~I)dm(z2)d#(~). 

Since 
1--~2z2 2 

Ji,~D~- 1 log p d'~(Z2) dr/~(~) 5 (1--1<212)2(1--]~112) 2, 
~EDr I <~-z~ I 
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we get as a final bound 

r (D~)p_ l  
~, cD 2 (1_1<112)2;_2(1_1~21)2p_ 2 dr(<).  

It is then enough to show that  this last integral is bounded by 

r(D=)P din(z). 
~D= ( 1 - ] z a l 2 ) 2 p ( 1 - l z 2 l )  2p 

In order to check this 

r(Dz)P dm(z) 
j~zCD 2 (1--[Zl12)2P(1--IZ21) 2p 

=J~z r(Dz)p-1 ~ dr(r drn(z) 
~D~ ( 1 - 1 < ? ) ~ ( 1 - l z ~ l )  ~ ~ 

(15) 

(1-Ir 12)2P( 1-1r I) ~ 

= ~ m  (1-1zlt~)2~-~(1-1C~l) ~ - 2  d r ( i ) .  

With this, we have proved the lemma. [] 

Now, combining Lemmas 2.7 and 2.8, taking 

dr(C) = (1-1<112)(1-1C212)r012(C)[ din(C) 

and 

d r ( i )  = (1-Ir162 d ~ ( r  

respectively we see that  the terms (11) and (12) belong to LP(D2). 
In order to finish the proof of the theorem it remains to estimate the terms 

of type (13). In order to control it we split it into two parts, according to the 
contribution of D~I and Dzl in the integral. The contribution of D~ is bounded by 

] ) 011(r162 (16) (1_141 2 2 

,eD I1--~1zll 2 

Due to the subharmonicity of 

1 
c(~1, zl)  - 

I i -~ lZ l l  2' 
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we have 

(1--]~1]2)2011(~1' Z2) dm(~l )<  ff~ 011(D(1' z2) dm(~l). 
I I - ( Z l ?  I1- 1Zll 2 

Since c(~1, q )  is a kernel that  defines an operator bounded from LP(D) to LP(D) 
and, by hypothesis (1), On (Dzl, z2) ELP(D2), it follows that  (16) belongs to LP(D2). 

The contribution of Dzl is bounded by 

f~lEDzl log ~ Oll(~l",z2)dm(~l) 
We want to prove that  

~z~D2 (fGeD~ l~ ~ On(~l,z2)dm(~l)) pdm(z) < +~ 
In order to check this, we apply Jensen's inequality and estimate the integral by 

/zEDe fr Oll(Dzl,z2)P-I I~ ~ 011(~l,Z2)dm(~l) din(z) 

We apply Fubini's theorem, integrating first in zl, and obtain the estimate 

Oll (DG,z2)P_1(l_1~l12)2011(~l,z2) dm(~l). ~ED 
If we now argue as in (15), this is in turn bounded by 

fzeD2 811 ( Vz~ , Z2 ) p din(z). 

Therefore we have already proved that  there exists a solution u of iOOu=O with 

]lull p < 11811(D~, z2)lip+ llo22(q, Dza)llp, 

if OEC~(D2).  In the general case, by a standard regularizing process (see for 
instance [C]), we can find a sequence O'~---~O in a distributional sense and with 
onEC~(D2) ,  in such a way that  

[[0~1 (D~I, z2)lip + [[ 0~2 (zl, D~  )[[p ~ [1011 (D~,  z2)][p + [[822 (z1, D~2)[[p. 

We have already proved that  there exists a sequence u~ with iOOun = O n and such 
that 

Ilun lip 5 l1811(Dzl, z2)lip-I-11o22 (zl, D~)Hp. 

There is a subsequence such that  Un--*u with iOOu=O and 

[[Ullp ~< ]lOll(Oz., z2)l[p+ 11022(z1, Dz~Dllp. [] 
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