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Entire  funct ions  hav ing  smal l  l ogar i thmic  
sums  over certa in  d iscrete  subse t s  

Henrik L. Pedersen 

Abstract .  It is known how to obtain a uniform estimate of e.g. a polynomial in terms of 
its logarithmic sum over the integers provided that the sum is sufficiently small. This result is 
generMized here and we obtain estimates in terms of logarithmic sums taken over certain discrete 
subsets of the real axis. 

1. I n t r o d u c t i o n  

Polynomials  having sufficiently small logari thmic sums over the integers form 

a normal  family in the whole complex plane. Here, the logari thmic sum of a poly- 
nomial  p is 

l~ Ip(n)l 
n 2 + l  

This deep result was obta ined by Paul  Koosis, first for polynomials  of special form 

(see [3]) and later for general polynomials  (see [4, Chap te r  VIII ,  Section B]). Koosis 

formulated the result in the following quant i ta t ive  form. 

There are numerical constants (~o and k such that, for any T h e o r e m  1.1. 
polynomial p(z) with 

we have, for all z, 

 log + Ip( )l 
n Z + l  - ~ < - ~ 0 ,  

Ip(z) l ~_ K~e 3k~lzl, 

where Ks  is a constant depending only on (~ (and not on p). 

An extension to  entire functions of very small exponential  type  was given in [6, 
Section 1]. Recently, a new proof  of the result about  polynomials  has been found, 
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see [7]. There, an extension to entire functions of exponential type less than T, m0.44 
is obtained. In fact T, =~r/M,, where 

M*=inf~i/~/2 } ,>01, s a0 exp ( ( l + s i n 0 ) s )  dO . 

The theorem is as follows. 

T h e o r e m  1.2. Given B 0 < T ,  and y > 0  there is r/o>0 such that for any ~?<~?o 
there is C v > 0  with the property that 

tf(z)l <<_Cvexp(HIyl+,ytzl), z e C .  

for all entire functions f of exponential type < B < B 0  satisfying 

N--" l~ If(n)[ _<~. Z_., n2+1 

In this paper  we shall demonstrate  how to deal with logarithmic sums over 
other sequences than  the integers. After studying the proofs mentioned above it 
is not too surprising tha t  the machinery can be made to work for more general 
sequences. For polynomials this is already noted in [4, p. 518]. We shall use the 
approach of [7] to obtain such a generalization without too much work. 

Definition 1.3. Let h>0 .  We say that  a sequence A of real numbers is relatively 

h-dense (in [0, oc) or the whole real line) if, outside a bounded set, any closed interval 

of length h contains at least one point from A. 

We give this definition in (partial) accordance with the terminology used by 

Harald Bohr in his work on almost periodic functions (see [2, C 18]). He calls a set 
of real numbers relatively dense if there exists a positive number L such that  any 
interval of length L contains at least one point of that  set. Our generalization of 
Theorem 1.2 concerns symmetric  relatively h-dense sequences of the real line, see 
Theorem 5.3. In Sections 3 and 4 the essential material  is described. Section 2 

contains a preliminary and elementary result. 

2. A prel iminary result  

The result of this section is the following result. 
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P r o p o s i t i o n  2.1. Let A be a relatively h-dense subset of the real line and let 
f be an entire function of exponential type B<Tr/h. If 

l~ If(A)I < cc 
A2+l I 

AcA 

then f is of zero exponential growth on the real axis. 

Proof. Let c>0  be given. We may suppose that  c is so small that  (h+e)B<Tr.  
We consider intervals of the form 

n e Z  

Since A is relatively h-dense it is possible to choose, for any n >  some no, an element 

AnEInAA. The subsequence A'={A~}n_>no has the properties IAn-Ami>~in-m[ 
and ni,(r)/r--*l/(h+c) as r--~cx~. We next put 

S : {A E A' [ log + tf(A)t ~ cA}, 

L : { A e A ' i l o g  + ]f(A)l <~A}. 

It is easy to see (using the assumption on finite logarithmic sum) that ns(r)/r--+O 
as r - - ~ .  Therefore L={lk}k>l is unbounded. Furthermore 

We divide by lk and let k tend to infinity; in this way we get lk/k--*h+c. Put  
~(z)=f(z(h+~))  and l~k=lk/(h+~). A theorem of V. Bernstein (see [1, p. 185]) 
yields (since ~ is of exponential type (h+e)B<Tr)  

limsnp log I (x)l = lira sup log I (l )l limsup log If(l )l < 
x - ~  x k l~ k lk 

so that  
log If(x)l lim sup < c. 

X ~  X 

Since this holds for all sufficiently small c, f is of zero growth on the positive ray. 
A similar argument shows that  f is of zero growth on the negative ray. The proof 
is finished. 

We shall use this result to prove that  any entire function of exponential type 
less than T. /h  and having finite logarithmic sum over a symmetric and relatively 
h-dense sequence A of the real line belongs to the Cartwright class, that  is, has 
finite logarithmic integral. 
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3. B a c k g r o u n d  mater ia l  

We recall here the main definitions and results needed in this exposition. Sup- 
pose that  F is a relatively h-dense sequence in [0, ~c) with no finite accumulation 

point. There is thus a positive constant K such that  

[K, _c U �89 z+lh]. 
"~6F 

We now construct a subsequence {An} of F by taking A1 E[K,K+�89 and 

An+ 1 = max{'y E F I An < ~/_< An +h}.  

We note that  A,~+2-A,_>h for all n. Indeed, if this does not hold we would have 
An+I~An+2, contradicting the choice of A~+2. This subsequence A={A,~} is still 
relatively h-dense in [0, ~ )  and in addition the points are "almost" separated: 

An+ 2 - A  n ~ h for all n. We note that  in this case 

f i l o g  A~ 
(1) n=l A2~+l <oc .  

In this section and in Section 4 we shall consider relatively h-dense sequences A in 
[0, ~ )  having the extra property of separation. 

We recall the following definition from [7]. 

Definition 3.1. We shall denote by A(B) the set of even entire functions f 
of Cartwright class and of exponential type < B  with f ( x ) > l  for real x and with 

f ( 0 ) = l .  ~ r t h e r m o r e  we put A=UB>0.A(B) .  

and 

For f E A we put  

f0 ~ log f(t) dt, J ( f )  = t 2 

$ ( f )  = ~ log f(A) 
A 2 

A 

In the paper [7] extensive use was made of certain subharmonic functions called 
pre-multipliers. These were constructed from functions of the class fit and a certain 

parameter: for fE.A and a parameter A greater than 

, 
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we consider the function 

F(z)=l f l~ iz_tl2 lYL dt-Alyl. 

A result due to Koosis (see [5, p. 407]) asserts that  this function has a finite super- 
harmonic majorant in the whole complex plane. The least such superharmonic 
function is denoted by JL4F. The subharmonic function g- -~4F  is called a pre- 
multiplier associated with f and A. In [7, Section 3], some of the fundamental 
properties of g are given. It has the property 

g(x)+logf(x)<O, x E R ,  

and the representation 

g(z) = ~0~162 log 1 - ~  do(t), 

where e is a positive measure concentrated on the set 

E = { x > 0 l g ( x ) + l o g f ( x )  =0}. 

F~lrthermore e has the fundamental property (see [5, pp. 400-407]). 

A+B 
(2) de(t) <_ tit, t>_O. 7r 

We sketch the main ideas behind the proof of Theorem 5.3 to be given. That 
theorem shall be deduced from the following comparison result: if B<T./h and 
if {fk} is any sequence from A(B) for which S(fk)--+kO, then J(fk)---~k0 (Thee- 
rem 4.1). The essential ingredient in the proof of this comparison result is furnished 
by Theorem 3.2 below. It states that  there is, in a weak form, a lower bound on 
S(f) in terms of an integral involving the pre-multiplier associated with f and the 
parameter A, namely 

f0 ~ -g( t )  t2 de(t). 

To a large extent the behaviour of g and e depends only on the type B of f and 
the parameter A. One example of this is the relation (2) above and another is 
Theorem 5.1 in [7], stating that  

fo ~ -g(t) J ( f )A  (3) t2 de(t)> 2 ~  

The logarithmic integral J( f )  thus occurs in the lower bound on S(f ) .  
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T h e o r e m  3.2. (See [7, Theorem 4.4]) Let B<2T . /h  and let fc .A(B) .  If  the 
parameter A is sufficiently small there is a constant C>0, depending only on A and 
B, such that, for any large m, 

x-- w -  >-(C+e(h)) +c(h) 
AEA,A>m XEA,X>m 

Here c(h) is a positive constant, depending only on h. The bound on m depends 
only on A. 

Before going into the proof of this theorem, we need the following proposition. 

Propos i t ion  3.3. If B<2T. /h  and f EA(B) there is, for all sufficiently small 
values of the parameter A, a constant C>O, depending on A and B, such that 

log f (x)+g(x)  >_ - C  

for all x ~ R  with Ix-El<�89 
This proposition is a scaled version of [7, Proposition 4.3] and the proof is 

similar. 

Pwof  of Theorem 3.2. We write Ix=[k  -l~h, 1+1h].  Let AEA and suppose 
that EAI,xr Since B<2T . /h  we have, when A is sufficiently small, a constant 
C>0 such that 

log f(X) _> - C +  (-g(A)). 

Recalling the property (3) we get 

logf(X) C ~r f -9(X) dQ(t), 

where el (h) is a constant depending only on h. 
It is possible to "replace" (-g(X)) by (-g(t)) in this integral: we have (by the 

representation of g) 
-g(X) > -g(X+ih).  

The values Ah-g( t+ih) ,  It-)q << �89 are controlled by Harnack's inequality (see [7, 
Proposition 3.5]) so that 

Ah-g(X+ih)  >> �89 

From [7, Corollary 3.7] we have 

g(t+ih)-g( t )  < (A+B)h 
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and this gives 
- g ( s  >__ - (A+  �89 B) h -  lg(t) .  

Thus, since A+B <_ 2~r/h (without loss of generality), 

log f(A) e2 (h) +C [ -g(t) 
/k2 --> ~2 ~-c3(h) J i x ~  dQ(t), 

with some other constants c2(h), c3(h) depending only on h. We then estimate the 
s u m  

E log f(A) 
~2 

)~EA,),_>m 

from below by using what we have just  found on those terms for which I~AEr 
If I x N E = 0 ,  0 has no mass on I~ and therefore, since UI~D[m, oc) for large m, 

1 -9( t )  
E --l~ - E ~ +c3(h) Jm --do(t).t2 

A E A , X > m  XEA,A>_rn 

4. L o g a r i t h m i c  integrals  v e r s u s  s u m s  

The main theorem to be proved here is a generalization of [7, Theorem 1.9]. 

T h e o r e m  4.1. Let B<2T,/h and suppose that {fk} is a sequence from .A(B) 
for which S(fk)--*kO. Then J(fk)--*kO. 

L e m m a  4.2. Suppose that ~ is an entire function of exponential type a < Tr/h. 
If ~(A)=0 for all AEA then 9~==_0. 

Proof. Put  f(z)=~(hz); this function is of exponential type ah<Tr. The num- 
ber of zeros of absolute value less than or equal to r, nf( r ) ,  satisfies 

nf(r) >r -c ,  

where c is some positive constant. 
Furthermore 

log If(iy)f(-iy)I <_ 2~hlyl+o(iyl) <_ 27r(iy I +(o(IyI)-c iyl )  ) 

for some small positive number c. Here o(Iyi)/iyI--~O as lyi--*cxD. 
Since 

l imsup ~/R _c+aly[_o(ly[) dy= oc, 
R---* oc ,11 y 2  " 

Theorem 9.3.4 in [1] implies that f ~ 0 .  
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L e m m a  4.3. Let B<2T,/h. There is no sequence {fk} from A(B) for which 
S(fk)--%0 and J(fk) all take the same strictly positive value, provided that value 
is sufficiently small. 

Pro@ Suppose we have such a sequence {fk} and say that  

y(f ) = a > 0 

for all k. The boundedness of these integrals gives us that  {fk} is a normal fam- 
ily in the whole complex plane. Furthermore any subsequence contains a further 
subsequence converging uniformly over compact subsets to some entire function 
of exponential type <_B+9a/rr (see e.g. [7, Proposition 2.1]). We may assume that  
a is so small that  B+ga/rc<rr/h. Since ,5(fk)---+kO it follows that  p ( A ) = l  for all 
AcA and hence that  (Lemma 4.2) q~=l. This means that  fk--+kl uniformly over 
compact subsets so that  ([7, Lemma 6.1]) 

/o m log fk(x) dx 0 
X 2 

for any m > 0. 
We now bring in the pre-multipliers. We take 

A=2a+v/2ea(a+~rrB ) 

and construct the pre-multipliers gk from the fk'S and this common parameter  A. 
Theorem 3.2 and the inequality (3) give us 

(4) 1 (Aa j~om--gk(t) dpk(t)) S(fk)>----Cl Z "~q-C2 ~ - -  t2 
XEA,X>m 

with suitable constants cl, c2 independent of k. In this relation, the integral involv- 
ing the pre-multiplier gk tends to zero as k tends to infinity. This is because Qk is 
concentrated on the set Ek where -gk  is equal to log fk, so that  

fo "~ -g~(t) A+ B ~o "~ log fk(t) dt --+k O. 
t2 dok(t) <_ rr t 2 

By (1), ~eA,~_>m 1/A2--+0 aS rn--+cc, so if we choose m very large in (4) and then 
let k tend to infinity we obtain 

lim inf $(fk) > O. 
k 
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This is a contradiction. 

Proof of Theorem 4.1. This is similar to the proof of Theorem 1.9 in [7]. For 
the reader's convenience we include it here. We argue by contradiction and suppose 
that  we have a sequence {fk} from A(B), B<2T./h, for which $(fk)--*k0 and yet 
J(fk)_> some positive c. We put 

fk,, ,(z) = l+(z/m)2fk(z). 

We take a positive number a <  �89 so small that  there is no sequence from A(B)  
whose logarithmic sums tend to zero and whose logarithmic integrals all take the 
value a (Lemma 4.3), Fixing k we adjust m=mk so as to have 

J( fk ,mk)  = a .  

This is possible because mHJ(fk,m) is a continuous function for re>O, tending to 
0 as m--*c~ (and to infinity as m tends to zero). We claim that  the sequence {ink} 
must tend to infinity. Suppose that  some subsequence remains bounded. We may 
assume (by relabelling) that  m k < m  for all k. Then fk,mk(X)>fk(x) for [x[>_m, so 
that  

f; ~ logfk(x) d x < _ J ( f k , ~ ) = a .  
x 2 

Furthermore, fk,-~k (X)> fk,,~ (X) for real x, so, since {fk,,~k } forms a normal family 
in the complex plane, there is a constant C such that  

sup{lfk (x) I [ - m  < x < m} _< C 

for all k. From Proposition 2.1 in [7] we obtain the following estimate 

log [fk(z)l <_ B([z l+2)+ log  + C+(9/~r)a(lzl+ l). 

Therefore {fk} is a normal family in the complex plane and a certain subsequence 
(which we relabel as {fk}) tends uniformly over compact subsets to some entire 
function h of exponential type <_B+(9/n)a<Tr/h, when a is small enough. Since 
S(fk)--*kO, h takes the value 1 at all points of A. By Lemma 4.2, h ~ l .  By 
Lemma 6.1 in [7] we see that  

f0 "~ log fk(t) dt~kO. 
t2 

For all large k we will then have 

j(f ):ff logf ( ) logfk( ) 
t2 dt + t2 dt <_ 2a < e. 
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This contradicts the supposition that  J ( f k )>c  for all k. The claim on {ink} follows 
and then Lebesgue's theorem on dominated convergence gives 

log( l + ( )` /mk ) 2) 
$(fk,mk) ~-- E ),2 ~-S(fk) --~k O. 

AEA 

By construction, J ( f k , m k ) = a  for all k, and this contradicts, as noticed earlier, 
Lemma 4.3. The theorem is proved. 

5. T h e  m a i n  resu l t s  

Throughout  this section A denotes a symmetric and relatively h-dense sequence 
of the real line having the extra property of separation: )`n+2--)`n >h. 

Before formulating the main results we state the following simple but powerful 
lemma, providing the link between arbitrary functions and even ones greater than 
or equal to 1 on the real line, taking the value 1 at the origin. 

L e m m a  5.1. 
satisfying 

we have 

For any a > 0  there is M > 0  such that for any function f: A--+C 

v "  l~  + If()`)l  < a ,  
) ` 2 + 1  - . 

A 

E )`-2 log(l+)`2lf()`)+f(_)`)12/]~I2) <_ 6a 
AN(0,oc) 

and 

E A-2 l ~  I f (A) - f ( - ) ` )12 /M2)  <- 6a. 
An(0,~) 

The proof of this lemma is similar to the one in [4, p. 519]. Here we need that  
(1) is satisfied. 

T h e o r e m  5.2. Any entire function f of exponential type <T. /h  satisfying 

XT' l~ If()`)l < ~c 
) ,a+l  a 

belongs to the Cartwright class. 

Proof. This is almost exactly like the proof of Theorem 1.6 in [7] so let us only 
indicate very briefly how to proceed. Suppose that  we have an entire function f 
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of exponential type less than T. /h  with finite logarithmic sum over A and infinite 
logarithmic integral. For f k ( z ) = f ( z ) / k  we thus have 

log + Ifk(A)l [ log + Ifk(t)l 
AcAE /~2~_ 1 --+k0 and j t : + l  d t - o c  for all k. 

From Proposition 2.1 we see that  fk is of zero exponential growth on the real line. 
We can then use a result on weighted uniform approximation by sums of imaginary 
exponentials of exponential type D slightly larger than the type of f to construct a 
sequence {qok} from A(2D) with the properties S(~k)--*kO and ,7(~k)--~koc. This 
contradicts the comparison theorem. 

T h e o r e m  5.3. Given Bo<T, /h  and V>0 there is ~0>0 such that for any 
~1<~o there is Cv>0  with the property that 

If(z)l <_C oexp(Blyl+Vlzl) , z e  C, 

for all entire functions f of exponential type < B < B o  satisfying 

l~ If(,X)l _< ~. 
)~2+1 

Proof. Again the main job has already been done. The proof is almost the 
same as of Theorem 1.7 in [7]. The main ingredient is the comparison theorem. 
Lemma 5.1 and [7, Lemma 8.1] are also used. 

Remark 5.4. The above theorems clearly hold when A is any sequence of the 
real line having a symmetric, relatively h-dense subsequence. The proofs presented 
here need symmetry (outside a bounded subset). It is not known how to lift this 
requirement. 
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