
Ark. Mat., 36 (1998), 163-175 
@ 1998 by Institut Mittag-Lefller. All rights reserved 

Dual spaces of dyadic Hardy spaces generated 
by a rearrangement invariant space X on [0, 1] 

Nicolae P o p a  

Abstract .  First we define the dyadic Hardy space HX (d) for an arbitrary rearrangement 
invariant space X on [0, 1]. We remark that previously only a definition of Hx (d) for X with the 
upper Boyd index qx <oc was available. Then we get a natural description of the dual space of 
Hx, in the case X having the property 1 ~Px ~_ qx < 2, improving an earlier result [P1]. 

1. I n t r o d u c t i o n  

In the last 20 years many  papers  about  Hardy  spaces have been published. 

The  interest in the topic includes Hardy  spaces of analyt ic  functions having the 

classical spaces H 1 (D) and H P ( R  '~) as representat ive examples and Hardy  spaces 

of mart ingales,  for instance the dyadic Hardy  space H 1 (d). 

Mot ivated  by the  deep s tudy  of the rear rangement  invariant spaces (r.i.s.) 

which was carried out  by W. B. Johnson,  B. Maurey, G. Schechtman and L. Tzafriri  

in 1979 [JMST], we init iated a detailed s tudy  of dyadic Ha rdy  spaces Hx(d) gen- 

erated by a r.i.s. X on I = [ 0 ,  1]. (See [PI], [P2], [P3].) 
Using the ideas of M. Frazier and B. Jawer th  [FJ], very recently we improved 

some earlier results on this subject  and proved some new results. 

For the unexplained terminology we refer to [LT1] and [LT2]. 

We recall the not ion of a rearrangement invariant space of functions (r.i.s.) X 
on I =  [0, 1], following [LT2]. We consider wi thout  any cont ra ry  ment ion tha t  all 

Banach spaces are real. 

Now we say tha t  X is a r.i.s, on I =  [0, 1] if: 
(1) The  space X is a Banach  latt ice of Lebesgue measurable  functions with 

respect to the a.e. pointwise order relation on I = [ 0 ,  1]. 
(2) The  space X is an order ideal of the space M(I)  of all Lebesgue measurable  

functions on I ,  i.e. if f,  gEM(I)  with Ifl<_igl and gCX it follows tha t  f E X  and 

Ilfll_<lJglJ. 
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(3) The space X contains all characteristic functions of all Lebesgue measur- 
able subsets A C I .  

(4) If f and g are equimeasurable (i.e. 

I { t C I ; I f ( t )  I > A}l = i{t e I ; ig(t)l > A}l 

for every A>O, where [A[ is the Lebesgue measure of ACI) ,  then for f E X  it follows 
that  g e X  and [[f[[x=[[g[[x. 

(5) We assume that  the canonical injections i: L~--~X and j: X---~LI(I) have 
norms less than or equal to 1. 

(6) We assume also that  X is either a minimal space (i.e. the simple functions 
are dense in X) or a maximal space, i.e. X = X ' ,  where Xr={g:I--~R;]]g[]x ,= 
suPllfllx_<l if fg l<oc}  is the associate Kdthe space of X .  

We call a space X having properties (1), (2) and (3) a KSthe function space 
on I. The classical Orlicz and Lorentz spaces are examples of r.i. spaces. 

Now we recall the useful definition of Boyd indices for a r . i .s .X. Let 0 < s < o e  
and put 

I f ( t / s ) ,  if t_< rain(l, s), 
D J ( t )  

I 0, otherwise. 

and 

Now put 
log s 

Px = sup Log ILI),LI 

log s 
qx = inf 

0< <1 log IIDsll 

Here Px and qx are called the Boyd indices of X ,  and they satisfy the relations 
l <_px <_ qx <_Oo and px,  =(qx  )' ; q x ,=( px  ) ~, where 1/p+ l /p '= l. 

We now define the dyadic Hardy space Hx(d).  Let Q c I  be a dyadic interval. 
Let hQ be the L2-normalized Haar function supported by Q, i.e., 

1 
hQ = 1QI1/2 (1QI - 1Q~), 

where Q1 (resp. Q2) is the left half (resp. the right half) of the interval Q. Then 
for every Lebesgue measurable fimction f on I with f = ~ Q  sQhQ a.e., put 

('~Q 2 .,1/2 
S( f )=  IsQI /IQIl@ �9 
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(1.1) 

Here 

Now let X be a r.i.s, on I such tha t  qx<oC. We define 

Hx(d)  = { f  E M(I) ; llfllHx = Ils(f)llx < ~c} 

and call H x  (d) the dyadic Hardy space generated by the r.i.s. X on I. 
If X = L  1, then H x  (d) coincides with the dyadic Hardy space H 1 (d) introduced 

by A. Garsia [G]. It  is known (see [P1]) that  Hx(d) is a Banach space and that  

Hx(d)  is isomorphic to a closed subspaee of X itself, whenever qx <oo. 
But more is true (see [A]). 

T h e o r e m  1.1. Let X be a r.i.s, on I. The following assertions are equivalent: 
(1) The Boyd indices of X satisfy the inequalities l <px <qx <~c. 
(2) There is a constant C > 0  such that 

c-1l l f l lx  <_ I I S ( f ) l l x  <_cIIfllx 

for all f ~ X .  

Therefore from the point of view of the isomorphic theory of Banach spaces, 
only the r.i.s. X such that  either p x = l  or qx=~C are of interest. 

Now we extend the previous definition to r.i.s. X with qx=cX~. We use some 
ideas of M. Frazier and B. Jawerth (see [FJ]). 

First we extend a well-known inequality of C. Fefferman and E. Stein (see [FS]). 

T h e o r e m  1.2. (Fefferman-Stein inequality) Let (fi)i~=l be a sequence of func- 
tions on R.  Then the following inequality holds: 

(~_~lMfklr )  Zp <A~'p ( ~  / ,,Lp ( l < r , p < o c ) .  

= s u p  If(z)l dx, MS(x)  Q~,Q i n t e r v a l  10i 

for f E L l ( R ) .  

We omit  the proof but  instead we extend the theorem to an arbi t rary r.i.s. X 

on I such that  l < p x  <_qx <oc. 

2. Dyadic Hardy spaces Hx(d)  for r.i.s. X with  qx=or 

T h e o r e m  2.1. Let X be a r.i.s, on I, I being either (0, oc) or (0, 1), such that 
l<px<_qx<oc and let l<r<oc.  Then we have 

(2.1) IMAI ) x < C ( X , r )  If*l~) x 
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for any choice of elements f~cX ,  i<_n, and every nEN.  

Proof. We use Theorem 1.2 and interpolat ion techniques. (See [BS].) 

Let  ~->0 and l<p<px<_qx<q<oc.  P u t  f:=(}-~-~=l [fklr) 1/~ and 

fk(x) ,  if i f ( x )  ~_ f~(~r), 

f~ = f(~r)fk(x) if i f ( x )  > f r (T ) ,  
f (x)  ' 

1 < k < n. Here we let 

f (x )=  inf sup If(u)l, x>O. 
IEI =x u c I \ E  

Then 

I f~ l  T (x)= ]~(~.), 

(See [BS, pp. 223-224].) So 

if i f ( x )  < f~(~), 

if i f ( x )  > f~(~-). 

t ) = m i n  ~(t), T(T)). 

P u t  now 

f~(x) (Ifk(x)] ~'-  1 = [f~(x)l~)l/~sgnfk(x), k =  1 ,2 , . . .  ,n.  

Thus  it follows 

(2.2) ]fk(x)]~=lf~(x)[~+lf~(x)[ ~, l < k < n .  

M o r e ove r, 

If2(x)l r (t) = 0, if i f ( t )  < fr(z)  = [ff(t)_]~(~_)]+ 
f f  ( t ) -  f~(-r), otherwise 

and 

[f~]~ t) = (]r(t)--fT(T))+ 

for every t E I.  
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Put  now 

ilfllp,q = { (~o ~ Z) , 

oSUp tUP f(t), 
Then it follows that  

( ~ . 3 )  

and 

(2.4) 

0 < q < o c ,  

q =~c .  

(I ( ~  [f~[r)'/rllq,1 =q'r~/q f(T)+ /~ta/~ f(t) at 

if~l~) = tl/p[f~(t)_ f~(T)]l/~ d tt 

<_2 ~o~tl/pl(t) d---~-pf('c)71/p. 
Since l<p ,  q<oc,  by Theorem 1.2 it follows that  there is a constant A > 0  such 

(f~)k=l and that  we have the inequality (1.1) for l < r < o ~ ,  p, q and the functions 2 n 

k/k=l" 
By Proposition 4.2 in [BS, p. 217] it follows that  

n 

(k~=llMfllr)l/r,,q,oc~C (~_llMfllr)l/r q 
(2.5) 

/ IIq,1 

and similarly 

~20t  ( ~ t ~ J J ~ l ~  ~c (~r~J~lp 1 
By (2.5) we get 

and (2.6) implies that 

1 --liP 
I~l ((~,~,~J~;I~l~I~l (~,~,5 ~ ~1 
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Using (2.3) and (2.7) we get 

dt - 
(2.9) ((~k IMfl]r)l/r)~(1T) <C(T-1/q~ tl/qff(t) TJrpf(T)) 

and similarly 

(2.10) ((~k [Mf21r) ) (1T)<C(--pf(T)A-2T-1/P~ tl/Pf(t) d--~). 

But, in view of (2.2) it follows that  

( ~  ,M fk,r)l/~ <_ (~(M[(,f~,~ +,f~,~)l/~])~) 1/~ 

< (~. [M(,f~[+[f~[)]r) 1/~ / hilt/ r,I/r 

thus 

(/ \l/r\~ ((~k )l/r)~ (( ll/rl ~ 
(E(Mfk) ~) )(T)< (Mr1) ~ (1T)+ E(Mf2) " 

oc dt ~ tl/p](t) d~) 
= 

where a is the interpolation interval [(l/q, 1/q), (i/p, l /p)] and S~ is the Calderdn 
operator. (See [BS].) 

Thus, since P<Px and qx<q, the proof of Theorem 5.16 in [BS, p. 153] gives 
US 

(~k I~/~fklr) 1/r X ~C (~lfklr)l/r"x" [~ 

Now we use Theorem 2.1 in order to get an equivalent norm on Hx(d), when- 

ever X is a r.i. space on I =  [0, 1] with qx < ~D. 
For a dyadic interval QcI, let EQCQ be a Lebesgue measurable subset such 

that  IEQI>IlQI, and for f=~Q SQhQ put 

\1/2 
SE(f)= (~Q [sQI2/IEQI1EQ) . 

Then we have the following corollary. 
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Corol lary  2.2. Let X be a r.i. space on I=(0,  1) with l <_px <_qx < oC. Then 

[[f[IHx ~inf{[[SE(f)llx ;EQ c Q ,  IEQI > �89 

Proof. Obviously [[SE(f)[Ix <2[[S(f)[tx =21If I[ Hx- 
Conversely, it is clear that 1Q <_2M(1EQ). Therefore, for every A>0 and every 

dyadic interval Q, we have 1Q<_21/A[M(1EQ)] 1/A and 

(2.11) S ( f ) < 2 1 / A ( ~ [ M (  [8QIA .~]2/A.~1/2 ) 
We choose A>0 such that I < p x / A  and l<2/A.  Put r=2/A and, since 

px qx 
1 < ~ -  =Pxl/A <__ ~ = qx~/a < 0% 

(where x U A = { f : I ~ R ; I f l l / A e x  } and tlIllxl/A:=II ]I[1/AllA) we have by (2.11) 
and Theorem 2.1 

']f,,Hx <21/A_ (Q~[M([EQ,A/2 'sQ'A IEQ)]2/A)I/2 X 

<2 UA ( Q~ ]8Q]2 " ~A/2[[I/A 
_ IEQ) IIx,J  

Define now for f = ~ Q  8QhQ, 

(2.12) re(f) = sup 
Q dyadic interval 

1.) ] ( lQI)lQ 

Then we get the following theorem. 

T h e o r e m  2.3. Let X be a r.i. space on I=[O, 1] with qx<eC. Then 

1 (2.13) IIfI[Hx,.~inf{I[SE(f)[[x;EQCQ, IEQ[>~lQ[}~[[m(f)l[x. 

Proof. We use the argument of Proposition 5.5 in IF J]. Since the operator M 
is of weak type (1,1) there is a constant C>0 such that, for each t>0, 

I{x;m(f)(x)  >t}]_< I{x;M(l{y:S(f)(y)>t})(x ) > ~}] <c]{x; S(f)(x) > t}l. 
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Since X is a r.i. space it follows that  

t lm(f)llx _< cllS(f)llx 

for xGI. 
Therefore we have 

(2.16) 

By (2.14), (2.16) and Corollary 2.2, (2.13) follows. 

Thus, if qx<eC, we have 

IISE(f)IlX ~ cllm(f)llx" 
[] 

Hx(d) = { f  �9 Ll(I) ; llm(f)llx < c~}. 

Now for an arbitrary r.i. space X on I = ( 0 ,  1) (even in the case qx=oC) we 

may define Hx (d) as follows. 

(2.14) 

for all f E Hx. 
For x E I put 

u(x)=inf u c Z ;  ~QtX)~ <_m(f)(x) , 
/(Q)<2 " 

where l(Q) is the length of the interval Q. Pu t  

EQ = {x E Q ; 2  -~(x) > / (Q)}  = {x E Q;SQ(f)(x) <_ m(f)(x)} 

for every dyadic interval Q, where 

SQ(f)= (p~cQ ]sp]2 1 ,~1/2 

By definition of mQ(f):=SQ(f)(�88 it follows that  IEQI>~IQI and 

ts~ " A1/2 <_ c~( f ) (x )  (2.15) (~d,Q I~QI EQ,X)] 
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Definition 2.4. Let X be an arbi t rary r.i. space on I .  Then we put 

(2.17) Hx(d) := {f~L~(I);lllflBH~ := IIm(f)llx < oo}. 

The above definition permits us to improve the description of the dual space of 
Hx(d) whenever X is a r.i.s, on I such that  l<_px <_qx <2, which was done in [P1]. 

In order to prove that  we extend Theorem 5.9 in IF J]. First of all we extend 
Proposit ion 5.5 in [FJ]. 

For f = ~-~Q SQhQ put 

(2.1s) 

1 
f~(t) P~t(IPI f ~-" ]sQI2 . . . .  ~/2 = s u p  - -  jp QZ..~c P-~-lQtx) ax J 

(1 Q E , Q,2)lJ2 ( 1 s  ,1j2 
= sup ~-~ = supper--IPI If(u) - f P  12 du) 

where fp:=(1/IPI) fp f(u) du. 
We then have the following result. 

P r o p o s i t i o n  2.5. Let X be a r.i. space on I such that 2<px<qxhoO.  
Then it follows 

(2.19) IIm(f)llx ~ Ilfnllx. 

Proof. By Chebyshev's  inequality we have 

1/o (2.20) I{xEQ;SQ(f) (x)  >e}l  < 7E (SQ(f)(x))2dx<_ (f~(t)) 2 

for every t E Q and c > 0. 

If e>2f~( t ) ,  we have, by (2.20), 

(2.21) I{x e 0 ; sQ(f)(*)  > ~}1 < ~lOI, 

which in turn implies that  

rrtQ (f) <_ 2ff (t), 

where 
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for all t E Q. 
Thus 

re(f )(t) = sup mQ(f)lQ(t) <_ 2f~(t) 
Q 

and 

(2.22) 

Conversely we consider 

IIm(f)llx ~ 211f"ltx. 

(2.23) t J ( x ) = i n f { t ~ E Z ; (  E 'SQ'21 (x)) 1/2<m(f)(z)} 
I(Q)<2 " ~ IQ  _ �9 

Now let EQ={xCQ;2 -~(x) >_l(Q)}={xEQ;SQ(f)(x)<m(f)(x)} for every dy- 
adic interval Q. As in the proof of Theorem 2.3 it follows that  IEQI/IQI>_ } and 

I~QI 2, , .',~1/2 
(2.24) (~Q ~-IEQ[X)) <Cm(f)(x) 

for every x E I. 
Integrating (2.24) on the dyadic fixed interval P we have 

~" IsQI 2 <_Cfm~(f)(x)d~ 
QcP 

or  

ftt2 (t) < Csup j-~ /gm2(f)(x) dx 
- -  P ~ t  I~ l  

for all t C I. 
Now, using the fact that  M is a bounded (non linear) operator on Y, for every 

r.i. space Y such that  l<pv<_qy<oc, we have, denoting by X2 the space 

X2={f:I--+R; Ifl 1/2 ~X} 

with the quasi-norm II f llx~ : =  I I I f l  1 /2112  and using the hypothesis Px~ > 1, 

Ilfn211x~ ~ CllM(m2(f))llx~ ~ CIIm2(f)llx= = Cltm(f)ll~- 

Thus 

(2.25) IlfiIIx < clIm(f)llx, 

and (2.22) and (2.25) prove Proposition 2.5. [] 
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T h e o r e m  2.6. Let X be a r.i. space on I such that l=px<_qx<2. Then the 
dual space of Hx may be identified with Hx,, by the map carrying lC(Hx)* onto 
t=~Q tQhQEHx,, where tQ=l(hQ) for every dyadic interval Q. Moreover, 

IlZll(~x)* ~tlltlllH~,. 

Proof. Let t ~Q tQhQ and S = ~ Q  8QhQ. Using the notation of Proposi- 
tion 2.5 we have, by the Cauchy Schwarz inequality and (2.24), 

sqtQ < ~ / E  tsQi 1 ,tQi 1 _ IQI1/2 q ~  Eo 

<cllsllgx I-~QI'E~ II~,<cllsllg~ll~"(t)llx'--cllsllHxlltll~" 
i.e., 

(2.26) Illll(Hx). < cllltlllnx,. 

Conversely, let IE(Hx)*, tQ=l(hQ) and s=~-~Q SQhQEHx. Now fix a dyadic 
interval P and let us consider the space X1 = {Q ;Q c P} endowed with the measure 

~(Q)=IQI/IPI. 
Then 

~ ItQI2xl/2= = sup - -  ~ sQtQIOl 1/2 
QCP 12(X1, dp) - Q c P  

8QIQ[ 1/2 It <_ Iltll(.x). sup Z ~l  ~ 

But 

h decreasing 



174 Nicolae Popa 

since X is a r.i. space. 
On the other hand, for a fixed ~>0 there is an sEl2(X1, d#) such that  

I ls l l ,~(x. ,a.  ) <_ 1 

and an hEX', fihlfx, <1, h decreasing, such that  

sup E sQ}O}l/2hQ < 

Consequently, 

Now 

+~ 

-< f [ (Q~. ~ 1Q)'/~] ~h+~. 

, ~  - ~ - - ~ )  j ,~*~j 

t~ < Iltll([M(h~)]U~+~) 
1 and, since Px~ = ~Px' > 1, 

Ilt~lfx, <_ IlZll [ll[M(h2)]l/21lx, +el --IILII [ l iM(h2)l l~+ El 

_< fluff [ffh2fl~+~] = Illll [llhllx'+~] -< IIZlJ(l+~). 

Since ~>0 is arbitrarily small we have 

(2.27) IIt~11~, _< Illll(~x)-. 

Thus (2.26) and (2.27) prove the theorem. [] 

It is clear by Theorem 2.6 that  for X=L 1, Hx, coincides with the classical 
space 

BMO(d) := {f:  I--~ R;llf ~llL~ < ~ } .  
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