
Ark. Mat., 36 (1998), 201 231 
@ 1998 by Inst i tut  Mittag-Leffler. All rights reserved 

Riesz transforms on compact Lie 
groups, spheres and Gauss space 

Nicola Arcozzi(x) 

Notation. For x, yER ~, x=(xl, . . . ,x~), Y=(Yl,...,Y~), Ixl=(EjLlx~) 1/2 is 
n the Euclidean norm of x and (x, y } : ~ j  0 xjyj is the inner product of x and y. 

Sometimes, we write x.y instead of (x, y}. If (X, Jr, #) is a measure space, f :  X ~ R  n 

is a measurable function and pe[1, oc), the L p norm of f is defined by Ilfllp= 

IIflILp(X, Rn) (IX Ifl p dx) 1/p" If S is a linear operator which maps R n valued L p 
functions on (X, hC,#) to R "~ valued n p functions on (X1,~c1,#1), that  IISIIp= 

sup{llSfllp: II/l lp=l} is the operator norm of S. If X=X1 and #=#1, we denote by 
I |  the operator with ( I |  S f), the latter being an R ~+'~ valued function. 

Let ,4 be a linear space of integrable functions on (X, 9 r, #). We denote by A0 

the subspace Ao = { I E A : f x  f d#=0} .  If a linear operator S is only defined on A0, 

we still denote by IISIIp=sup{llSfllp:feAo, [l / l ip=l}.  For instance, C ~ ( M ) = { I c  
c ~ ( M ) : / .  f (x)d~=0} ,  if M is a smooth  a iemannian  manifold and dx denotes the 
volume element on M. The L p norm of a measurable vector field U on M is, by 

definition, the Lp norm of IU], the modulus of U. Unless otherwise specified, LP(X) 
and L~(X) will denote spaces of real valued fimetions on X. 

0. I n t r o d u c t i o n  

Let M be a Riemannian manifold without boundary, VM, divM and A M :  

divM VM be, respectively, the gradient, the divergence and the Laplacian associated 

with M. Then --AM is a positive operator and the linear operator 

(1) RM =VMo(_AM)~/2 

is well defined on L2(M) and, in fact, an isometry in the L 2 norm. If f is a real 

valued function on M and xEM, then RMf(x)ETxM is a vector tangent to M at x. 

(1) Research part ly supported by a grant of the INDAM Prancesco Severi. 
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The L p norm of RMf is, by definition, the L p norm of x~-+IRMf(x)l, where I" ] is 
the Euclidean norm induced on TxM by the Riemannian metric. The operator R M 
is called the Riesz transform on M. In (1), A = ( - A M )  -1/2 is the positive operator 
such that  AoAo (--AM)=I, the identity operator. 

If M is compact, as will always be the case in this article, A can first be defined 
for linear combinations of eigenfunctions of AM, and then extended to L2o(M) by 
continuity. See [GHL]. 

The Hilbert transform on the unit circle, T / = - R  s~, and the Riesz transform 
on R ", R=R R~, are special cases of (1). The operator R M is a singular integral 
operator. 

The exact LP norm of a singular integral operator is known only in a few cases. 
The first result of this type is Pichorides' determination of the Hilbert transform's 
L p norm. For pE(1, oc), let p*=max{p,q:l/p+l/q=l}. Then 

(2) II IIp--Bp 

where Bv=cot(Tr/2p* ) [Pic]. Later I. E. Verbitsky and M. Ess6n, [Ve], [Es], inde- 
pendently found that  

where Ep=(Bp2+l)  1/2. It has recently been proved that  (2) and (3) hold with the 
R ~ directional Riesz transforms on R n, Rj=-~j , instead of 7-/ and with the same 

constants. T. Iwaniec and G. Martin JIM] proved the analogue of (2), and soon 
after R. Bafiuelos and G. Wang found a probabilistic proof for analogues of both 
(2) and (3) in the Euclidean context [BW]. 

Several authors have proved estimates of the form 

(4) tlRII ~ < K~ < 

where R is the vector Riesz transform on R ~ and Kp is a constant which only 
depends on p, l < p < e c .  The problem of finding the exact value of IlRIIp is still 
open, if n_>2. The first proof of (4) with a value of lip that  does not depend on the 
dimension n is due to E. M. Stein [$2], [$3]. Alternative proofs with increasingly 
better  constants were given in [DR], [Ba], [Pis], [IM] and [BW]. [IM 1 has the best 
known constant for p_>2 and [BW] has the one for p_<2. 

Let now M=G be a compact Lie group endowed with a biinvariant Riemannian 
metric and let ~ be its Lie algebra. Let X E ~  be a left invariant vector field such 
that  ]X t= I  , where I " I is the norm induced on ~ by the metric of G. The operator 

(5) =Xo(- xc) 
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is called the Riesz transform in the direction X.  The operators R C and R x  are 
related as follows. Let X1, ... ,X~ be an orthonormal basis for G and f :  G---~R. 
Then R c ( f )  can be written as 

n 

(6) RG f(a) = ~ Rxj  f (a)Xj  (a) 
j = l  

if aEG, where Xj(a) is the vector field Xj  evaluated in a. 
Let Bp and Ep be the constants in (2) and (3). In this article we prove the 

following theorem. 

T h e o r e m  1. Let G be a compact Lie group endowed with a biinvaviant Rie- 
mannian metric. We then have, on L~(G), 

(7) IIR G lip 2(p*- 1). 

If X E O  and IXl= l ,  then 

(s) IIRx 

and 

(9) IIIORx Ep. 

Equality occurs in (8) and (9) if G = T  n, the n-dimensional torus with any of its 
invariant metrics, or if G=SO(n), the orthogonal group, endowed with its standard 
metric. 

An estimate like (7) already appears in [S1], with a universal bound Ap that  
grows as p2 as p - * ~  instead of our 2(p*-1) .  More generally, D. Bakry [B2], [B3], 
[B4] showed that  IIRMIIp is universally bounded for M in the class of complete 
Riemannian manifolds with nonnegative Ricci curvature. See also [CL] and [B2], 
[B3], [B4] for related results on manifolds. 

As we mentioned above, equality holds in (8) and (9) in the noncompact case 
G = R  n. We conjecture that ,  in fact, equality should occur in (8) arid (9) for all 
compact Lie groups. An integration by parts shows that  IIRc112=1, hence (7) can 
not be best possible. 

Let now S n l = { x E R n : l x l = l }  be the unit sphere in R '~ with the standard 
metric. For l< l<m<n,  consider the differential operator 

(10) ~,~ = x z O,~ - x,~ O1 
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with 0,,~ =O/Oz,~. If zl +ixm =re ~~ then Tl,~=O/O0 is the derivative with respect to 
the angular coordinate in the (xz, x,~) plane, a well defined vector field on S ~-1. The 
vector fields Tl,~ are connected to the spherical gradient as follows. If f :  S n - I ~ R  

is smooth, then 

(11) ,Vsn-~ f , =  Q~< [Tl~f,2) U2. 

This follows fl'om the fact that  S ~-1 is a homogeneous space of SO(n). See w Let 
U be a vector field on S n 1 of the form 

(12) 

U ~ al.~Tt.,, where the constants Cttm satisfy 1 = E a-~2~ = sup IS(~)l ~. 
l < r n  l < m  x E S n - 1  

For such U, define 

(13) = 

the Riesz transform on S n 1 in the direction U. For the relation between R sn-~ and 
Q~, see w below. From now on, we will denote by Rr sn-~ the Riesz transform 

associated with the manifold S ~ 1. The superscript c stands for cylinder. It  is 
meant as a reminder that  R ~. and Qr naturally arise from a Neumann problem in 
the "cylinder" S n 1 • [0, ec). 

T h e o r e m  2. The following estimates hold on L0P(S ~ 1) 

IIR II  <_ 2(p*-l)  (14) 
and, if U is as in (12), 

(15) 

(16) 
IIQ llp 

III Q llp 
The operator R c is only one of those to whom harmonic analysts have at tached 

the name of Riesz transform, or Riesz system, on S n-1. See [AL] for a survey of 
singular integral operators on the sphere. In [KV1] and [KV2] the authors consider 
the operator  R b defined as 

( ~  -1 
R b = v s ~ - l o  Ou 

where (0/0~,)- l :  L2(S n 1)--~L~(Sn 1) is defined on spherical harmonics Yk of de- 

gree k_>l as (O/Ou)-aYk Yk/k. The operator R b, that  we call the Riesz transform 
of ball type on S n - l ,  is related to the Neumann problem in the unit ball of R n. See 
w If U is as in (12), the Riesz transform in the direction U is the operator 

--1 
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T h e o r e m  3. The following estimates hold o n  LoP(S n-l) 

(18) II Rbllp < ~ 1 (p*-1), 

(19) IIQbu lip = Bp, 
(2O) III~QbLkp =Ep. 

Sometimes, dimension free estimates "pass in the limit" to estimates for an 
infinite dimensional object. This heuristic principle has an application in the case 
of the sphere, since S n l(v~)={xeR'~:lxl2=n } goes in the limit to the infinite 
dimensional Gauss space as n tends to infinity. See, e.g., [M]. The m dimensional 
Gauss space is the measure space (R "~, ~/), where ~/(dx) (27c)-'~/2e -1~12/2 dx, xC 
R "~, is the m-dimensional Gaussian measure. Let D--(01, ..., Om) be the gradient 
in R ~'~ and D* be its formal adjoint with respect to the measure % Then 

m 

A= D*D= E Ojj-xjO j 
j = l  

is a negative operator, sometimes called the m-dimensional Hermite operator. The 
Riesz transform for the Ornstein Uhlenbeck process R ~ is then defined as 

(21) R ~ = Do (-A)-1/2.  

Theorem 2 implies the L p boundedness of R ~ 

T h e o r e m  4. On LPo(R ~,  7) we have 

(22) IIR~ I1~ _< 2(p*-1). 

The L p boundedness of R ~ was first proved by P. A. Meyer [Me3]. The best 
previously known constants in (22) are those in [Pis]. There, one has [[R ~ 
with Kp=O(p), as p--,oc, and Kp=O((p-1)-3/2),  as p ~ l .  

See also [G1] for a probabilistic proof. The inequality (22) follows from (15), 
(16) and an approximation argument that  will be developed in w 

The methods to obtain sharp estimates for singular integrals often have at their 
heart an argument involving a differential inequality (subharmonicity, convexity), on 
which one builds up by means of different tools, such as transference. In w we sum- 
marize some probabilistic preliminaries, including Theorems A and B from [BW], 
the proofs of which are based on a convexity argument in martingale theory. This is 
the method of differential subordination of martingales introduced by D. Burkholder 
[Bul], [Bu2], [Bu3], and developed by R. Bafiuelos and G. Wang [BW]. Theorems A 
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and B will provide the main tool in the proof of Theorem 1 and Theorem 3, together 
with a probabilistic interpretation of some singular integral operators started by P. 
A. Meyer, [Me1], [Me2], and developed by R. Gundy and N. Varopoulos [GV]. See 
also [Va]. We exploit the flexibility of the method, working with martingales on dif- 
ferent manifolds and making use of martingale transforms that  are not of "matrix 
type". 

w and w are devoted to the proofs of the estimates from above in Theorem 1 
and Theorem 3, respectively. w and the proof of Theorem 3 are independent of 
the part of the article dealing with Theorem 1, Theorem 2 and Theorem 4, the 
L p estimate for the Riesz transform in Gauss space. The estimates from above 
in Theorem 2 will be deduced from Theorem 1 in w The estimates from below 
in Theorem 1, Theorem 2 and Theorem 3 are deduced from analogous estimates 
for the Hilbert transform on the circle in w Their proofs are inspired by the 
transference method of R. Coifman and G. Weiss [CW] and by a development of 
this by T. Iwaniec and G. Martin [IM]. 

This article is based on results from the author's doctoral dissertation [A], 
written under the direction of Albert Baernstein II and grown from one of his 
problems. This work owes a great deal to his patient care. It is a pleasure to 
acknowledge several useful discussions with Rodrigo Bafiuelos, Guido Weiss and 
Xinwei Li. This article could not have been written without the kind hospitality 
of the Mathematics Department of the University of Milano and, particularly, of 
Professor Leonede De Michele. 

1. P r o b a b i l i s t i c  p r e l i m i n a r i e s  

In this section we collect some tools from probability theory and prove a lemma, 
Proposition 1.2, that  we need in the proof of Theorem 1 and Theorem 3. 

Here and in the following sections, (~t, ~ ,  {~t}t>o, P)  will be a filtered proba- 
bility space such that  all R N valued martingales X={Xt}t_>0 adapted to {5~t}t_>0 

have a continuous version )[,  i.e. ) (  is a version of X and the map t~-~Xt(w) is con- 
tinuous on [0, oc), almost surely (a.s.) in wEQ. The martingales considered in this 
article are always taken to be continuous. Recall that  the L p norm of a martingale 
X is given by IIXIIp=supt>0 IIXt lip, where the L p norm on the right is with respect 
to the measure P.  

We will denote by [X] the quadratic variation process of X. Then, [X]0=0, 
t~--~[X]t(w ) is of bounded variation on compact sets a,s. and IX~I2-[X]t is a real 
valued martingale. The covariance variation process [X, Y] of two continuous, R N 
valued martingales X and Y is defined similarly, by polarization. 
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Let X and Y be two continuous, R N valued martingales. We say that  Y 
is differentially subordinate to X (we write Y-<DX), if the process [ X ] -  [Y] is 
nondecreasing, a.s. We say that  X and Y are path orthogonal ( X •  if [X,Y] 
vanishes identically in t, a.s. on ~. 

The following theorems provide the best constants for some inequalities involv- 
ing differentially subordinate martingales. 

T h e o r e m  A. ([Bull, [Bu2], [BW]) Let X and Y be R N valued martingales 
such that Y is differentially subordinate to X.  Then 

(2a) Ilvll  _< (p* - 1 ) l l x b  

and p* 1 is best possible in (23). 

T h e o r e m  B. ([BW]) Let X and Y be R valued, path orthogonal martingales 
such that Y is differentially subordinate to X.  Then 

(24) II/Ib GIIXlb 

and 

(25) IIX YIb < GI IXlb .  

The constants in (24) and (25) are best possible. 

Let now M be a Riemannian manifold of dimension n with Ricci curvature 
bounded from below. This condition has the purpose of ensuring that  a Brownian 

motion on M does not explode in finite t ime [Em]. In this article we deal with 
M - R  n or M = N  x R,  with N a compact  Riemannian manifold without boundary, 
so that this assumption is satisfied. 

Let (. ,. } be the inner product on TM, the tangent space to M. A Brownian 

motion in M is an {9rt}t>0 adapted process Bt: f~-~M such that, for all smooth 

functions f: M--*R, 

1[ 
(26) I ( B t ) - f ( B o ) -  ~ AMI(B~) ds = (Idf)t 

is an R valued continuous martingale, where A M is the Laplacian on M. See [Em], 
[IW] for a full exposition of the theory. 

Let qJ be a continuous, adapted process with values in T ' M ,  the cotangent 
space of M. We say tha t  q is above B if lwt(w)CT~,(w)M whenever t_>0 and 
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(27)  

where | 

wCf~. The It6 integral of qg, (Iq,)t=fo (qds, dBs), is characterized by the following 
properties: 

(i) if g~t=df(Bt), with f :  M- -+R smooth, then 1r =Idf is defined by (26); 

(ii) if K is a real valued, continuous process, then ( IKr  If,  d(Ir  is the 
classical It6 integral of K with respect to the continuous martingale I r  
The process I r  is then a continuous, real valued martingale if �9 is above B. The 

eovariance process of two such It6 integrals can be computed according to the 
formula 

// [Ir Ir : Trace(qJs |  ds, 

denotes the tensor product  and (q~s| ~s (w) |174  

Let X c M  and let grid(T'M) be the space of all linear maps front To~M to 
itself and define &~d(T*M) as the bundle over M which is obtained by taking the 

union of all such gnd(T~M ) for x r  The bundle gnd(T*M) can be made into a 
smooth manifold in the usual way. 

Definition 1.1. Let B be a Brownian motion in M. A martingale transformer 
with respect to B is a bounded and continuous process A, with values in gnd(T*M) 
above B, i.e. At(a;)egnd(T~d~)M ). 

Let ~ be a continuous, bounded process with values in T ' M ,  above B, and let 
A be a martingale transformer with respect to B. The martingale transform of Ir 
by A, A*Ir is the R valued martingale defined by 

(28) d , I r  = IAq, = fo (ds~Ps' dBs}. 

If l~-d f  for some smooth, R valued function f on M, we denote A*Id/ by A , f .  

Let A=(A1 ,  ..., A~) be a sequence of martingale transformers above B, let A* 
Ir = (A1 * Ir A~ * Ir an R l valued martingale. The norm of ~4 is defined as 

III,AIIJ-- s u p  s u p  s u p  IAu,~(~)el  2 . 
coC~ t>O e c T B t ( ~ )  M _ 

Ic1-1 

We let IIIAIIf=IIIAIII if A is a martingale transformer and A = ( A ) .  

P r o p o s i t i o n  1.2. Let �9 and (~ be bounded, continuous, T*M valued processes 
above B. 

(i) / f A = ( A 1 ,  ... ,Az) is a sequence of martingale transformers above B, then 

(29) IIA*~r~ lip -< (p*- 1) IIIAlll III~ L. 
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(ii) If  A is a martingale transformer above B and (A~, ~)=0 identically in t>_O, 
wef t ,  ~E~r~(~)M, then 

(30) IIA*I~llp <BplllAltlllI~llp 

and 

(31) II(A*X~)~f~]lp~E~lllAIIIIl~llp. 

Proof. By Theorems A and B, it suffices to show that  A*I~-<DIIIAIIII~ in (i) 

and that  A*I,~-~DIIIAIII/~ and A*Iq~ • in (ii). 
Let x c M  and let el, . . . ,  en be an orthonormal basis for TxM, the tangent space 

to M at x. Suppose tha t  Bt(w)=x. Then, for j = l ,  ... ,l, 

n 

Trace (Aj ~ (~) e Aj ~ (0:)) = ~ (Aj ~ (~) O Aj ~ (~))(~h, eh) 
h - - 1  

= ~ I(Aj~(~),  eld[ 2 = IAj~t(~)l 2 
h - - 1  

where ( . , .  } here denotes the duality product ( . , -} :  T*M x T x M ~ R .  
Thus, for 0 < s < t ,  

l 1 t 

[A*lq']t-[A*Iq~]s:E([AJ*Z~]tj=l [Aj*Iq~]s)=j~-l~s Trace(Aj~Ilu@Ajlwu)du 

l t t 

which shows that  [ll[A[llIq,]t-[A,I~]t is nondecreasing in t. We then have that  

A*I~-<D IllAlll/q,, which shows (i). 
The same proof shows that ,  in (ii), A*I~-<Dll[A]llI~, and a similar argument 

that  d,I~• , (ii) follows. [] 

2. T h e  p r o o f  of  T h e o r e m  1 

In this section we prove a variant of a theorem of R. Gundy and N. Varopoutos 
[GV] in which the Riesz transforms on a Lie group G are interpreted in terms of 
martingale transforms with respect to a Brownian motion process in G x R. In [Va], 
Varopoulos hinted at this construction. The proof of Theorem 1 will follow. 
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Let G be a compact Lie group of dimension n, G its Lie algebra and suppose 
G is endowed with a Riemannian biinvariant metric. We can assume V o l ( G ) - I .  

Suppose that {X1,. . . ,  Xn} is an orthonormal basis for G. Let G - G  x R, with 
its Lie algebra G |  and the product Riemannian metric. We denote by z=(x, y) C 
G x R  the elements of the product group and we identify G x  {0}=G,  (x, 0 ) = x E G .  
An orthonormal basis for the Lie algebra ~ |  is {X1, ..., Xn, X0 }, where X0 = O/Oy 
generates the Lie algebra of R. 

Let X be a Brownian motion in G and let Y be a Brownian motion in R, with 
generator i 2 2 (d /dy ). If we take X and Y to be independent, then Z (X, Y) is a 

Brownian motion in G. 
Fix )~>0 and assume that  the distribution of Z0, the initial position of Z =  

Z;~={Zt}t>_o, is the product measure X| where X is the Haar measure on G and 
5~ is a Dirac delta at hER,  i.e., P(Z0 GA x (a, b) )=x(A) ,  if hE (a, b), and it is equal 

to 0 if )~r b). Observe that  X |  
Let G + = G x  [0, oo) and To inf{t>_O:Zt~2 +} the exit time of Z from 2 +. Then 

{ZtAro}t>_o is a Brownian motion in G+, stopped at G. 
Let A: G+--+gnd(TG +) be a continuous section of the bundle gnd(TG +) and 

define the process ftt=A(ZtA.~o). Then At is a martingale transformer. With slight 
abuse of language, we will say that  A itself is a martingale transformer. 

If f cC~(G) ,  let F be its Poisson integral in 2 +, i.e., 

02F 
o = zxoF(x,  y) = zx F( , y)+ (x, y), 

if xEG and y>0,  FCC~176 F(x,O)=f(x) and F is bounded on 0 % See [S1], 
[Me1] and [G2] for different expositions of the theory. 

Definition 2.1. If A, f and F are as above, the A-transform of f is 

T~I -- E[3*dF t Z~o] 

where h is the ~starting height' of the Brownian motion and To is the exit time 
from G+. 

Here, El .  I Z~o] is the conditional expectation with respect to the (r algebra of F 
generated by the random variable Z~-o. Observe that,  being measurable with respect 
to the exit position, T~f  defines a function from G to R. The following theorem 
gives an analytic representation of an A-transform. See [GV] for the Euclidean case. 

T h e o r e m  2.2. Let f, hEC~(G) and let F and H be, respectively, their Pois- 
son integrals on G+. Then 

(32) s hr f s247 <Adr(x,y),dH(x,y)12(yAA)dx y 
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The operator T~ can be extended to L~(G) and TA lim~_,~ T~ exists in the L p 
operator norm, l <p< oc. Moreover, 

(33) s hT f s (A dr(x,y) dH(x,y))2 dxdy. 

Proof. 

E(h(Z~ 0 ) T j f )  = E(h(Z~ 0 )E~A*/dE 

E(~oT~ (ftdF, dZ> foT~ <dH, dZ)) 

E(~-~ <A(Zt) dF(Zt),dH(Zt)) dt) 

Z~o]) 

f 
= J~+ (A(x, y) dF(x, y), dH(x, y))(yAA) dx dy. 

The first equality comes fl'om the fact that  the distribution of the exit position 
Z~ o is dx [Mel]. The second one is the definition of TA ~, while the third follows 
from It&'s formula on manifolds [Em] applied to H(Z) and the definition of the 
martingale transform. We use here the fact that  fc h(x)dx=O and the optional 

stopping theorem applied to the R valued martingale Wt=h(Zo) f~ (A dF, dZ) and 
to the stopping time 70. The fourth equality is a consequence of (27), while the 
fifth comes fi'om the formula for the occupation time of 2 + by the Brownian motion 
z ~ [Md]. 

In order to prove (33), consider the Littlewood Paley function of h, G(h), de- 
fined by 

( ~ o o  ,1/2 
(34) G(h)(x)= 2y]dH(x,y)12dy) , xcG. 

Let )H>A2 and let q be the conjugate exponent of p. Then, by (32), Schwarz's 
inequality and HSlder's inequality 

s h(TXl-~X~)fdx -- s 
\p/e 11/; 

\q/2 ql/q 

_< IIIAIII l i e (H( . ,  ~2))IlpllC(F(., A2))[[q. 
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By the Littlewood-Paley inequalities [S1], 

s h(7~ 1 <- CIIH( " , "~u)Ilpllf( " , .~2)llq < CIIF( �9 , k2)llpllhIIq . ~ r ~  2 ~ f dx 

Now, IIF( ' ,  ),)llp<_C(a)llflb, with C(A)+0  as 1 + o o .  In fact, observe that  the case 
p=2  follows from the spectral decomposition of F( - ,A) .  The case l<p_<2 follows 
by interpolation, since IIF( ' ,  a)H~_<Hflb. A simple duality argument then proves 
the case 2<p<oc .  Hence, taking the supremum over Ilhllq=l in the last member 
of the inequality and letting k2--+oo, we have IIT  1 -T 'llp 0. By dominated 
convergence we obtain (33). [] 

Observe that  the map A ~ T A  is linear. 
Let now {X1, ..., X,~, X0} be an orthonormal basis for G |  Let RO-RX j be 

the Riesz transform on G in the direction Xj, j = l ,  ... ,n.  If 1, mC{O, 1, ... ,n}, we 
define El,~ to be the linear map El,~: ~ 5 | 1 7 4  defined by 

Ez~Xj = { Xl, i f j = m ,  
0, otherwise. 

Then E~,,~ defines a smooth section of grid(TO+). We can identify E~,~ with a 
martingale transformer by means of the natural identification between ~ |  and 
its dual, induced by the Riemannian metric. After this identification, (33) reads 

(35) s  

T h e o r e m  2.3. The following equalities hold. 
T 1 (i) If r then Eo 

(ii) If lT~O, then TEzo =1 
(iii) If l, m~=O, then TE~r~ 1 

1 (iv) TE0o = 5I. 

Proof. Consider the decomposition of L~(G) into eigenspaces for AG, provided 
by the Peter-Weyl theorem [$1]. Then, L~(G) (~)~__l~k, where 7-[kcC~(G), 
Aarl+pkTl=0 if ~]E?-{k, 0<p~ <---<Pk<.. .  being the sequence of the nonnegative 
eigenvalues of - A c .  

Since the metric on G is biinvariant, Ac  commutes with all XCO, hence X~C 
~k whenever ~E~k,  k > l .  If f c ~ k ,  then F(x,y)=e Y ~ f ( x )  is the Poisson 
extension f to G+. Suppose that  f ,  gCTtk. Then, by (35), 

1 (--'%/~k') -1  iGXmf(x)h(x)dx ~ IG = 7 = Rmf(x)h(x) dx. 
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We used the definition Rm=Xmo(AG)-I /2 .  On the other hand, if f and h belong 

to different eigenspaces of AG, then .fG hTEo,,J d x = 0 = - � 8 9  f c  h R m f  dx. Case (i) 
follows by a density argument and duality between L ~ spaces. 

The proof of the other cases follows the same lines. [] 

The following corollary contains the majorizations in Theorem 1. 

C o r o l l a r y  2 . 4 .  

(i) HRGHp_<2(p*-I), 
(ii) IIRjllp<_B~, 

(iii) ]]IORjIIp<E~,. 

Proof. By (6), Proposition 1.2 and Theorem 2.3, it suffices to compute 

c~=2 sup EomXI 2 . 
xcG _ 

IIxI l -1  

The supremum is 1, hence c~=2 and (i) follows. 
By linearity, (i) and (ii) in Theorem 2.3 imply that  Rj =TEj0-E0j. The cases 

(ii) and (iii) then follow from Proposition 1.2 and the facts that  ((Ej0-Eoy)V, v} =0, 

]llEj0-E0jlll=l. [] 

If X E G  and {XI=I,  we can take it to be X=X1 ,  hence Corollary 2.4 implies 
(7), (8) and (9) in Theorem 1. 

Remark. Only in the proof of Theorem 2.3 we made use of the fact that  G 
is a Lie group. In particular, Theorem 2.2 can be shown to hold for any compact 
Riema~nian manifold. 

Also, the requirement that  G be compact is used only in that G carries a 
biinvariant Riemannian metric. Thus, Theorem 2.3 and Theorem 1 hold, with 
obvious modifications, on any Lie group carrying a biinvariant Riemannian metric. 

3. T h e  p r o o f  o f  T h e o r e m  3 

Notation. In this section, 27, div and A denote, respectively, the gradient, the 
divergence and the Laplacian in R n. 

In this section, we prove an L p estimate for a Riesz transform associated with 
the Neumann problem on B '~, the unit ball of R n. We will prove most of Theorem 3 
and (ii), (iii) in Theorem 2. We will see in w how these last estimates also follow 
from Theorem 1. This section and Theorem 3 are related to, but independent from, 
the others in this article. 
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Let 7-/k be the space of spherical harmonics of degree k and let 

N 

k = l  

the space of harmonic polynomials with null average on S n-  1 [SW]. Fix f E g0 and let 
H be the solution in B ~ of the Neumann problem with boundary data f ,  normalized 
so that  H(0)=0 .  We will write 

where u is the outward pointing normal vector to S ~-1. The operator (O/Ov) 1 
could be called the Neumann operator on S ~-1. If f = ~ k > l  f~ is the decomposition 

of f into spherical harmonics, then (O/Ov)-lf=~k>l (1/k)fk, i.e. (O/Ov) -~ has the 
multiplier 1/k on g0- 

Let ~,~ be as in (10). For l<_l<m<n, let Q t ~ = Q ~ ,  where Q~,~ is defined by 
(13), and b b b Q I , ~ - Q ~ ,  with defined by (17). In this section we will work with 
the auxiliary Riesz transforms o n  S n - 1  of cylinder type, Q~, and of ball type, Qb, 

QC (Q/~)I</<,~<~ and Qb b = c = 

Since, by (11), ]R~I IQ~I and IRbI=lQbl, estimates on the auxiliary transforms 
carry over to estimates for R e and R b. 

The transform R b and its auxiliary form Qb were studied in [KV1], [KV2], 
[RW], [B1]. 

Since R e is an isometry of L~(Sn-1), Qc is an isometry of L02(S ~-1) into 
L2(S n 1, R~(~-1)/2). There is a simple relationship between Q~ and Qb. Let S be 
the operator from L~(S n 1) to L~(S n - l )  defined by the multiplier ((n-2+k)/k)U2. 
Then 

(36) Qb = Q % S  and R b =R%S. 

This follows from simple considerations involving the definitions and the multipliers 
of (-As,~ 1) -1/2 and (O/Ov) 1. If n=2 ,  - R C = - R b = ~  the Hilbert transform on 
the unit circle. We only deal with n>2 ,  the case n 2 being classical. 

Let B=(B 1, ..., B")  be a Brownian motion in R ~, with initial position B0=0.  
Let T=inf{t>O:Bt~B ~} be the time of its first exit from the unit ball B ~. The 
theory presented in w and w can be extended to this setting and, in fact, it can be 
found in the literature [B@ [BW], [Bell, [D], [G2], [BL]. 
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Let n:Bn-~E~d(a n) be a continuous map xHA(x), where A(x) is an ~• 

matrix. Then At=A(BtnT) is a martingale transformer. We will identify A and A. 

Let fcC~(S n i) and let F be its Poisson extension to B n. Define 

[ t A ' r  

(37) (A*F)t = A(B~)VRnF. dB~ 
Jo 

the martingale transform of F(B) by A, and 

(38) TAI(Br = E [ A , F  I Be] 

the A-transform of f .  The operator TA extends to a well-defined linear operator on 
n~ ( sn : l ) ,  p > l .  Let G(0,. ) be the Green function of B n for �89 at 0. Then 

G(o ,x )  = 2 ( , z l 2 _ n _ l ) ,  
(n_  2) Vol(S,~ 1),, , 

for n>3.  We write G(Ixl)=G(O,x ). 
Theorem C below is the equivalent of Theorem 2.2 in our context, and its proof 

can be found in [Be1]. 

T h e o r e m  C. [Be1] Let f , h r  n 1), and let F , H  be, respectively, their 
Poisson integrals in B ~. If  A is a martingale transformer, then 

1 Is /o (39) Vol(S n 1) ~_~ h T A f d x =  , (A(x)VF(x) ,VH(x)}G(IxI)dx.  

Let now el, ..., e~ be the standard orthonormal basis of R ~. Let l < l < m <  
n and let Em~ be the matrix such that  E h n e k : O  if k~-l,m, E l m e l  em and 
E l m  em : e l . 

Let now 7): [0, ]]---~R, 7)eCt(0, 1)7~C([0, 1]). Define 

/0 (40) p~(k) = r 2k+~-2 [~o(r 2) Vol(s~-l)G(r)]  dr, k> 1, 

and consider the operator S~:$0-+g0 acting on spherical harmonics Yk E T-/k as 

(41) S~Yk={~(k)Yk, k> l. 

The following theorem shows how the auxiliary Riesz transforms Qb and Q~ can be 
interpreted in terms of martingale transforms. 
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T h e o r e m  3.1. Consider Al,~(x)=~([x[2)Et,~, with ~ and Et,~ as above. As 
operators acting on Co, 

(42) TA~.~ =T i ros  ~ 

where S ~ is defined by (41). In particular, we have the following two cases. 
(i) [f ~=_ l, then 

WAl m TEt.~ b Qlm" 

Thus, Qb (TE,.~)I<,~. I f V  is defined by (12) and A=~l<,~c~l,~Elm, then TA Qb. 
(ii) Let ~ be defined by 

(43) v(e ~t/(n--2)) _ f2 Io(s) ds 
et l , t>O,  

where I0(z)=~l~_0 (�89 2, z cC ,  is the modified Bessel function of order O, 
then 

(44) TA~ = Ql%. 

irhus, Q~=(TA,~)z<.~ and, if U is defined as in (12) and A=E~<m ~.~E~..  then 
T A ~ Q u  . 

Proof. In order to prove (42), it suffices to show that,  for fETYk, h~7-{j, 

(45) fs~ l hTA~mf dx= fsn-l  hTu~ ~ f dx" 

By Theorem C and Green's theorem, 

1 
Vol( s ~ - I  fs,~ lhTAzmf dx /g  nq~ 

= . ~ - 1  h(x)(~(Ixl2)G(x)Ez'~VF(x))'u dx 

B~ H(x) div(~(lxl2)G(x)El,~VF(x) ) dx, 

u being the outward pointing normal vector to S n 1. Observe that  in the application 
of Green's theorem, due to the singularity of G at 0, we should have a boundary 
term on {xeB~:lx]-e} .  Since qD is bounded, this term vanishes as e-+0. 

Write x c B  n as x=rw, rE[0,1], w~S '~-1. Since G vanishes on S ~ 1 and since 

div(Al~mVF(x)) 2~'(Ixl2)~.~F(x) 
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we have, for j=k, 
1 

Vol(S ,-1)/so-1 hTA,mS  x=-2 fBn 
= - 2 / 2 ~  1 h (~)~ , , , f (~ )  

11 ; X T 2k+n_  1 1 

= Vol(Sn_~ )- ,~-~ h(~)T~oS~Z(~)da~. 

The second equality comes from Fubini's theorem and the fact that  H(ra~)=r~h(w), 
F(rw) =rkf (w) .  

In the same way, if jr  then 

l fs l fs h(w)Tl~~ a~. Vol(Sn_X ) hTa,~f dx = 0 - Vol(S~_l) 
n--I n--i 

Equality (42) is thus proved, and (i) follows immediately. 
Equalities (40), (41) and (42) show that  the problem of finding a function 

such that  (44) holds can be rephrased in terms of Laplace transforms. Let 

1; 
g(,~2)_ 2r [~ ( r~)c(" ) ] '  o <,~ < ~, 

and r  ~/2g(e t), t>0 .  Then 

/J r = e-kr dt = s 

is the sampling on the positive integers of the Laplace transforms of r An inspection 
of multipliers shows that  S ~ = ( -As ,~- l )  1/2 if ~b satisfies 

1 
(46) s162  = k _> 1. [k( ,~-2+k)] , /~ '  

A solution of (46) is r189 [PBM]. The expression for ~ in 
(ii) follows. [~ 

The fact that  the function ~ that  allows us to represent Q~ is more complicated 
than the one that  represents Qb is an indication that Q~, unlike Qb, has no natural 
connection with the geometry, hence the Brownian motion, of R '~. tf we had worked 
with Brownian motion in the Riemannian manifold S ~ - l  x R we would have found, 
in fact, a simpler probabilistic interpretation for QC. 

Let ~ and Al,, be as in Theorem 3.1. Consider the sequence .4= (Alm)l<l<m<_n 
and define TA=(TA~.~)i<_I<m< n. Then, if  fEC~(Sn-1) ,  TAf: sn-i-~Rn(n-1)/2. 
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Pr op os i t i on  3.2. If  f cL~(S ~-l) is real valued and A, TA are as above, then 
(i) llTAfll~<_(p*- l)(n-1)z/~ll~ll~oltfll~. 

If U is as in (12) and A=~z<m azmEl~, then 
(ii) ]]TAf[[p<Bp[kO]]~ttf]]p, 
(iii) ]](I| 

Proof. The cases (i), (ii) and (iii) follow from Theorem 3.1, Proposition 1.2 and 
simple considerations involving Ezra, that we supply below. 

A counting argument gives, for v =  (v~, ..., v ~ ) E R  ~, ~ z < ~  [El,~vl 2= (n-1)Ivl 2. 
Thus, IIIAIII = ( n -  1)~/2 II~11oo, and this proves (i). 

Note that ((2z<,~ az,~Ez,~)v, v} =0. Also, 

l < m  e l <_l<m<p<_n 

with possible equality. Hence IIIAIII=II~II~. The cases (ii) and (iii) follow. [] 

C o r o l l a r y  3.3. Let U be as in (12). The following inequalities hold 

(47) IIQbllp~(p*-l)(n--1) 1/2, IIQ~llp~Bp and II/eQbHp<Ep; 
(48) IIQ~ll~_<(p*--l)(n--1) ~/2, IIQ~IIp_<B~ and III~Q~II~<E~. 

Proof. One only has to verify that, if ~ is the function defined by (43), then 
II~ollo~=l. From the series expansion of I0 one easily checks that, if s_>0, then 
O<Io(s)<_C and that I0(0)=1. Then 0_<~o(r)_<l. [] 

As a consequence of (47), we obtain (18)-(20), with inequalities instead of 
equalities in (19) and (20). Similarl.y, (48) implies (15) and (16) with inequalities. 
We also obtain a constant for an inequality like (14), but with the wrong order of 
growth with respect to p. 

Remark. A consequence of Corollary 3.3 (47), is that, if f c L ~(Sn -1 ) ,  then 

1 
(49) IlQbfllp>- (n_l)1/2(p, 1) llfllp. 

by 
To prove (49) we can use a duality argument. Define the operator V (Vzm)l<,, 
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One easily verifies on spherical harmonics that ,  on L~(Sn-1),  

(a0) Z ~ OlmVl,~ = - I ,  
l<:m 

where I is the identity operator.  From (50), HSlder's inequality and the fact that  

the adjoint of Tim is -Tt,~, we see that  (49) holds if 

(51) Ilvll; < (p*- 1)(n-  1) 1/~ 

This last estimate follows from the representation formula Vt,~=Tz~oS ~, where 
/3(r 2) r n-2,  Proposit ion 1.2, and Proposit ion 3.2. 

It  is easy to show, however, that  IIQbfll2 >_ Ilfl12, hence that  (49) does not exhibit 
the right order of growth with respect to n. 

In fact, by means of a more sophisticated duality argument,  one can show that  
there exists a universal constant C > 0  such that  

C 
(52) IIQD IIIp ~ II/llp- log n(p* 1) 

The proof of (52) makes use of Brownian motion and martingale transforms on 
the Riemannian manifold S ~-1 x R .  Even (52), however, does not give the right 
asymptotics in n for p=2 .  

4. T h e  p r o o f  o f  T h e o r e m  2 

Consider S O ( n ) ,  the rotation group of R n. Its Lie algebra, so (n), is the space of 

n x n skew symmetric  matrices. The imbedding of S O ( n )  in R n2 induces on S O ( n )  a 

biinvariant Riemannian metric, tha t  we call the standard metr ic  of S O ( n ) .  We nor- 
malize this metric in such a way that  an orthonormal basis for so(n) is provided by 
{ Xl,~ : l < l < m < n } , where Xtm l,~ t~  _ lm Ira__ -- _ [rjk ]l<j,k<n_ and r t ,~ - - -1 ,  r,~ Z 1 and r jk  - 0  for 

all other entries of Xl,~. This corresponds to the norm II [ajk] II = �89 V~ (2~k=1  ajk)-2,1/2 

on R n2. The operator Xlm is the infinitesimal generator of the rotations in the 
(xz, x,~) plane. 

We identify S n - l = S O ( n ) / S O ( n - 1 ) ,  where H = S O ( n - 1 )  is the stabilizer of 
the north pole en of S n 1, en=(0,  ... ,0, 1). Let II: SO(n)-- - ,S  n-1 be the projection 
I I ( a ) - a e m  the image of en under the rotat ion a. By rnso(~) and rns~ ~ we denote, 
respectively, the Haar  measure induced by the s tandard metric on S O ( n )  and the 
Hausdorff measure on S n ~. The map I I , : T S O ( n ) ~ T S  n-1 is the push forward 
map I I , ( X ~ ) f ( g ( a ) ) = X a ( f o I I ) ,  if X ~ c T ~ S O ( n )  and f :  S n I--~R. 
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The adjoint representation of SO(n) is A d ( a - 1 ) X =  (d/dt)It-o ( a-1 exp(tX)a), 
XE~o(n), aESO(n), where exp denotes the exponential map exp:so(n)~SO(n). 
Then, if F: SO(n) -*R,  (Ad(a 1)X)F(a)=-X(Foo)(o(a)), where ~(a) a -1. 

If Tz,~ is defined as in (10), it is easy to show that  

(53) II,  (Ad(a-  1)Xz,~) = TZr~ (II(a)), 

the vector field Tl,~ computed at the point II(a)ES n 1. 
c Rs n The lemma below shows how Ql,~ and 'xz.~ are connected to each other. See 

also [ALl. 

L e m m a  4.1. Let U be a vector field on S ~ 1 of the form (12), and let 

l<m 

if  f EC~(S n 1), then 
_RSO(n) (i) (Qt,J)(II(a))= x~.~ (foHos)(p(a)), 

(ii) iiQT: ii~ < lIR~~ 
(iii) [[I| lip ~ IIZ~R s~ lip, 
(iv) LLO,~LLp<IIRs~ n) ll~. 

Pro@ Since Aso(~0(foI I )=(As  .... f)oH, we see that  I I* : f~+fo l I  maps the 
eigenspace relative to the k TM eigenvalue --#k of S ~-~ into the eigenspace relative 
to the same eigenvalue of Aso(n). Thus 

(Ql%f)(II(a)) Tl,~[(-As.  1) 1/2f](II(a))=-Xlm[((-Asn-1)-l/2f)olIo~](~(a)) 
= -[Xl,~ o (-Aso(n))-1/2]  (fo 11o ~)(o(a)) = -RSx ~ (foIIo L))(L)(a)). 

We made use of the fact that  Aso(n) (F o 8) = (Aso(~)F) o 0, 0 being an isometry. 
The statement (i) is proved. 

The statements (ii), (iii) and (iv) follow from (i) and the following fact. 
There exists # > 0  such that,  for f :  S '~ I - -~R,  

(55) fs  foIIdmso(~) =# fs  f dmsn 1. [] 
o ( ~ )  n 

The first two estimates in the corollary below have already been proved, with 
different arguments, in Corollary 3.3. 
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C o r o l l a r y  4.2.  Let U be as in (12). We have, then, the estimates 
(i) IIQSII~<B,, 

(iii) HQ~llp<_2(p*- l). 

Proof. By Theorem 1, it suffices to  verify that ,  if U and X are as in (12) and 

(54), then  

(56) IU < >l _< IX(a)l = 1 

for all aESO(n). The  equali ty comes from (54) and the or thogonal i ty  relations 

between the Xz~'s .  The  map  II  is a Riemannian  submersion, hence the inequali ty 

holds. [] 

By (iii), we have the  last par t  of Theorem 2. 

5. T r a n s f e r e n c e  a r g u m e n t s  

In this section we prove several inequalities of the form IILtllp>_Bp and the 

form IlI@UIIp>_Ep, where U is one of the directional Riesz t ransforms appear ing 

in Theorems 1, 2 and 3. It  is classical that ,  if T/ denotes the Hilbert  t ransform 

on the unit  circle, then  117411p<_Bp and IlI@~llp<Ep. In  fact, we have equali ty in 
bo th  relations [Pie], [Es]. We will see how the est imates on S n-1 can be reduced to 

est imates on T k and the ones on T k to est imates on S 1. We have already seen in 

the previous section how to transfer  the inequalities from S n 1 to SO(n). 
Let U be as in (12) and let Xc~o(n) be defined as 

X = E OZlmXlm" 
l<m 

Then  I X I = I  and I I . X = U .  After passing to some different or thogonal  coordinate  

sys tem in R n, X can be wri t ten  as c~ lX12+. . .+akX2k 1,2k, with 2k<_n, ~ 2--1 o z j - -  

and c~j~0 for j = l , . . . ,  k. The  ro ta t ion  exp( tX)  can then be decomposed as the 

commuta t ive  produc t  of rota t ions  by an angle of adt in the (z2d 1,X2j) plane, 
l<_j<k. Since the space of the vector  fields of the form U does not depend on 

our choice of nor th  pole, we can assume tha t  we are working in such a coordinate  

system. Thus  

k k 

(57) u :     2j-1,2j and X =  1,2j 
1 1 
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Let T k be the the k-dimensional torus T k = S l x . . . •  1, endowed with the 

Riemannian product metric, tha t  we call the standard metric on T k. We define 
an operator  J tha t  extends trigonometric polynomials on T k to complex valued 
functions on S n-1. Let 0 =  (01,..., Ok)CT k and l =  (11,..., lk)C Z k be a multiindex. 

Consider the tr igonometric polynomial f (O) :~ l l l<  N ele ilO, where Ill denotes 

the length of 1. Define the polynomial f in the variables x~,. . . ,  xn by 

N_<N- l~>_0 ~h_<0 

f only depends on the variables xl ,  ... ,x2k and it is harmonic in R ~. In fact, f is 
pluriharmonic in C k in the variables z j=x2 j_ l+ ix : j .  The restriction J f = f l s n - 1  
is our extension of f to S n-1. 

Suppose that  S is a multiplier operator on S ~-1, acting on go- Let S 1 be the 

multiplier operator on T k defined by Sl (e ic~176  where S is the 

multiplier of S. If V=UoS ,  set V I = ~  aj(O/OOj)oS 1, the restriction of V to T k. 

L e m m a  5.1.  
(i) J o V I = V o J .  
(ii) There exists C > 0  such that f s  n 1 J f dms~ ~=C fwk f dmwk for all inte- 

gruble f on S n- l ,  where mTk is the Haar measure on T k. 

Proof. The proof of (i) is a straightforward calculation. To prove (ii) it suffices 

to observe that  the functional f~-~fs~ ~ J fdms~-~  is invariant under translations 

and is continuous with respect to the L ~ norm. [] 

C o r o l l a r y  5.2. Ilylllp<_llyllp and IlI |174 

Let a=(c~l ,  ..., C~k), Ic~1=1. Consider the operators on L~(T k) whose action on 

the group characters is, for l~0 ,  

Q~)(eWO) = i l .a eil. e 
([~l([lf+n-2))~/~ 

and 

Q ~ ) ( e i t . 6 )  = i l . c~  iz o 
~ e " . 

Observe that  o b l - - l ~ T k  is the Riesz transform in the direction c~ on T k with its 

s tandard metric, where c~ER k can be viewed as a unit vector in the Lie algebra 

of T k. Corollary 5.2 implies the following corollary. 
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C o r o l l a r y  5.3. 

(i) IIQ~)llp_<llQbllp, IIQ~llp<[IQbll~, 
(ii) IlieQ~)llp<llicQ~llp, IIIr174 ll p. 

The next step will lead us to S 1. 

In order to unify the notation, let W~ be the operator acting on characters as 

where l r  T h e n W ~  a n d W  '~ 2 ~ 1  v v c~ - - " ' ~  U c~ - - ' ~U  " 

P r o p o s i t i o n  5.4. If Io~1 1 and r>O, then 

(58) IIW2II~_>B~ and IlSmW2llp_>E~. 

Pro@ The proof is divided into two cases. 

Case 1. Suppose tha t  o~=m/lrnl, with m =  (rex,. . . ,  ink)EZ k. Consider the op- 
erator K that  maps functions f :  S1---+R to functions K f: T k - + R  by 

Kf(o) = f (0 . .~ ) .  

For s>0 ,  define a multiplier operator  on S 1 by 

~xT~Ulml ( eiqr = i sign(q) ( ~ J/2e iqr 

In a sense, K extends functions o n  S 1 tO functions on T k through the foliation of 
T k induced by the one parameter ,  closed subgroup t~-+tO, tCR. 

L e m m a  5 . 5 .  
(i) K o W ~ ( I ~  % ~ oK 

/I I /I I 
(ii) There exists C > 0  such that fTk K f dmTk=C fsl f dmsl for all integrable 

f on S 1. 

The proof of the lemma is a simple calculation. 

An immediate consequence of the lemma is tha t  the proposition holds for c~= 
rn/Irn [ and for r = 0 ,  since W ~ ---7-L In order to deal with the case r > 0 ,  we ~/Iml- 
need a new idea. 
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L e m m a  5.6. 

(i) Bp<llW~ m lip, - /11 
(ii) Ep< I lSmW~/l~ ill,. 

Proof. Let f be a trigonometric polynomial on  S 1, N > O  a positive integer. 

Define 5Nf(ew)=-f(eiNO). Since ei~ iN~ is measure preserving, II~gfll~=llfllp. 
We have tha t  

~ r  c c ~ r r r / N  
vl~ / i .  q o O g  = ON o vl%~,/im I. 

Given c>O, let f be a trigonometric polynomial such that  Ilfllp=l and 

There exists so>O so that  

if O<s<s0 .  Thus, 

IIW~,~It.~i<$N IIIp 

~ 0  
IIW&/i.~i f l l ,  = II~fllp _> B p - c .  

tlw:,~l,.~ifll , > B , -  2~ 

Since c was arbitrary, the lemma is proved. [] 

From the lemma it follows tha t  the proposition holds for a=m/[m I and r > 0 .  

Case 2. For general a ,  we can find m as above such that  Ii-(rn/Iml).al<e, 
where e > 0  is any fixed positive number. Using Case 1 and an approximation 
argument,  one proves the proposition in the general case. [] 

If T k is given any other invariant metric, a modification of the argument in 
Proposit ion 5.4 proves tha t  Bp and Ep are best possible in the L p estimates for the 
corresponding directional Riesz transforms. 

Let U be as in (12) and XE~o(n) be defined by (54). 
As a consequence of Proposit ion 5.4, Corollary 5.2, Lemma  4.1 we have the 

inequalities 

B~ <_ llw2 ~11~ = IIQT) I1~ < IIQT~II~ <_ IIRs~~ (59) 

and 

B~ < IIW~ : IIR T~ II~ : IIQ~ II~ ~ IIQbll~ - 

We have, as well, the corresponding inequalities with E ,  instead of Bp and with 
I |  ors/ ,  where 5/is  one of the operators in the above chain of inequalities. 

This proves the cases of equality in Theorem 1 and concludes the proofs of 
Theorem 2 and Theorem 3. 
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6. B o u n d e d n e s s  o f  R ~ 

In this section S ~ = S  ~-1 (v/n) is the (n-1)-dimensional  sphere of radius x/~. 

We endow Sn with its natural Riemannian metric and with the SO(n) invariant 

measure #~ normalized so that # n ( S n ) = l .  The L p norms on S~ are taken with 

respect to this measure. Many geometric objects on Sn pass in the limit to corre- 

sponding objects on the infinite dimensional Gauss space, see [M]. In this section 

we prove that L p estimates for the Riesz transform R ~ on S ~ 1 pass in the limit to 

estimates for the Riesz transform associated with the Ornstei~Uhlenbeck process. 

In order to do this, we will see, more generally, how the spectral theory of the spher- 

ical Laplacian on S ~-1 is related, as n-~oc,  to the spectral theory of the Hermite 

operator in Gauss space. See [Ma I for results of a similar flavor. As a consequence, 

we will have that the L p norms of gradients and Laplacian powers on S n 1 tend 

to the L p norms of gradients and Hermite operator powers in Gauss space, in a 
suitable way. 

With T~,~ as in (10), if F:  Sn---~R is smooth enough, we have 

(60) As F = _1 ~ TI.~TI.~F 
7t 

l < l < m < n  

and 

(61) IVs, Fl~=! ~ I~mFI 2 . 
n 

l < l < m < n  

If F is a spherical harmonic of degree k, then, 

As~_IF  _ k ( n  2 + k ) F  ' 
n 

Let m be a fixed positive integer. Let IIn: Sn--~R "~ be the projection IIn(x, y) 

x, i f x ~ R  ~,  u ~ R  n - ~  and jxl2+lul2=n. If f:Rm--+R, A = f o I I ~ .  Mehler's obser- 
vation is that, if E_CR "~ is measurable, then 

s~ x z ~  d#n = Jlxl~-<n 

as n--,oc. It is not difficult to check that, in fact, if f :  R m ~ R  has polynomial 
growth, then 

(62) f s  fi~ dtt~----~ f R  f d../. 
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Hence, if f is a polynomial in x E R  "~ and l_<p<oc, then 

limoo IlVs,,fnllL~(S~) = IIVR,~flIL~(~), 

lim IIAs~f~IIL,(S~) = IIAfllL,(~), 

where A f ( x ) = A R m f ( x ) - x . V R ~ f ( x )  is the Hermite operator�9 In fact, 

IVsnfnl 2 = ~ ( O j f )  i -  z jOj f  
j = l  \ j = l  

and the error term has polynomial growth. A similar relation holds for the Lapla- 
clan, see [M]. 

Let A~ ~ be the space of polynomials of degree not greater than k in x =  
(x~,..., Xm). The space 7-/k (R ~) is the space of homogeneous harmonic polynomials 
of degree k in R ~ and ~ " ~  is the space of those YCT-/k(R ~) that  are invariant 
under S O ( n - m ) ,  the subgroup of SO(n) that  fixes pointwise the first factor of 
R ~ = R  "~ x R  n ~,  n>m. Then Y E ~  n''~ if and only if it is a spherical harmonic of 

~ J  k 
2 2 degree k on R n that  can be written as Y(x l ,  ..., x ~ ) = r  ..., xm,x,~+l+...+x~), 

OO 77~ where r is a polynomial in m +  1 variables. The space 2) k ' will be the space of the 
generalized Hermite polynomials of degree k on R "~, i.e., the space of those P C J t ~  
such that  AP+kP=O.  See [Me3]. 

Mimicking the reasoning in Chapter IV of [SW], it is easy to verify that  
dim(g) k ) -dm~(f)  k ) - d  k is independent of n. In fact, d ~ = ~ { a ~ N k : l c t l =  

a l + . . . + a m = k } .  

Let now ~Ok , n>m, and let P ,  be its restriction to S~. Then 

n ~ m  (63) P n = ~ Q j  (P), 
j<k 

n ~ m  where Qj (P) is the L2(Sn)-orthogonal projection of P onto T/j(Rn),  a spherical 
harmonic of degree k, that  we extend to a homogeneous polynomial on R ~. Then, 

~n ,m.p .  --n,m by SO(n m) invariance, q]j ( )E~k . The following lemma shows how the 
spectral decomposition of Pn simplifies as n--~ec. 

L e m m a  6.1. Let ~xj k and consider its decomposition as in (63). Then 
Qk (P) is the leading term of P~ in the L 2 sense, 

(i) limn-_+~ n,,~ IIQk (P)IIL2(S~)=IIPIIL~(~) and 
(ii) limn~o~ tlQ*j~'m(P) IIL2(Sn)=O, if j<k�9  
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Proof. If Q is a spherical harmonic of degree j ,  then 

( A S n ) l / 2 Q = v / j ( n - 2 + j ) / n Q .  

Thus 

k 
lim E j (n- -2+j)  n.~ p 2 1/2 2 ][Qj' ( ) = lim IIL~(s.) II(-As~) PnllL~(s~> 

n ~ o o  n n ~ o o  
j = 0  

k 
n ,m p 2 =kllPll~2(~)= lin~}-~llQj ()llz~(s.). 

j 0 

Comparing the first and the last term in the chain of equalities and taking into 
n m  2 2 account that IIQj' (P)IIL~<s~)-< IlPllz~<s~) is bounded, since IIP,~ 2 

we obtain (ii) for 0 < j < k .  The case j = 0  is easier, and (i) follows. [] 

~jn,m s  ~ in ,m Let now k = k A T j = 0 - - ~ j  , m < n < o c .  A consequence of Lemma 6.1 is that  

(64) II(-AsJ~/2pnllL~(s.)-~ II(--A)x/2PIIL2(~), 

as n-~ec,  if P E 3 ~  'm. The lemma below is the key to extend (64) to l_<p<ec. The 
real problem is p>2,  the case p < 2  being easily reduced to that  of p=2. 

L e m m a  6.2. Let l_<p<oc. There exist Kp=K(p,  m, k) and N = N ( m ,  k) such 
that, if F E:I~ ~''~, 

(65) IlYllL~(s~) _< K~IIFIIL~(s,~). 

Pro@ If p_<2, (65) follows from Jensen's inequality, with Kp=l .  
Let p>2.  If F~.Jk-~'~"~, then Fn, the restriction of F to S~, is the restriction to 

S ,  of a polynomial r ~ that  only depends on x = ( x l ,  ... ,x,~). By Schwarz's 
inequality we have 

< (2~r) "~/2 
"Fll~(s.)-.~,~<n (1_ ,~2)(n 2-.~)/2 dxC~162 

<Cl(mDilCnllL2~<~> <C2(,~, p/2 _ P k,P) llCnllL~<~>, 
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where CJ( �9 ) represent various positive constants dependent on the arguments in 
the parenthesis and, in particular, 

C~ m) = ( f[~l~<n ( 1 -  lX~ln2 ;-2-'~er~12 d~/(x) )l/2 

is bounded in n, for fixed m. The last inequality follows from the fact that  A~  is 
a finite dimensional Banach space with any of its L p norms. 

Consider now on A ~  the norms [']n, m<n<_cc, [f]n=llf~llL~(Sn), [ f ] ~ =  
tlIIIL~(~)- By (62) and simple considerations about finite dimensional Hilbert spaces, 
we have that  

(66) Ca(m, k)[f]~ _< [fin <- C4(m, k)[f]~ 

for n>_N(m, k). Together with the chain of inequalities above, (66) implies (65). [] 

C o r o l l a r y  6.3. Let 1 <_p< oo. If P is a finite linear combination of generalized 
Hermite polynomials, then 

(67) 

a s  n - - - ~  o o  . 

(68) 

II(--/XS~)I/2PnlILP(S~) --* II(--A)z/2PltL~(~), 

As a consequence, 

IIV mPIl  < )<2(p* 1)II(--A)I/2pIIL~(~). 

Proof. Suppose p=p(1)+...+p(k), p(1) E~c~,m" Lemma 6.1 and Lemma 6.2 
imply that  the leading term, in the L p sense, of the decomposition of Pn in spherical 
harmonics is Q~,m(p(1))+...+Q~,,~(p(k)). The limit (67) can then be deduced from 
the Fourier multiplier's expression of ( A s , ~ )  1/2. The inequality (68) follows from 
(67) and Theorem 2. [] 

Proof of the L p boundedness of R ~ Inequality (68) can be rephrased as 

(69) IIV~m o(-A)-I/2PIILp(~) <_ 2(p*- 1)IIPIILp(~) 

where P=(-A)I /2P is any finite, linear combination of Hermite polynomials with 
null average on (Rm,@. By density, (69) extends to LP(~/) [Me3]. This proves 
Theorem 4. [] 

We believe that  IIR~ Pichorides' constant, but we do not have a proof 
for this. The extremal sequences used in the proof of (59) in w in fact, depend on 
the dimension of S n - l ,  and the limiting scheme unfolded in this section does not 
apply. 
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