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Riesz transforms on compact Lie
groups, spheres and Gauss space

Nicola Arcozzi(!)

Notation. For z,ye€R™, x=(21,...,Zn), y=Y1,-,¥n), [2[=(j-, x?)1/2 is
the Euclidean norm of = and (z,y)=)_7_,x;y; is the inner product of 2 and y.
Sometimes, we write -y instead of (z, y). If (X, F, u) is a measure space, f: X >R"
is a measurable function and pe[l,00), the LP norm of f is defined by | f||,=
Ifllex,mmy=([x | fIP dz)1/P. If S is a linear operator which maps R™ valued L?
functions on (X, F,u) to R™ valued LP functions on (Xi,F1,p1), that ||S],=
sup{||Sf|lp:|lfllp=1} is the operator norm of S. If X=X, and p=p,, we denote by
I® S the operator with (I8 S) f=(f, Sf), the latter being an R™*™ valued function.

Let A be a linear space of integrable functions on (X, F, ). We denote by A
the subspace Ag={f€A: [, fdu=0}. If a linear operator S is only defined on Ay,
we still denote by ||S||,=sup{||S fllp:f€Ao, ||fllp=1}. For instance, C3°(M)={f€
C*(M): [, f(x) dz=0}, if M is a smooth Riemannian manifold and dx denotes the
volume element on M. The LP norm of a measurable vector field U on M is, by
definition, the L? norm of |U}{, the modulus of U. Unless otherwise specified, LP(X)
and L§(X) will denote spaces of real valued functions on X.

0. Introduction

Let M be a Riemannian manifold without boundary, Vjs, divy, and Ay =
divas Vs be, respectively, the gradient, the divergence and the Laplacian associated
with M. Then —A ), is a positive operator and the linear operator

(1) RM =V o(=Ay) /2

is well defined on L2(M) and, in fact, an isometry in the L? norm. If f is a real
valued function on M and €M, then RM f(x)€T, M is a vector tangent to M at z.

(1) Research partly supported by a grant of the INDAM Francesco Severi.
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The LP norm of R f is, by definition, the L? norm of z+—|RM f(z)|, where |- | is
the Euclidean norm induced on T, M by the Riemannian metric. The operator RM
is called the Riesz transform on M. In (1), A=(—Ax;)~"/? is the positive operator
such that AcAe(—Ajs)=1, the identity operator.

If M is compact, as will always be the case in this article, A can first be defined
for linear combinations of eigenfunctions of Ajs, and then extended to L3(M) by
continuity. See [GHL].

The Hilbert transform on the unit circle, H:—Rsl, and the Riesz transform
on R™, R=RR" are special cases of (1). The operator RM is a singular integral
operator.

The exact L? norm of a singular integral operator is known only in a few cases.
The first result of this type is Pichorides’ determination of the Hilbert transform’s
LP norm. For pe(1,00), let p*=max{p,q:1/p+1/g=1}. Then

(2) ||H||p:Bp

where B,=cot(r/2p*) [Pic]. Later I. E. Verbitsky and M. Essén, [Ve], [Es], inde-
pendently found that

(3) HoH|lp = Ep

where Ej,=(B2+1)"/2. It has recently been proved that (2) and (3) hold with the
directional Riesz transforms on R™, Rj:R?n, instead of H and with the same
constants. T. Iwaniec and G. Martin [IM] proved the analogue of (2), and soon
after R. Banuelos and G. Wang found a probabilistic proof for analogues of both
(2) and (3) in the Euclidean context [BW].

Several authors have proved estimates of the form

(4) IR, < Kp< oo

where R is the vector Riesz transform on R™ and K, is a constant which only
depends on p, 1<p<oo. The problem of finding the exact value of |R|, is still
open, if n>2. The first proof of (4) with a value of K, that does not depend on the
dimension n is due to E. M. Stein [S2], [S3]. Alternative proofs with increasingly
better constants were given in [DR], [Ba], [Pis], [IM] and [BW]. [IM] has the best
known constant for p>2 and [BW] has the one for p<2.

Let now M =G be a compact Lie group endowed with a biinvariant Riemannian
metric and let & be its Lie algebra. Let X €® be a left invariant vector field such
that | X|=1, where | - | is the norm induced on & by the metric of G. The operator

(5) Rx =Xo(-Ag)™?



Riesz transforms on compact Lie groups, spheres and Gauss space 203

is called the Riesz transform in the direction X. The operators R® and Ry are
related as follows. Let Xi,...,X, be an orthonormal basis for & and f:G—R.
Then RY(f) can be written as

(6) RCf(a)= Rx,f(a)X;(a)

=1

if a€ G, where X;(a) is the vector field X; evaluated in a.
Let B, and E, be the constants in (2) and (3). In this article we prove the
following theorem.

Theorem 1. Let G be a compact Lie group endowed with a biinvariant Rie-
mannian metric. We then have, on L5(G),

(7) IRl < 2(p" —1).

If Xe® and | X|=1, then

(8) [Rx|lp < Bp
and

Equality occurs in (8) and (9) if G=T", the n-dimensional torus with any of its
invariant metrics, or if G=850(n), the orthogonal group, endowed with its standard
metric.

An estimate like (7) already appears in [S1], with a universal bound A, that
grows as p? as p—oo instead of our 2(p*—1). More generally, D. Bakry [B2], [B3],
[B4] showed that |[RM|, is universally bounded for M in the class of complete
Riemannian manifolds with nonnegative Ricci curvature. See also [CL] and [B2],
[B3], [B4] for related results on manifolds.

As we mentioned above, equality holds in (8) and (9) in the noncompact case
G=R". We conjecture that, in fact, equality should occur in (8) and (9) for all
compact Lie groups. An integration by parts shows that || R%|2=1, hence (7) can
not be best possible.

Let now 8™ '={zeR":|z|=1} be the unit sphere in R™ with the standard
metric. For 1<l<m<n, consider the differential operator

(10) 72711 :a:lam_xmal
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with 8,,=0/0%,. If x;+iz,, =re', then T;,,,=8/8 is the derivative with respect to
the angular coordinate in the (x;, x,,) plane, a well defined vector field on S*~!. The
vector fields 7;,,, are connected to the spherical gradient as follows. If f:S" 'R
is smooth, then

(11) Vgn-1f| = (Z mmf|2)1/2-

l<m
This follows from the fact that S"~! is a homogeneous space of SO(n). See §4. Let
U be a vector field on S"! of the form

(12)
U= Z 0 T, where the constants a;, satisfy 1= Z a,?m = sup |U(m)‘2
l<m I<m resn-t
For such U, define
(13) QCU = UO(_ASngl)_1/2

the Riesz transform on S™1 in the direction U. For the relation between RS"~ and
Qf, see §4 below. From now on, we will denote by Re=RS""" the Riesz transform
associated with the manifold S®~!. The superscript ¢ stands for cylinder. It is
meant as a reminder that R¢ and @Q° naturally arise from a Neumann problem in
the “cylinder” 8" 1x[0, 00).

Theorem 2. The following estimates hold on LE(S™1)

(14) 1Rl <2(p"—1)
and, if U is as in (12),

(15) 1Q% 1, = Bp,
(16) 116Q5 |, - B

The operator E° is only one of those to whom harmonic analysts have attached
the name of Riesz transform, or Riesz system, on S"~1. See [AL] for a survey of
singular integral operators on the sphere. In [KV1] and [KV2] the authors consider

the operator R® defined as
5\
R =Veanoio| —
= (an)

where (8/0v)~1: L3(S™ 1)—LZ(S™" 1) is defined on spherical harmonics Yj of de-
gree k>1 as (0/0v) 'Y, =Y} /k. The operator R, that we call the Riesz transform
of ball type on 8™ !, is related to the Neumann problem in the unit ball of R". See
§3. If U is as in (12), the Riesz transform in the direction U is the operator

(17) Qb —U- <§,,>_1-
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Theorem 3. The following estimates hold on L{(S™™1)

(18) IR |p <v/n—1(p"—1),
(19) 1Q% lp = By,
(20) ||]@QPIJJHP:EP'

Sometimes, dimension free estimates “pass in the limit” to estimates for an
infinite dimensional object. This heuristic principle has an application in the case
of the sphere, since 8" (y/n)={z€R":|z|>~n} goes in the limit to the infinite
dimensional Gauss space as n tends to infinity. See, e.g., [M]. The m dimensional
Gauss space is the measure space (R™,~), where y(dz)—(2r)"™/2e"1e1*/2 4z, zc
R™, is the m-dimensional Gaussian measure. Let D=(8,...,9,) be the gradient
in R™ and D* be its formal adjoint with respect to the measure ~. Then

A = D*D = Z ajj \iEjaj

=1

is a negative operator, sometimes called the m-dimensional Hermite operator. The
Riesz transform for the Ornstein—Uhlenbeck process RO is then defined as

(21) RO = Do(—A)"Y/2,

Theorem 2 implies the L? boundedness of RC.

Theorem 4. On L{(R™,v) we have
(22) IR, < 2(p* ~1).

The L boundedness of RC was first proved by P. A. Meyer [Me3]. The best
previously known constants in (22) are those in [Pis]. There, one has |R9||,<K,,
with K,=0(p), as p—+o0, and K,=0((p—1)"3/2), as p—1.

See also [G1] for a probabilistic proof. The inequality (22) follows from (15),
(16) and an approximation argument that will be developed in §6.

The methods to obtain sharp estimates for singular integrals often have at their
heart an argument involving a differential inequality (subharmonicity, convexity), on
which one builds up by means of different tools, such as transference. In §1 we sum-
marize some probabilistic preliminaries, including Theorems A and B from [BW],
the proofs of which are based on a convexity argument in martingale theory. This is
the method of differential subordination of martingales introduced by D. Burkholder
[Bul], [Bu2], [Bu3], and developed by R. Bafiuelos and G. Wang [BW]. Theorems A
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and B will provide the main tool in the proof of Theorem 1 and Theorem 3, together
with a probabilistic interpretation of some singular integral operators started by P.
A. Meyer, [Mel], [Me2], and developed by R. Gundy and N. Varopoulos [GV]. See
also [Va]. We exploit the flexibility of the method, working with martingales on dif-
ferent manifolds and making use of martingale transforms that are not of “matrix
type”.

§2 and §3 are devoted to the proofs of the estimates from above in Theorem 1
and Theorem 3, respectively. §3 and the proof of Theorem 3 are independent of
the part of the article dealing with Theorem 1, Theorem 2 and Theorem 4, the
L? estimate for the Riesz transform in Gauss space. The estimates from above
in Theorem 2 will be deduced from Theorem 1 in §4. The estimates from below
in Theorem 1, Theorem 2 and Theorem 3 are deduced from analogous estimates
for the Hilbert transform on the circle in §5. Their proofs are inspired by the
transference method of R. Coifman and G. Weiss [CW] and by a development of
this by T. Iwaniec and G. Martin [IM].

This article is based on results from the author’s doctoral dissertation [A],
written under the direction of Albert Baernstein II and grown from one of his
problems. This work owes a great deal to his patient care. It is a pleasure to
acknowledge several useful discussions with Rodrigo Banuelos, Guido Weiss and
Xinwei Li. This article could not have been written without the kind hospitality
of the Mathematics Department of the University of Milano and, particularly, of
Professor Leonede De Michele.

1. Probabilistic preliminaries

In this section we collect some tools from probability theory and prove a lemma,
Proposition 1.2, that we need in the proof of Theorem 1 and Theorem 3.

Here and in the following sections, (2, 7, {F¢}+>0, P) will be a filtered proba-
bility space such that all RY valued martingales X ={X;};>0 adapted to {Fiti>o
have a continuous version X i.e. X is a version of X and the map t»—>Xt( ) is con-
tinuous on [0, 00), almost surely (a.s.) in weN. The martingales considered in this
article are always taken to be continuous. Recall that the LP norm of a martingale
X is given by || X||,=sup,~ || X¢||p, where the L? norm on the right is with respect
to the measure P. -

We will denote by [X] the quadratic variation process of X. Then, [X]o=0,
t—[X]¢(w) is of bounded variation on compact sets a.s. and |X;|?>—[X]; is a real
valued martingale. The covariance variation process [X, Y] of two continuous, RY
valued martingales X and Y is defined similarly, by polarization.
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Let X and Y be two continuous, RV valued martingales. We say that YV
is differentially subordinate to X (we write Y <pX), if the process [X]—[Y] is
nondecreasing, a.s. We say that X and Y are path orthogonal (X 1Y) if [X,Y]
vanishes identically in ¢, a.s. on Q.

The following theorems provide the best constants for some inequalities involv-
ing differentially subordinate martingales.

Theorem A. ([Bul], [Bu2], [BW]) Let X and Y be RY walued martingales
such that Y is differentially subordinate to X. Then
(23) I¥1ls < (p* = DI X1,

and p* —1 is best possible in (23).

Theorem B. ([BW]) Let X and Y be R wvalued, path orthogonal martingales
such that Y is differentially subordinate to X. Then

(24) 1Yl < Byl X1,
and
(25) [X@Y|p < Epl| X|p.

The constants in (24) and (25) are best possible.

Let now M be a Riemannian manifold of dimension n with Ricci curvature
bounded from below. This condition has the purpose of ensuring that a Brownian
motion on M does not explode in finite time [Em|. In this article we deal with
M=R" or M=N xR, with N a compact Riemannian manifold without boundary,
so that this assumption is satisfied.

Let {-,-) be the inner product on T'M, the tangent space to M. A Brownian
motion in M is an {ft}tzo adapted process By:Q— M such that, for all smooth
functions f: M —R,

(26) F(BO=(B)= [ Awr(B) ds= ().

is an R valued continuous martingale, where A, is the Laplacian on M. See [Em)],
[IW] for a full exposition of the theory.

Let ¥ be a continuous, adapted process with values in T* M, the cotangent
space of M. We say that ¥ is above B if ¥;(w)€Ty, )M whenever t>0 and

(w
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weQ. The Ité integral of U, (I\p)t:fot (s, dBs), is characterized by the following
properties:

(i) if Wy=df(By), with f: M >R smooth, then Iy =1I4 is defined by (26);

(if) if K is a real valued, continuous process, then (IKq,)t:f(f Ksd(Ig)s is the
classical It6 integral of K with respect to the continuous martingale Iy.
The process Iy is then a continuous, real valued martingale if ¥ is above B. The
covariance process of two such It6 integrals can be computed according to the
formula

t
(27) [Lp,Lp]t:/ Trace(¥;®P,) ds,
0

where ® denotes the tensor product and (¥,®®;)(w)=V,(w)®Ps(w)€Th (&
s,

Let XeM and let End(TM) be the space of all linear maps from T;M to
itself and define End(T*M) as the bundle over M which is obtained by taking the
union of all such End(T; M) for ze M. The bundle End(T*M) can be made into a
smooth manifold in the usual way.

Definition 1.1. Let B be a Brownian motion in M. A martingale transformer
with respect to B is a bounded and continuous process A, with values in End(T* M)
above B, i.e. At(w)EEnd(Tgt(w)M).

Let ¥ be a continuous, bounded process with values in T*M | above B, and let
A be a martingale transformer with respect to B. The martingale transform of Iy
by A, Axlyg, is the R valued martingale defined by

(28) Asxly = Lag = / (A, dB).
0

If ¥=df for some smooth, R valued function f on M, we denote AxIg by Axf.

Let A=(41, ..., A;) be a sequence of martingale transformers above B, let Ax*
Ig=(A*ly,..., A;x1g), an R! valued martingale. The norm of A is defined as

! 1/2
4] = sup sup supM(ij,t(w)eP) .

weQ t20 eETBt(w) =1

le|]=1
We let ||A||=||A| if A is a martingale transformer and A=(A).

Proposition 1.2. Let ¥ and ® be bounded, continuous, T* M valued processes
above B.
(i) If A=(A1,..., A1) is a sequence of martingale transformers above B, then

(29) [ A*Lwllp < (" = DAl ]l
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(i) IfA s @ martingale transformer above B and (A€, £&)=0 identically in t>0,
well, EeTs: B, (w)M, then

(30) [ AxTglp < Byl Allll 1wlp
and
(31) [(AxTe)®Tellp < Ep|Afl|l Zellp-

Proof. By Theorems A and B, it suffices to show that AxIg=<p|A|ly in (i)
and that AxIg<p|lA||Iy and A*Iy L|| ATy in (ii).

Let x€ M and let ey, ..., e, be an orthonormal basis for T, M, the tangent space
to M at z. Suppose that B,(w)=x. Then, for j=1,...,1,

NE

Trace(A;V; (w)®A; ¥, (w)) = > (A ¥ (w)@A;¥(w))(en, en)

h

Il
—

(AT (w), en)]* = |A; e (w)|*

NE

h

I
=

where (-,-) here denotes the duality product (-,-):TsM xT,M—R.
Thus, for 0<s<¢,

l
[A* Ig), —[AxTg], Z ([Aj*Tg),—[A;* g, Z/ Trace(A; ¥, ®A;V,) du

i
/ AT, 2 < JAJ? / 0, 2 du= .. = [ Al Tee— [ AT s

which shows that [||A]|lw];—[A*Ig]: is nondecreasing in t. We then have that
AxIg=<p||A||ly, which shows (i).

The same proof shows that, in (ii), AxIy<p||Ajly, and a similar argument
that AxIg | [|A| Iy, (i) follows. [

2. The proof of Theorem 1

In this section we prove a variant of a theorem of R. Gundy and N. Varopoulos
[GV] in which the Riesz transforms on a Lie group G are interpreted in terms of
martingale transforms with respect to a Brownian motion process in GxR. In [Va],
Varopoulos hinted at this construction. The proof of Theorem 1 will follow.



210 Nicola Arcozzi

Let G be a compact Lie group of dimension n, & its Lie algebra and suppose
G is endowed with a Riemannian biinvariant metric. We can assume Vol{(G)=1.

Suppose that {X7,..., X,,} is an orthonormal basis for &. Let észR, with
its Lie algebra @@ R and the product Riemannian metric. We denote by z={z,y)¢€
G xR the elements of the product group and we identify Gx{0}=G, (z,0)=z€G.
An orthonormal basis for the Lie algebra @R is { X1, ... , X, X0}, where Xo=0/0y
generates the Lie algebra of R.

Let X be a Brownian motion in G and let Y be a Brownian motion in R, with
generator (d?/dy?). If we take X and Y to be independent, then Z=(X,Y) is a
Brownian motion in G.

Fix A>0 and assume that the distribution of Zy, the initial position of Z=
Z’\Z{Zt}tzo, is the product measure x®46,, where x is the Haar measure on G and
by is a Dirac delta at AeR, i.e., P(Zp€ Ax (a,b))=x(4), if A€(a,b), and it is equal
to 0 if A¢(a,b). Observe that x®6(G)=1.

Let G*=G'x 0, 00) and 7o=inf{t>0:Z ¢ G} the exit time of Z from G+. Then
{Zinro }>0 1s a Brownian motion in G+, stopped at G.

Let A: @+—>€nd(T@+) be a continuous section of the bundle End(TG*) and
define the process A;=A(Zinr,). Then A, is a martingale transformer. With slight
abuse of language, we will say that A itsell is a martingale transformer.

If feC§°(@), let F be its Poisson integral in G+, ie.,

0*F

if z€G and y>0, FEC™®(G*), F(z,0)=f(z) and F is bounded on G+. See [S1],
[Mel] and [G2] for different expositions of the theory.
Definition 2.1. If A, f and F are as above, the A-transform of f is
TAf = E[AxdF | Zy,]
where X is the ‘starting height’ of the Brownian motion and 7p is the exit time
from G*.

Here, K[+ |Z,,] is the conditional expectation with respect to the o algebra of 7
generated by the random variable Z.,. Observe that, being measurable with respect
to the exit position, T’} f defines a function from G to R. The following theorem
gives an analytic representation of an A-transform. See [GV] for the Euclidean case.

Theorem 2.2. Let f,heC(G) and let F and H be, respectively, their Pois-
son integrals on G*. Then

(32) /G RT f dx = /@ X (AdF(z,y),dH (z,y))2(yAN) dz dy.



Riesz transforms on compact Lie groups, spheres and Gauss space 211

The operator T;} can be extended to LE(G) and Th=limy o Tz ezists in the LP
operator norm, 1<p<oco. Moreover,

(33) /hTAfdxz/; (AdF (z,y),dH (z,y))2y dz dy.
G G+
Proof.

/ KT de = B(h(Ze, )T f) = B(h(Zo ) E|Ax L | Z,,))

( / (AdF,dZ) /OTO (dH,dZ))

</ (A(Z)) dF (7)), dH(Z)) d )
/ (A(, ) dF(z,y), dH (2, 1)) (yA ) dz dy.

The first equality comes from the fact that the distribution of the exit position
Z,, is dz [Mel]. The second one is the definition of T, while the third follows
from It6’s formula on manifolds [Em| applied to H (Z) and the definition of the
martingale transform. We use here the fact that fG 2) dz=0 and the optional
stopping theorem applied to the R valued martingale Wy=h(Z) fo (AdF,dZ) and
to the stopping time 75. The fourth equality is a consequence of (27), while the
fifth comes from the formula for the occupation time of G+ by the Brownian motion
Z* [Mel].

In order to prove (33), consider the Littlewood—Paley function of h, G{(h), de-
fined by

(34) G(h) () — ( /0 " oyldH (2, )2 dy>1/2, zeG.

Let A1 >Az and let ¢ be the conjugate exponent of p. Then, by (32), Schwarz’s
inequality and Hoélder’s inequality

(T3 =T3) f dz

= rw/éJf <AdF(:an)7 dH(ﬂ:,y))Z(y/\Al—y/\)\g) dy dx

<l { | ( / " dF (@, P2y AN ~yA) dy)” 2 dl}””

) [/c (/OOO |dH (,9)122(y AN —yA o) dy)‘”? dx}l/q
<HANGUH M) I IGCE (2
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By the Littlewood-Paley inequalities [S1],

/G MTR =Ty f de)| SCUH A IF (- 2)llg S CIE (- A) pllRll.

Now, [|[F(-, A)|lp <CW)|| fllp, with C(A\)—0 as A—oo. In fact, observe that the case
p=2 follows from the spectral decomposition of F(-,A). The case 1<p<2 follows
by interpolation, since ||F (-, )|, <|/f|l,- A simple duality argument then proves
the case 2<p<oco. Hence, taking the supremum over ||h|;=1 in the last member
of the inequality and letting A\o—o00, we have ||T3" —T9°|l, 0. By dominated
convergence we obtain (33). [

Observe that the map A—Ty is linear.

Let now {X1, ..., X,,, Xo} be an orthonormal basis for 8G&R.. Let R;=Rx, be
the Riesz transform on G in the direction X;, j=1,...,n. If [,me{0,1,...,n}, we
define Ej,,, to be the linear map Ep,: 8OR —-B DR defined by

X, ifj=m,
EimX; ={ S
0, otherwise.
Then Ej,, defines a smooth section of 5nd(T@+). We can ideuntify Ej,, with a
martingale transformer by means of the natural identification between 8GR and
its dual, induced by the Riemannian metric. After this identification, (33) reads

(35) / hTg, f dx:/A (EimVaF(z,y),VaH (z,y))2y dz dy.
G G+

Theorem 2.3. The following equalities hold.

(i) If m#0, then Tg,,, =—5Rm.

(ii) If 10, then Tg,,=2R;.

(iii) If I, m#0, then Tg,, =—3RiRy,.

(iv) TEOO:%I.

Proof. Consider the decomposition of L2(G) into eigenspaces for Ag, provided
by the Peter-Weyl theorem [S1]. Then, L2(G)=@;-, Hk, where H;CC§(G),
Agn+ppn=0 if n€Hy, 0<py <...<pr<... being the sequence of the nonnegative
eigenvalues of —Ag.

Since the metric on G is biinvariant, Ag commutes with all X €®, hence Xne
Hy whenever neHi, k>1. If feHy, then F(z,y)=e ¥VFt f(x) is the Poisson
extension f to G*. Suppose that f,g€Hy. Then, by (35),

> 0
— 1 k - k
/GhTEOmfdx—/G/O X (e7¥VH f)(x)ay(e YV e BY(2)2y dy dx

:%(—\/;Tk)‘l/Gme(m)h(x) d:v:f%/ngf(a:)h(a:)dx.
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We used the definition R,,=X,,°(Ag)" /2. On the other hand, if f and h belong
to different eigenspaces of Ag, then [, hTg,,, fdz=0=—3 [, hRmf dz. Case (i)
follows by a density argument and duality between LP spaces.

The proof of the other cases follows the same lines. O

The following corollary contains the majorizations in Theorem 1.

Corollary 2.4.
(i) IRE|,<2(p" 1),
(ii) “R}'“;DSBP:
(iif) ||I@Rj||p§Ep'

Proof. By (6), Proposition 1.2 and Theorem 2.3, it suffices to compute

a=2 sup Z |EOmX|2}
Xce m=1
I x|l=1

The supremum is 1, hence a=2 and (i) follows.

By linearity, (i) and (ii) in Theorem 2.3 imply that R;j=Tg,,_g,,- The cases
(ii) and (iii) then follow from Proposition 1.2 and the facts that ((E;o—Fo;)v,v)=0,
1Ejo—Eosll=1. O

If Xe® and [X|=1, we can take it to be X=X;, hence Corollary 2.4 implies
(7), (8) and (9) in Theorem 1.

Remark. Only in the proof of Theorem 2.3 we made use of the fact that G
is a Lie group. In particular, Theorem 2.2 can be shown to hold for any compact
Riemannian manifold.

Also, the requirement that G be compact is used only in that G carries a
biinvariant Riemannian metric. Thus, Theorem 2.3 and Theorem 1 hold, with
obvious modifications, on any Lie group carrying a biinvariant Riemannian metric.

3. The proof of Theorem 3

Notation. In this section, V, div and A denote, respectively, the gradient, the
divergence and the Laplacian in R”™.

In this section, we prove an L estimate for a Riesz transform associated with
the Neumann problem on B”, the unit ball of R™. We will prove most of Theorem 3
and (ii), (iii) in Theorem 2. We will see in §4 how these last estimates also follow
from Theorem 1. This section and Theorem 3 are related to, but independent from,
the others in this article.
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Let Hy be the space of spherical harmonics of degree k and let

N
goz{f:snl_)R:f:ka7 NGN, kach}

k=1

the space of harmonic polynomials with null average on S*~! [SW]. Fix f €& and let
H be the solution in B™ of the Neumann problem with boundary data f, normalized

so that H(0)=0. We will write
o\ 1
(5) f:H|sn~1

where v is the outward pointing normal vector to S®~1. The operator (9/dv) !
could be called the Neumann operator on S*~ 1. If f=>",, fi is the decomposition
of f into spherical harmonics, then (8/8v)_1f:2k>1(1/k_)fk, i.e. (0/0v)~! has the
multiplier 1/k on &.

Let 7;;,, be as in (10). For 1<I<m<n, let Qf,,,=Q%, , where Q5. is defined by
(13), and Q;’m:Qlem, with Q%, defined by (17). In this section we will work with
the auwziliary Riesz transforms on 8™~ of eylinder type, Q°, and of ball type, Q°,

Q°=(Q5,)1<i<m<n and Q°=(Q%)i<icm<n-

Since, by (11), |R°|=|Q¢| and |R?|=|Q?|, estimates on the auxiliary transforms
carry over to estimates for R¢ and RP.

The transform R’ and its auxiliary form Q° were studied in [KV1], [KV2],
[RW], [B1].

Since R® is an isometry of LZ(S™"1), Q° is an isometry of LZ(S™7!) into
L2(S™ 1, R™"~1)/2) There is a simple relationship between Q¢ and QV. Let S be
the operator from L2(S™ ') to L2(S"~') defined by the multiplier ((n—2+k)/k)'/2.
Then

(36) Q*=Q°%S and RY=R°S.

This follows from simple considerations involving the definitions and the multipliers
of (—Agn-1)"Y2 and (8/8v) L. If n=2, —R°=—R’=H the Hilbert transform on
the unit circle. We only deal with n>>2, the case n=2 being classical.

Let B=(B',..., B") be a Brownian motion in R", with initial position By=0.
Let 7=inf{t>0:B,¢B"™} be the time of its first exit from the unit ball B". The
theory presented in §1 and §2 can be extended to this setting and, in fact, it can be
found in the literature [Ba], [BW], [Bel], [D], [G2], [BL].
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Let A:B"—&nd(R™) be a continuous map z+— A(z), where A(z) is an nxn
matrix. Then A;=A(B¢a,) is a martingale transformer. We will identify A and A.
Let f€C5°(S™ 1) and let F be its Poisson extension to B™. Define

(37) (A% F), = /O o A(B,)Vg~F- dB,

the martingale transform of F(B) by A, and
(38) Taf(Br)=E[AxF|B,]

the A-transform of f. The operator T4 extends to a well-defined linear operator on
LH(S™71), p>1. Let G(0,-) be the Green function of B" for Agn at 0. Then

2
(n—2) Vol(Sn—1) (

G(va): |$I2_n_1)a
for n>3. We write G(Jz)=G(0, z).

Theorem C below is the equivalent of Theorem 2.2 in our context, and its proof
can be found in [Bel].

Theorem C. [Bel] Let f,hcC$(S™ 1), and let F, H be, respectively, their
Poisson integrals in B™. If A is a martingale transformer, then

1

(39) Vol(S" 1) Jgns

T Af dz— / (A(z)VF(z), VH (2))C(|z]) de.

n

Let now ey, ..., e, be the standard orthonormal basis of R™. Let 1<l<m<
n and let Ej, be the matrix such that Ej,,ex=0 if k£l m, E;,e;=—e,, and
Ej.eqnm=e€;.

Let now ¢: [0, 1] =R, ¢€C{0,1)NC(|0, 1]). Define

(40) ﬁk :/1 2k+n—2i 2 n—1
P = | P ) VoS TG0 dr, k21,

and consider the operator S¥:&,— &y acting on spherical harmonics Y, €Hy, as
(41) 5°Yy = o (k)Yz, k>1.

The following theorem shows how the auxiliary Riesz transforms Q° and Q° can be
interpreted in terms of martingale transforms.
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Theorem 3.1. Consider Ay, (z)=¢(|2|?)Eim, with ¢ and Ey, as above. As
operators acting on &y,

(42) Ta,, =TimoS?

where S¥ is defined by (41). In particular, we have the following two cases.
(i) If p=1, then
TAlm :TElm = Q?’Iﬂ'

Thus, Q*=(Tr,, )i<m- IfU is defined by (12) and A=3"n Qm By, then TA:Q’{J.
(ii) Let @ be defined by

t
, Ig(s)d
(43) (p(efzt/(n—Q)):fo ?(Si s7 +>0
et —

?

where Io(2)=Y ;2 (%z)m/(l!)z, 2€C, is the modified Bessel function of order 0,
then

(44) TAlm - Qlcm
Thus, Q°=(Ta,,, )i<m and, if U is defined as in (12) and A=), . imEim, then
Th=Q5.

Proof. In order to prove (42), it suffices to show that, for feHy, heH,;,
(45) / hTy,, fdx :/ hT}°S? f dx.

Sn—1 Sgn—1
By Theorem C and Green’s theorem,
1
I T do = 2 E,.VF(z))- d
Vi Lo M d e [ oG ol (B V(@) V() de

N /Sn—1 W) (p(l2*)G(x) By V F(x))-v dz

— [ H(z)div(e(|z]*)G(x) B VF(2)) dz,
BTL
v being the outward pointing normal vector to S 1. Observe that in the application
of Green’s theorem, due to the singularity of G at 0, we should have a boundary
term on {x€B™:|x|=¢e}. Since ¢ is bounded, this term vanishes as e—0.
Write z€B™ as z=rw, r€{0, 1], w€S™ L. Since G vanishes on S"~! and since

V(A VF (@) = 20 (o) Tim F (2)
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we have, for j=k,

1 d ,
TS fo, M e ==2 [ 1) s o) G T (o)

=2 [ h)Tinf @

! 1 d

2+n—1 2

X/o r o dr[go(r YG(r)] dr dw
1

B m §n—1 h(w)']imoS‘Pf(w) dw.

The second equality comes from Fubini’s theorem and the fact that H(rw)=r*h(w),
F(rw)=r*f(w).
In the same way, if j¥#k, then

1 1
Vol(Sm~1) /Sn_l P, fdr=0= Vol(Sn—1)

Equality (42) is thus proved, and (i) follows immediately.
Equalities (40), (41) and (42) show that the problem of finding a function ¢

such that (44) holds can be rephrased in terms of Laplace transforms. Let
g(Tz):—ii[w(rg)G(r)} 0<r<1
27 dr ’ ’

and ¢ (t)=e"/2g(e~t), t>0. Then

/ h(w) T oS f (w) dw.
S'n—l

N " ekip(t) dt = LK)

0

is the sampling on the positive integers of the Laplace transforms of 1. An inspection
of multipliers shows that S¥=(—Agn-1)"1/2 if 4 satisfies

1
46 Lplk)=————+ k>1.
(40 W) = g 2
A solution of (46) is w(t):e‘("—2)/2t10(%(n—2)t) [PBM]. The expression for ¢ in
(i) follows. [

The fact that the function ¢ that allows us to represent Q¢ is more complicated
than the one that represents Q° is an indication that Q°, unlike Q°, has no natural
connection with the geometry, hence the Brownian motion, of R™. If we had worked
with Brownian motion in the Riemannian manifold 8”1 xR we would have found,
in fact, a simpler probabilistic interpretation for (°.

Let ¢ and Ajy, be as in Theorem 3.1. Consider the sequence A=(A;,)i<i<m<n
and define T4=(T4,,, )1<i<m<n- Then, if fEC$ (8™ 1), Ty f:S" 1 -RM-1/2,
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Proposition 3.2. If f€LE(S™ 1) is real valued and A, T4 are as above, then
() 1Taf <@ =) (n—1)"*|@llooll flls-
IfU is as in (12) and A=), cimEirn, then
(i) 1Tafllp<Bpllspllcolifllp,
(iii) [[(I©Ta)fllp<Epllelloallfllp-

Proof. The cases (i), (ii) and (iii) follow from Theorem 3.1, Proposition 1.2 and
simple considerations involving Ey,,, that we supply below.

A counting argument gives, for v=(v1,...,v,) ER™, 3, . |Epmv|?*=(n—1)[v]?.
Thus, |All=(n—1)"?|l¢|lce, and this proves (i).

Note that ((3,.,, @mEim)v,v)=0. Also,

(Z almElm> v

l<m

2
=[ol*~ Z (Cump — O +tmpur)* < 0],
1<i<m<p<n

with possible equality. Hence [|Af|=|¢]lco- The cases (ii) and (iii) follow. O
Corollary 3.3. Let U be as in (12). The following inequalities hold

@) Q% < -D(n-12 Qyl,<B, and |ISQpll, <Ep;
48) QU< —1)(n—1)"% IQ¢ll,<By and [IQfl,<Ep

Proof. One only has to verify that, if ¢ is the function defined by (43), then
[lollco=1. From the series expansion of Iy one easily checks that, if s>0, then
0<Io(s)<e® and that Ip(0)=1. Then 0<p(r)<1. O

As a consequence of (47), we obtain (18)-(20), with inequalities instead of
equalities in (19) and (20). Similarly, (48) implies (15) and (16) with inequalities.
We also obtain a constant for an inequality like (14), but with the wrong order of
growth with respect to p.

Remark. A consequence of Corollary 3.3 (47), is that, if f€L5(S™ 1), then

1

(49) 1Q°Fllp > D20 =)

P

To prove (49) we can use a duality argument. Define the operator V=V, )i<m
by

0
Vim =Tim o (5) o(—Agn-1)7h
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One easily verifies on spherical harmonies that, on L2(S" 1),

(50) Z Q?mvlm =-1I,

l<m

where [ is the identity operator. From (50), Holder’s inequality and the fact that
the adjoint of 7;,,, is — 7, we see that (49) holds if

(51) IVl < (0" —1)(n—1)"2.

This last estimate follows from the representation formula Vi, =T;, 5%, where
B(r?)=r""2, Proposition 1.2, and Proposition 3.2.

It is easy to show, however, that ||Q" f|l2>]| f (|2, hence that (49) does not exhibit
the right order of growth with respect to n.

In fact, by means of a more sophisticated duality argument, one can show that
there exists a universal constant C'>0 such that

C
b
(52 197> 1o

m”fﬂp-

The proof of (52) makes use of Brownian motion and martingale transforms on
the Riemannian manifold S"~!xR. Even (52), however, does not give the right
asymptotics in n for p=2.

4. The proof of Theorem 2

Consider SO(n), the rotation group of R™. Its Lie algebra, so(n), is the space of
nxn skew symmetric matrices. The imbedding of SO(n) in R™ induces on SO(n) a
biinvariant Riemannian metric, that we call the standard metric of SO{n). We nor-
malize this metric in such a way that an orthonormal basis for se(n) is provided by
{Xim:1<l<m<n}, where Xim=[r'7|1<; k<n and rjr=—1, ri=1 and ri=0 for

all other entries of Xj,,. This corresponds to the norm | [a;x][| =32 (k=1 a?,c)l/2

on R"". The operator X, is the infinitesimal generator of the rotations in the
(z1, 2,m) plane.

We identify S"~1=50(n)/SO(n—1), where H=S0(n—1) is the stabilizer of
the north pole e, of S*1, e,=(0,...,0,1). Let II: SO(n)—S"~! be the projection
l(a)=ae,, the image of e,, under the rotation a. By mso(,) and mg--1 we denote,
respectively, the Haar measure induced by the standard metric on SO(n) and the
Hausdorff measure on S"~!. The map II,: TSO(n)—TS™ ! is the push forward
map I1.(X,) f(I(a)) =X, (f1l), if X,€T,SO(n) and f:S" 1 -R.



220 Nicola Arcozzi

The adjoint representation of SO(n) is Ad(a™ ") X =(d/dt)|i=0(a"* exp(tX)a),
Xeso(n), a€SO(n), where exp denotes the exponential map exp:so(n)—SO(n).
Then, if F: SO(n)—R, (Ad(a ) X)F(a)=—X(F-p)(o(a)), where p(a)=

If Ty is defined as in (10), it is easy to show that

(53) IL(Ad(a™ ") Xim) = Tim(T1(a)),

the vector field 7, computed at the point IT(a)eS™ 1.
The lemma below shows how @7, and R%L;l are connected to each other. See
also [ALJ.

Lemma 4.1. Let U be a vector field on S 1, of the form (12), and let

(54) X =Y tmXim €50(n).
l<m

If feCs(S™ 1), then
(i) (@5 f)(M(a))=—R5" (fIs0)(o(a)),
(i) 151, <IRY ™I,

(iii) [10Qgll,<|IoRT ™

() Q< RECIlp.

Proof. Since Agon)(foll)=(Agn-1 f)eIl, we see that II*: fr foll maps the
eigenspace relative to the k'™ eigenvalue —pu;, of S”~! into the eigenspace relative
to the same eigenvalue of Ago(ny. Thus

HP7

(@5 d)((@)) = Tin[(—Agn1) /2 f](T(a)) = =Xy [((—=Agn-1) /2 ) oTLo 0] (0(a))
~[Xim(~Asom) ™ )(FTle0)(0(a)) = =Ry, (f-Ie0) (e(a)).
We made use of the fact that Agom)(Foo)=(Asom)F)e0, o being an isometry.
The statement (i) is proved.

The statements (ii), (iii) and (iv) follow from (i) and the following fact.
There exists u>0 such that, for f: 8" '—R,

(55) / foH dmgo(n) :u/ fdenfl. O
SO(n) gn—1

The first two estimates in the corollary below have already been proved, with
different arguments, in Corollary 3.3.
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Corollary 4.2. Let U be as in (12). We have, then, the estimates
() 1R, <By,

(ii) [ HoQY !, <Ep,

(i) Q< <2(p*—1).

Proof. By Theorem 1, it suffices to verify that, if U and X are as in (12) and
{54), then

(56) [Uni(oy| <1X (a)| =1

for all a€SO(n). The equality comes from (54) and the orthogonality relations
between the Xj,,’s. The map II is a Riemannian submersion, hence the inequality
holds. O

By (iii), we have the last part of Theorem 2.

5. Transference arguments

In this section we prove several inequalities of the form ||i||,>B, and the
form |[I®&U||,> E,, where U is one of the directional Riesz transforms appearing
in Theorems 1, 2 and 3. It is classical that, if H denotes the Hilbert transform
on the unit circle, then |H||,<B, and |[I&H||,<FE,. In fact, we have equality in
both relations [Pic], [Es]. We will see how the estimates on S™~! can be reduced to
estimates on T* and the ones on T* to estimates on S'. We have already seen in
the previous section how to transfer the inequalities from 8" ! to SO(n).

Let U be as in (12) and let X €s0(n) be defined as

X = Z Oéllem.

l<m

Then |X|=1 and II,X=U. After passing to some different orthogonal coordinate
system in R™, X can be written as a3 X12+... +axXog—1.28, With 2k<n, Zlf a?:l
and a;#0 for j=1,...,k. The rotation exp(tX) can then be decomposed as the
commutative product of rotations by an angle of a;t in the (z2;_1,%2;) plane,
1<j<k. Since the space of the vector fields of the form U does not depend on
our choice of north pole, we can assume that we are working in such a coordinate
system. Thus

k k
(57) U:Zaszj_l’gj and X:Zanzj*LQj'
1 1
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Let T* be the the k-dimensional torus TF=S8'x...xS!, endowed with the
Riemannian product metric, that we call the standard metric on T*. We define
an operator J that extends trigonometric polynomials on T* to complex valued
functions on 8"~ 1. Let §=(6y, ...,0;)€T* and [=(I4, ... ,1x)E€Z* be a multiindex.

Consider the trigonometric polynomial f(0)=)_<n c;e? ) where |I| denotes

the length of [. Define the polynomial f in the variables z1, ..., 2, by

HEOESY (Cl [ (w21 +iza)t 11 (mzh—l—ifﬂ2h)4"),

[I<N N ;>0 1,<0

f only depends on the variables x1, ..., Z2x and it is harmonic in R”. In fact, f is
pluriharmonic in C¥ in the variables z;=zg;_1+iz2;. The restriction Jf= f |gn-1
is our extension of f to S™71L.

Suppose that S is a multiplier operator on S"~1, acting on &. Let S* be the
multiplier operator on T defined by S!(e??)=5(|I|)e™?, [cZ*\{0}, where S is the
multiplier of §. If V=U-S5, set Vlzzlf aj(6/69j)051, the restriction of V to T*.

Lemma 5.1.

(i) JoVi=Vol.

(ii) There ezists C>0 such that [g. . Jf dmgn-1=C [, f dmre for all inte-
grable f on 8", where myx is the Haar measure on TF.

Proof. The proof of (i) is a straightforward calculation. To prove (ii) it suffices
to observe that the functional f— fsn,l Jf dmgn-1 is invariant under translations
and is continuous with respect to the L>° norm. [

Corollary 5.2. V|, <[V, and [[TeV|,<|I&V|,.

Let a=(ay, ..., ), |a|=1. Consider the operators on L%(T*) whose action on
the group characters is, for [#£0,

il-o oilo
(Ut +n—2))1/2

£ (e) =

and
bl a0y _ WO g
ey =""—"e
Observe that QP'=RT" is the Riesz transform in the direction o on T* with its

standard metric, where a€R* can be viewed as a unit vector in the Lie algebra
of T*. Corollary 5.2 implies the following corollary.
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Corollary 5.3.

@) 1QF I, <1QF I, 1QF 1l <1QE I,
(i) [TeQf I, <Ry, 11eQ7 |, <IHeQY |,

The next step will lead us to S*.
In order to unify the notation, let W be the operator acting on characters as

Wr(eié-e)_ii_a( Ill )1/2
. S ||+

where (0. Then W2=Q?!} and W2 2=Q¢!.

Proposition 5.4. If |a|=1 and >0, then
(58) Wello =By and  [[T&W,]lp > Ep.

Proof. The proof is divided into two cases.

Case 1. Suppose that a=m/|m|, with m=(m., ..., mg)€Z*. Consider the op-
erator K that maps functions f:S'—R to functions K f: T* -R by

K(6)=£(6-m).

For 5>0, define a multiplier operator on 8! by

1/2
finst ; .. q i
W, 1m) (€99) :zslgn(Q)(lq"ls) ¢l

In a sense, K extends functions on 8! to functions on T% through the foliation of
T* induced by the one parameter, closed subgroup t—8, tCR.

Lemmi5.5.
() K-w/Im =wr oK.

m/|m| =" m/|ml|

il) There exists C>0 such that [, Kfdmms=C [q, fdmg: for all integrable
T S
f on S'.

The proof of the lemma is a simple calculation.

An immediate consequence of the lemma is that the proposition holds for a=
m/|m| and for r=0, since Wr?leI:_H' In order to deal with the case r>0, we
need a new idea.
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Lemma 5.6.

6) By <7,
(ii) Ep<|I®W, /m|||p
Proof. Let f be a trigonometric polynomial on S, N>0 a positive integer.
Define &y f(€9)=f(e'M?). Since e¥?—e'N? is measure preserving, ||6x flp=|fllp-
We have that
— B /N
W im 8N =88 W

Given £>0, let f be a trigonometric polynomial such that || f||,=1 and

|| /|m\f||p =|[Hfllp = By—e.
There exists s¢>0 so that
H /|m|f||p>B —2
if 0<s<sg. Thus,

W i S o = N8N W e Fllo = W Pl > By
Since € was arbitrary, the lemma is proved. [
From the lemma it follows that the proposition holds for a=m/|m| and r>0.

Case 2. For general a, we can find m as above such that |1—(m/im]|)-a|<e,
where £€>0 is any fixed positive number. Using Case 1 and an approximation
argument, one proves the propesition in the general case. [

If T* is given any other invariant metric, a modification of the argument in
Proposition 5.4 proves that B, and E, are best possible in the LP estimates for the
corresponding directional Riesz transforms.

Let U be as in (12) and X €so(n) be defined by (54).

As a consequence of Proposition 5.4, Corollary 5.2, Lemma 4.1 we have the
inequalities

(59) By < IW2 2, = Q8 < 1Q5 1, < IR ™1y

and .
By <|Walp=1IR% llo=1Q% ll» <1Q -

We have, as well, the corresponding inequalities with F, instead of B, and with
1aU instead of U, where U is one of the operators in the above chain of inequalities.

This proves the cases of equality in Theorem 1 and concludes the proofs of
Theorem 2 and Theorem 3.
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6. Boundedness of R©

In this section 8,=8""*(/n) is the (n—1)-dimensional sphere of radius /7.
We endow S,, with its natural Riemannian metric and with the SO(n) invariant
measure y, normalized so that u,(S,)=1. The LP norms on S,, are taken with
respect to this measure. Many geometric objects on S,, pass in the limit to corre-
sponding objects on the infinite dimensional Gauss space, see [M]. In this section
we prove that LP estimates for the Riesz transform R° on S®~! pass in the limit to
estimates for the Riesz transform associated with the Ornstein—Uhlenbeck process.
In order to do this, we will see, more generally, how the spectral theory of the spher-
ical Laplacian on S™! is related, as n—oo, to the spectral theory of the Hermite
operator in Gauss space. See [Ma] for results of a similar flavor. As a consequence,
we will have that the LP norms of gradients and Laplacian powers on 8™ ! tend
to the LP norms of gradients and Hermite operator powers in Gauss space, in a
suitable way.

With 7;,, as in (10), if F:S,—R is smooth enough, we have

1

(60) As,F== > TinTinF
1<l<m<n

and
1

(61) |VsnF|2:E Z | Tim F2.
1<l<m<n

If I is a spherical harmonic of degree k, then,

k(n—2+k) 7
n

Agn 1 F=

Let m be a fixed positive integer. Let II,,: S,, —R™ be the projection I, (z, y)=
z, if zeR™, yeR™ ™ and |z|>+|y|?=n. If f: R™ =R, f,=Ff-Il,. Mehler’s obser-
vation is that, if ECR™ is measurable, then

[ e xeta)( —@)(n_m_w dz

n

s - |:E|2 (n—m—2)/2 _)/mXEd%

n [ ()
|z|* <n n

as n—oo. It is not difficult to check that, in fact, if f:R™—R has polynomial
growth, then

(62) /S fadpn— [ san.




226 Nicola Arcozzi
Hence, if f is a polynomial in z€R™ and 1<p<oo, then

Jim |[Vs,, follze(s,) = IVR,. fllze ¢,

nli)rgo ||AsnanLP(Sn) = ”AfHL”('Y)’

where Af(z)=Agrm f(z)~z-Vr~ f(z) is the Hermite operator. In fact,

m

m 2
Vs, fal® :Z(ajf)g—% (Z xjajf)
j=1

=1

and the error term has polynomial growth. A similar relation holds for the Lapla-
cian, see [M].

Let A7? be the space of polynomials of degree not greater than k in z=
(21, ..., Tm). The space Hi(R™) is the space of homogeneous harmonic polynomials
of degree k in R™ and $;"™ is the space of those Y €H,(R™) that are invariant
under SO(n—m), the subgroup of SO(n) that fixes pointwise the first factor of
R"=R™xR"™ ™, n>m. Then Y eHh; ™ if and only if it is a spherical harmonic of
degree k on R™ that can be written as Y (1, ..., 2,)=¢(®1, .., Tm, 211 +... T2,
where ¢ is a polynomial in m+1 variables. The space $; " will be the space of the
generalized Hermite polynomials of degree k on R™, i.e., the space of those P€ A7
such that AP+kP=0. See [Me3].

Mimicking the reasoning in Chapter IV of [SW], it is easy to verify that
dim(H; ") =dim(H;"")=dy is independent of n. In fact, di*=#{aeNF:|a|=
o +...+an=k}.

Let now Pe$,;”™, n>m, and let P, be its restriction to S,,. Then

<k

where Q7™ (P) is the L*(S,)-orthogonal projection of P onto H;(R™), a spherical
harmonic of degree k, that we extend to a homogeneous polynomial on R™. Then,
by SO(n—m) invariance, Q"™ (P)e$™. The following lemma shows how the
spectral decomposition of P, simplifies as n—ooc.

Lemma 6.1. Let Pe$;”"™ and consider its decomposition as in (63). Then
Q™ (P) is the leading term of P, in the L? sense,

(1) limneco Q™ (P) 25,y =I| Pl 2y and

(if) limn oo 1Q7 ™ (P)|Ir2(s,)=0, if j<k.
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Proof. 1f Q) is a spherical harmonic of degree j, then

(—As,)Y?Q=+/j(n—2+5)/nQ.

Thus
Jn—=2+47)  nm
nhjgoz—n—HQ (P )||L2 Sn) =, hm [(—As, )1/2P ||L2

= lim | Vs, PulZzs, )=IIVRmPIIiz(7)

=kl P72y = lim ZIIQ"M Nizs.)-

Comparing the first and the last term in the chain of equalities and taking into
account that Q7™ (P)[|72s,.) —”PHLQ(SH) is bounded, since ”Pnniz(sn)_’“P”%?(n,)v
we obtain (ii) for 0<j<k. The case j=0 is easier, and (i) follows. O

Let now le,m:@?:o $™, m<n<co. A consequence of Lemma 6.1 is that
(64) 1(=As,)" Pall2(s,) = (= A)* Pll 2,
as n—oo, if P€J™. The lemma below is the key to extend (64) to 1<p<oo. The
real problem is p>2, the case p<2 being easily reduced to that of p=2.

Lemma 6.2. Let 1<p<oo. There exist K,=K (p, m, k) and N=N(m,k) such
that, if Fe3,°™,

(65) 1 FllLr(s,) < Kpll Fllzzs,.)-

Proof. If p<2, (65) follows from Jensen’s inequality, with Kp=1.

Let p>2. If F€J"™, then F,, the restriction of F' to S,, is the restriction to
S, of a polynomial ¢,c A" that only depends on x=(z1,...,%m). By Schwarz’s
inequality we have

(2m)m/2

1F1ze s,y < / <W><Mm>/zdx0°<n,m>( /Wnlqsn(x)lzpdv(x))lm
|z]2<n

n

< CHm)|I8nl[% 20y < C (b, p)|6nlI751,,
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where C7(-) represent various positive constants dependent on the arguments in
the parenthesis and, in particular,

|.CL'|2 n—2—m ) 1/2
C°(n,m)= </ (1——) el! d’y(x))
[z|2<n, n

is bounded in n, for fixed m. The last inequality follows from the fact that A7 is
a finite dimensional Banach space with any of its P norms.

Consider now on A7 the norms [:],, m<n<oo, [fln=|falr2(s.) [flooc=
1 f|lz2(y)- By (62) and simple considerations about finite dimensional Hilbert spaces,
we have that

(66) C3(m, k) [floo < [£1n < C*(m, k) foo

for n>N(m, k). Together with the chain of inequalities above, (66) implies (65). O

Corollary 6.3. Let 1<p<oo. If P is a finite linear combination of generalized
Hermite polynomials, then

(67) 1(=As,)"* Pallzo(s,) = I(—=A) > Pl 1o (),
as n-—00. As a consequence,

(68) VR Pl 1oy <20~ 1)[[(=A) /> Pl s ).

Proof. Suppose P=PW 4. +p&) pO €9H;7™. Lemma 6.1 and Lemma 6.2
imply that the leading term, in the LP sense, of the decomposition of P, in spherical
harmonics is Q7™ (PM)+...+ QY™ (P®)). The limit (67) can then be deduced from
the Fourier multiplier’s expression of (—Ag_)!/2. The inequality (68) follows from
(67) and Theorem 2. [

Proof of the LP boundedness of RC. Inequality (68) can be rephrased as
(69) [V o(—A) " 2P| 1oy <200 = DI Pl Loy

where P =(—A)Y/2P is any finite, linear combination of Hermite polynomials with
null average on (R™,v). By density, (69) extends to Lf(v) [Me3]. This proves
Theorem 4. O

We believe that |R°|,>B,, Pichorides’ constant, but we do not have a proof
for this. The extremal sequences used in the proof of (59) in §5, in fact, depend on
the dimension of S"~!, and the limiting scheme unfolded in this section does not

apply.
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